
ASP Solving for Expanding Universes ?

M. Gebser1,3, T. Janhunen1, H. Jost3, R. Kaminski3, and T. Schaub2,3??

1Aalto University Helsinki 2INRIA Rennes 3University of Potsdam

Abstract. Over the last years, Answer Set Programming has significantly ex-
tended its range of applicability, and moved beyond solving static problems to
dynamic ones, even in online environments. However, its nonmonotonic nature
as well as its upstream instantiation process impede a seamless integration of new
objects into its reasoning process, which is crucial in dynamic domains such as
logistics or robotics. We address this problem and introduce a simple approach
to successively incorporating new information into ASP systems. Our approach
rests upon a translation of logic programs and thus refrains from any dedicated al-
gorithms. We prove its modularity as regards the addition of new information and
show its soundness and completeness. We apply our methodology to two domains
of the Fifth ASP Competition and evaluate traditional one-shot and incremental
multi-shot solving approaches.

1 Introduction

Answer Set Programming (ASP; [1]) is deeply rooted in the paradigm of nonmonotonic
reasoning. That is, conclusions can be invalidated upon the arrival of new information.
Unfortunately, this carries over to computationally relevant characterizations, involving
completion and loop formulas, and thus extends to the data structures capturing “non-
monotonicity” in modern ASP solvers. Hence, when solving in dynamic domains like
logistics or robotics, the emergence of new properties or even new objects cannot be
accounted for in a modular way, since the existing structures become invalidated. This
is different from monotonic (instantiation-based) approaches, like the original DPLL
procedure [2], where new objects can be modularly incorporated by adding the instan-
tiations involving them. In fact, incremental satisfiability solving has been successfully
applied in domains like finite model finding [3], model checking [4], and planning [5],
yet relying on application-specific instantiators rather than general-purpose grounding.

Incremental instantiation was so far neglected in ASP since traditional systems were
designed for one-shot solving and thus needed to be relaunched whenever the problem
specification changed. This is clearly disadvantageous in highly dynamic domains like
logistics or robotics. Although new generation ASP systems, like clingo 4 [6], allow for
multi-shot solving and thus abolish the need for relaunching, there is yet no principled
way of modularly extending a problem specification upon the arrival of new objects.
? This work was funded by DFG (SCHA 550/9), the Finnish Centre of Excellence in Compu-

tational Inference Research (COIN) supported by the Academy of Finland (AoF) under grant
251170, as well as DAAD and AoF under joint project 57071677/279121. A draft version with
proofs is available at http://www.cs.uni-potsdam.de/wv/publications/.

?? Affiliated with Simon Fraser University, Canada, and IIIS Griffith University, Australia.

In what follows, we address a rather general variant of this problem by allowing
new information to successively expand the (Herbrand) universe. Our approach rests
upon a simple translation of logic programs and thus refrains from dedicated algo-
rithms (though it is only meaningful in the context of multi-shot ASP solving). We
prove the modularity of our approach as regards the addition of new information and
show its soundness and completeness. Finally, we illustrate our methodology, evaluate
the resulting performance of solving approaches, and discuss related work.

2 Background

A signature (P, C,V) consists of a set P of predicate symbols, a set C of constant sym-
bols, also called Herbrand universe, and a set V of variable symbols; we usually omit
the designation “symbol” for simplicity. The members of C∪V are terms. Given a pred-
icate p ∈ P of arity n, also denoted as p/n, along with terms t1, . . . , tn, p(t1, . . . , tn)
is an atom over p/n. An atom a and ∼a are (positive or negative, respectively) literals,
where ‘∼’ stands for default negation; we sometimes (ab)use the same terminology for
classical literals a and ¬a. Given a setB = {a1, . . . , am,∼am+1, . . . ,∼an} of literals,
B+ = {a1, . . . , am} andB− = {am+1, . . . , an} denote the atoms occurring positively
or negatively in B. A logic program R over (P, C,V) is a set of rules r = a ← B,
where a is an atom and B is a set of literals; if B = ∅, r is also called a fact. By
head(r) = a and body(r) = B, we refer to the head or body of r, respectively. We
extend this notation to R by letting head(R) = {head(r) | r ∈ R}.

We denote the set of variables occurring in an atom a by var(a). The variables
in a rule r are var(r) = var(head(r)) ∪

⋃
a∈body(r)+∪body(r)− var(a). An atom,

rule, or program is non-ground if it includes some variable, and ground otherwise. By
atom(P, C) = {p(c1, . . . , cn) | p/n ∈ P, c1 ∈ C, . . . , cn ∈ C}, we refer to the collec-
tion of ground atoms over predicates inP . A ground substitution for a set V of variables
is a mapping σ : V → C, and Σ(V, C) denotes the set of all ground substitutions for V .
The instance aσ (or rσ) of an atom a (or a rule r) is obtained by substituting occur-
rences of variables in V according to σ. The ground instantiation of a program R is the
set grd(R, C) = {rσ | r ∈ R, σ ∈ Σ(var(r), C)} of ground rules.

An interpretation I ⊆ atom(P, C) is a supported model [7] of a program R if
I = {head(r) | r ∈ grd(R, C), body(r)+ ⊆ I, body(r)

− ∩ I = ∅}. Moreover, I is a
stable model [8] of R if I is a ⊆-minimal (supported) model of the reduct {head(r)←
body(r)

+ | r ∈ grd(R, C), body(r)− ∩ I = ∅}. Any stable model of R is a supported
model of R as well, while the converse does not hold in general [9].

