
A Portfolio Solver for Answer Set Programming:
Preliminary Report

M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub?, M. Schneider, and S. Ziller

Institut für Informatik, Universität Potsdam

Abstract. We propose a portfolio-based solving approach to Answer Set Pro-
gramming (ASP). Our approach is homogeneous in considering several configu-
rations of the ASP solver clasp. The selection among the configurations is real-
ized via Support Vector Regression. The resulting portfolio-based solver claspfo-
lio regularly outperforms clasp’s default configuration as well as manual tuning.

1 Introduction

Answer Set Programming (ASP; [1]) has become a prime paradigm for declarative
problem solving due to its combination of an easy yet expressive modeling language
with high-performance Boolean constraint solving technology. In fact, modern ASP
solvers like clasp [2] match the performance of state-of-art satisfiability (SAT) checkers,
as demonstrated during the last SAT competition in 2009. Unfortunately, there is a price
to pay: despite its theoretical power [3], modern Boolean constraint solving is highly
sensitive to parameter configuration. In fact, we are unaware of any true application on
which clasp is run in its default settings. Rather, in applications, “black magic” is used
to find suitable search parameters. Although this is well-known and also exploited in the
SAT community, it is hardly acceptable in an ASP setting for the sake of declarativity.
The most prominent approach addressing this problem in SAT is satzilla [4], aiming at
selecting the most appropriate solver for a problem at hand.

Inspired by satzilla, we address the lack of declarativity in ASP solving by explor-
ing a portfolio-based approach. To this end, we concentrate on the solver clasp and map
a collection of instance features onto an element of a portfolio of distinct clasp config-
urations. This mapping is realized by appeal to Support Vector Regression [5]. In what
follows, we describe the approach and architecture of the resulting claspfolio system.
We further provide an empirical analysis contrasting claspfolio’s performance with that
of clasp’s default setting as well as the manually tuned settings used during the 2009
ASP competition. In addition, we compare the approach of claspfolio with paramils [6],
a tool for parameter optimization based on local search.

2 Architecture

Given a logic program, the goal of claspfolio is to automatically select a suitable config-
uration of the ASP solver clasp. In view of the huge configuration space, the attention is
? Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.



Fig. 1. Architecture of claspfolio

limited to some (manually) selected configurations belonging to a portfolio. Each con-
figuration consists of certain clasp options, e.g., “--heuristic=VSIDS --local-restarts.”
To approximate the behavior of such a configuration, claspfolio applies a model-based
approach predicting solving performance from particular features of the input.

As shown in Figure 1, ASP solving with claspfolio consists of four parts. First, the
ASP grounder gringo [7] instantiates a logic program. Then, a light-weight version of
clasp, called claspre, is used to extract features and possibly even solve a (too simple)
instance. If the instance was not solved by claspre, the extracted features are mapped
to a score for each configuration in the portfolio. Finally, clasp is run for solving, using
the configuration with the highest score. Note that claspre and clasp use distinct copies
of the input (see Figure 1) because preprocessing done by claspre may interfere with
clasp options of configurations in the portfolio.

The features determined by claspre can be distinguished into data- and search-
oriented ones. The former include 50 properties, such as number of constraints, number
or variables, etc. Beyond that, claspre performs a limited amount of search to also col-
lect information about solving characteristics. In this way, additional 90 search-related
features are extracted, such as average backjump length, length of learned clauses, etc.

Given the features of an instance, claspfolio scores each configuration in the portfo-
lio. To this end, it makes use of models generated by means of machine learning during
a training phase. In the case of claspfolio, we applied Support Vector Regression, as
implemented by the libSVM package [8]. Upon training, the score sk(i) of the k-th
configuration on the i-th training instance is simply the runtime tk(i) in relation to the
minimum runtime of all configurations in the portfolio: sk(i) =

minj (tj(i))
tk(i)

.
A model, i.e., a function mapping instance features to scores, is then generated

from the feature-score pairs available for the training set. In production mode, only the
features (collected by claspre), but not the configurations’ scores, are available. Hence,
the models are queried to predict the scores of all configurations in the portfolio, among
which the one with the highest predicted score is selected for setting up clasp.

