
Progress in clasp series 3

M. Gebser1,3, R. Kaminski3, B. Kaufmann3, J. Romero3, and T. Schaub2,3?

1Aalto University, HIIT 2INRIA Rennes 3University of Potsdam

Abstract. We describe the novel functionalities comprised in clasp’s series 3.
This includes parallel solving of disjunctive logic programs, parallel optimization
with orthogonal strategies, declarative support for specifying domain heuristics, a
portfolio of prefabricated expert configurations, and an application programming
interface for library integration. This is complemented by experiments evaluating
clasp 3’s optimization capacities as well as the impact of domain heuristics.

1 Introduction

The success of Answer Set Programming (ASP; [1]) is largely due to the availabil-
ity of effective solvers. Early ASP solvers smodels [2] and dlv [3] were followed by
SAT-based ones, such as assat [4] and cmodels [5], before genuine conflict-driven ASP
solvers like clasp [6] and wasp [7] emerged. In addition, there is a continued interest in
mapping ASP onto solving technology in neighboring fields [8, 9].

In what follows, we provide a comprehensive description of clasp’s series 3 (along
with some yet unpublished features already in clasp 2). Historically, clasp series 1 [6]
constitutes the first genuine conflict-driven ASP solver, featuring conflict-driven learn-
ing and back-jumping. clasp series 2 [10] supports parallel search via shared memory
multi-threading. clasp series 3 further extends its predecessors by integrating various
advanced reasoning techniques in a uniform parallel setting. The salient features of
clasp 3 include parallel solving of disjunctive logic programs, parallel optimization
with orthogonal strategies, declarative support for specifying domain heuristics, a port-
folio of prefabricated expert configurations, and an application programming interface
for library integration. We detail these functionalities in Section 2 to 6 from a system-
and user-oriented viewpoint. Section 7 is dedicated to an empirical study comparing the
various optimization strategies of clasp 3. Also, we demonstrate the impact of domain
heuristics and contrast their performance to using disjunctive logic programs when enu-
merating inclusion minimal answer sets.

We refer the interested reader to [11] for the formal foundations and basic algo-
rithms underlying conflict-driven ASP solving as used in clasp. This includes basic con-
cepts like completion and loop nogoods as well as algorithmic ones related to conflict-
driven constraint learning (CDCL).

2 Disjunctive solving

Solving disjunctive logic programs leads to an elevated level of complexity [12] because
unfounded-set checking becomes a co-NP-complete problem [13]. As a consequence,
? Affiliated with Simon Fraser University, Canada, and IIIS Griffith University, Australia.



corresponding systems combine a solver generating solution candidates with another
testing them for unfounded-freeness. For instance, dlv [3] carries out the latter using
a SAT solver [14], claspD [15] uses clasp for both purposes. Common to both is that
search is driven by the generating solver and that the testing solver is merely re-invoked
on demand. Such repeated invocations bear a great amount of redundancy, in particular,
when using conflict-learning solvers because learned information is lost.

Unlike this, clasp 3 enables an equitable interplay between generating and test-
ing solvers. Solver units are launched initially with their respective Boolean constraint
problems, and they subsequently communicate in a bidirectional way. Constraints rele-
vant for the unfounded set check are enabled using clasp’s interface for solving under
assumptions (cf. Section 6). This allows both units to benefit from conflict-driven learn-
ing over whole runs. The theoretical foundations for this approach are laid in [16].1

clasp 3 decomposes the unfounded set problem based on the strongly connected
components (SCCs) of the program’s positive dependency graph. Head cycle compo-
nents (SCCs sharing two head atoms of a rule) are associated with testing solvers re-
sponsible for complex unfounded set checks. Head cycle free components are checked
using clasp’s tractable unfounded set checking procedure for normal programs. The
generator combines propagation via completion nogoods with these unfounded set
checks. Tractable unfounded set checks are performed once at each decision level. Be-
cause complex unfounded set checks are expensive, their frequency is limited by default
(this is configurable using option --partial-check); only checks for total assign-
ments are mandatory before a model is accepted. Finally, it is worth mentioning that
clasp 3 propagates top-level assignments from generators to testers. That is, whenever
a variable’s truth value is determined by the generator, it is also fixed in the tester.

Building on clasp’s multi-threaded architecture, the assembly of generating and
testing solvers is reproduced to obtain n threads running in parallel. This results in
n generating and k × n testing solvers (given k head cycle components), all of which
can be separately configured, for instance, by specifying portfolios of search strategies
for model generation and/or unfounded set checking (cf. Section 5). Notably, different
generators as well as testers solving the same unfounded set sub-problem share com-
mon data, rather than copying it n times. The testing solver can be configured via option
--tester, accepting a string of clasp options. The individual performance of the k×n
solvers and their respective problem statistics can be inspected by option --stats=2.