Supported and stable models can also be characterized in terms of classical models.
To this end, given a set B of literals, let bf (B) = (

∧
a∈B+ a)∧ (

∧
a∈B− ¬a) denote the

body formula for B. Moreover, let rf (r) = bf (body(r)) → head(r) be the rule for-
mula for a rule r. Then, we associate a ground logic program R with the set RF (R) =
{rf (r) | r ∈ R} of rule formulas. Given some ground atom a, the completion formula
for a relative to R is cf (R, a) = a →

∨
r∈R,head(r)=a bf (body(r)). For a set A of

ground atoms, CF (R,A) = {cf (R, a) | a ∈ A} denotes the corresponding set of com-
pletion formulas. The theory RF (R) ∪ CF (R, atom(P, C)) is also known as Clark’s
completion [10], and its classical models coincide with the supported models of R. In

order to extend the correspondence to stable models, for a set L of ground atoms, let
supp(R,L) = {body(r) | r ∈ R, head(r) ∈ L, body(r)+∩L = ∅} denote the external
supports for L [11]. Then, lf (R, a, L) = a→

∨
B∈supp(R,L) bf (B) is the loop formula

for a ∈ L relative to R [12]. Further distinguishing two sets A and B of ground atoms,
we let LF (R,A,B) = {lf (R, a, L) | L ⊆ A ∪ B, a ∈ L ∩ A} be the corresponding
set of loop formulas. Note that LF (R, atom(P, C), ∅) |= CF (R, atom(P, C)), and as
shown in [11, 12], the classical models of RF (R) ∪ LF (R, atom(P, C), ∅) match the
stable models of R. Thus, when A = atom(P, C) and B = ∅, LF (R,A,B) yields
the same as corresponding concepts from the literature, but we use A and B below to
control the set A of atoms whose derivability is expressed by particular loop formulas.

3 Expanding Logic Programs

As in Datalog [13], we consider signatures (PE ∪ PI , C,V) such that PE ∩ PI = ∅.
The part PE includes extensional predicates provided by facts, while the intensional
predicates in PI are defined by rules. We thus deal with programs F ∪ R composed of
(ground) facts F over (PE , C, ∅) and (non-ground) rules R over (PE ∪ PI , ∅,V) such
that {p/n | p(X1, . . . , Xn) ∈ head(R)} ⊆ PI .

Example 1. For PE = {cs/1, st/1, in/2} (for courses and students) and PI = {ok/1,
ko/1}, the following non-ground rules R define the intensional predicates in PI :

ok(C)← cs(C), st(S), in(S,C) (1)
ko(C)← cs(C),∼ok(C) (2)

Moreover, consider facts F over the extensional predicates in PE and C = {c1, c2,
s1, s2} as follows:

cs(c1), st(s1), in(s1, c1),
cs(c2), st(s2), in(s2, c1).

The atoms over intensional predicates in PI in the (unique) stable model of F ∪ R are
ok(c1) and ko(c2). �

To characterize supported and stable models in terms of classical models relative to
facts F over (PE , C, ∅), let E(F,PE , C) = F ∪ {¬a | a ∈ atom(PE , C) \ F} denote
the set of literals fixing atoms over extensional predicates. Then, supported models of
F∪Rmatch classical models of RF (R′)∪CF (R′, atom(PI , C))∪E(F,PE , C), where
R′ = grd(R, C). Similarly, the latter theory augmented with LF (R′, atom(PI , C), ∅)
captures stable models of F ∪R.

For expressing the gradual expansion of an (infinite) Herbrand universe C, we con-
sider sequences over constants in C.

Definition 1. A constant stream over C is a sequence (ci)i≥1 such that ci+1 ∈ C \ Ci
for i ≥ 0 and Ci = {cj | 1 ≤ j ≤ i}.

Note that Ci \ Ci−1 = {ci} for i ≥ 1 and a constant ci ∈ C. Furthermore, given
a set R of (non-ground) rules, each Ci yields a finite ground instantiation grd(R, Ci).
While ground rules can simply be accumulated when the set of constants grows, com-
pletion (and loop) formulas cannot.

Example 2. Reconsider the rules R and facts F from Example 1. Relative to the con-
stant stream (c1, s1, s2, c2, . . .), the ground instantiations of R for C1 = {c1} and
C2 = {c1, s1}, R1 = grd(R, C1) and R2 = grd(R, C2), are:

R1 =
{
ok(c1)← cs(c1), st(c1), in(c1, c1) ko(c1)← cs(c1),∼ok(c1)

}
R2 =


ok(c1)← cs(c1), st(c1), in(c1, c1) ko(c1)← cs(c1),∼ok(c1)
ok(c1)← cs(c1), st(s1), in(s1, c1) ko(s1)← cs(s1),∼ok(s1)
ok(s1)← cs(s1), st(c1), in(c1, s1)
ok(s1)← cs(s1), st(s1), in(s1, s1)


Relative to R1, we obtain

cf (R1, ok(c1)) = ok(c1)→ (cs(c1) ∧ st(c1) ∧ in(c1, c1)).

Along with

E1 = E({cs(c1)},PE , C1) = {cs(c1),¬st(c1),¬in(c1, c1)}

and in view of ((cs(c1) ∧ ¬ok(c1)) → ko(c1)) ∈ RF (R1), RF (R1) ∪
CF (R1, {ok(c1), ko(c1)}) ∪ E1 entails ¬ok(c1) and ko(c1). Turning to R2 ⊇ R1,
we have that RF (R1) ⊆ RF (R2). However, the rules defining ok(c1) yield

cf (R2, ok(c1)) = ok(c1)→ ((cs(c1) ∧ st(c1) ∧ in(c1, c1))

∨ (cs(c1) ∧ st(s1) ∧ in(s1, c1))),

so that cf (R2, ok(c1)) 6= cf (R1, ok(c1)). Moreover,

E2 = E({cs(c1), st(s1), in(s1, c1)},PE , C2)
= E1 ∪ {st(s1), in(s1, c1),¬cs(s1),¬in(c1, s1),¬in(s1, s1)}

and ((cs(c1) ∧ st(s1) ∧ in(s1, c1)) → ok(c1)) ∈ RF (R2) entail ok(c1). Thus,
RF (R2) ∪ CF (R1, {ok(c1), ko(c1)}) ∪ E2 is unsatisfiable, and cf (R1, ok(c1))
must be replaced by cf (R2, ok(c1)) to obtain a (unique) model of RF (R2) ∪
CF (R2, {ok(c1), ko(c1), ok(s1), ko(s1)})∪E2, providing ok(c1), ¬ko(c1), ¬ok(s1),
and ¬ko(s1) as conclusions. �

In incremental CDCL-based Boolean constraint solvers (cf. [14]), a replacement
as above amounts to the withdrawal of all conflict information relying on invalidated
completion (and loop) formulas, essentially restricting the “memory” of an incremental
solver to direct consequences of rules or rule formulas, respectively. In order to resolve
this problem, we in the following provide a translation approach on the first-order level,
leading to ground instantiations such that corresponding completion and loop formulas
can be accumulated, even when expanding the underlying Herbrand universe.

