Cluster-based ASP Solving with claspar

M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub*, and B. Schnor

Institut fiir Informatik, Universitiat Potsdam

Abstract. We report on three recent advances in the distributed ASP solver clas-
par. First, we describe its flexible architecture supporting various search strate-
gies, including competitive search using a portfolio of solver configurations. Sec-
ond, we describe claspar’s distributed learning capacities that allow for sharing
learned nogoods among solver instances. Finally, we discuss claspar’s approach
to distributed optimization.

1 Introduction

In view of the rapidly growing availability of clustered, multi-processor, and/or multi-
core computing devices, we developed in [1] the distributed ASP solver claspar, al-
lowing for the parallelization of the search for answer sets by appeal to the ASP solver
clasp [2]. claspar relies on the Message Passing Interface (MPI; [3]), realizing commu-
nication and data exchange between computing units via message passing. Interestingly,
MPI abstracts from the actual hardware and lets us execute our system on clusters as
well as multi-processor and/or multi-core machines.

This paper reports on the progress made since the first system description of clas-
par [1] covering the features of version 0.1.0: it mainly dealt with the communication
in its simple initial master-worker architecture along with a first empirical evaluation of
claspar’s performance. This early version of claspar used the well-known guiding path
technique [4] for splitting the search space into disjoint parts. Apart from finding a sin-
gle answer set, claspar (0.1.0) also allowed for enumerating answer sets by combining
the scheme in [5] with the aforementioned guiding path technique.

2 Advances in claspar

We focus in what follows on the major novelties of the current claspar version 0.9.0
wrt to the one in [1]. We presuppose some basic knowledge in conflict-driven ASP
solving and an acquaintance with concepts like nogoods, decision levels, restarts, etc.
The interested reader is referred to [2] for details.

2.1 Search

The simple master-worker architecture of claspar (0.1.0) has been extended in order to
provide more flexible communication topologies for enhancing claspar’s scalability as

* Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.

well as different search strategies. To begin with, a hierarchical master-worker structure
can be defined (with option ——topology=<arg>) that consists of a single superior
master along with further inferior masters, each controlling a group of workers. That
is, giving argument master—-worker enforces a flat hierarchy by making one mas-
ter control all workers, while ‘hierarchical, <n>’ creates |(p — 2)/n| inferior
masters, each controlling n—1 workers, where p is the overall number of processes.

claspar provides two major search strategies. The first one aims at partitioning the
search space by appeal to the guiding path technique. The second one aims at a compet-
itive search for answer sets. To this end, the aforementioned (flat) topology can be fur-
ther refined by providing argument ‘competition, <n>’ for associating each worker
with n—1 competitors dealing with the same search space.

Competitive search is supported by the so-called ——port folio-mode, making
competitors run with different settings. To this end, the option ——portfolio-file
allows for specifying a portfolio of different clasp configurations, either a pre-
defined one via preset or a handcrafted one read from a given file. These
configurations are then attributed to the aforementioned competitors, either ran-
domly or in a round-robin fashion, depending on the argument passed to
——portfolio-mode. Notably, this portfolio mode can be combined with the guiding
path method, restricted to the communication between the master and workers.

Otherwise, claspar supports all search options of clasp, thus making each competi-
tor highly configurable.

2.2 Nogood exchange

Given that each clasp instance relies on conflict-driven nogood learning [2], in a dis-
tributed setting, it becomes interesting to exchange learned nogoods among different
solver instances. This feature adds another degree of freedom to ASP solving and must
be handled with care because each instance may learn exponentially many nogoods, so
that their distribution may lead to overwhelmingly many nogoods significantly hamper-
ing the overall performance.

The exchange of nogoods in claspar is configured through two options, viz.
—--nogood-sharing and ——nogood-distribution. While the former allows
for filtering nogoods for exchange, the latter specifies the topology of the exchange.