Another advance in clasp 3 is its extension of preprocessing to disjunctive ASP.
Preprocessing starts with the identification of equivalences and resulting simplifica-
tions on the original program (controlled by option --eq). This extends the techniques
from [17] to disjunctive logic programs. A subsequent dependency analysis of the pro-
gram results in the aforementioned decomposition in head cycle components. This is
followed by a translation of recursive weight constraints. In contrast to previous ap-
proaches, clasp 3 restricts this translation to weight constraints belonging to some
head cycle component. Finally, representations for completion nogoods and unfounded
set nogoods for each head cycle component are created (according to [16]). Notably,
clasp 3’s preprocessor can be decoupled with option --pre, providing a mapping be-
tween two disjunctive logic programs in smodels format. In this way, it can be used as a

1 [16] also contains experiments done with an early and restricted prototype of clasp 3.



preprocessor for other ASP solvers for (disjunctive) logic programs relying on smodels
format. For example, the program
a ; b. c :- a. a :- c. d :- not c.

is translated by calling ‘clasp --pre’ (and conversion to human-readable form) into
a :- not b. b :- not a. c :- a. d :- not a.

Here, clasp 3’s preprocessor turns the disjunction ‘a ; b’ into two normal rules due
to a missing head cycle and identifies the equivalence between a and c.

3 Optimization

Lexicographic optimization of linear objective functions is an established component of
ASP solvers, manifested by #minimize statements [2] and weak constraints [3]. Tra-
ditionally, optimization is implemented in ASP solvers via branch-and-bound search.
As argued in [18], this constitutes a model-guided approach that aims at successively
producing models of descending costs until an optimal model is found (by establish-
ing the unsatisfiability of the problem with a lower cost). Since series 2, clasp features
several corresponding strategies and heuristics [19], including strategies that allow for
non-uniform descents during optimization. For instance, in multi-criteria optimization,
this enables clasp to optimize criteria in the order of significance, rather than pursuing a
rigid lexicographical descent. clasp 3 complements this with so-called core-guided op-
timization techniques originating in the area of MaxSAT [14]. Core-guided approaches
rely on successively identifying and relaxing unsatisfiable cores until a model is ob-
tained. The implementation in clasp 3 seamlessly integrates the core-guided optimiza-
tion algorithms oll2 [20] and pmres [21]. Both algorithms can be (optionally) combined
with disjoint core preprocessing [22], which calculates an initial set of unsatisfiable
cores to initialize the algorithms, and as a side effect provides an approximation of
the optimal solution. Furthermore, whenever an algorithm relaxes an unsatisfiable core,
constraints have to be added to the solver. These constraints can be represented using
either equivalences or implications. The former offers a slightly stronger propagation at
the expense of adding more constraints.

The specific optimization strategy is configured in clasp 3 via option
--opt-strategy. While its first argument distinguishes between model- and core-
guided optimization, the second one handles the aforementioned refinements.

Building on clasp’s multi-threaded architecture, model- and core-guided optimiza-
tion techniques can be combined. As detailed in Section 5, clasp 3 supports optimization
portfolios for running several threads in parallel with different approaches, strategies,
and heuristics, exchanging lower and upper bounds of objective functions (in addition
to conflict nogoods). This combination of model- and core-guided optimization makes
the overall optimization process more robust, as we empirically show in Section 7.

Moreover, clasp 3 adds a new reasoning mode for enumerating optimal models
via option --opt-mode=optN. As usual, the number of optimal answer sets can be
restricted by adding an integer to the command line. Interestingly, this option can also be
combined with the intersection and union of answer sets (cf. option --enum-mode),

2 [20] contains experiments with an early prototype called unclasp.



respectively. This is of great practical relevance whenever it comes to identifying atoms
being true or false in all optimal answer sets.

Finally, it is worth mentioning that clasp 3’s optimization capacities can also be
used for solving PB and (weighted/partial) MaxSAT problems. In fact, clasp 3 won the
second place in the Unweighted Max-SAT - Industrial category by using its core-guided
optimization in the Max-SAT Evaluation in 2014.

4 Heuristics

In many domains, general-purpose solving capacities can be boosted by domain-
specific heuristics. To this end, clasp 3 provides a general declarative framework for
incorporating such heuristics into ASP solving. The heuristic information is exploited
by a dedicated domain heuristic in clasp when it comes to non-deterministically as-
signing a truth value to an atom. In fact, clasp’s decision heuristic is modifiable from
within a logic program as well as from the command line. This allows for specifying
context-dependent activation of heuristic biases interacting with a problem’s encoding.
This approach was formally introduced in [23]3 and extended in clasp 3 as described
below. On the other hand, clasp 3’s command line options allow us to directly refer
to structural components of the program (optimization statements, strongly connected
components, etc.) and do not require any additional grounding. The domain heuristic is
enabled by setting option --heuristic to domain, which extends clasp’s activity-
based vsids heuristic.

Heuristic information is represented by means of the predicate heuristic. The
ternary version of this predicate takes a reified atom, a heuristic modifier, and an integer
to quantify a heuristic modification. There are four primitive heuristic modifiers, viz.
sign, level, init, and factor. The modifier sign allows for controlling the
truth value assigned to variables subject to a choice. For example, the program
{a}. _heuristic(a,sign,1).

produces the answer set containing a first. The modifier level allows for using inte-
gers to rank atoms. Atoms at higher levels are decided before atoms with lower level.
The default level for each atom is 0. Atoms sharing the same level are decided by their
vsids score. Modifiers true and false are defined in terms of level and sign.
_heuristic(X,level,Y) :- _heuristic(X,true,Y).
_heuristic(X,sign,1) :- _heuristic(X,true,Y).
_heuristic(X,level,Y) :- _heuristic(X,false,Y).
_heuristic(X,sign,-1) :- _heuristic(X,false,Y).