Our translation approach successively extends the signature of (non-ground) rules.
To this end, given a set PI of intensional predicates, we let Pk

I = {pk/n | p/n ∈ PI}
be a corresponding set of new predicates labeled with k. For an atom p(X1, . . . , Xn),
we denote its labeled counterpart by p(X1, . . . , Xn)

k = pk(X1, . . . , Xn). Modifying
the head of a rule r in this way yields rk = head(r)k ← body(r).

The label k (or k+1) of a predicate serves as place holder for integers. Given i ≥ 0,
let pk[i] = pi (or pk+1[i] = pi+1) if pk ∈ Pk

I (or pk+1 ∈ Pk+1
I) is labeled, while

p[i] = p for unlabeled predicates p ∈ PE ∪ PI . We extend this notation to sets P
of predicates and to atoms p(X1, . . . , Xn) by letting P[i] = {p[i] | p ∈ P} and
p(X1, . . . , Xn)[i] = p[i](X1, . . . , Xn). For a set R of rules, R[i] = {r[i] | r ∈ R},
where r[i] = head(r)[i]← {a[i] | a ∈ body(r)

+} ∪ {∼a | a ∈ body(r)
−}.

Definition 2. For a setR of rules over (PE∪PI , ∅,V), we define the setsΦ(R),Π(PI),
and ∆(PI) of rules as follows:

Φ(R) = {rk | r ∈ R},
Π(PI) = {p(X1, . . . , Xn)← pk(X1, . . . , Xn) | p/n ∈ PI},
∆(PI) = {pk(X1, . . . , Xn)← pk+1(X1, . . . , Xn) | p/n ∈ PI}.

Example 3. Labeling the heads of the rules in (1) and (2) leads to the following rules
(without negative literals over labeled predicates) in Φ(R) for R from Example 1:

okk(C)← cs(C), st(S), in(S,C)

kok(C)← cs(C),∼ok(C)

In view of PI = {ok/1, ko/1}, Π(PI) consists of the rules:

ok(C)← okk(C) ko(C)← kok(C)

Moreover, the rules in ∆(PI) prepare definition expansions:

okk(C)← okk+1(C) kok(C)← kok+1(C) �

Given a constant stream (ci)i≥1, we aim at successive ground instantiations of
Φ(R), Π(PI), and ∆(PI) capturing the supported as well as the stable models of
F ∪ R relative to each universe Ci and arbitrary facts F over (PE , Ci, ∅). To this end,
we denote the ground substitutions and atoms that are particular to some i ≥ 0 by
Σ(V, Ci, i) = {σ ∈ Σ(V, Ci) | max{j | (X 7→ cj) ∈ σ} = i} and atom(P, Ci, i) =
{p(X1, . . . , Xn)σ | p/n ∈ P, σ ∈ Σ({X1, . . . , Xn}, Ci, i)}.1 The resulting partition
of substitutions (and atoms) forms the base for a selective instantiation ofΦ(R),Π(PI),
and ∆(PI) relative to (ci)i≥1.

Definition 3. For a set R of rules over (PE ∪ PI , ∅,V) and a constant stream (ci)i≥1
over C, we define the expansible instantiation of R for j ≥ 0 as exp(R, j) =

⋃j
i=0R

i,
where

Ri = {(r[i])σ | r ∈ Φ(R) ∪Π(PI), σ ∈ Σ(var(r), Ci, i)}
∪ {(r[i])σ | r ∈ ∆(PI), σ ∈ Σ(var(r), Ci)}.

1 Letting max ∅ = 0, since C0 = ∅, we getΣ(∅, C0, 0) = Σ(∅, ∅) = {∅}, and atom(P, ∅, 0) =
{p | p/0 ∈ P} consists of atomic propositions.

Example 4. Starting with C0 = ∅, the rules Φ(R), Π(PI), and ∆(PI) from Example 3
yield exp(R, 0) = R0 = ∅ because each of them contains some variable. For C1 =
{c1}, however, we obtain the following set R1 of ground rules:

R1 =


ok1(c1)← cs(c1), st(c1), in(c1, c1)

ko1(c1)← cs(c1),∼ok(c1)
ok(c1)← ok1(c1) ko(c1)← ko1(c1)

ok1(c1)← ok2(c1) ko1(c1)← ko2(c1)


Observe that, beyond substituting variables with c1, the label k (or k+1) is replaced
by 1 (or 2). Also note that the atom ok(c1) over the original predicate ok/1 is derivable
from ok1(c1), an atom over the new predicate ok1/1. Unlike the completion formula
cf (R1, ok(c1)) from Example 2,

cf (R1, ok1(c1)) = ok1(c1)→ ((cs(c1) ∧ st(c1) ∧ in(c1, c1)) ∨ ok2(c1))

includes the yet undefined atom ok2(c1) to represent derivations becoming available
when another constant is added. In fact, such an additional derivation is contained inR2,
consisting of new ground rules relative to C2 = {c1, s1}:

R2 =



ok2(c1)← cs(c1), st(s1), in(s1, c1)

ok2(s1)← cs(s1), st(c1), in(c1, s1)

ok2(s1)← cs(s1), st(s1), in(s1, s1)

ko2(s1)← cs(s1),∼ok(s1)
ok(s1)← ok2(s1) ko(s1)← ko2(s1)

ok2(c1)← ok3(c1) ko2(c1) ← ko3(c1)

ok2(s1)← ok3(s1) ko2(s1)← ko3(s1)


While the first six ground rules in R2, stemming from Φ(R) and Π(PI), include the
second constant, viz. s1, two of the four instances of rules in ∆(PI) mention c1 only.�

Intuitively, the substitutions applied to Φ(R) (andΠ(PI)) aim at new rule instances
mentioning the constant ci at stream position i, and the replacement of labels k by i
makes sure that the defined predicates are new. Via instances of rules in Π(PI), the
new predicates are mapped back to the original ones in PI , at position i concentrating
on ground atoms including ci. The purpose of ∆(PI), on the other hand, is to keep the
definitions of atoms in atom(PI , Ci) expansible, and the rules with yet undefined body
atoms provide an interface for connecting additional derivations.

