
plasp: A Prototype for PDDL-Based Planning in ASP

Martin Gebser, Roland Kaminski, Murat Knecht, and Torsten Schaub?

Institut für Informatik, Universität Potsdam

Abstract. We present a prototypical system, plasp, implementing Planning by
compilation to Answer Set Programming (ASP). Our approach is inspired by
Planning as Satisfiability, yet it aims at keeping the actual compilation simple
in favor of modeling planning techniques by meta-programming in ASP. This
has several advantages. First, ASP modelings are easily modifiable and can be
studied in a transparent setting. Second, we can take advantage of available ASP
grounders to obtain propositional representations. Third, we can harness ASP
solvers providing incremental solving mechanisms. Finally, the ASP community
gains access to a wide range of planning problems, and the planning community
benefits from the knowledge representation and reasoning capacities of ASP.

1 Introduction

Boolean Satisfiability (SAT; [1]) checking provides a major implementation technique
for Automated Planning [2]. In fact, a lot of efforts have been made to develop compi-
lations mapping planning problems to propositional formulas. However, the underlying
techniques are usually hard-wired within the compilers, so that further combinations
and experiments with different features are hard to implement.

We address this situation and propose a more elaboration-tolerant platform to Plan-
ning by using Answer Set Programming (ASP; [3]) rather than SAT as target formalism.
The idea is to keep the actual compilation small and model as many techniques as pos-
sible in ASP. This approach has several advantages. First, planning techniques modeled
in ASP are easily modifiable and can be studied in a transparent setting. Second, we can
utilize available ASP grounders to obtain propositional representations. Third, we can
harness ASP solvers providing incremental solving mechanisms. Finally, the ASP com-
munity gains access to a wide range of planning problems, and the planning community
benefits from the knowledge representation and reasoning capacities of ASP.

Our prototypical system, plasp, follows the approach of SATPlan [4, 5] in trans-
lating a planning problem from the Planning Domain Definition Language (PDDL;
[6]) into Boolean constraints. Unlike SATPlan, however, we aim at keeping the actual
compilation simple in favor of modeling planning techniques by meta-programming in
ASP. Although the compilations and meta-programs made available by plasp do not
yet match the sophisticated approaches of dedicated planning systems, they allow for
applying ASP systems to available planning problems. In particular, we make use of
the incremental ASP system iClingo [7], supporting the step-wise unrolling of problem
horizons. Our case studies demonstrate the impact of alternative compilations and ASP
modelings on the performance of iClingo.
? Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.

plasp

PDDL
instance

ASP
compiler

ASP
program

Solver
Answer
 set

Solution
compiler

PDDL
solution

Fig. 1. Architecture of the plasp system.

ASP compiler

PDDL
instance P

ar
se
r

AST

Analyzer

Preprocessor

ASP backend
ASP

program

Fig. 2. Architecture of the ASP compiler.

2 Architecture

As illustrated in Figure 1, plasp translates a PDDL problem instance to ASP and runs it
through a solver producing answer sets. The latter represent solutions to the initial plan-
ning problem. To this end, a plan is extracted from an answer set and output in PDDL
syntax. plasp thus consists of two modules, viz., the ASP and Solution compilers. The
ASP compiler is illustrated in Figure 2. First, a parser reads the PDDL description as
input and builds an internal representation, also known as Abstract Syntax Tree (AST).
Then, the Analyzer gathers information on the particular problem instance; e.g., it de-
termines predicates representing fluents. Afterwards, the Preprocessor modifies the in-
stance and enhances it for the translation process. Finally, the ASP backend produces an
ASP program using the data gathered before. The Solution compiler constructs a plan
from an answer set output by the solver. This is usually just a syntactic matter, but it be-
comes more involved in the case of parallel planning where an order among the actions
must be re-established. Afterwards, the plan is verified and output in PDDL syntax.

3 Compilations and Meta-Programs

In order to give an idea of the resulting ASP programs, let us sketch the most basic plan-
ning encoding relying on meta-programming. To this end, a PDDL domain description
is mapped onto a set of facts built from predicates init , goal , action , demands , adds ,
and deletes along with their obvious meanings. Such facts are then combined with the
meta-program in Figure 3. Note that this meta-program is treated incrementally by the
ASP system iClingo, as indicated in lines (1), (3), and (10). While the facts resulting
from the initial PDDL description along with the ground rules of (2) are processed just
once, the rules in (4)–(9) are successively grounded for increasing values of t and ac-
cumulated in iClingo’s solving component. Finally, goal conditions are expressed by

(1) #base.
(2) holds(F, 0) ← init(F).

(3) #cumulative t .
(4) 1 {apply(A, t) : action(A)} 1.
(5) ← apply(A, t), demands(A,F, true),not holds(F, t−1).
(6) ← apply(A, t), demands(A,F, false), holds(F, t−1).
(7) holds(F, t) ← apply(A, t), adds(A,F).
(8) del(F, t) ← apply(A, t), deletes(A,F).
(9) holds(F, t) ← holds(F, t−1),not del(F, t).

(10) #volatile t .
(11) ← goal(F, true),not holds(F, t).
(12) ← goal(F, false), holds(F, t).

Fig. 3. Basic ASP encoding of STRIPS planning.

(4′) 1 {apply(A, t) : action(A)}.
(4′a) ← apply(A1, t), apply(A2, t), A1 6= A2, demands(A1, F, true), deletes(A2, F).
(4′b) ← apply(A1, t), apply(A2, t), A1 6= A2, demands(A1, F, false), adds(A2, F).
(4′c) ← apply(A1, t), apply(A2, t), A1 6= A2, adds(A1, F), deletes(A2, F).

Fig. 4. Adaptation of the basic ASP encoding to parallel STRIPS planning.

volatile rules, contributing ground rules of (11) and (12) only for the current step t.
See [7] for further details on incremental ASP solving. From a representational per-
spective, it is interesting to observe that ASP allows for omitting a frame axiom (like
the one in line (9)) for negative information, making use of the fact that instances of
holds are false by default, that is, unless they are explicitly derived to be true. Other-
wise, the specification follows closely the semantics of STRIPS [2].

Beyond the meta-program in Figure 3, plasp offers planning with concurrent ac-
tions. The corresponding modification of the rule in (4) is shown in Figure 4. While (4′)
drops the uniqueness condition on applied actions, the additional integrity constraints
stipulate that concurrent actions must not undo their preconditions, nor have conflicting
effects. The resulting meta-program complies with the ∀-step semantics in [8]. Fur-
thermore, plasp offers operator splitting as well as forward expansion. The goal of op-
erator splitting [9] is to reduce the number of propositions in the representation of a
planning problem by decomposing action predicates; e.g., an action a(X,Y, Z) can be
represented in terms of a1(X), a2(Y), a3(Z). Forward expansion (without mutex anal-
ysis [10]) instantiates schematic actions by need, viz., if their preconditions have been
determined as feasible at a time step, instead of referring to statically given instances of
the action predicate. This can be useful if initially many instances of a schematic ac-
tion are inapplicable, yet it requires a domain-specific compilation; meta-programming
is difficult to apply because action instances are not represented as facts. Finally, plasp
supports combinations of forward expansion with either concurrent actions or opera-
tor splitting. Regardless of whether forward expansion is used, concurrent actions and
operator splitting can currently not be combined; generally, both techniques are in op-
position, although possible solutions have recently been proposed [11].

Benchmark basic concur split expand concur+expand split+expand SATPlan SGPlan
Blocks-4-0 0.16 0.21 0.43 0.21 0.22 0.20 0.34 0.10
Blocks-6-0 0.30 0.63 0.93 0.44 0.56 1.40 0.27 0.04
Blocks-8-0 1.58 6.53 12.78 98.60 317.53 47.57 1.24 0.09
Elevator-3-0 0.27 0.56 0.92 0.30 0.46 0.89 0.10 0.02
Elevator-4-0 11.72 264.11 20.30 14.69 324.18 28.88 0.30 0.02
Elevator-5-0 — — 320.58 — — 467.98 0.61 0.04
FreeCell-2-1 93.42 mem 64.28 60.52 51.33 56.94 2.44 0.12
FreeCell-3-1 — mem — — 175.03 — 10.44 0.14
Logistics-4-0 7.85 0.38 79.15 8.81 0.39 70.56 0.34 0.05
Logistics-7-0 — 0.99 — — 0.61 — 0.31 0.04
Logistics-9-0 — 0.89 — — 0.57 — 0.27 0.04
Satellite-1 0.23 0.87 0.23 0.29 0.74 0.26 0.10 0.03
Satellite-2 4.56 638.08 2.19 5.43 448.60 2.69 0.41 0.03
Satellite-3 8.76 3.52 4.00 7.54 3.29 3.70 0.21 0.04
Schedule-2-0 mem mem mem 1.03 3.37 mem mem mem
Schedule-3-0 mem mem mem 1.63 12.89 mem mem mem

Table 1. Experiments comparing different compilations.

4 Experiments

We conducted experiments comparing the different compilation techniques furnished
by plasp1 (1.0): the meta-program in Figure 3 (column “basic” in Table 1), its adaptation
to concurrent actions in Figure 4 (“concur”), operator splitting (“split”), forward expan-
sion (“expand”), and two combinations thereof (“concur+expand” and “split+expand”).
To compute answer sets of compilations, representing shortest plans, plasp uses (a mod-
ified version of) the incremental ASP system iClingo1 (2.0.5). Although we mainly
study the effect of different compilations on the performance of iClingo, for compar-
ison, we also include SATPlan2 (2006) and SGPlan3 (5.2.2). While SGPlan [12] does
not guarantee shortest plan lengths, the approach of SATPlan, based on compilation
and the use of a SAT solver as search backend, leads to shortest plans. In fact, its com-
pilation is closely related to the “concur+expand” setting of plasp, where SATPlan in
addition applies mutex analysis. The benchmarks, formulated in the STRIPS subset4 of
PDDL, stem from the Second International Planning Competition4, except for the three
Satellite instances taken from the fourth competition5. All experiments were run on a
Linux PC equipped with 2 GHz CPU and 2 GB RAM, imposing 900 seconds as time
and 1.5 GB as memory limit.

Runtime results in seconds are shown in Table 1; an entry “—” indicates a timeout,
and “mem” stands for memory exhaustion. On all benchmarks but Schedule, we ob-
serve that SGPlan has an edge on the other, less specialized (yet guaranteeing shortest

1 http://potassco.sourceforge.net
2 http://www.cs.rochester.edu/˜kautz/satplan
3 http://manip.crhc.uiuc.edu/programs/SGPlan
4 http://www.cs.toronto.edu/aips2000
5 http://www.tzi.de/˜edelkamp/ipc-4

plans) systems. The fact that SATPlan is usually faster than plasp can be explained by
the fact that compilations of plasp are instantiated by a general-purpose ASP grounder,
while SATPlan utilizes a planning-specific frontend [10]. Moreover, mutex analysis as
in SATPlan is currently not included in (encodings of) plasp. However, we observe
that different compilation techniques of plasp pay off on particular benchmarks. On
the Blocks and small Elevator instances, the simplest meta-program (“basic”) is supe-
rior because concurrency and expansion are barely applicable to them and may even
deteriorate performance. On Elevator-5-0, splitting (“split”) helps to reduce the size of
the problem representation. Furthermore, we observe that allowing for concurrent ac-
tions without explicit mutexes (“concur” and “concur+expand”) dramatically decreases
search efficiency on the Elevator domain. However, concurrent actions in combina-
tion with forward expansion (“concur+expand”) are valuable on FreeCell and Logis-
tics instances, given that they involve non-interfering actions. Splitting (“split” and
“split+expand”) appears to be useful on Satellite instances, where Satellite-2 again
yields the phenomenon of concurrent actions deteriorating search. Finally, forward ex-
pansion (“expand”) enables plasp to successfully deal with the Schedule domain, where
even SATPlan and SGPlan exceed the memory limit. We conjecture that (too) exhaus-
tive preprocessing, e.g., mutex analysis, could be responsible for this.

In summary, we conclude that the different compilation techniques of plasp can be
advantageous. The automatic, domain-specific choice of an appropriate compilation,
required in view of varying characteristics [12], is an intrinsic subject to future work.

5 Discussion

We have presented a prototypical approach to Automated Planning by means of com-
pilation to ASP. In order to close the gap to established planning systems, more back-
ground knowledge (e.g., mutexes) would need to be included. If such knowledge can
be encoded in meta-programs, it fosters elaboration tolerance and flexibility of plan-
ning implementations. In fact, the recent version transition of iClingo from 2 to 3 gives
inherent support of forward expansion, generating the possibly applicable instances of
actions (and fluents) on-the-fly during grounding. Importantly, regardless of additional
features that might boost performance (cf. [13]), the compilation capacities of plasp are
already useful as they make various planning problems, formulated in PDDL, accessible
as benchmarks for ASP systems. The range could be further extended by generalizing
the compilations supported by plasp beyond the STRIPS subset of PDDL.

Given the proximity of Planning and General Game Playing (GGP; [14]), the latter
can also (partially) be implemented by compilation to ASP. An approach to solve single-
player games in ASP is provided in [15], and [16] presents ASP-based methods to prove
properties of games, which can then be exploited for playing. Automatically proving
properties of interest to steer the selection of solving techniques may also be useful
for Planning. Another line of future work could be Conformant Planning [17], whose
elevated complexity could be addressed by compilation to disjunctive ASP. In fact, the
dlvK system [18] supports Conformant Planning wrt action language K.

Acknowledgments. This work was partly funded by DFG grant SCHA 550/8-2.

References

1. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability. IOS Press
(2009)

2. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory and Practice. Morgan
Kaufmann (2004)

3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

4. Kautz, H., Selman, B.: Planning as satisfiability. Proceedings of the Tenth European Con-
ference on Artificial Intelligence (ECAI’92), Wiley (1992) 359–363

5. Kautz, H., Selman, B.: Pushing the envelope: Planning, propositional logic, and stochas-
tic search. Proceedings of the Thirteenth National Conference on Artificial Intelligence
(AAAI’96), AAAI/MIT Press (1996) 1194–1201

6. McDermott, D.: PDDL — the planning domain definition language. Technical Report CVC
TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control (1998)

7. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering
an incremental ASP solver. Proceedings of the Twenty-fourth International Conference on
Logic Programming (ICLP’08), Springer (2008) 190–205

8. Rintanen, J., Heljanko, K., Niemelä, I.: Parallel encodings of classical planning as satisfi-
ability. Proceedings of the Ninth European Conference on Logics in Artificial Intelligence
(JELIA’04), Springer (2004) 307–319

9. Kautz, H., McAllester, D., Selman, B.: Encoding plans in propositional logic. Proceed-
ings of the Fifth International Conference on Principles of Knowledge Representation and
Reasoning (KR’96), Morgan Kaufmann (1996) 374–384

10. Blum, A., Furst, M.: Fast planning through planning graph analysis. Artificial Intelligence
90(1-2) (1997) 279–298

11. Robinson, N., Gretton, C., Pham, D., Sattar, A.: SAT-based parallel planning using a split
representation of actions. Proceedings of the Nineteenth International Conference on Auto-
mated Planning and Scheduling (ICAPS’09), AAAI Press (2009) 281–288

12. Hsu, C., Wah, B., Huang, R., Chen, Y.: Constraint partitioning for solving planning problems
with trajectory constraints and goal preferences. Proceedings of the Twentieth International
Joint Conference on Artificial Intelligence (IJCAI’07), AAAI/MIT Press (2007) 1924–1929

13. Sideris, A., Dimopoulos, Y.: Constraint propagation in propositional planning. Proceed-
ings of the Twentieth International Conference on Automated Planning and Scheduling
(ICAPS’10), AAAI Press (2010) 153–160

14. Genesereth, M., Love, N., Pell, B.: General game playing: Overview of the AAAI competi-
tion. AI Magazine 26(2) (2005) 62–72

15. Thielscher, M.: Answer set programming for single-player games in general game playing.
Proceedings of the Twenty-fifth International Conference on Logic Programming (ICLP’09),
Springer (2009) 327–341

16. Thielscher, M., Voigt, S.: A temporal proof system for general game playing. Proceedings
of the Twenty-fourth National Conference on Artificial Intelligence (AAAI’10), AAAI Press
(2010) 1000–1005

17. Smith, D., Weld, D.: Conformant Graphplan. In: Proceedings of the Fifteenth National
Conference on Artificial Intelligence (AAAI’98), AAAI/MIT Press (1998) 889–896

18. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming approach to
knowledge-state planning. Artificial Intelligence 144(1-2) (2003) 157–211