The modifiers init and factor allow us to modify the scores of the underlying
vsids heuristic. Unlike level, they only bias the search without establishing a strict
ranking among atoms. The modifier init allows us to add a value to the initial heuristic
score of an atom that decays as any vsids score, while factor allows us to multiply
the vsids scores of atoms by a given value. For example, the following rule biases the
solver to choosing p(T-1) whenever p(T) is true.
_heuristic(p(T-1),factor,2) :- p(T).

3 [23] also contains experiments done with an early and restricted prototype, called hclasp.



clasp 3’s structure-oriented heuristics are supplied via the command line. Apart
from supplying --heuristic=domain, the heuristic modifications are specified by
option --dom-mod=m,p, where m ranges from 0 to 5 and specifies the modifier:

m Modifier m Modifier m Modifier
0 None 1 level 2 sign (positive)
3 true 4 sign (negative) 5 false

and p specifies bit-wisely the atoms to which the modification is applied:

0 Atoms only
1 Atoms that belong to strongly connected components
2 Atoms that belong to head cycle components
4 Atoms that appear in disjunctions
8 Atoms that appear in optimization statements

16 Atoms that are shown

Whenever m equals 1, 3, or 5, the level of the selected atoms depends on p. For ex-
ample, with option --dom-mod=2,8, we apply a positive sign to atoms appearing
in optimization statements, and with option --dom-mod=1,20, we apply modifier
level to both atoms appearing in disjunctions as well as shown atoms. In this case,
atoms satisfying both conditions are assigned a higher level than those that are only
shown, and these get a higher level than those only appearing in disjunctions.

Compared to programmed heuristics, the command line heuristics do not allow for
applying modifiers init or factor and cannot represent dynamic heuristics. But they
allow us to directly refer to structural components of the program and do not require
any additional grounding. When both methods are combined, the choices modified by
the heuristic predicate are not affected by the command line heuristics. When
launched with option --stat, clasp 3 prints the number of modified choices.

Apart from boosting solver performance, domain specific heuristics can be used
for computing inclusion minimal answer sets [24, 25]. This can be achieved by rank-
ing choices over shown atoms highest and setting their sign modifier to false. As an
example, consider the following program
1 {a(1..3)}. a(2) :- a(3). a(3) :- a(2). {b(1)}. #show a/1.

Both the command line option ‘--dom-mod=5,16’ as well as the addition of the
heuristic fact ‘_heuristic(a(1..3),false,1).’ guarantee that the first answer
set produced is inclusion minimal wrt. the atoms of predicate a/1. Moreover, both
allow for enumerating all inclusion minimal solutions in conjunction with option
--enum-mod=domRec. In our example, we obtain the answer sets {a(1)} and
{a(2), a(3)}. Note that this enumeration mode relies on solution recording and is
thus prone to an exponential blow-up in space. However, this often turns out to be su-
perior to enumerating inclusion minimal model via disjunctive logic programs, which
is guaranteed to run in polynomial space. We underpin this empirically in Section 7.

Independent of the above domain-specific apparatus, clasp provides means for con-
figuring the sign heuristics, fixing which truth values get assigned to which type of
variables. In general, clasp selects signs based on a given sign heuristics. For instance,
this can be progress saving (--save-progress; [26]) or an optimization-oriented



heuristic (--opt-heuristic). Also, each decision heuristic in clasp implements a
sign heuristic. For example, clasp’s vsids heuristic prefers the sign of a variable ac-
cording to the frequency of the corresponding literal in learned nogoods. Whenever no
sign heuristic applies, e.g. in case of ties, the setting of option --sign-def deter-
mines the sign; by default, it assigns atoms to false and bodies to true. Other options are
1 (assign true), 2 (assign false), 3 (assign randomly), and 4 (assign bodies and atoms in
disjunctions true). Finally, the option --sign-fix permits to disable all sign heuris-
tics and enforce the setting of --sign-def.

5 Configuration

Just as any modern conflict-driven ASP, PB, or SAT solver, clasp is sensitive to search
configurations. In order to relieve users from extensive parameter tuning, clasp offers
a variety of prefabricated configurations that have shown to be effective in different
settings. A specific configuration is selected by means of option --configuration,
taking one of the following arguments:

frumpy Use conservative defaults similar to those used in earlier clasp versions
jumpy Use more aggressive defaults (than frumpy)

tweety Use defaults geared towards typical ASP problems
trendy Use defaults geared towards industrial problems
crafty Use defaults geared towards crafted problems
handy Use defaults geared towards large problems

<file> Use configuration file to configure solver(s)

The terms ‘industrial’ and ‘crafted’ refer to the respective categories at SAT competi-
tions; ‘aggressive defaults’ restart search and erase learned nogoods quite frequently.
Unlike previous clasp series relying on the default configuration frumpy aiming at
highest robustness, the one of clasp 3, viz. tweety, was automatically identified by
piclasp4 (a configurator for clasp based on smac [27]) and manually smoothened after-
wards. Such an automatic approach is unavoidable in view of clasp 3’s huge space of
1060 configurations composed of more than 90 parameters.