For each i ≥ 0 and Ri as in Definition 3, we have that head(Ri) =
atom(PI , Ci, i) ∪ atom(Pk

I [i], Ci). In view of distinct constants in arguments or dif-
ferent predicate names, respectively, head(Ri) ∩ head(Rj) = ∅ for i > j ≥ 0. Hence,
letting head(exp(R,−1)) = ∅, it also holds that

RF (Ri) ∩ RF (Rj) = ∅,
CF (Ri, head(Ri)) ∩ CF (Rj , head(Rj)) = ∅,

LF (exp(R, i), head(Ri), head(exp(R, i−1)))
∩ LF (exp(R, j), head(Rj), head(exp(R, j−1))) = ∅.

As a consequence, the theories

RF i(R) =
⋃i

j=0RF (Rj),

CF i(R) =
⋃i

j=0CF (Rj , head(Rj)),

LF i(R) =
⋃i

j=0LF (exp(R, j), head(Rj), head(exp(R, j−1)))

constitute disjoint unions. As shown next, they reproduce corresponding concepts for
exp(R, i) in a modular fashion.

Proposition 1. Given a set R of rules over (PE ∪ PI , ∅,V) and a constant stream
(ci)i≥1 over C, we have for j ≥ 0:

RF j(R) = RF (exp(R, j)),

CF j(R) = CF (exp(R, j), head(exp(R, j))),

LF j(R) ≡ LF (exp(R, j), head(exp(R, j)), ∅).

We now turn to the correspondence between supported as well as stable models of
F ∪ R and F ∪ exp(R, i) for i ≥ 0 and arbitrary facts F over (PE , Ci, ∅). To this end,
we denote the expansion atoms over new predicates in exp(R, i) by expatom(PI , i) =⋃i

j=0 atom(Pk
I [j], Cj). For some a ∈ atom(P, C), by ‖a‖ = min{j ≥ 0 | a ∈

atom(P, Cj)}, we refer to the (unique) least j such that a ∈ atom(P, Cj , j). Similarly,
‖r‖ = max{‖a‖ | a ∈ {head(r)} ∪ body(r)

+ ∪ body(r)
−} denotes the smallest j

such that all atoms in a ground rule r are contained in atom(P, Cj). Moreover, we map
any interpretation I ⊆ atom(P, Ci) to an extended interpretation I∗ ⊆ atom(P, Ci) ∪
expatom(PI , i) as follows:

I∗ = I ∪ {head(r)k[j] | r ∈ grd(R, Ci), I |= bf (body(r)), ‖head(r)‖ ≤ j ≤ ‖r‖}.

That is, I∗ augments a given I with expansion atoms for the heads of rules r whose
bodies hold wrt I , where the label k is replaced by the integers from ‖head(r)‖ to
‖r‖. Note that the expansion atoms in atom(Pk+1

I [i], Ci), which have no derivations
in exp(R, i), are fixed to false in I∗ and any other interpretation I ′ ⊆ atom(P, Ci) ∪
expatom(PI , i).

The following result shows that our translation approach yields the intended seman-
tics, viz. supported or stable models of a program F ∪ R, relative to each universe Ci
for i ≥ 0.

Theorem 1. Given a set R of rules over (PE ∪PI , ∅,V) and a constant stream (ci)i≥1
over C, we have for j ≥ 0:

1. If I ⊆ atom(P, Cj) is a supported (or stable) model of (I ∩ atom(PE , Cj)) ∪ R,
then I∗ is a supported (or stable) model of (I ∩ atom(PE , Cj)) ∪ exp(R, j).

2. If I ′ ⊆ atom(P, Cj) ∪ expatom(PI , j) is a supported (or stable) model of (I ′ ∩
atom(PE , Cj)) ∪ exp(R, j), then I ′ = I∗ for the supported (or stable) model
I = I ′ ∩ atom(P, Cj) of (I ′ ∩ atom(PE , Cj)) ∪R.

Example 5. The ground rules R1 and R2 from Example 4 yield completion formulas
C1 = CF (R1, head(R1)) and C2 = CF (R2, head(R2)) as follows:

C1 =


ok1(c1)→ ((cs(c1) ∧ st(c1) ∧ in(c1, c1)) ∨ ok2(c1))

ko1(c1)→ ((cs(c1) ∧ ¬ok(c1)) ∨ ko2(c1))

ok(c1)→ ok1(c1) ko(c1)→ ko1(c1)



C2 =



ok2(c1)→ ((cs(c1) ∧ st(s1) ∧ in(s1, c1)) ∨ ok3(c1))

ok2(s1)→ ((cs(s1) ∧ st(c1) ∧ in(c1, s1))

∨ (cs(s1) ∧ st(s1) ∧ in(s1, s1)) ∨ ok3(s1))

ko2(c1)→ ko3(c1)

ko2(s1)→ ((cs(s1) ∧ ¬ok(s1)) ∨ ko3(s1))

ok(s1)→ ok2(s1) ko(s1)→ ko2(s1)


Along with literals E1 and E2 as in Example 2, fixing atoms over extensional predi-
cates, we obtain (supported) models I∗1 = {cs(c1), ko(c1), ko1(c1)} and I∗2 = {cs(c1),
st(s1), in(s1, c1), ok(c1), ok

1(c1), ok
2(c1)} of RF (R1) ∪ C1 ∪ E1 or RF (R1) ∪

RF (R2) ∪ C1 ∪ C2 ∪ E2, respectively. In the transition from I∗1 to I∗2 , ko(c1) is with-
drawn and exchanged with ok(c1), as with R1 and R2 from Example 2. In contrast to
the latter, however, the completion formulas C2 do not invalidate C1, but rather their
(disjoint) union can be used. �

The benefit of expansible instantiation, exp(R, i), in comparison to plain instan-
tiation, grd(R, Ci), is that completion (and loop) formulas remain intact and can, like
ground rules, be accumulated during the successive evolvement of a Herbrand universe.
On the other hand, the downside is that, beyond theO(|grd(R, Ci)|) ground rules stem-
ming from Φ(R) and Π(PI), additional O(i × |atom(PI , Ci)|) instances of rules in
∆(PI) are introduced for propagating derivations via expansion atoms. However, for
an intensional predicate p/n ∈ PI such that var(r) = var(head(r)) for all r ∈ R
with head(r) = p(X1, . . . , Xn), definitions of atoms over p/n stay local because rule
instances relying on a new constant ci only provide derivations for atoms including ci.
In view of this, the introduction of a respective labeled predicate and corresponding
rules in Φ(R), Π(PI), and ∆(PI) is unnecessary, and the original rule(s), such as (2)
for ko/1 in Example 1, can be instantiated (like members of Φ(R) ∪Π(PI)) instead.

