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Abstract. We elaborate upon a recently proposed approach to finding an answer
set of a logic program based on concepts from constraint processing and sat-
isfiability checking. We extend this approach and propose a new algorithm for
enumerating answer sets. The algorithm, which to our knowledge is novel even
in the context of satisfiability checking, is implemented in the clasp answer set
solver. We contrast our new approach to alternative systems and different options
of clasp, and provide an empirical evaluation.

1 Introduction

Answer set programming (ASP; [1]) has become a primary tool for declarative problem
solving. Although the corresponding solvers are highly optimized (cf. [2,3]), their per-
formance does not match the one of state-of-the-art solvers for satisfiability checking
(SAT; [4]). While SAT-based ASP solvers like assat [5] and cmodels [6] exploit SAT
solvers, the underlying techniques are not yet established in genuine ASP solvers. We
addressed this deficiency in [7] by introducing a new computational approach to ASP
solving, centered around the constraint processing (CSP; [8]) concept of a nogood.
Apart from the fact that this allows us to easily integrate solving technology from the
areas of CSP and SAT, it also provided us with a uniform representation of inferences
from logic program rules, unfounded sets, as well as nogoods learned from conflicts.

While we have detailed in [7] how a single answer set is obtained, we introduce
in what follows an algorithm for enumerating answer sets. In contrast to systematic
backtracking approaches, the passage from computing a single to multiple solutions is
non-trivial in the context of backjumping and clause learning. A popular approach con-
sists in recording a found solution as a nogood and exempting it from nogood deletion.
However, such an approach is prone to blow up in space in view of the exponential
number of solutions in the worst case. Unlike this, our algorithm runs in polynomial
space and is (to the best of our knowledge) even a novelty in the context of SAT.

After establishing the formal background, we describe in Section 3 the constraint-
based specification of ASP solving introduced in [7]. Based on this uniform repre-
sentation, we develop in Section 4 algorithms for answer set enumeration, relying on
conflict-driven learning and backjumping. In Section 5, we provide a systematic empir-
ical evaluation of different approaches to answer set enumeration, examining different
systems as well as different options within our conflict-driven answer set solver clasp.
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2 Background

Given an alphabet P , a (normal) logic program is a finite set of rules of the form p0 ←
p1, . . . , pm,not pm+1, . . . ,not pn where 0 ≤ m ≤ n and pi ∈ P is an atom for 0 ≤
i ≤ n. A body literal is an atom p or its negation not p. For a rule r, let head(r) = p0
be the head of r and body(r) = {p1, . . . , pm,not pm+1, . . . ,not pn} be the body of r.
The set of atoms occurring in a logic program Π is denoted by atom(Π). The set of
bodies in Π is body(Π) = {body(r) | r ∈ Π}. For regrouping rule bodies sharing
the same head p, define body(p) = {body(r) | r ∈ Π, head(r) = p}. In ASP, the
semantics of a program Π is given by its answer sets. For a formal introduction to ASP,
we refer the reader to [1].

We consider Boolean assignments, A, over the domain dom(A) = atom(Π) ∪
body(Π). Formally, an assignment A is a sequence (σ1, . . . , σn) of signed literals σi of
form Tp or Fp for p ∈ dom(A) and 1 ≤ i ≤ n; Tp expresses that p is true and Fp that
it is false. (We omit the attribute signed for literals whenever clear from the context.) We
denote the complement of a literal σ by σ, that is, Tp = Fp and Fp = Tp. We let A◦B
denote the sequence obtained by concatenating assignments A and B. We sometimes
abuse notation and identify an assignment with the set of its contained literals. Given
this, we access true and false members of A via AT = {p ∈ dom(A) | Tp ∈ A} and
AF = {p ∈ dom(A) | Fp ∈ A}.

A nogood is a set {σ1, . . . , σn} of signed literals, expressing a constraint violated
by any assignment that contains σ1, . . . , σn. An assignment A such that AT ∪ AF =
dom(A) and AT ∩ AF = ∅ is a solution for a set Δ of nogoods if δ 	⊆ A for all δ ∈ Δ.
For a nogood δ, a literal σ ∈ δ, and an assignment A, we say that σ is unit-resulting
for δ wrt A if (1) δ \ A = {σ} and (2) σ 	∈ A. By (1), σ is the single literal from δ
that is not contained in A. This implies that a violated constraint does not have a unit-
resulting literal. Condition (2) makes sure that no duplicates are introduced: If A already
contains σ, then it is no longer unit-resulting. For instance, literal Fq is unit-resulting
for nogood {Fp,Tq} wrt assignment (Fp), but neither wrt (Fp,Fq) nor wrt (Fp,Tq).
Note that our notion of a unit-resulting literal is closely related to the unit clause rule of
DPLL (cf. [4]). For a set Δ of nogoods and an assignment A, we call unit propagation
the iterated process of extending A with unit-resulting literals until no further literal is
unit-resulting for any nogood in Δ.