Note that using a configuration file enables freely customizable solver portfolios
in parallel solving. We rely on this for tackling optimization problems in Section 7
by running complementary optimization strategies in parallel. For an example of such
a portfolio, call clasp with option --print-portfolio. The result constitutes a
portfolio of complementary default configurations for parallel ASP solving. This also
extends to the disjunctive case, where the configuration of testing solvers can be config-
ured by option ‘--tester=--configuration=<file>’ to apply the portfolio
in <file> to the tester. Options given on the command-line are added to all configu-
rations in a configuration file. If an option is given both on the command-line and in a
configuration file, the one from the command-line takes precedence.

When solving in parallel, the configurations in the portfolio are assigned to threads
in a round-robin fashion. That is, clasp runs with the configuration from the first line

4 http://www.cs.uni-potsdam.de/piclasp



in thread 0, with the one from the second line in thread 1, etc., until all threads are
(circularly) assigned configurations from the portfolio. The mapping of portfolios to
threads is used for providing thread-specific solver statistics. That is, launching clasp 3
with --stats=2 does not only provide statistics aggregated over all threads but also
for each individual one. Moreover, the winning thread5 is identified by this mapping
(and printed after ‘Winner:’).

Furthermore, clasp’s multi-threaded architecture was extended to handle more com-
plex forms of nogood exchange. In addition to the global distribution scheme described
in [10], clasp 3 implements a new thread-local scheme. The scheme can be configured
by option --dist-mode. In the new scheme, each thread has a (lock-free) multi-
producer/single-consumer queue. For distributing nogoods, threads push “interesting”
nogoods onto the queues of their peers. For integrating nogoods, threads pop nogoods
from their local queues. On the other hand, clasp 3 now supports topology-based no-
good exchange. To this end, option --integrate allows for exchanging nogoods
among all peers or those connected in the form of a ring, hyper cube, or ex-
tended hyper cube (cubex). With the global scheme, nogoods are distributed among
all threads but only integrated by threads from their peers (via a peer check upon re-
ceive). With the thread-local scheme, threads distribute nogoods only to peers (via a
peer check upon send). Hence, the thread-local scheme is more suited for a topology-
based exchange.

6 Library

While clasp is a versatile stand-alone system, it can also be integrated as a library.
To this end, clasp 3 provides various interfaces for starting and controlling operative
solving processes. This includes interfaces for incremental solving, updating a logic
program, managing solver configurations, and for (asynchronous as well as iterative)
solving under assumptions. Furthermore, recorded nogoods, heuristic values, and other
dynamic information can either be kept or removed after each solving step.

Figure 1 illustrates clasp’s C++ library. At its center is the ClaspFacade class,
which provides a simplified interface to the various classes used for solving. The typical
workflow for using the clasp library is as follows.

1. Construct a ClaspFacade and a ClaspConfig object.
2. Configure search, preprocessing, etc. options in the configuration object.
3. Obtain a LogicProgram object by calling startAsp with the respective con-

figuration object.
4. Add (ground) rules to the logic program by calling addRule.
5. Call prepare for performing preprocessing and necessary initialization tasks, like

creating and configuring solver objects.
6. Finally, call solve to start searching for models.

This workflow covers a single-shot solving process. For multi-shot solving, method
update has to be called, which allows for continuing the above process at step 4.

5 The winning thread either exhausts the search space or produces the last model if no complete
search space traversal is necessary.



libclasp

ClaspFacade

+ startAsp(config) : LogicProgram
+ update()
+ prepare()
+ solve(eventHandler, assumptions)
+ solveAsync(eventHandler, assumptions)

Enumerator

+ commitClause(c)

ClaspConfig

+ solver(i) : SolverParams
+ ...

LogicProgram

+ addRule(r)

Fig. 1. Class Diagram for Excerpt of clasp’s C++ Library

This is especially interesting when combined with solving under assumptions (second
parameter of solve). For example, planning problems typically require an a priori un-
known horizon to find a solution. With the above workflow, the horizon can be extended
at each step and assumptions can be used to check the goal situation at the current hori-
zon. Also note that the configuration object can be updated at each step; the changes are
propagated when calling the updatemethod. For example, clasp 3 allows us to control
the information kept between successive calls via attribute solver(i).forgetSet
of ClaspConfig, which can be configured for each solver thread i individually. This
includes heuristic scores, nogood activities, signs, and learnt nogoods.6 For instance, re-
assigning previous truth values by keeping heuristic scores and signs usually
makes the solver stay in similar areas of the search space.

Another interesting feature is asynchronous solving, using method solveAsync.
This allows for starting a search in the background, which can be interrupted at any
time. Use cases for this are applications that require to react to external events, as in
assisted living or robotics scenarios.

Furthermore, the solve and solveAsyncmethods take an event handler as argu-
ment. This handler receives events at specific parts of the search, like the beginning and
end of the search, as well as when a model is found. A model event is reported along
with a reference to the underlying Enumerator object. At this point, it is possible
to use the enumerator to add clauses over internal solver literals7 to the current search.
This is rather effective because it avoids program updates and preprocessing. And it is
often sufficient for synthesizing a constraint, for instance, from the last obtained model.