Example 6. Consider the following non-ground rules R over PE = {arc/2, vtx/1,
init/1} and PI = {cycle/2, other/2, reach/1}, aiming at directed Hamiltonian cy-
cles:

R =


cycle(X,Y)← arc(X,Y),∼other(X,Y)
other(X,Y)← arc(X,Y), cycle(X,Z), Y 6= Z

reach(Y)← cycle(X,Y), init(X)
reach(Y)← cycle(X,Y), reach(X)
reach(Y)← vtx (Y),∼reach(Y)


Since the variables X and Y occur in the head cycle(X,Y) of the first rule, expansion
atoms for cycle/2 and respective rules can be omitted. Keeping the original rule, a
simplified set R1 of ground rules is obtained relative to C1 = {v1}:2

2 The condition Y 6= Z filters admissible ground substitutions.

R1 ∼=



cycle(v1, v1)← arc(v1, v1),∼other(v1, v1)
reach1(v1)← cycle(v1, v1), init(v1)

reach1(v1)← cycle(v1, v1), reach(v1)

reach1(v1)← vtx (v1),∼reach(v1)
other(v1, v1)← other1(v1, v1)

reach(v1)← reach1(v1)

other1(v1, v1)← other2(v1, v1)

reach1(v1)← reach2(v1)


Given F1 = {arc(v1, v1), vtx (v1)}, F1 ∪ R1 has I∗1 = F1 ∪ {cycle(v1, v1),
reach(v1), reach

1(v1)} as supported model that is not stable because, for L1 =
{reach(v1), reach1(v1)},

lf (R1, reach(v1), L1) = reach(v1)→ (reach2(v1) ∨
(cycle(v1, v1) ∧ init(v1)) ∨ (vtx (v1) ∧ ¬reach(v1)))

belongs to LF (R1, head(R1), ∅). While I∗1 |= RF (R1)∪CF (R1, head(R1)), there is
no model I ′ of RF (R1) ∪ LF (R1, head(R1), ∅) such that F1 ⊆ I ′ ⊆ F1 ∪ head(R1).

Letting R2
1 = R1 ∪R2, where R2 is the set of new ground rules for C2 = {v1, v2},

along with F2 = F1∪{arc(v1, v2), arc(v2, v1), vtx (v2)}, F2∪R2
1 yields the supported

model

I∗2 = F2 ∪ {cycle(v1, v2), cycle(v2, v1), other(v1, v1), other1(v1, v1), other2(v1, v1),
reach(v1), reach(v2), reach

1(v1), reach
2(v1), reach

2(v2)},

which is not stable either. For L2 = {reach(v1), reach(v2), reach1(v1), reach2(v1),
reach2(v2)}, since the loop formula

lf (R2
1, reach(v2), L2) = reach(v2)→ ((

∨2
i=1reach

3(vi)) ∨
(cycle(v1, v1) ∧ init(v1)) ∨ (cycle(v2, v1) ∧ init(v2)) ∨
(cycle(v1, v2) ∧ init(v1)) ∨ (cycle(v2, v2) ∧ init(v2)) ∨

(vtx (v1) ∧ ¬reach(v1)) ∨ (vtx (v2) ∧ ¬reach(v2)))

is contained in LF (R2
1, head(R

2), head(R1)), I∗2 6|= LF (R2
1, head(R

2), head(R1)).
However, when considering loop formulas for atoms defined byR1 andR2 in isolation,
one can check that I∗2 |= LF (R1, head(R1), ∅)∪LF (R2, head(R2), ∅). In fact, positive
dependencies between the atoms in L2 involve rules from both R1 and R2. That is, R1

and R2 are not mutually independent in the sense of [15, 16]. �

4 Solving Expansible Programs

For an empirical evaluation of our translation approach, we modeled two benchmark
domains, Graph Coloring and Partner Units, of the Fifth ASP Competition [17] by ex-
pansible programs in the language of clingo 4 [6]. Starting from an empty graph and
no colors, the expansible program for Graph Coloring allows for a successive incorpo-
ration of vertices, arcs, and colors. While the addition of vertices and arcs constrains

admissible colorings, colors serve as resources that must be increased whenever a col-
oring task turns out to be unsatisfiable. In Partner Units, pairwisely connected zones
and sensors need to be mapped to units, where two units are partners if the zone of
a connected pair is mapped to one of them and the corresponding sensor to the other.
Moreover, at most two zones and two sensors may share a unit, and the number of
partners per unit must not exceed a given threshold, varying between two and four in
problem instances of the Fifth ASP Competition. That is, the demand for units increases
whenever the capacities are exceeded upon the successive addition of zones and sensors.