3 Nogoods of Logic Programs

Our approach is guided by the idea of Lin and Zhao [5] and decomposes ASP solving
into (local) inferences obtainable from the Clark completion of a program [9] and those
obtainable from loop formulas.

We begin with nogoods capturing inferences from the Clark completion of a program
Π . The latter can be defined as follows:

{pβ ≡ p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn |
β ∈ body(Π), β = {p1, . . . , pm,not pm+1, . . . ,not pn}} (1)

∪ {p ≡ pβ1 ∨ · · · ∨ pβk
| p ∈ atom(Π), body(p) = {β1, . . . , βk}} . (2)
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This formulation relies on auxiliary atoms representing bodies; this avoids an exponen-
tial blow-up of the corresponding set of clauses. The first type of equivalences in (1)
takes care of bodies, while the second one in (2) deals with atoms.

For obtaining the underlying set of constraints, we begin with the body-oriented
equivalence in (1). Consider a body β ∈ body(Π). The equivalence in (1) can be de-
composed into two implications. First, we get pβ → p1 ∧· · ·∧pm ∧¬pm+1∧· · ·∧¬pn,
which is equivalent to the conjunction of ¬pβ ∨ p1, . . . , ¬pβ ∨ pm, ¬pβ ∨ ¬pm+1, . . . ,
¬pβ ∨ ¬pn. These clauses express the following set of nogoods:

Δ(β) = { {Tβ,Fp1}, . . . , {Tβ,Fpm}, {Tβ,Tpm+1}, . . . , {Tβ,Tpn} } .

As an example, consider the body {x,not y}. We obtain the nogoods Δ({x,not y}) =
{ {T{x,not y},Fx}, {T{x,not y},Ty} }. Similarly, the converse of the previous im-
plication, viz. pβ ← p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn, gives rise to the nogood

δ(β) = {Fβ,Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn} .

Intuitively, δ(β) forces the truth of β or the falsity of a body literal in β. For instance,
for body {x,not y}, we get the nogood δ({x,not y}) = {F{x,not y},Tx,Fy}.

Proceeding analogously with the atom-based equivalences in (2), we obtain for an
atom p ∈ atom(Π) along with its bodies body(p) = {β1, . . . , βk} the nogoods

Δ(p) = { {Fp,Tβ1}, . . . , {Fp,Tβk} } and δ(p) = {Tp,Fβ1, . . . ,Fβk} .

For example, for an atom x with body(x) = {{y}, {not z}}, we get the nogoods
Δ(x) = { {Fx,T{y}}, {Fx,T{not z}} } and δ(x) = {Tx,F{y},F{not z}}.

Combining the four types of nogoods leads us to the following set of nogoods:

ΔΠ = {δ(β) | β ∈ body(Π)} ∪ {δ ∈ Δ(β) | β ∈ body(Π)}
∪ {δ(p) | p ∈ atom(Π)} ∪ {δ ∈ Δ(p) | p ∈ atom(Π)} . (3)

The nogoods in ΔΠ capture the supported models of a program [10]. Any answer set is
a supported model, but the converse only holds for tight programs [11]. The mismatch
on non-tight programs is caused by loops [5], responsible for cyclic support among true
atoms. Such cyclic support can be prohibited by loop formulas. As shown in [12], the
answer sets of a program Π are precisely the models of Π that satisfy the loop formulas
of all non-empty subsets of atom(Π).

For a program Π and some U ⊆ atom(Π), we define the external bodies of U for Π
as EBΠ(U) = {body(r) | r ∈ Π, head(r) ∈ U, body(r) ∩ U = ∅}. The (disjunctive)
loop formula of U for Π is

¬
(∨

β∈EBΠ(U)(
∧

p∈β+ p ∧
∧

p∈β− ¬p)
)

→ ¬
(∨

p∈U p
)

where β+ = β ∩ atom(Π) and β− = {p | not p ∈ β}. The loop formula of a set U
of atoms forces all elements of U to be false if U is not externally supported [12].
To capture the effect of a loop formula induced by a set U ⊆ atom(Π) such that
EBΠ(U) = {β1, . . . , βk}, we define the loop nogood of an atom p ∈ U as

λ(p, U) = {Fβ1, . . . ,Fβk,Tp} .
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Overall, we get the following set of loop nogoods for a program Π :

ΛΠ =
⋃

U⊆atom(Π),U �=∅{λ(p, U) | p ∈ U} . (4)

As shown in [7], completion and loop nogoods allow for characterizing answer sets.