The portfolio used by claspfolio (version 0.8.0) contains 12 clasp configurations,
included because of their complementary performances on the training set. The options
of these configurations mainly configure the preprocessing, the decision heuristic, and
the restart policy of clasp in different ways. This provides us with a collection of solving
strategies that have turned out to be useful on a range of existing benchmarks. In fact,
the hope is that some configuration is (a) well-suited for a user’s application and (b)
automatically selected by claspfolio in view of similarities to the training set.



3 Experiments

We conducted experiments on benchmark classes of the 2009 ASP competition [9].1

All experiments were run on an Intel Xeon E5520 machine, equipped with 2.26 GHz
processors and 48 GB RAM, under Linux. The considered systems are clasp (1.3.4)
and claspfolio (0.8.0; based on clasp 1.3.4). Runtimes in seconds, per class and in total,
are shown in Table 1. The first two columns give benchmark classes along with their
numbers of instances (#). The subsequent columns denote particular variants of the
considered systems: clasp default (clasp), clasp manually tuned2 (claspm), claspfolio
running a random configuration (claspfolior), claspfolio running the best configuration3

(claspfoliob), claspfolio default (claspfolio) as available at [7], and claspfolio obtained
by cross validation (claspfoliov). The runtime per benchmark instance was limited to
1, 200 seconds, and timeouts are taken as 1, 200 seconds within accumulated results.
The third last and the last column (×) in Table 1 provide the speedup of claspfolio and
claspfoliov , respectively, over clasp, i.e., the runtime of clasp divided by the one of
claspfolio or claspfoliov , per benchmark class (and in total in the last row).

The role of claspfoliov is to evaluate claspfolio on unseen instances. We do so by
using 10-fold cross validation where the set of all available instances is randomly di-
vided into a training set and a test set, consisting of 90 and 10 percent of the inspected
instances, respectively. The regression models generated on the training set are then
evaluated on the (unseen) test set. By repeating this procedure ten times, every instance
is once solved based on models not trained on the instance.

Comparing clasp with claspm in Table 1, manual tuning turns out to be mostly
successful, and it decreases total runtime roughly by a factor of 3. On two classes,
Labyrinth and WireRouting, manual tuning was however counterproductive. This can
be explained by the 2009 ASP competition mode, revealing only a few of the available
instances per benchmark class during a setup phase, so that the manually tuned param-
eters may fail on unseen instances. In fact, claspfolio, trained on a collection of 3096
instances from the Asparagus benchmark repository4 and the 2009 ASP competition,
turns out to be even more successful in total than claspm. In particular, it performs
better on Labyrinth and WireRouting, where claspm failed to improve over clasp. Of
course, there are also benchmark classes on which manual tuning beats claspfolio (most
apparently, WeightDomSet), but the fact that claspfolio exhibits a total speedup of 3.3
over clasp clearly shows the potential of automatic parameter selection. Notably, the
total runtime of claspfolio exceeds the best possible one, claspfoliob, only by a factor
of 1.45, while the expected runtime of a random configuration, claspfolior, is in total
more than a factor of 4 greater than the one of claspfolio.

1 Some too easy/unbalanced classes or instances, respectively, of the competition are omitted.
On the other hand, we also ran additional instances for some classes. All instances used in our
experiments are available at http://www.cs.uni-potsdam.de/claspfolio.

2 The respective parameter settings per benchmark class are reported at http://dtai.cs.
kuleuven.be/events/ASP-competition/Teams/Potassco.shtml.

3 Note that results of claspfolior and claspfoliob are calculated a posteriori per benchmark in-
stance, using the average or smallest, respectively, runtime of all clasp variants in the portfolio.

4 Available at http://asparagus.cs.uni-potsdam.de.



Benchmark Class # clasp claspm claspfolior claspfoliob claspfolio × claspfoliov ×
15Puzzle 37 510 281 438 111 208 2.4 254 2.0
BlockedNQueens 65 412 374 765 139 264 1.5 410 1.0
ConnectDomSet 21 1, 428 54 1, 236 30 53 26.9 649 2.2
GraphColouring 23 17, 404 5, 844 15, 304 5, 746 5, 867 2.9 5, 867 2.9
GraphPartitioning 13 135 66 791 57 69 1.9 97 1.4
Hanoi 29 458 130 499 35 175 2.6 233 2.0
Labyrinth 29 1, 249 1, 728 3.949 112 785 1.5 2, 537 0.5
MazeGeneration 28 3, 652 569 4, 086 558 581 6.2 567 6.4
SchurNumbers 29 726 726 1, 193 41 399 1.8 957 0.7
Sokoban 29 18 19 34 12 57 0.3 54 0.3
Solitaire 22 2, 494 631 3, 569 73 317 7.8 1, 610 1.5
WeightDomSet 29 3, 572 248 10, 091 5 1, 147 3.1 5, 441 0.6
WireRouting 23 1, 223 2, 103 1, 409 43 144 8.4 289 4.2
Total 377 33, 281 12, 773 43, 364 6, 962 10, 066 3.3 18, 965 1.8
Table 1. Runtimes in seconds and speedups on benchmark classes of the 2009 ASP competition

Comparing claspfolio, trained on all available instances, with claspfoliov , where
training and test sets are disjoint, we see that applying claspfolio(v) to unseen instances
yields lower prediction quality. If the training set represents the dependencies between
features and runtime rather loosely, the regression models hardly generalize to unseen
instances, which obstructs a good parameter selection. But even in this case, claspfoliov

is almost twice as fast as clasp, which shows that the trained models are still helpful.

In Table 2, we compare claspfolio with paramils, an automatic configuration tool
based on iterated local search (FocusedILS) through the configuration space. Given that
paramils uses a model-free approach, it can only generalize between homogeneous
problem classes regarding the best configuration. In contrast, claspfolio is utterly ap-
plicable to heterogeneous classes in view of its regression models. To reflect this dis-
crepancy, the column paramilsc shows the runtimes of the best configurations of clasp
determined by paramils independently for each problem class, while the best configu-
ration found over all problem classes is displayed in column paramilsa. In both cases,
we ran four (randomized) copies of paramils for 24 hours with a timeout of 600 sec-
onds per run on an instance, as suggested in [6], and then selected the best configuration
found. Also note that, in view of only 377 instances evaluated overall, we did not split
instances into a training and a test set, i.e., paramils was used to automatically analyze
clasp configurations rather than predicting their performances.

As it could be expected, the configurations found by paramilsc are much faster than
the global one of paramilsa. On some problem classes, e.g., WeightDomSet, paramilsc

found configurations that rendered the classes almost trivial to solve. On such classes,
the configurations of paramilsc also yield much better performances than the ones of
claspfolio and claspm. However, on problem classes including very hard instances, like
GraphColouring and Solitaire, the configurations determined by paramils were less suc-
cessful. This can be explained by long runs on instances, so that fewer configurations
could be explored by local search within the allotted 24 hours.



Benchmark Class # paramilsc paramilsa claspfolio claspfoliov clasp claspm

15Puzzle 37 104 322 208 254 510 281
BlockedNQueens 65 212 352 264 410 412 374
ConnectDomSet 21 28 686 53 649 1, 428 54
GraphColouring 23 7, 596 10, 865 5, 867 5, 867 17, 404 5, 844
GraphPartitioning 13 39 86 69 97 135 66
Hanoi 29 35 147 175 233 458 130
Labyrinth 29 462 3, 080 785 2, 537 1, 249 1, 728
MazeGeneration 28 700 2, 610 581 567 3, 652 569
SchurNumbers 29 278 871 399 957 726 726
Sokoban 29 11 18 57 54 18 19
Solitaire 22 2, 374 4, 357 317 1, 610 2, 494 631
WeightDomSet 29 8 2, 649 1, 147 5, 441 3, 572 248
WireRouting 23 87 535 144 289 1, 223 2, 103

Total 377 11, 934 26, 578 10, 066 18, 965 33, 281 12, 773
Table 2. Comparison with paramils on benchmark classes of the 2009 ASP competition

Comparing claspfolio and paramilsc, claspfolio performs better in total, yet worse
on ten of the thirteen classes. One reason is that claspfolio is based on a small set of
configurations, whereas paramils considers a much larger configuration space (about
1012 configurations). In addition, paramilsc determined a suitable configuration indi-
vidually for each class, while claspfolio applies the same configurations and models to
all problem classes. In fact, we note that claspfoliov performs better than paramilsa.
From this, we conclude that the problem classes are heterogeneous, so that it is unlikely
to find a single configuration well-suited for all classes. Thus, claspfolio appears to be
a reasonable approach for configuring clasp for sets of heterogeneous instances.

4 Discussion

In this preliminary report, we described a simple yet effective way to counterbalance the
sensitivity of ASP solvers to parameter configuration. As a result, ASP solving regains a
substantial degree of declarativity insofar as users may concentrate on problem posing
rather than parameter tuning. The resulting portfolio-based solver claspfolio largely
improves on the default configuration of the underlying ASP solver clasp. Moreover,
our approach outperforms a manual one conducted by experts.

Although our approach is inspired by satzilla, claspfolio differs in several ways.
Apart from the different areas of application, SAT vs. ASP, satzilla’s learning and se-
lection engine relies on Ridge Regression, while ours uses Support Vector Regression.
Interestingly, satzilla incorporates a SAT/UNSAT likelihood prediction further boosting
its performance. Our first experiments in this direction did not have a similar effect, and
it remains future work to investigate the reasons for this.

Our experiments emphasize that search for an optimal configuration, e.g., via
paramils using local search, on one (homogeneous) problem class is more effective
than claspfolio. But the search time of paramils for each problem class makes clasp-
folio more efficient on a set of (heterogeneous) problem classes. In fact, predicting a
good configuration with claspfolio is almost instantaneous, once the regression models



are trained. A recent approach to learn domain-specific decision heuristics [10] requires
modifying a solver in order to learn and apply the heuristics.

It is interesting future work to investigate automatic portfolio generation. New con-
figurations, to add to a portfolio, could be found with paramils. First attempts are done
with hydra [11]. Further related work includes [12–16], whose discussion is however
beyond the scope of this paper. Another goal of future work includes the investigation
and selection of the extracted features to predict more precisely the runtime. Usually,
feature selection decreases the prediction error of machine learning algorithms. In view
of this, the potential of claspfolio is not yet fully harnessed in its current version.

Acknowledgments. This work was partly funded by DFG grant SCHA 550/8-2. We are
grateful to Holger H. Hoos and Frank Hutter for fruitful discussions on the subject of
this paper.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University (2003)

2. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In
IJCAI’07, AAAI Press (2007) 386–392

3. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers with restarts.
In CP’09, Springer (2009) 654–668

4. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based algorithm selec-
tion for SAT. JAIR 32 (2008) 565–606

5. Basak, D., Pal, S., Patranabis, D.: Support vector regression. NIP 11(10) (2007) 203–224
6. Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: ParamILS: An automatic algorithm

configuration framework. JAIR 36 (2009) 267–306
7. http://potassco.sourceforge.net
8. http://www.csie.ntu.edu.tw/˜cjlin/libsvm
9. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second answer

set programming competition. In LPNMR’09, Springer (2009) 637–654
10. Balduccini, M.: Learning domain-specific heuristics for answer set solvers. In ICLP’10

Tech. Comm. (2010) 14–23
11. Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: Automatically configuring algorithms for

portfolio-based selection. In AAAI’10, AAAI Press (2010) 210–216
12. Gagliolo, M., Schmidhuber, J.: Learning dynamic algorithm portfolios. AMAI 47(3–4)

(2006) 295–328
13. Samulowitz, H., Memisevic, R.: Learning to solve QBF. In AAAI’07, AAAI Press (2007)

255–260
14. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-based rea-

soning in an algorithm portfolio for constraint solving. In AICS’08 (2008)
15. Pulina, L., Tacchella, A.: A self-adaptive multi-engine solver for quantified Boolean formu-

las. Constraints 14(1) (2009) 80–116
16. Arbelaez, A., Hamadi, Y., Sebag, M.: Continuous search in constraint programming. In

ICTAI’10, IEEE Press (2010) 53–60