For both benchmark domains, the idea is to gradually expand and solve instances
over arbitrarily many objects by introducing the objects, along with respective data,
one after the other. Similarly, resources such as colors or units are increased on de-
mand, rather than fixing and thus limiting them a priori. For instance, the following
sequence of facts induces four successive Graph Coloring tasks: F1 = {vtx (v1, 1)},
F2 = {col(n1, 2)}, F3 = {vtx (v2, 3), arc(v1, v2, 3)}, and F4 = {col(n2, 4)}. While
introducing the first vertex v1 in F1 yields an unsatisfiable task, a coloring is obtained
after supplying color n1 in F2. However, one color is no longer sufficient when adding
the second vertex v2 and an arc to v1 in F3. Thus, F4 provides another color n2, leading
to colorings mapping v1 to n1 (or n2) and v2 to n2 (or n1). Note that each of the above
facts includes as last argument the maximum position of mentioned vertices or colors
in the constant stream (v1, n1, v2, n2, . . .). For one, this enables a reuse of constants
for referring to vertices and colors, and w.l.o.g. we may assume that colors are denoted
by consecutive integers starting with 1, viz. n1 = 1, n2 = 2, and so on. For another,
the arguments indicating stream positions can be explored to distinguish corresponding
rules in a parametrized clingo 4 program as follows:

col(C)← col(C, k) (3)
vtx (X)← vtx (X, k) (4)

arc(X,Y)← arc(X,Y, k) (5)
new(X,C, k)← vtx (X, k), col(C) (6)
new(X,C, k)← vtx (X), col(C, k) (7)
{map(X,C)} ← new(X,C, k) (8)

← map(X,C),map(Y,C), arc(X,Y, k), col(C) (9)
← map(X,C),map(Y,C), arc(X,Y), col(C, k) (10)

has(X,C)← new(X,C, k),map(X,C) (11)
has(X,C)← new(X,C, k), has(X,C+1) (12)

← new(X,C, k),map(X,C−1), has(X,C) (13)
← vtx (X, k),∼has(X, 1) (14)

Assuming that the program parameter k is successively replaced by the stream positions
of objects in supplied facts, the rules in (3)–(5) provide projections dropping the posi-
tions from respective colors, vertices, or arcs. The auxiliary predicate new/3, defined
in (6) and (7), indicates pairs of vertices and colors such that either of them is introduced
at a stream position substituted for parameter k. Given this, applicable instances of the
choice rule (cf. [18]) in (8) have distinct heads at different positions, so that expansion

atoms can be omitted for map/2. The integrity constraints (i.e., rules with false heads)
in (9) and (10) deny choices of the same color for adjacent vertices, where the body
atoms arc(X,Y, k) or col(C, k) confine applicable instances to new arcs or colors, re-
spectively. The purpose of atoms of the form has(v, n) is to indicate that a vertex v is
mapped to some color m ≥ n. When either v or n is introduced at a stream position,
the rule in (11) captures the case that v is mapped to n, while colors added later on
are addressed by the rule in (12). Making use of the convention that colors are denoted
by consecutive integers, the latter includes expansion atoms of the form has(v, n+1),
rather than hask+1(v, n) or a corresponding clingo 4 representation has(v, n, k+1),
respectively. Note that, by saving an argument for the predicate label, the number of
introduced expansion atoms remains linear, thus avoiding a quadratic blow-up as dis-
cussed below Example 5. The integrity constraints in (13) and (14) further investigate
atoms over has/2 to make sure that each vertex is mapped to exactly one color. Fi-
nally, to keep clingo 4 off discarding body atoms that are not necessarily defined when
instances of (12) and (14) are introduced, the program in (3)–(14) has to be accompa-
nied by #external has(X,C+1) : new(X,C, k) and #external has(X, 1) : vtx (X, k).
Without going into details, we note that Partner Units can be modeled in a similar way,
where zones and sensors amount to vertices and units to colors.

Table (a) and (b) provide experimental results of running clingo 4 (version 4.4.0)
on the Graph Coloring and Partner Units instances of the Fifth ASP Competition. In
particular, we used the Python interface of clingo 4 to successively introduce objects,
viz. vertices or zones and sensors, and instantiate respective rules in (parametrized) ex-
pansible programs.3 Whenever this leads to an unsatisfiable task, another color or unit
is added in turn, thus obtaining sequences of satisfiable as well as unsatisfiable tasks of
gradually increasing size. With sequential runtimes restricted to 10 minutes per instance
on a Linux PC equipped with 2.4GHz processors, columns headed by #S and ∅S report
the number of solved satisfiable tasks along with the corresponding average runtime in
seconds, and columns headed by #U and ∅U provide the same information for unsatis-
fiable tasks. We compare the performance of clingo 4 in two operation modes: one-shot
solving, in which each task is processed independently from scratch, and multi-shot
solving, where rule instances are successively accumulated and conflict information
can be carried over between tasks. Experimental results with one-shot solving are given
in the middle parts of Table (a) and (b), followed by multi-shot solving on the right.
Notably, as instantiation times are negligible, the comparison primarily contrasts the
search performance in solving successive tasks either independently or incrementally.

Given the combinatorial nature of the benchmark domains, one- and multi-shot
solving scale up to tasks of similar size, leading to the same number of solved tasks. The
gap between both solving approaches turns out to be small on the instances of Graph
Coloring, where instance 32 yields an exceptionally hard unsatisfiable task that can still
be solved in time. On the Partner Units instances in Table (b), however, we observe
that multi-shot solving consistently reduces the runtime for rather easy satisfiable tasks.
Except for two instances (091 and 127), it also yields shorter runtimes for unsatisfiable
tasks, even by an order of magnitude in several cases (026, 100, 175, and 188). Com-
paring the numbers of conflicts revealed that, in these cases, multi-shot solving indeed

3 http://svn.code.sf.net/p/potassco/code/trunk/gringo/examples/

Instance #S ∅S #U ∅U #S ∅S #U ∅U
04 125 0.28 5 0.10 125 0.15 5 0.04
05 125 0.13 5 0.12 125 0.03 5 0.08
07 125 0.13 5 0.16 125 0.02 5 0.13
08 125 0.14 5 0.20 125 0.04 5 0.16
13 130 0.13 5 0.11 130 0.02 5 0.04
21 121 0.26 5 0.10 121 0.27 5 0.03
22 121 0.29 5 0.09 121 0.80 5 0.02
23 135 1.17 5 0.11 135 2.07 5 0.05
25 125 0.21 5 0.11 125 0.03 5 0.04
32 140 0.22 6 68.59 140 0.07 6 95.33
36 128 0.52 5 0.18 128 0.55 5 0.14
39 124 0.15 5 0.15 124 0.07 5 0.11
40 121 0.59 5 0.13 121 2.14 5 0.07
46 124 0.69 5 0.15 124 0.50 5 0.10
47 132 0.68 5 0.12 132 0.63 5 0.04
48 128 1.81 5 0.10 128 1.76 5 0.02
50 130 0.88 5 0.12 130 0.49 5 0.04
56 139 2.17 5 0.17 139 2.43 5 0.11
59 128 0.35 5 0.21 128 0.09 5 0.15
60 118 0.16 5 0.11 118 0.04 5 0.02