Paired with corresponding interfaces of gringo 4, the extended low level interface
of clasp 3 has led to clingo 4’s higher level application programming interfaces (API)
in lua and python [28].8 Further applications using the clasp libray include the hybrid
solvers clingcon [29] and dlvhex [30].

6 In fact, these parameters are also controllable in clingo by option --forget-on-step.
7 The LogicProgram class provides methods to map atoms to solver literals.
8 The API reference can be found at http://potassco.sourceforge.net/gringo.html.



A final detail worth mentioning is that clasp 3 supports changing optimization state-
ments between successive solving steps. This includes the extension and contraction of
objective functions by adding or deleting weighted atoms from them. This is, for in-
stance, relevant in planning domains whenever the horizon is extended.

7 Experiments

For studying the interplay of the various techniques discussed above, we conduct an
empirical study on optimization problems. Despite their great practical relevance, only
few such studies exist in ASP [19, 7]. Moreover, optimization problems are not only
more complex than their underlying decision problems, but they also present quite
an algorithmic challenge since solving them requires solving a multitude of SAT and
UNSAT problems. More specifically, we carry out two series of experiments, one on
sum-based optimization problems and another on inclusion minimality-based problems.
In the first series, we investigate different optimization strategies, including core- and
model-guided strategies as well as the impact of domain heuristics and multi-threading.
The second series compares the use of domain heuristics with that of disjunctive logic
programs for computing inclusion minimal stable models.

All experiments were run with clasp 3.1.2 on a Linux machine with two Intel Quad-
Core Xeon E5520 2.27GHz processors, imposing a limit of 600 seconds wall-clock time
and 6 GB of memory per run. A timeout is counted as 600 seconds. For capturing not
only the successful solution of an optimization process but also its convergence, we
regard the quality of solutions too. To be more precise, we extend the scoring used in
the 2014 ASP competition by considering runtime whenever two solvers yield the same
solution quality (see (iii) below). Let m be the number of participant systems, then the
score s of a solver for an instance i in a domain p featuring n instances is computed
as s(p, i) = ms(i)·100

m·n where ms(i) is (i) 0, if s does neither provide a solution, nor
report unsatisfiability, or (ii) the number of solvers that do not provide a strictly better
result than s, where a confirmed optimum solution is considered strictly better than an
unconfirmed one. Furthermore, (iii) for two equally good solutions, one is considered
strictly better, if it is computed at least 30 seconds faster than the other one.

Accordingly, each entry in Table 1 gives average time, number of timeouts, and
score wrt the considered set of instances (except for column multi). The benchmark
classes are given in the first column, which also includes the number of instances
and their source. Also, we indicate via superscripts mn and w, whether a class com-
prises a multi-objective optimization problem with n objectives and whether its func-
tions are weight-based. The body of Table 1 gives the results obtained by evaluat-
ing clasp’s optimization strategies on 636 benchmark instances from various sources.9

The first three data columns give the results obtained for model-, core-, and heuristic-
guided strategies relying on clasp’s default configuration tweety, viz. plain model-
guided optimization (--opt-strategy=bb), core-guided optimization using the oll
algorithm (--opt-strategy=usc), and model-guided optimization using heuris-
tics preferring minimized atoms and assigning them to false (--opt-strategy=bb