Theorem 1 ([7]). Let Π be a logic program, let ΔΠ and ΛΠ as given in (3) and (4).
Then, a set X of atoms is an answer set of Π iff X = AT ∩ atom(Π) for a (unique)
solution A for ΔΠ ∪ ΛΠ .

The nogoods in ΔΠ ∪ΛΠ describe a set of constraints that must principally be checked
for computing answer sets. While the size of ΔΠ is linear in atom(Π)×body(Π),
the one of ΛΠ is exponential. Thus, answer set solvers use dedicated algorithms that
explicate loop nogoods in ΛΠ only on demand, either for propagation or model verifi-
cation.

4 Answer Set Enumeration

We presented in [7] an algorithm for computing one answer set that is based upon
Conflict-Driven Clause Learning (CDCL; [4]). In what follows, we combine ideas from
the First-UIP scheme of CDCL and Conflict-directed BackJumping (CBJ; [13]) with
particular propagation mechanisms for ASP in order to obtain an algorithm for enu-
merating a desired number of answer sets (if they exist). Our major objective is to use
First-UIP learning and backjumping in the enumeration of solutions, while avoiding re-
peated solutions and the addition of (non-removable) nogoods to the original problem.

In fact, First-UIP backjumping constitutes a “radical” strategy to recover from con-
flicts: It jumps directly to the point where a conflict-driven assertion takes effect, undo-
ing all portions of the search space in between. The undone part of the search space is
not necessarily exhausted, and some portions of it can be reconstructed in the future. On
the one hand, the possibility to revisit parts of the search space makes the termination
of CDCL less obvious than it is for other search procedures. (For a proof of termina-
tion, see for instance [14].) On the other hand, avoiding repetitions in the enumeration
of solutions becomes non-trivial: When a solution has been found and a conflict occurs
after flipping the value of some variable(s) in it, then a conflict-driven assertion might
reestablish a literal from the already enumerated solution, and after backjumping, the
same solution might be feasible again. This is avoided in CDCL solvers by recording
“pseudo” nogoods for prohibiting already enumerated solutions. Such a nogood must
not be removed, which is different from conflict nogoods that can be deleted once they
are obsolete. Of course, an enumeration strategy that records nogoods for prohibiting
solutions runs into trouble if there are numerous solutions, in which case the solver
blows up in space.

Unlike First-UIP backjumping, CBJ, which has been designed for CSP and is also
used in the SAT solver relsat [15], makes sure that backjumping only undoes exhausted
search spaces. In particular, if there is a solution, then an unflipped decision literal of
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Algorithm 1. NOGOODPROPAGATION

Input : A program Π , a set ∇ of nogoods, and an assignment A.
Output : An extended assignment and set of nogoods.

U ← ∅ // set of unfounded atoms1

loop2

while ε �⊆ A for all ε ∈ ΔΠ ∪ ∇ and3

there is some δ ∈ ΔΠ ∪ ∇ st δ \ A = {σ} and σ �∈ A do4

A ← A ◦ (σ)5

dlevel(σ) ← max({dlevel(ρ) | ρ ∈ δ \ {σ}} ∪ {0})6

if ε ⊆ A for some ε ∈ ΔΠ ∪ ∇ or TIGHT(Π) then7

return (A,∇)8

else9

U ← U \ AF10

if U = ∅ then U ← UNFOUNDEDSET(Π,A)11

if U = ∅ then return (A,∇)12

else let p ∈ U in13

∇ ← ∇ ∪ {λ(p,U)}14

if Tp ∈ A then return (A, ∇)15

else16

A ← A ◦ (Fp)17

dlevel(Fp) ← max ({dlevel(ρ) | ρ ∈ λ(p, U) \ {Tp}} ∪ {0})18

that solution cannot be jumped over, as no nogood excludes the search space below
it. Only the fact that all solutions containing a certain set of decision literals have been
enumerated justifies retracting one of them. This is reflected by CBJ, where a decision
literal can only be retracted if the search space below it is exhausted.

Our strategy to enumerate solutions combines First-UIP learning and backjumping
with CBJ. As long as no solution has been found, we apply the First-UIP scheme as
usual (cf. [7]). Once we have found a solution, its decision literals must be backtracked
chronologically. That is, we cannot jump over any unflipped decision literal contributing
to a solution. (Other decision literals are treated as usual.) Only if a search space is
exhausted, we flip the value of the last decision literal contained in a solution. Note that
the First-UIP scheme can be applied even if some decision literals belong to a solution
as long as only other decision literals are jumped over.

Algorithm 1 refines the propagation algorithm introduced in [7]. The major change
is given in ll. 3–6: For every unit-resulting literal σ that is added to A, the value of
dlevel (σ) is explicated. Instead of the current decision level, we assign the greatest
value dlevel (ρ) of any literal ρ ∈ δ \ {σ}. So dlevel (σ) is the smallest decision level
such that σ is unit-resulting for δ wrt A. In Line 18, dlevel (Fp) is determined in the
same way for λ(p, U). See [7] for details on the unchanged parts of Algorithm 1.

Algorithm 2 implements our approach to enumerating a given number of answer
sets. Its key element is the chronological backtracking level bl . At any state of the
computation, its value holds the greatest decision level such that (1) the corresponding
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Algorithm 2. CDNL-ENUM-ASP
Input : A program Π and a number s of solutions to enumerate.

A ← ∅ // assignment over atom(Π) ∪ body(Π)1

∇ ← ∅ // set of (dynamic) nogoods2

dl ← 0 // decision level3

bl ← 0 // (systematic) backtracking level4

loop5

(A, ∇) ← NOGOODPROPAGATION(Π, ∇, A)6

if ε ⊆ A for some ε ∈ ΔΠ ∪ ∇ then7

if dl = 0 then exit8

else if bl < dl then9

(δ, σUIP , k) ← CONFLICTANALYSIS(ε, Π,∇, A)10

∇ ← ∇ ∪ {δ}11

dl ← max({k, bl})12

A ← A \ {σ ∈ A | dl < dlevel(σ)}13

A ← A ◦ (σUIP)14

dlevel(σUIP) ← k15

else16

σd ← dliteral(dl)17

dl ← dl − 118

bl ← dl19

A ← A \ {σ ∈ A | dl < dlevel(σ)}20

A ← A ◦ (σd)21

dlevel(σd) ← dl22

else if AT ∪ AF = atom(Π) ∪ body(Π) then23

print AT ∩ atom(Π)24

s ← s − 125

if s = 0 or dl = 0 then exit26

else27

σd ← dliteral(dl)28

dl ← dl − 129

bl ← dl30

A ← A \ {σ ∈ A | dl < dlevel(σ)}31

A ← A ◦ (σd)32

dlevel(σd) ← dl33

else34

σd ← SELECT(Π,∇, A)35

dl ← dl + 136

A ← A ◦ (σd)37

dlevel(σd) ← dl38

dliteral(dl) ← σd39

decision literal has not (yet) been flipped and (2) some enumerated solution contains all
decision literals up to decision level bl . To guarantee that no solution is repeated, we
have to make sure that backjumping does not retract decision level bl without flipping a
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Algorithm 3. CONFLICTANALYSIS

Input : A violated nogood δ, a program Π , a set ∇ of nogoods, and an assignment A.
Output : A derived nogood, a UIP, and a decision level.

let σ ∈ δ st A = B ◦ (σ) ◦ B′ and δ \ B = {σ}1

while {ρ ∈ δ | dlevel(ρ) = dlevel(σ)} �= {σ} do2

let ε ∈ ΔΠ ∪ ∇ st σ ∈ ε and ε \ B = {σ}3

δ ← (δ \ {σ}) ∪ (ε \ {σ})4

let σ ∈ δ st B = C ◦ (σ) ◦ C′ and δ \ C = {σ}5

B ← C6

k ← max({dlevel(ρ) | ρ ∈ δ \ {σ}} ∪ {0})7

return (δ, σ, k)8

decision literal whose decision level is smaller than or equal to bl .1 We exclude such a
situation in Algorithm 2 by denying backjumps “beyond” decision level bl , if a conflict
is encountered at a decision level dl > bl , or by enforcing the flipping of the decision
literal of decision level bl , if a conflict (or a solution) is encountered at decision level bl .
The latter means that the search space below decision level bl is exhausted, that is, all
its solutions have been enumerated, so that the decision literal of decision level bl needs
to be flipped for enumerating any further solutions.

As in Algorithm 1, we explicitly assign dlevel (σ) whenever some literal σ is added to
assignment A in Algorithm 2. Also, we set dliteral(dl ) to σd in Line 39 when decision
literal σd is added to A at decision level dl . In this way, no confusion about the decision
level of a literal or the decision literal of a decision level is possible.2

Conflict analysis in Algorithm 3 follows the approach in [7]; it assumes that there
is a Unique Implication Point (UIP) at the decision level where the conflict has been
encountered. This is always the case: A look at ll. 8–22 in Algorithm 2 reveals that the
conflict to be analyzed is a consequence of the last decision, and not caused by flipping
a decision literal in order to enumerate more solutions. (Note that flipping a decision
literal does not produce a new decision level, hence, we have bl = dl if a deliberate
flipping causes a conflict. In such a case, we do not analyze the respective conflict.)

We illustrate answer set enumeration by CDNL-ENUM-ASP on the schematic ex-
ample in Figure 1. Thereby, we denote by σi

d the ith decision literal picked by SELECT

in Line 35 of Algorithm 2. We denote by σi
a the complement of a UIP, asserted in

Line 14 of Algorithm 2, after decision literal σi
d led to a conflict. For a literal σ, we

write σ[n] to indicate the decision level of σ, that is, dlevel (σ) = n. Note that, in Fig-
ure 1, we represent assignments only by their decision and asserted literals, respectively,
and omit any literals derived by NOGOODPROPAGATION. We underline the decision lit-
eral of the chronological backtracking level bl . If an assignment contains such a literal,

1 A backjump without flipping could happen if we would exclusively use the First-UIP scheme.
An assertion at a decision level dl<bl would be such that the complement of the corresponding
UIP has been present in a solution enumerated before. Hence, reassigning all decision literals
between dl (exclusive) and bl (inclusive) would lead to an already enumerated solution.

2 We assume that σd �∈ A and σd �∈ A for any decision literal σd returned by SELECT(Π,∇, A)
in Line 35 of Algorithm 2.
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A1 = (σ1
d[1], σ2

d[2], σ3
d[3], σ4

d[4], σ5
d[5]) conflict at dl = 5

A2 = (σ1
d[1], σ2

d[2], σ3
d[3], σ5

a[3]) assertion at dl = 3

A3 = (σ1
d[1], σ2

d[2], σ3
d[3], σ5

a[3], σ6
d[4]) solution at dl = 4

A4 = (σ1
d[1], σ2

d[2], σ3
d[3], σ5

a[3], σ6
d[3]) backtracking to bl = 3

A5 = (σ1
d[1], σ2

d[2], σ3
d[3], σ5

a[3], σ6
d[3], σ7

d[4], σ8
d[5]) conflict at dl = 5

A6 = (σ1
d[1], σ8

a[1], σ2
d[2], σ3

d[3], σ5
a[3], σ6

d[3]) assertion at dl = 1
backtracking to bl = 3

A7 = (σ1
d[1], σ8

a[1], σ2
d[2], σ3

d[3], σ5
a[3], σ6

d[3], σ9
d[4]) solution at dl = 4

A8 = (σ1
d[1], σ8

a[1], σ2
d[2], σ3

d[3], σ5
a[3], σ6

d[3], σ9
d[3]) backtracking to bl = 3

solution/conflict at dl = 3 = bl

A9 = (σ1
d[1], σ8

a[1], σ2
d[2], σ3

d[2]) backtracking to bl = 2 . . .

Fig. 1. Answer set enumeration example

it must not be retracted unless the search space below it is exhausted, that is, unless a
conflict or a(nother) solution is encountered at decision level bl .

Consider assignment A1 in Figure 1, and assume that NOGOODPROPAGATION

yields a violated nogood after decision literal σ5
d has been selected at decision

level dl = 5. Let CONFLICTANALYSIS return a nogood δ such that σ5
a ∈ δ and

max ({dlevel (σ) | σ ∈ δ \ {σ5
a}} ∪ {0}) = 3, that is, σ5

a is a UIP. Given that no
solution has been found yet, we have bl = 0. Thus, CDNL-ENUM-ASP jumps back
to decision level 3 and asserts σ5

a, yielding assignment A2. Up to this point, the enumer-
ation of solutions is similar to the search for a single solution. We next select decision
literal σ6

d at decision level dl = 4. Assume that NOGOODPROPAGATION on assign-
ment A3 yields a solution. Since we are enumerating solutions, we cannot stop here.
Rather, we continue with assignment A4 obtained by flipping σ6

d , and bl = 3 is the
greatest decision level of any unflipped decision literal. Note that σ6

d at decision level

dlevel (σ6
d) = 3 = bl is not asserted by any nogood. We continue by selecting deci-

sion literals σ7
d and σ8

d , yielding assignment A5. Suppose that NOGOODPROPAGATION

yields again a violated nogood at decision level dl = 5 and that CONFLICTANALYSIS

returns a nogood δ with σ8
a ∈ δ and max ({dlevel (σ) | σ ∈ δ \ {σ8

a}} ∪ {0}) = 1.
That is, σ8

a is asserted by δ at decision level 1. Given that the previous solution in-
cluded σ1

d = dliteral (1), it must also have contained σ8
a; otherwise, some nogood had

been violated after NOGOODPROPAGATION. If we would now jump back to decision
level 1 and assert σ8

a, then the already enumerated solution would be feasible again,
and CDNL-ENUM-ASP would repeat it. After asserting σ8

a, we thus have to return
to decision level dl = 3 = bl , rather than to 1, yielding assignment A6. Note that A6

still contains σ6
d, so that the solution encountered after selecting σ6

d (cf. A3) cannot be
repeated. Assume that selecting decision literal σ9

d at decision level dl = 4 yields a
second solution for assignment A7. Then, we backtrack to decision level dl = 3 = bl
and flip σ9

d, yielding assignment A8. Note that σ9
d is not asserted by any nogood. If now

NOGOODPROPAGATION yields a third solution, then decision level 3 is exhausted, that
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is, all solutions containing σ1
d, σ2

d , and σ3
d have been enumerated. Hence, we let bl = 2

and flip σ3
d, yielding assignment A9. Otherwise, if NOGOODPROPAGATION on A8 leads

to a violated nogood, then we do not analyze the conflict because dl = 3 = bl . In
fact, flipped decision literals σ6

d and σ9
d lack asserting nogoods, so that the result of

CONFLICTANALYSIS would be undefined. If NOGOODPROPAGATION yields a conflict
for A8, we thus proceed with A9, as in the case that a solution is found for A8.

We now introduce the notions of correctness, completeness, and redundancy-
freeness for an answer set enumeration algorithm.

Definition 1. For a logic program Π , we define an enumeration algorithm as

– correct, if every enumerated solution is an answer set of Π;
– complete, if all answer sets of Π are enumerated;
– redundancy-free, if no answer set of Π is enumerated twice.

Furthermore, we need the following property (UF):

For any assignment A, let UNFOUNDEDSET(Π, A) in Algorithm 1 return some
non-empty unfounded set U ⊆ atom(Π) \ AF for Π wrt A, if there is such a
set U , and return the empty set ∅, otherwise.3

By letting Π be a logic program and s ∈ Z, we have the following correctness result.

Theorem 2. CDNL-ENUM-ASP(Π, s) is correct, provided that (UF) holds.

For a program Π and X ⊆ atom(Π), we say that X agrees with a nogood δ if one of
the following conditions holds, where X = atom(Π) \ X :

– Fp ∈ δ for some p ∈ X ,
– Tp ∈ δ for some p ∈ X ,
– Fβ ∈ δ for some β ∈ body(Π) such that β ⊆ X ∪ {not p | p ∈ X}, or
– Tβ ∈ δ for some β ∈ body(Π) such that β ∩ (X ∪ {not p | p ∈ X}) 	= ∅.

Intuitively, the notion of agreement expresses that δ 	⊆ A for the total assignment A
corresponding to X . That is, Tp ∈ A for all atoms p ∈ X , Fp ∈ A for all atoms
p ∈ X , and for a body β ∈ body(Π), Tβ ∈ A if all body literals of β are true wrt X
and Fβ ∈ A otherwise. We can show that any answer set X of Π agrees with all
nogoods dealt with by CDNL-ENUM-ASP, both static and dynamic ones.

We first consider static nogoods in ΔΠ ∪ ΛΠ , as given in (3) and (4).

Proposition 1. Any answer set of Π agrees with all nogoods in ΔΠ ∪ ΛΠ .

Given this, we can show that the answer sets of Π agree with all nogoods added to ∇.

Proposition 2. At every state of CDNL-ENUM-ASP(Π, s), any answer set of Π
agrees with all nogoods in ∇, provided that (UF) holds.4

This leads us to the completeness of CDNL-ENUM-ASP, when invoked with s = 0.

Theorem 3. CDNL-ENUM-ASP(Π, 0) is complete, provided that (UF) holds.

Finally, we can show that CDNL-ENUM-ASP is redundancy-free.

Theorem 4. CDNL-ENUM-ASP(Π, s) is redundancy-free.
3 A set U of atoms is unfounded for Π wrt A if we have EBΠ(U) ⊆ AF.
4 We here stipulate (UF) for making sure that the result of CONFLICTANALYSIS is well-defined

at every invocation.
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Table 1. Experiments enumerating answer sets

No Instance #Sol claspa claspar claspb claspbr smodels smodelsr smodelscc cmodels

1 hc 19 104 7.2 7.2 7.7 7.2 • • • •
2 hc 19 105 71.4 77.1 83.5 91.2 • • • •
3 hc 20 104 9.3 9.5 10.9 9.5 • • • •
4 hc 20 105 103.4 117.2 115.8 109.9 • • • •
5 mutex3IDFD 105 1.4 1.4 35.4 35.9 5.5 5.8 240.6 •
6 mutex3IDFD 106 14 13.9 • • 55.9 52.8 • •
7 mutex4IDFD 104 20.8 27.4 43.8 37 44.7 574.7 47.5 •
8 mutex4IDFD 105 52.2 63.2 596.7 585.7 273.4 • • •
9 pigeon 15 105 2.7 2.7 4 3.9 7.1 8.6 126.7 •

10 pigeon 15 106 26.1 26.5 53 54.7 71.8 73.6 • •
11 pigeon 15 107 260.7 262.8 • • • • • •
12 pigeon 16 105 3.2 3.1 4.4 4.6 7.8 9.9 175.2 •
13 pigeon 16 106 30.1 30.5 57.7 59.6 78.5 80.9 • •
14 pigeon 16 107 303 304.5 • • • • • •
15 queens 19 104 14.4 17.1 13.1 15.1 47.1 115 49 427.49
16 queens 19 105 141.5 143.8 135.9 162.7 265.1 358.1 • •
17 queens 20 104 14.1 15.8 13.1 15.3 127 172.1 48.3 569.15
18 queens 20 105 147.2 170.5 149.6 178.6 380.3 • • •
19 schur-n29-m44 104 22.4 26.4 19.8 22.7 17.4 49.4 15.6 •
20 schur-n29-m44 105 203.1 212.5 177.2 246.4 132.4 175.9 353.2 •
21 schur-n29-m45 104 24.7 21.8 21.5 24.6 17.2 50.2 16.1 •
22 schur-n29-m45 105 231.6 265.6 190.7 199.9 133.3 176 397.3 •

5 Experiments

Our empirical evaluation addresses the following two questions: First, how does our
algorithm improve on solution recording (via nogoods) and, second, in how far are
backjumps hampered by the backtracking level. Our comparison considers clasp (RC4)
in two different modes: (a) the one with bounded backjumping (and learning), using
the algorithms from Section 4 (referred to by claspa), and (b) the one using unlimited
backjumping (and learning) in conjunction with solution recording (claspb). Note that
a solution nogood consists of decision literals only. The same strategy is pursued by
smodelscc [16], but with decisions limited to atoms. In contrast, cmodels provides a
whole answer set as solution nogood to the underlying (learning) SAT solver. Given
that restarts are disabled in claspa and claspb, our experiments also include both vari-
ants augmented with bounded and unbounded restarts, respectively (indicated by an ad-
ditional subscript r). The bounded restart variant, claspar, is allowed to resume search
from the backtracking level (cf. Algorithm 2),5 while claspbr can perform unlimited
restarts. We also incorporate standard smodels (2.32) and the variant smodelsr with ac-
tivated restart option, smodelscc (1.08) with option “nolookahead” as recommended by
the developers, and cmodels (3.67) using zchaff (2004.11.15). All experiments were run
on a 2.2GHz PC on Linux. We report results in seconds, taking the average of 10 runs,
each restricted to 600s time and 512MB memory. A timeout (in all 10 runs) is indicated
by “•”. The benchmark instances and extended results are available at [17].

In Table 1, we report results for enumerating a vast number of answer sets. The in-
stances are from the areas of Hamiltonian cycles in complete graphs (1-4), bounded

5 In order to guarantee redundancy-freeness, restarts must not discard the backtracking level
with its flipped decision literals.
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Table 2. Experiments illustrating backjumping and backtracking behavior

No Instance #Sol Backtracks Backjumps Bounded Skippable Skipped Jump Bounded Jump Bounded Time
Jumps Levels Levels Length Length Length Length

(%) (max) (max) (avg) (avg)
1 gryzzles.3 1 0 311 0 771 100 17 0 2.5 0 0.1
2 gryzzles.3 857913 618092 208373 4135 321000 97.6 21 15 1.5 1 178.4
3 gryzzles.7 1 0 675 0 1931 100 22 0 2.9 0 0.1
4 gryzzles.7 106 895612 215995 2783 324951 98 23 22 1.5 2 246.9
5 gryzzles.18 1 0 599 0 2026 100 27 0 3.4 0 0.1
6 gryzzles.18 106 811593 51219 1605 92953 96.1 27 18 1.7 2 235
7 mutex4IDFD 1 0 280 0 26698 100 590 0 95.4 0 17
8 mutex4IDFD 106 0 280 0 26698 100 590 0 95.4 0 579.7
9 sequence2-ss2 1 0 156 0 674 100 35 0 4.3 0 13.3
10 sequence2-ss2 38 64 2875 225 13915 53 73 43 2.6 29 17.9
11 sequence3-ss3 1 0 10921 0 40213 100 65 0 3.7 0 66.9
12 sequence3-ss3 332 315 55111 731 121435 97.8 65 20 2.2 3 361

model checking (5-8), pigeonhole (9-14), n-queens (15-18), and Schur numbers (19-
22). We have chosen these combinatorial problems because of their large number of an-
swer sets. This allows us to observe the effect of an increasing number of answer sets on
the performance of the respective approaches. The number of requested (and success-
fully enumerated) solutions is given in the third column. Comparing the two variants
of clasp, we observe that claspa and claspar scale better than claspb and claspbr. This
is most intelligible on examples from bounded model checking (5-8) and pigeonhole
problems (9-14). Solutions for the former contain many decision literals, and the large
solution nogoods significantly slow down claspb and claspbr. The pigeonhole problems
are structurally simple, so that all decisions yield solutions. Since the number of easy-
to-compute solutions is massive, the sheer number of recorded solution nogoods slows
down claspb and claspbr. Also note that the time that smodels spends in lookahead is
wasted here. With Hamiltonian cycles (1-4), n-queens (15-18), and Schur numbers (19-
22), the picture is rather indifferent. That is, solving time tends to dominate enumeration
time, and the recorded solution nogoods are not as critical as with the aforementioned
problems. Notably, smodels is very effective on Schur numbers. We verified that all
clasp variants make the same number of decisions (or choices) as smodels, so we con-
jecture that different run-times come from implementation differences: counter-based
propagation in smodels versus watched literals in clasp. Regarding the other systems,
we see that smodelscc is slower than smodels as regards enumeration (9-14) but some-
times faster if search is needed (17), and cmodels is clearly outperformed. Comparing
claspa to claspar and claspb to claspbr, we see that restarts make (almost) no difference
on the problems in Table 1. Indeed, clasp hardly ever restarts on these problems, so that
the effect is negligible. However, this indifference does not account for smodelsr, where
restarts turn out to be quite counterproductive on our combinatorial problems.

Table 2 provides statistics regarding the backjumping and backtracking of claspa

upon the enumeration of answer sets. The first three instances are Hamiltonian path
problems (1-6), the fourth is from bounded model checking (7,8), and the last two from
compiler superoptimization (9-12). For every instance, we provide two rows: the back-
jump statistics for one answer set versus that for a certain number of answer sets. The
“Backtracks” column shows the number of chronological backtracks, that is, conflicts
on the backtracking level, while “Backjumps” indicates conflicts on greater decision
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levels. The number of backjumps that were forced to stop at the backtracking level is
given by “Bounded Jumps”. The “Skippable Levels” are the sum of backjump lengths
(not counting backtracks), and “Skipped Levels” shows the percentage of levels that
have effectively been skipped. We also provide the maximum “Jump Length” and the
maximum “Bounded Length”. The latter is the maximum number of skippable levels
that have not been retracted in a jump because of hitting the backtracking level. Finally,
we show the average “Jump Length”, the average “Bounded Length”, and the time.
On the Hamiltonian path problems (1-6), we observe that the number of backtracks
dominates that of backjumps. Indeed, we also observed on other problems, not shown
here, that the “hard” part of the search was before finding the first answer set; after-
wards, the number of conflicts above the backtracking level decreased significantly. We
see this very drastically on the bounded model checking instance (7,8) where 280 long
backjumps are performed (jump length 95 on average). After this “warm-up” phase,
no further conflicts are encountered, even not on the backtracking level (0 backtracks).
Finally, the superoptimization examples (9-12) are rather sparse regarding answer sets,
and backjumps are still noticeable after the first solution has been found. In Line 10,
we observe an exceptionally low percentage of skipped levels, approximately half of
the skippable levels are kept. The few bounded jumps that are done have a significant
length (29 unskipped levels on average). However, on all instances in Table 2, the jump
of maximum length was unbounded and thus effectively executed. The average “Jump
Length” and the average “Bounded Length” are usually small, except for 7, 8, and 10.

6 Discussion

We introduced a new approach to enumerating answer sets, centered around First-UIP
learning and backjumping. To the best of our knowledge, our solution enumeration ap-
proach is novel even in the context of SAT. Unlike relsat [15], applying the Last-UIP
scheme, our approach uses First-UIP backjumping as long as systematic backtracking
is unnecessary. Different from the #SAT solver cachet [18], using so-called “component
caching”, our approach combines CDCL with CBJ for avoiding the repetition of solu-
tions. Recent approaches to adopt SAT and CSP techniques in ASP solving [16,19,20]
are rather implementation-specific and lack generality. Unlike this, we provided a uni-
form CSP-based approach by viewing ASP inferences as unit propagation on nogoods,
which allowed us to directly incorporate techniques from CSP and SAT.

The clasp system implements state-of-the-art techniques from Boolean constraint
solving, avoiding a SAT translation as done by assat [5], cmodels [6], and sag [19].
Also, clasp records loop nogoods only when ultimately needed for unit propagation;
this is different from assat and sag, which determine loop formulas for all “terminat-
ing” loops. Unlike genuine ASP solvers smodels [2] and dlv [3], clasp does not de-
termine greatest unfounded sets. Rather, it applies local propagation directly after an
unfounded set has been found. Different from smodelscc [16] and dlv with backjump-
ing [20], the usage of rule bodies in nogoods allows for a straightforward extension of
unit propagation to ASP, abolishing the need for multiple inference rules. Notably, our
novel approach allows clasp to enumerate answer sets of a program without explicitly
prohibiting already computed solutions by nogoods, as done by cmodels and smodelscc.
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