(a) One- vs. multi-shot: Graph Coloring

Instance #S ∅S #U ∅U #S ∅S #U ∅U
026 40 0.10 10 34.69 40 0.04 10 3.00
052 40 0.10 10 15.29 40 0.03 10 5.58
058 40 0.10 10 22.97 40 0.04 10 5.67
069 40 0.11 10 12.87 40 0.04 10 5.98
091 40 0.10 10 3.71 40 0.04 10 8.42
099 40 0.10 10 10.49 40 0.04 10 5.41
100 40 0.09 10 57.05 40 0.04 10 2.13
102 40 0.10 10 13.29 40 0.04 10 8.45
114 40 0.10 10 16.95 40 0.04 10 7.13
115 40 0.10 10 19.02 40 0.04 10 3.98
119 40 0.10 10 26.01 40 0.04 10 5.65
127 40 0.10 10 4.99 40 0.04 10 9.38
153 40 0.11 10 32.08 40 0.04 10 6.04
154 40 0.10 10 22.75 40 0.04 10 10.23
156 40 0.10 10 11.63 40 0.04 10 9.41
161 40 0.11 10 24.56 40 0.04 10 5.10
175 40 0.12 10 48.44 40 0.04 10 4.86
180 36 0.08 9 2.02 36 0.03 9 1.84
188 40 0.11 10 54.67 40 0.03 10 2.69
196 40 0.07 10 26.80 40 0.03 10 13.97

(b) One- vs. multi-shot: Partner Units

encounters an order of magnitude fewer conflicts, viz. about 200,000 vs. 2,000,000 on
average with one-shot solving. The other way round, the difference amounts to a maxi-
mum factor of 2 (roughly 250,000 vs. 500,000 conflicts) between single- and multi-shot
solving on instance 091. This indicates an increased robustness due to the reuse of con-
flict information in multi-shot solving.

5 Discussion

We introduced a simple approach to successively incorporating new objects into (multi-
shot) ASP solving. Our approach rests upon a translation and refrains from dedicated
algorithms. Also, it is modular and thus allows for adding new information without
altering the existing ground program or underlying constraints, respectively. Hence, our
approach enables incremental finite model finding [19], even under nonmonotonicity
faced with supported or stable instead of classical models. Technically, it employs a
less restrictive notion of modularity than [15, 16]: Proposition 1 applies to successive
ground programs of an expansible instantiation (according to Definition 3) for the rules
in Example 6, although the ground programs are not mutually independent. In view
of a lacking theoretical elaboration, incremental ASP systems like clingo 4 do not yet
provide automatic support for expanding the definitions of atoms or handling mutual
positive dependencies between successive ground programs. Our work thus outlines
potential future system refinements in these regards.

A related approach is dlvhex [20] using external sources for value invention. This is
accomplished by dedicated grounding algorithms incorporating external objects. Once
grounding is completed, no further objects are taken into account. Unlike this, ASP
systems relying on lazy grounding, like asperix [21], gasp [22], and omiga [23], aim
at instantiating variables on demand. However, all of them rely on a fixed Herbrand
universe and use dedicated grounding and solving algorithms, whose performance does
not match that of modern ASP systems. Although the lazy grounding approach in [24]
is tailored for query answering, interestingly, it introduces so-called Tseitin variables
resembling ground expansion atoms in partial instantiations.

References
1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge University (2003)
2. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the

ACM 7 (1960) 201–215
3. Claessen, K., Sörensson, N.: New techniques that improve MACE-style finite model finding.

In Proceedings of MODEL’03. (2003)
4. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electronic Notes

in Theoretical Computer Science 89(4) (2003)
5. Rintanen, J., Heljanko, K., Niemelä, I.: Planning as satisfiability: Parallel plans and algo-

rithms for plan search. Artificial Intelligence 170(12-13) (2006) 1031–1080
6. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control: Preliminary

report. [25] Available at http://arxiv.org/abs/1405.3694v1
7. Apt, K., Blair, H., Walker, A.: Towards a theory of declarative knowledge. In Foundations

of Deductive Databases and Logic Programming. Morgan Kaufmann (1987) 89–148
8. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In Proceed-

ings of ICLP’88. MIT (1988) 1070–1080
9. Fages, F.: Consistency of Clark’s completion and the existence of stable models. Journal of

Methods of Logic in Computer Science 1 (1994) 51–60
10. Clark, K.: Negation as failure. In Logic and Data Bases. Plenum (1978) 293–322
11. Lee, J.: A model-theoretic counterpart of loop formulas. In Proceedings of IJCAI’05. Pro-

fessional Book Center (2005) 503–508
12. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers.

Artificial Intelligence 157(1-2) (2004) 115–137
13. Ullman, J.: Principles of Database and Knowledge-Base Systems. Computer Science (1988)
14. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In

Handbook of Satisfiability. IOS (2009) 131–153
15. Oikarinen, E., Janhunen, T.: Modular equivalence for normal logic programs. In Proceedings

of ECAI’06. IOS (2006) 412–416
16. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of disjunctive

stable models. Journal of Artificial Intelligence Research 35 (2009) 813–857
17. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: The design of the fifth answer set program-

ming competition. [25] Available at http://arxiv.org/abs/1405.3710v4
18. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-

tics. Artificial Intelligence 138(1-2) (2002) 181–234
19. Gebser, M., Sabuncu, O., Schaub, T.: An incremental answer set programming based system

for finite model computation. AI Communications 24(2) (2011) 195–212
20. Eiter, T., Fink, M., Krennwallner, T., Redl, C.: Grounding HEX-programs with expanding

domains. In Proceedings of GTTV’13. (2013) 3–15
21. Lefèvre, C., Nicolas, P.: The first version of a new ASP solver: ASPeRiX. In Proceedings of