9 The benchmark set is available at http://www.cs.uni-potsdam.de/clasp/?page=experiments



Benchmark model core heuristic model∗ core∗ heuristic∗ multi
15-puzzle (16) 260/ 5/ 90 45/ 0/ 100 425/ 9/ 62 266/ 5/ 83 21/ 0/ 100 249/ 5/ 88 9/ 0
Fastfoodw (29) 9/ 0/ 100 290/ 13/ 55 30/ 0/ 100 22/ 0/ 100 290/ 14/ 67 10/ 0/ 100 7/ 0
Labyrinth (29) 445/ 18/ 75 299/ 11/ 62 365/ 14/ 84 395/ 15/ 79 250/ 10/ 66 442/ 19/ 58 229/ 9
Sokoban (28) 1/ 0/ 100 1/ 0/ 100 1/ 0/ 100 1/ 0/ 100 1/ 0/ 100 1/ 0/ 100 0/ 0
Tspw (29) 600/ 29/ 57 600/ 29/ 0 600/ 29/ 100 600/ 29/ 70 600/ 29/ 32 600/ 29/ 73 600/ 29
Wbds (29) 600/ 29/ 70 421/ 19/ 34 600/ 29/ 82 600/ 29/ 31 394/ 17/ 67 600/ 29/ 72 397/ 17
Abstractm2 (30) 19/ 0/ 100 99/ 0/ 100 311/ 13/ 57 20/ 0/ 100 73/ 2/ 94 21/ 0/ 100 6/ 0
Connected (26) 513/ 22/ 75 476/ 20/ 23 513/ 22/ 89 531/ 23/ 52 474/ 20/ 51 514/ 22/ 93 479/ 20
Crossing (30) 372/ 16/ 78 177/ 5/ 83 451/ 20/ 66 381/ 17/ 61 174/ 6/ 88 367/ 16/ 86 162/ 5
MaxClique (30) 593/ 29/ 20 50/ 0/ 100 528/ 23/ 61 370/ 13/ 75 23/ 0/ 100 313/ 8/ 91 21/ 0
Valvesw (30) 508/ 24/ 79 543/ 27/ 10 561/ 28/ 7 515/ 25/ 87 561/ 28/ 55 513/ 25/ 92 518/ 25
Aspeedm2,w (30) 57/ 0/ 100 540/ 27/ 38 490/ 21/ 42 89/ 1/ 99 470/ 23/ 54 64/ 0/ 100 65/ 0
Expansion (30) 103/ 3/ 92 1/ 0/ 100 40/ 0/ 100 63/ 2/ 96 1/ 0/ 100 30/ 0/ 100 0/ 0
Repair (30) 113/ 1/ 97 0/ 0/ 100 10/ 0/ 100 32/ 0/ 100 1/ 0/ 100 44/ 0/ 100 1/ 0
Iscas85 (30) 129/ 4/ 96 0/ 0/ 100 158/ 7/ 88 134/ 4/ 92 0/ 0/ 100 306/ 13/ 71 0/ 0
Paranoidm2 (30) 377/ 8/ 79 1/ 0/ 100 103/ 4/ 92 80/ 3/ 94 1/ 0/ 100 59/ 2/ 98 1/ 0
Trendym4,w (30) 485/ 19/ 47 4/ 0/ 100 241/ 11/ 80 254/ 11/ 82 6/ 0/ 100 219/ 10/ 87 6/ 0
Metrow (30) 42/ 0/ 100 237/ 7/ 77 325/ 14/ 59 45/ 0/ 100 162/ 4/ 93 29/ 0/ 100 21/ 0
PartnerUnits (30) 234/ 5/ 94 111/ 2/ 93 150/ 4/ 87 225/ 8/ 82 103/ 1/ 97 251/ 9/ 83 97/ 0
Ricochet (30) 86/ 0/ 100 85/ 0/ 100 97/ 0/ 100 167/ 2/ 95 88/ 0/ 100 136/ 1/ 97 21/ 0
ShiftDesignm3(30) 600/ 30/ 19 23/ 0/ 100 105/ 5/ 86 436/ 16/ 67 44/ 1/ 99 351/ 13/ 80 29/ 0
Timetablingw (30) 407/ 17/ 63 8/ 0/ 100 205/ 10/ 84 208/ 10/ 84 31/ 1/ 97 280/ 11/ 73 4/ 0
SUM (636) 6553/259/17314011/160/16766307/263/17245435/213/18293768/156/18595397/212/1942 2674/105
AVG 298/ 12/ 79 182/ 7/ 76 287/ 12/ 78 247/ 10/ 83 171/ 7/ 85 245/ 10/ 88 122/ 5

Table 1. Results for sum-based optimization

--dom-mod=5,8).10 The starred columns reflect the best configurations obtained for
each optimization strategy, viz. model-guided optimization with exponentially increas-
ing steps (--opt-strategy=bb,2) using configuration trendy, core-guided op-
timization algorithm oll, disjoint core pre-processing, and problem relaxation (cf. Sec-
tion 3; --opt-strategy=usc,3) using crafty, and hierarchic model-guided op-
timization with heuristics preferring to assign false to minimized atoms (cf. Section 4;
--opt-strategy=bb,1 --dom-mod=4,8) using trendy. And the last column
shows results obtained with multi-threading. Scores are only computed among single-
threaded configurations.

First of all, we observe that core-guided optimization solves the highest number of
optimization problems. The fact that core∗ solves more problems than core is due to
crafty’s slow restart strategy that is advantageous when solving UNSAT problems,
which are numerous in core-guided optimization.11 While the latter seems to have an
edge over the model-guided strategy whenever the optimum can be established, it is
vacuous when the optimum is out of reach since it lacks the anytime behavior of model-
guided search. This is nicely reflected by the score of 0 obtained by core on TSP, where
no model at all is outputted. The best anytime behavior is obtained by boosting model-
guided search with heuristics. Although no variant proves any optimum for TSP, the two
heuristic strategies give the highest scores for TSP, reflecting the best solution quality.
Interestingly, the less manipulative strategy of heuristic∗ yields a better score. In fact,
heuristic-guided search procedures show the best convergence to the optimum but often
fall short in establishing its optimality. Otherwise, model-guided optimization appears

10 Combining core-guided optimization with domain heuristics deteriorates results.
11 In fact, using trendy with crafty’s restart strategy performs even slightly better.



to benefit from faster restart strategies, as comprised in trendy, since it involves solv-
ing several SAT problems. All in all, we observe that core-guided strategies dominate
in terms of solved problems, while heuristic-guided ones yield the best solution qual-
ity. To have the cake and eat it, too, we can take advantage of clasp’s multi-threading
capacities. To this end, we combined the three starred configurations with one running
core-guided optimization with disjoint core pre-processing using jumpy.12 The results
are given in column multi and reflect a significant edge over each individual configu-
ration. Interestingly, the number of timeouts is less than that of taking the ones of the
respective best solver, viz. 106, and also surpasses this virtually best solver (taking 2785
seconds) as regards runtime.13 In fact, the multi configuration performs at least as good
as the other configurations on all but two benchmark classes. We trace this superior
behavior back to exchanging bounds and constraints among the threads.

Our second series of experiments contrasts the usage of domain heuristics with
that of disjunctive logic programs for computing inclusion-minimal stable models. All
results are based upon clasp’s default configuration tweety and given in Table 2.
The standard technique for encoding inclusion minimality in ASP is to use saturation-

Benchmark meta heuristicmeta-heur. meta heuristic meta-heuristic meta-heur.-rec
15-puzzle (16) 25/ 0 14/ 0 23/ 0 321/ 7/ 91 408/ 9/ 75 354/ 7/ 69 444/ 9/ 38
Fastfood (29) 1/ 0 0/ 0 0/ 0 356/ 14/ 59 210/ 9/ 100 348/ 14/ 65 268/ 10/ 71
Labyrinth (29) 356/ 16 84/ 3 347/ 15 600/ 29/ 72 600/ 29/ 91 600/ 29/ 73 600/ 29/ 61
Sokoban (28) 22/ 0 1/ 0 12/ 0 22/ 0/ 95 1/ 0/ 100 23/ 0/ 96 12/ 0/ 98
Tsp (29) 7/ 0 0/ 0 7/ 0 600/ 29/ 48 600/ 29/ 100 600/ 29/ 58 600/ 29/ 44
Wbds (29) 219/ 7 23/ 1 38/ 1 600/ 29/ 53 600/ 29/ 82 600/ 29/ 72 600/ 29/ 49
Connected (26) 109/ 3 0/ 0 61/ 2 532/ 23/ 35 532/ 23/ 100 532/ 23/ 60 532/ 23/ 70
Crossing (30) 98/ 1 14/ 0 14/ 0 600/ 30/ 32 600/ 30/ 99 600/ 30/ 42 600/ 30/ 76
MaxClique (30) 189/ 3 0/ 0 3/ 0 600/ 30/ 25 600/ 30/ 100 600/ 30/ 50 600/ 30/ 75
Valves (30) 600/ 30560/ 28 600/ 30 600/ 30/ 98 560/ 28/ 100 600/ 30/ 98 600/ 30/ 98
Aspeed (30) 600/ 30 4/ 0 581/ 29 600/ 30/ 73 600/ 30/ 100 600/ 30/ 74 600/ 30/ 75
Expansion (30) 600/ 30 0/ 0 600/ 30 600/ 30/ 75 298/ 14/ 100 600/ 30/ 75 600/ 30/ 75
Repair (30) 552/ 26 0/ 0 5/ 0 595/ 29/ 25 438/ 20/ 100 589/ 29/ 50 481/ 21/ 77
Iscas85 (30) 60/ 3 0/ 0 0/ 0 600/ 30/ 25 600/ 30/ 100 600/ 30/ 50 600/ 30/ 75
Paranoid (30) 191/ 6 1/ 0 16/ 0 600/ 30/ 25 600/ 30/ 100 600/ 30/ 50 600/ 30/ 75
Trendy (30) 411/ 18 3/ 0 133/ 0 581/ 29/ 27 580/ 29/ 100 581/ 29/ 51 581/ 29/ 75
Metro (30) 126/ 5 54/ 1 33/ 1 571/ 27/ 42 576/ 28/ 70 581/ 28/ 65 573/ 27/ 78
PartnerUnits (30) 600/ 30168/ 4 507/ 9 600/ 30/ 42 168/ 4/ 98 596/ 29/ 61 501/ 9/ 78
Ricochet (30) 405/ 16 57/ 0 266/ 10 388/ 14/ 46 56/ 0/ 100 285/ 11/ 77 264/ 10/ 83
Timetabling (30) 600/ 30 16/ 0 85/ 1 600/ 30/ 27 283/ 14/ 98 600/ 30/ 51 336/ 15/ 82
SUM (576) 5773/254999/ 373332/ 128 10568/500/10138908/415/191310490/497/12859991/450/1453
AVG 289/ 13 50/ 2 167/ 6 528/ 25/ 51 445/ 21/ 96 525/ 25/ 64 500/ 22/ 73

Table 2. Results for inclusion minimality-based optimization

based, disjunctive encodings (cf. [12]). We generate the resulting programs automati-
cally from the respective benchmarks with the metasp system [31] and solve them with
the disjunctive solving techniques described in Section 2. The results are given in the
columns headed by meta. The first three data columns give average time and num-
ber of timeouts for computing one inclusion-minimal answer set. The column headed
heuristic accomplishes this via the heuristic approach described in Section 4, viz. op-

12 This provides us with an approximate solution and complements core∗ due to fast restarts.
13 Running the four best configurations from Table 1 yields 2668/108.



tion --dom-mod=5,16. We see that this is an order of magnitude better than the
disjunctive approach in terms of both runtime and timeouts. Clearly, this is because the
former deals with normal programs only, while the latter involves intractable unfounded
set tests. Although the frequency of such tests can be reduced by guiding the generat-
ing solver by the same heuristics, it fails to catch up with a purely heuristic approach
(see column meta-heur.). The picture changes slightly when it comes to enumerating
inclusion-minimal answer sets. Here, heuristic faces an exponential space complexity,
while meta runs in polynomial space.14 The remaining columns summarize enumera-
tion results, and add the score as an indicative measure by taking as objective value
the number of enumerated models. Although the differences are smaller, heuristic still
outperforms all variants of meta. Again, adding heuristic support improves the perfor-
mance of meta. More surprisingly, the best meta configuration is obtained by abolishing
polynomial space guarantees and using clasp’s solution recording for enumeration, viz.
meta-heur.-rec. In fact, the added (negated) solutions further focus the search of the
generator and thus lead to fewer unfounded set tests.

8 Discussion

We presented distinguishing features of the clasp 3 series. And we evaluated their in-
terplay by an empirical analysis on optimization problems. Comparative studies con-
trasting clasp with other systems can be found in the ASP competition series. Many of
clasp’s features can be found in one form or another in other ASP, SAT, or PB solvers.
For instance, dlv features several dedicated interfaces, wasp [18] also implements core-
and model-guided optimization, Rintanen uses heuristics in [32] to improve SAT plan-
ning, etc. However, the truly unique aspect of clasp 3 is its wide variety of features
combined in a single framework. We demonstrated the resulting added value by the
combinations in our experiments.

Acknowledgments. This work was funded by AoF (251170) and DFG (SCHA 550/8 and
550/9).

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

2. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2) (2002) 181–234

3. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM TOCL 7(3) (2006) 499–562

4. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artifi-
cial Intelligence 157(1-2) (2004) 115–137

5. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning 36(4) (2006) 345–377

6. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to
practice. Artificial Intelligence 187-188 (2012) 52–89

14 Also, meta allows for query-answering, while heuristic requires a generate-and-test approach.



7. Alviano, M., Dodaro, C., Ricca, F.: Preliminary report on WASP 2.0. In Proceedings of
NMR. (2014)

8. Janhunen, T., Niemelä, I., Sevalnev, M.: Computing stable models via reductions to differ-
ence logic. [33] 142–154

9. Liu, G., Janhunen, T., Niemelä, I.: Answer set programming via mixed integer programming.
In Proceedings of KR, AAAI Press (2012) 32–42

10. Gebser, M., Kaufmann, B., Schaub, T.: Multi-threaded ASP solving with clasp. Theory and
Practice of Logic Programming 12(4-5) (2012) 525–545

11. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Mor-
gan and Claypool Publishers (2012)

12. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: Proposi-
tional case. Annals of Mathematics and Artificial Intelligence 15(3-4) (1995) 289–323

13. Leone, N., Rullo, P., Scarcello, F.: Disjunctive stable models: Unfounded sets, fixpoint se-
mantics, and computation. Information and Computation 135(2) (1997) 69–112

14. Biere, A., Heule, M., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability. IOS (2009)
15. Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M., Schaub, T.:

Conflict-driven disjunctive answer set solving. In Proc. of KR, AAAI Press (2008) 422–432
16. Gebser, M., Kaufmann, B., Schaub, T.: Advanced conflict-driven disjunctive answer set

solving. In Proceedings of IJCAI, IJCAI/AAAI (2013) 912–918
17. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Advanced preprocessing for answer

set solving. In Proceedings of ECAI, IOS (2008) 15–19
18. Alviano, M., Dodaro, C., Marques-Silva, J., Ricca, F.: On the implementation of weak con-

straints in wasp. In Proceedings of ASPOCP. (2014)
19. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-criteria optimization in answer

set programming. In Technical Communications of ICLP. LIPIcs (2011) 1–10
20. Andres, B., Kaufmann, B., Matheis, O., Schaub, T.: Unsatisfiability-based optimization in

clasp. In Technical Communications of ICLP. LIPIcs (2012) 212–221
21. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided maxsat resolution.

In Proceedings AAAI, AAAI Press (2014) 2717–2723
22. Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satisfiability.

CoRR abs/0712.1097 (2007)
23. Gebser, M., Kaufmann, B., Otero, R., Romero, J., Schaub, T., Wanko, P.: Domain-specific

heuristics in answer set programming. In Proceedings AAAI, AAAI Press (2013) 350–356
24. Castell, T., Cayrol, C., Cayrol, M., Le Berre, D.: Using the Davis and Putnam procedure for

an efficient computation of preferred models. In Proceedings ECAI, Wiley (1996) 350–354
25. Di Rosa, E., Giunchiglia, E., Maratea, M.: Solving satisfiability problems with preferences.

Constraints 15(4) (2010) 485–515
26. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability

solvers. In Proceedings SAT. Springer (2007) 294–299
27. Hutter, F., Hoos, H., Leyton-Brown, K.: Sequential model-based optimization for general

algorithm configuration. In Proceedings LION. Springer (2011) 507–523
28. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control: Preliminary

report. In Technical Communications of ICLP. (2014)
29. Ostrowski, M., Schaub, T.: ASP modulo CSP: The clingcon system. Theory and Practice of

Logic Programming 12(4-5) (2012) 485–503
30. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: DLVHEX: A prover for semantic-web

reasoning under the answer-set semantics. In Proceedings WI, IEEE (2006) 1073–1074
31. Gebser, M., Kaminski, R., Schaub, T.: Complex optimization in answer set programming.

Theory and Practice of Logic Programming 11(4-5) (2011) 821–839
32. Rintanen, J.: Planning as satisfiability: heuristics. Artificial Intelligence 193 (2012) 45–86
33. Erdem, E., Lin, F., Schaub, T., eds.: Proceedings of LPNMR. Springer (2009)