The export of a nogood is either subject to its number of literals (1ength) or the
number of distinct decision levels associated with its literals (1bd; cf. [6]). In both
cases, smaller values are regarded as advantageous since they are prone to prune larger
parts of the search space. Moreover, their exchange can be restricted to packages rather
than individual nogoods in order to reduce communication. Finally, claspar allows us
to restrict the integration to not yet satisfied nogoods. The default configuration of clas-
par’s nogood exchange is ‘1bd, 3,300, True’, sharing each time 300 nogoods at
once, each with at most three different decision levels, no matter whether they are sat-
isfied.

The second option specifies the topology of nogood exchange; it distinguishes four
different settings:

none disables nogood exchange;

local enables nogood exchange between a worker and its competitors, or workers
sharing an inferior master (provided that the corresponding search topology is set).
Otherwise, this option is equivalent to exchange among all solver instances;

cube organizes all solver instances in a hypercube and allows for nogood exchange
between connected instances. This topology is particularly suited for large numbers
of workers because each node in a hypercube has at most logarithmically many
neighbors;

all engages nogood exchange among all solver instances.

2.3 Optimization

Apart from the basic reasoning modes of finding and enumerating answer sets, claspar
now also supports optimization. To this end, it allows for exchanging upper bounds
of objective functions, similar to the exchange of nogoods. In more detail, this works
as follows. Whenever a clasp instance finds an answer set, it sends it along with its
objective value(s) to a printer process. In turn, the printer process writes the answer set
to the console and broadcasts the current upper bound to all clasp instances, which then
integrate a corresponding constraint. If a local upper bound is larger, the solver instance
engages a restart and updates its bound; otherwise, the running search is continued.

3 Experiments

Our experiments were run on a cluster of 28 nodes, each equipped with two quad-
core Intel Xeon E5520 processors and 48GB main memory. In view of this, we ran 8
processes per node, where nodes are connected via InfiniBand (20Gb/s). We evaluated
claspar version 0.9.0, having two distinguished processes, viz. a master and a printer.
The benchmark set consists of 68 ASP (ca. 90% unsatisfiable) and 78 SAT (ca. 60%
unsatisfiable) problems, mostly taken from the last two respective competitions and
running at least 100s with clasp on a standard PC. Each entry in the below tables reflects
the sum of runtimes (wall clock) per problem category (and numbers of timed-out runs
in parentheses), where timeouts are taken at and counted as 4000s in Section 3.1 and 3.2
or 600s in Section 3.3, respectively. Detailed results are available at [7].

3.1 Search

For evaluating the different search strategies of claspar, we considered three differ-
ent configurations. Their common base consists of workers amounting to clasp version
1.3.6 plus the two aforementioned special-purpose processes. Numbers of workers and
nodes are given in the heading of Table 1, where ‘w+2 (n)’ indicates that we ran w solv-
ing processes and two controlling processes over n nodes. The configurations include:

Guiding path applies the guiding path strategy to all available workers running with
clasp’s default settings. Hence, w disjoint search spaces are addressed in parallel.

| [[1#2@) [6+2(1) [30+42(4) [62+2(8) [126+2(16) |

Guiding path[ASP[[174,661 (24)[154,504 (22)[103,283 (14)] 85,578 (11)[71,799 (8)
SAT|| 89,428 (8) | 42,491 (5) | 38,293 (6) | 30,515 (4) | 28,916 (5)
all |[264,090 (32)|196,995 (27)[141,577 (20)|116,094 (15)|100,715 (13)

Uniform ASP|[174,661 (24)[149,157 (17)[133,147 (18)[113,309 (16)| 96,466 (13)

portfolio SAT|| 89,428 (8) | 57,694 (3) | 40,555 (2) | 31,734 (2) | 26,020 (2)
all |[264,090 (32)[206,851 (20)|173,702 (20)[145,043 (18)|122,486 (15)

Non-uniform |ASP|[174,661 (24)[141,890 (16)| 98,160 (11)| 92,331 (11)| 71,709 (8)

portfolio SAT|| 89,428 (8) | 52,739 (3) | 37,772 (3) | 30,739 (1) | 22,528 (1)
all |[264,090 (32)|194,629 (19)[135,932 (14)|123,071 (12)| 94,237 (9)

Table 1. Comparison of different search strategies.

Uniform portfolio combines guiding path with competitive search in having groups of
up to 8 workers under the same guiding path. Accordingly, n disjoint search spaces
are addressed in parallel. The competing solvers run clasp’s default settings with
different random seeds in order to increase their variation (already inherent due to
race conditions).

Non-uniform portfolio is identical to the previous configuration except that it uses a
handcrafted portfolio for competitive search. The portfolio consists of the following
clasp settings, chosen to cover diverse search strategies and heuristics:

— default

default + ——berk-max=512 --berk-huang=yes

default + ——save-progress=1

default + ——restarts=128 --local-restart=1

— default + ——restarts=128 —--save-progress=1
— default + ——restarts=256
— default + ——restarts=256 —--save-progress=1

default + ——heuristic=VSIDS

Looking at Table 1, we observe a different comportment on benchmarks stemming from
SAT and ASP. While non-uniform portfolio solving seems to have a clear edge on SAT
problems, it behaves equally well as the guiding path strategy on ASP benchmarks.
This may be due to the fact that ASP problems tend to have higher combinatorics than
SAT problems, so that they are better suited for being split into several subproblems.
Although we generally observe performance improvements with increasing number of
workers, the speed-ups are not (near to) linear. Linear speed-ups were still obtained with
the guiding path strategy applied to particular problems, such as pigeon-hole instances
included in the ASP category. A detailed investigation of further benchmarks sometimes
yields super-linear speed-ups, even on unsatisfiable problems, as well as slow-downs.
In fact, the latter hint at a lack of learned nogood exchange, which is considered next.

3.2 Nogood exchange

For simplicity, we investigate nogood exchange on top of the most successful strat-
egy of the previous section, viz. non-uniform portfolio search. Of the four options

l

[

142 (1) |

6+2 (1)

[3024 [6242(8) |

none

ASP
SAT
all

174,661 (24)
89,428 (8)
264,090 (32)

141,890 (16)
52,739 (3)
194,629 (19)

98,160 (11)
37,772 (3)
135,932 (14)

92,331 (11)
30,739 (1)
123,071 (12)

local

ASP
SAT
all

174,661 (24)
89,428 (8)
264,090 (32)

93,166 (11)
29,067 (0)
122,234 (11)

75,678 (13)
28,324 (3)
104,002 (16)

58,747 (7)
14,373 (1)
73,120 (8)

cube

ASP
SAT
all

174,661 (24)
89,428 (8)
264,090 (32)

92,108 (10)
27,245 (0)

119,354 (10)

82,388 (13)
33,602 (4)
115,991 (17)

64,028 (9)
24,099 (2)
88,128 (11)

Table 2. Comparison of different nogood exchange strategies.

from Section 2.2, we dropped nogood exchange among all solver instances because
our preliminary experiments showed that this option is not competitive for larger num-
bers of workers. The results for the none option are identical to those in Table 1.
Option local restricts nogood exchange to workers addressing the same search space,
whereas cube allows for more global exchange by connecting workers beyond group-
ings. In Table 2, we observe that nogood exchange clearly improves over none, espe-
cially for the column headed by ‘6+2 (1)’, refraining from search space splitting. This
is particularly interesting for desktop machines offering only limited multi-processing
capacities. Almost no further improvements are observed by quadrupling the number
of nodes, with workers under four distinct guiding paths. In order to achieve further
speed-ups due to search space splitting, we had to increase the number of workers sig-
nificantly, as shown in the last column. Here, the 1ocal exchange has an edge on the
more global cube-oriented exchange. This suggests that sharing among solvers treat-
ing the same subproblem promotes the relevance of the exchanged nogoods.

3.3 Optimization

To evaluate the optimization capacities of claspar, we consider a collection of 53 hard
problems from the last ASP competition [8], each involving exactly one optimization
criterion. Given that most of the runs timed out after 600s, we rank each configuration
by the score [(shortest runtime/runtime) * (lowest upper bound /upper bound)] per
problem (zero if no answer set found at all). Note that greater scores are better than
smaller ones, and the sums of scores (and numbers of timed-out runs in parentheses)
are provided in Table 3.

For the considered benchmark collection, the pure guiding path strategy performed
best overall and exhibited the smallest number of timeouts with 62 workers. In fact, the
benchmarks include one problem class (15PuzzleOpt) such that, for many of its in-
stances, solutions could in time be proven to be optimal only with the guiding path
strategy. Note that the guiding path configurations rely on clasp’s default settings,
including a rather slow restart policy. On the other hand, the non-uniform portfolio
approach involves rapid restart policies that are not very helpful here because the in-
vestigated optimization problems are highly combinatorial. Interestingly, the uniform
portfolio strategy nonetheless failed to achieve significant improvements.

| [1+2) [6+2(1) [30+2(4) [6242 (8) |
Guiding path 28.68 (39)[36.90 (37)[39.65 (37)]46.42 (32)
Uniform portfolio 28.68 (39)[31.80 (39)[36.71 (37)[39.21 (37)
Non-uniform portfolio|[28.68 (39)|32.79 (39)|40.29 (37)(39.91 (37)

[Guiding path + cube [[28.68 (39)[36.04 (37)[37.95 (37)[43.81 (34)|
Table 3. Comparison of different optimization strategies.

Finally, we ran the pure guiding path strategy with cube-oriented nogood ex-
change. Unfortunately, the exchange led to performance degradation, which could be
related to the fact that the decision variants of the majority of the considered optimiza-
tion problems are rather under-constrained. Hence, the nogoods learned by individual
solver instances tend to rule out suboptimal solutions, yet without including much com-
municable information.

4 Discussion

Although distributed parallel ASP solving has the prospect of gaining significant speed-
ups, it also adds further degrees of freedom that must be handled with care. For one,
the physical cluster architecture ought to be taken into account for choosing a search
topology. Furthermore, nogood exchange is often valuable, but it may also incur the
communication of “gibberish” retarding search. In particular, this applies to combi-
natorial optimization problems, where the parallel computing power could be utilized
most effectively by pure search space splitting without exchange. However, the fine-
tuning of claspar (0.9.0) is still at an early stage, and further investigations are needed
to make better use of the increased flexibility.

Acknowledgments. This work was partly funded by DFG grant SCHA 550/8-2.

References

1. Ellguth, E., Gebser, M., Gusowski, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneiden-
bach, L., Schnor, B.: A simple distributed conflict-driven answer set solver. [9] 490—495

2. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In
1JCATI’07, AAAI Press/The MIT Press (2007) 386392

3. Gropp, W., Lusk, E., Thakur, R.: Using MPI-2: Advanced Features of the Message-Passing
Interface. The MIT Press (1999)

4. Zhang, H., Bonacina, M., Hsiang, J.: PSATO: a distributed propositional prover and its appli-
cation to quasigroup problems. Journal of Symbolic Computation 21(4) (1996) 543-560

5. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set enumeration.
In LPNMR’07, Springer (2007) 136-148

6. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In IJ-
CAI’09, AAAI Press/The MIT Press (2009) 399—404

7. http://www.cs.uni-potsdam.de/claspar

8. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczynski, M.: The second answer set
programming competition. [9] 637-654

9. Erdem, E., Lin, F.,, Schaub, T., eds.: Proceedings LPNMR’09. Springer (2009)