LPNMR’09. Springer (2009) 522–527
22. Dal Palù, A., Dovier, A., Pontelli, E., Rossi, G.: Answer set programming with constraints

using lazy grounding. In Proceedings of ICLP’09. Springer (2009) 115–129
23. Dao-Tran, M., Eiter, T., Fink, M., Weidinger, G., Weinzierl, A.: OMiGA: An open minded

grounding on-the-fly answer set solver. In Proceedings of JELIA’12. Springer (2012) 480–
483

24. De Cat, B., Denecker, M., Stuckey, P.: Lazy model expansion by incremental grounding. In
Technical Communications of ICLP’12. LIPIcs (2012) 201–211

25. Technical Communications of ICLP’14. Theory and Practice of Logic Programming 14(4-5)
(2014) Online supplement

A Proofs

Proposition 1. Given a set R of rules over (PE ∪ PI , ∅,V) and a constant stream
(ci)i≥1 over C, we have for j ≥ 0:

RF j(R) = RF (exp(R, j)),

CF j(R) = CF (exp(R, j), head(exp(R, j))),

LF j(R) ≡ LF (exp(R, j), head(exp(R, j)), ∅).

Proof (Sketch). RF j(R) = RF (exp(R, j)) and CF j(R) = CF (exp(R, j),

head(exp(R, j))) follow from exp(R, j) =
⋃j

i=0 R
i and head(Rl) ∩ head(Ri) = ∅

for j ≥ l > i ≥ 0. For J = LF (exp(R, j), head(exp(R, j)), ∅), LF j(R) ⊆ J
yields J |= LF j(R). On the other hand, any (aL →

∨
B∈supp(exp(R,j),L) bf (B)) ∈

J \ LF j(R) is such that L ⊆ head(exp(R, j)), aL ∈ head(Ri) for j > i ≥ 0,
and L ∩

⋃j
l=i+1 head(R

l) 6= ∅. Consider some interpretation I ⊆ atom(P, Cj) ∪⋃j
i=0 atom(Pk

I [i], Ci) such that I 6|= (aL →
∨

B∈supp(exp(R,j),L) bf (B)). Then, since
B+ ∩ (L \ I) 6= ∅ and I 6|= bf (B) hold for every B ∈ supp(exp(R, j), L ∩ I) \
supp(exp(R, j), L), we have that I 6|=

∨
B∈supp(exp(R,j),L∩I) bf (B). Given that

aL ∈ L ∩ I , head(Ri) ∩ (L ∩ I) 6= ∅ holds for i = max{l ≥ 0 | head(Rl) ∩
(L ∩ I) 6= ∅}. Hence, there is some a ∈ head(Ri) ∩ (L ∩ I) such that I 6|= (a →∨

B∈supp(exp(R,i),L∩I) bf (B)). As LF (exp(R, i), head(Ri), head(exp(R, i−1))) in-
cludes a →

∨
B∈supp(exp(R,i),L∩I) bf (B), we conclude that I 6|= LF j(R), which in

turn yields LF j(R) |= J . �

Theorem 1. Given a set R of rules over (PE ∪PI , ∅,V) and a constant stream (ci)i≥1
over C, we have for j ≥ 0:

1. If I ⊆ atom(P, Cj) is a supported (or stable) model of (I ∩ atom(PE , Cj)) ∪ R,
then I∗ is a supported (or stable) model of (I ∩ atom(PE , Cj)) ∪ exp(R, j).

2. If I ′ ⊆ atom(P, Cj) ∪ expatom(PI , j) is a supported (or stable) model of (I ′ ∩
atom(PE , Cj)) ∪ exp(R, j), then I ′ = I∗ for the supported (or stable) model
I = I ′ ∩ atom(P, Cj) of (I ′ ∩ atom(PE , Cj)) ∪R.

Proof (Sketch). Given some I ⊆ atom(P, Cj), by construction, we have
that I∗ |= RF ({r ∈ exp(R, j) | head(r) ∈ expatom(PI , j)}) ∪
CF (exp(R, j), expatom(PI , j)), while I ′ 6|= RF ({r ∈ exp(R, j) | head(r) ∈
expatom(PI , j)}) ∪ CF (exp(R, j), expatom(PI , j)) for any I ′ 6= I∗ such that I ⊆
I ′ ⊆ I ∪ expatom(PI , j). In particular, for every a ∈ atom(PI , Cj), it holds that
ak[‖a‖] ∈ I∗ iff a = head(r) for some r ∈ grd(R, Cj) such that I |= bf (r). In view
of {r ∈ exp(R, j) | head(r) ∈ atom(PI , Cj)} = {a← ak[‖a‖] | a ∈ atom(PI , Cj)},
we conclude that I |= RF (grd(R, Cj)) ∪ CF (grd(R, Cj), atom(PI , Cj)) iff I∗ |=
RF (exp(R, j)) ∪ CF (exp(R, j), atom(PI , Cj) ∪ expatom(PI , j)). Hence, I is a
supported model of (I ∩ atom(PE , Cj)) ∪ R iff I∗ is a supported model of (I ∩
atom(PE , Cj)) ∪ exp(R, j), which does not admit supported models I ′ 6= I∗ such
that I ⊆ I ′ ⊆ I ∪ expatom(PI , j).

For L ⊆ atom(PI , Cj) and any a ∈ L, it holds that I |= lf (grd(R, Cj), a, L)
iff I∗ |= lf (exp(R, j), a, L ∪ {akL[i] | aL ∈ L, ‖aL‖ ≤ i ≤ j}). On the
other hand, for L′ ⊆ atom(PI , Cj) ∪ expatom(PI , j) and any a ∈ L′, if I∗ 6|=
lf (exp(R, j), a, L′), then we have that L = L′ ∩ I 6= ∅ and I 6|= lf (grd(R, Cj), aL, L)
for each aL ∈ L. We conclude that I |= LF (grd(R, Cj), atom(PI , Cj), ∅) iff
I∗ |= LF (exp(R, j), atom(PI , Cj)∪ expatom(PI , j), ∅), so that I is a stable model of
(I ∩ atom(PE , Cj))∪R iff I∗ is a stable model of (I ∩ atom(PE , Cj))∪ exp(R, j). �

