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Abstract. We describe the conflict-driven answer set solver clasp, which is
based on concepts from constraint processing (CSP) and satisfiability checking
(SAT). We detail its system architecture and major features, and provide a sys-
tematic empirical evaluation of its features.

1 Introduction

Our new system clasp [1] combines the high-level modeling capacities of Answer Set
Programming (ASP; [2]) with state-of-the-art techniques from the area of Boolean con-
straint solving. Unlike existing ASP solvers, clasp is originally designed and optimized
for conflict-driven ASP solving [3,4], centered around the concept of a nogood from the
area of constraint processing (CSP). Rather than applying a SAT(isfiability checking)
solver to a CNF conversion, clasp directly incorporates suitable data structures, particu-
larly fitting backjumping and learning. This includes dedicated treatment of binary and
ternary nogoods [5], and watched literals for unit propagation on “long” nogoods [6].
Unlike smodelscc [7], which builds a material implication graph for keeping track of
the multitude of inference rules found in ASP solving, clasp uses the more economical
approach of SAT solvers: For a derived literal, it only stores a pointer to the responsible
constraint. Despite its optimized data structures, the implementation of clasp provides
an elevated degree of abstraction for handling different types of (static and dynamic)
nogoods. This paves the way for the future support of language extensions, e.g., ag-
gregates. Different from smodels [8] and dlv [9], unfounded set detection within clasp
does not determine greatest unfounded sets. Rather, an identified unfounded atom is
immediately falsified, before checking for any further unfounded sets.

We focus on clasp’s primary operation mode, viz., conflict-driven nogood learning;
its second operation mode runs (systematic) backtracking without learning. Beyond
backjumping and learning, clasp features a number of related techniques, typically found
in SAT solvers based on Conflict-Driven Clause Learning (CDCL; [10]). clasp incor-
porates restarts, deletion of recorded conflict and loop nogoods, and decision heuristics
favoring literals from conflict nogoods. All these features are configurable via command
line options and subject to our experiments. The two major contributions of this paper
consist, first, in a detailed description of the system architecture (in Section 2) and, sec-
ond, in a systematic empirical evaluation of some selected run-time features (in Sec-
tion 3). Many of these features are based on experiences made in the area of SAT; hence
it is interesting to see how their variation affects solving ASP problems.
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2 System Architecture

The system architecture of clasp can be divided into three major components by follow-
ing the underlying data flow (cf. Figure 1): clasp reads ground logic programs in lparse
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Fig. 1. The system architecture of clasp

format [11], possibly includ-
ing choice rules, cardinality
and weight constraints. The
latter constructs are compiled
away during parsing. The re-
sulting normal rules are then
taken by the program builder
to generate nogoods (captur-
ing Clark’s completion) and
to create an initial positive
atom-body-dependency graph
(containing only distinct bod-
ies). While all vertices of
this graph are associated with
assignable variables in the
static data, only the non-trivial
strongly connected compo-
nents of the positive atom-
body-dependency graph are
kept and used to initialize the unfounded set checker. Note that clasp uses hybrid as-
signments, treating atoms and bodies equitably as assignable objects.

The elementary data type used in the solver is that of a Boolean constraint (and
thus not restricted to sets of literals). The solver distinguishes static nogoods (see above)
that are excluded from nogood deletion and recorded nogoods (stemming from conflicts
or loops) accumulated during the search. While the former are part of the static data, the
latter are kept in a separate database. Also, a learnt nogood maintains an activity counter
that is used as a parameter for nogood deletion (see below). Different data structures
are used for binary, ternary, and longer nogoods (accounting for the large number of
short nogoods capturing Clark’s completion). This is complemented by maintaining two
watch lists [5,6] for each variable, storing all longer nogoods that need to be updated if
the variable becomes true or false, respectively.

Variable assignments are either done by propagation or via a decision heuristics.
clasp’s local propagation amounts to applying the well-known unit clause rule to no-
goods (cf. [3]). A variable assigned by local propagation has a pointer to the (unit)
nogood it was derived from; this includes unfounded atoms derived from loop nogoods
(see [3] for details). During propagation, binary nogoods are preferred over ternary
ones, which are preferred over longer nogoods. Also, our propagation procedure is dis-
tinct in giving a clear preference to local propagation over unfounded set computations.
Once an unfounded set U is determined, only a single atom from U is taken to gener-
ate a loop nogood that is added to the recorded nogoods. Then, local propagation re-
sumes until a fixed point is reached. This is repeated until there are no non-false atoms
left in U . Afterwards, either another unfounded set is found or propagation terminates.
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Unfounded set detection within clasp combines source pointers [12] with the unfounded
set computation algorithm in [13]. Notably, it aims at small and “loop-encompassing”
rather than greatest unfounded sets, as determined by smodels and dlv.

Whenever propagation encounters a conflict, clasp’s conflict resolution is engaged.
As described in [3], conflict resolution determines a conflict nogood (that is recorded)
and a decision level to jump back to. Backjumping and nogood recording work similar
to CDCL with First-UIP scheme [10]. The corresponding algorithms are detailed in [3].
For enumerating answer sets, clasp uses a novel bounded backjumping approach that
is elaborated upon in [4]. Given that clasp’s learning and backjumping strategy have
already been theoretically as well as experimentally elaborated upon elsewhere [3,4],
let us concentrate in what follows on heuristic aspects and in particular investigate how
established CSP and SAT strategies apply in the context of ASP. This also provides an
overview of the variety of different strategies supported by clasp.

clasp’s decision heuristics depends on whether learning is in effect or not. With-
out learning, clasp relies on look-ahead strategies (that extend unit propagation by
failed-literal detection [14]). When learning, clasp uses look-back strategies derived
from corresponding CDCL-based approaches in SAT, viz., VSIDS [6], BerkMin [15],
and VMTF [5]. All of them are conflict-oriented and so primarily influenced by con-
flict resolution. The heuristic values mainly need to be updated when a new nogood is
recorded. Notably, clasp leaves it to the user whether this includes loop nogoods or not.

clasp distinguishes two types of restart policies. The first starts with an initial num-
ber of conflicts after which clasp restarts; this threshold is then increased by a factor
after each restart. The second policy goes back to Luby et al. [16] and is based on a
sequence of numbers of conflicts (e.g., 32 32 64 32 32 64 128 32 . . . for unit 32) after
each of which it restarts. The bounded restart strategy used when enumerating answer
sets is described in [4]. Moreover, clasp allows for a limited number of initial random-
ized runs, typically with a small restart threshold, in the hope to discover putatively
interesting nogoods before actual search starts.

clasp’s nogood deletion strategy borrows ideas from minisat [17] and berkmin [15].
It associates an activity with each dynamic nogood and limits the number of recorded
nogoods by removing nogoods whenever a threshold is reached. The limit is initialized
with the size of the input program and increased by a factor every restart. Note that
nogood deletion applies to both conflict as well as loop nogoods.

3 Experiments

We conducted experiments on a variety of problem classes. Our comparison includes
clasp (RC4) in various modes: the normal mode (N) and variants of it changing either
the heuristics (H), initial randomized runs (I), restarts (R), or nogood deletion (D):

N The standard mode of clasp (RC4) defaults to the following command line options:
--heuristic=berkmin indicates that choices (on atoms and bodies) are done

according to an adaption of the BerkMin heuristics [15].
--lookback-loops=no indicates that the heuristics ignores loop nogoods.
--restarts=simple(100,1.5) makes clasp restart every 100× 1.5k con-

flicts for k ≥ 0 (i.e., after 100 150 225 337 506 . . . conflicts).
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--deletion=3,1.1 fixes the size and growth factor of the dynamic nogood
database. Initially, clasp allows for recording (|atom(Π) ∪ body(Π)|/3) no-
goods before nogood deletion is invoked. The size is increased with each restart
by the factor 1.1, given as second parameter.

--loops=common uses a fixed set of bodies when composing the loop nogoods
of an unfounded set (alternatives: distinct and shared; cf. [1]).

H1 --heuristic=berkminemodifies the initialization of berkmin by counting
watched literals rather than taking the original randomized approach.

H2 --heuristic=vmtfe --lookback-loops=yes uses an extended adap-
tion of the VMTF heuristics [5] and furthermore takes loop nogoods into account.
(Actually, the other heuristics could use loop nogoods as well. But only with
VMTF, they showed an improvement, while hampering the other heuristics.)

H3 --heuristic=vsids uses an adaption of the VSIDS heuristics [6].
I --randomize=50,20makes clasp perform 50 initial runs with a random choice

policy before actual search commences; each run is stopped after 20 conflicts.
R1 --restarts=luby(64) uses Luby et al.’s restart strategy [16] with base 64.
R2 --restarts=simple(16000,1) is similar to siege’s fixed-interval restart

strategy [5], cutting of every 16000 conflicts.
R3 --restarts=simple(700,1) is similar to chaff ’s fixed-interval restart strat-

egy [18], cutting of every 700 conflicts.
R4 --no-restarts inhibits restarting.
D1 --deletion=25,1.1 keeps the dynamic nogood database rather small.
D2 --no-deletion turns off deletion of dynamic nogoods.

For comparison, we include smodels with default settings (S; V2.32) and with its restart
option (Sr). We also incorporate smodelscc (Scc; V1.08) with option “nolookahead”, as
recommended by the developers, and cmodels (C; V3.65) using zchaff (2004.11.15).

All experiments were run on a 800MHz PC on Linux. We report the average time (in
seconds) on ten different shuffles of an input program. Each run was restricted to 300s
time and 512MB RAM. Times exclude parsing, done off-line with lparse (V1.0.17).
A timeout in all 10 runs is indicated by “•”; otherwise, it is taken to be 300s within
statistics. The benchmark instances as well as extended results are available at [1,19].
The instances in Table 1 are random programs (1-10); computing bounded spanning
trees (11-15), weighted spanning trees (16-20), and Hamiltonian cycles (21-25); game
solving for Sokoban (26-35) and Gryzzles (36-40); from bounded model checking (41-
52); Social Golfers scheduling (53-57); and machine code superoptimization (58-62).
The problems have a variety of different characteristic properties, such as SAT vs UN-
SAT, random vs structured, tight vs non-tight, etc. Our aim is to give an overview of
clasp’s performance on a broad palette of problems, from which instances are picked
representatively with the only requirement that they are selective.

For brevity, we here only provide a summary of the benchmark results shown in
Table 1. For each solver, the last 7 rows show statistics over all runs (62 × 10 = 620
runs per solver). Let us focus on the number of “Timeouts” indicating robustness. (Re-
call that we shuffled the inputs in order to compensate for luckiness.) It turns out that
all different features of clasp, that is, heuristics, restarts, and clause deletion, have an
impact. Among heuristics, the BerkMin variants N and H1 turned out to be more reli-
able than VMTF (H2) and VSIDS (H3). Although VMTF is often best, it also leads to
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Table 1. Experiments computing one answer set

No Instance N H1 H2 H3 I R1 R2 R3 R4 D1 D2 S Sr Scc C

1 lp.200.00900.9 25.3 24.3 94.2 56.3 25.2 64.4 22.4 55.7 16.1 21 50.6 291.6 291.8 94.6 60.3
2 lp.200.00900.19 25.2 24.6 65.2 44.6 26.7 86.5 16.4 72.9 12.7 23.2 56.6 229.1 231.5 86.9 72.6
3 lp.200.00900.23 20.4 19.8 64 41 22 67.9 16.1 62.1 12.1 21.5 50.5 254.8 244.6 77.2 72.6
4 lp.200.01000.2 21.3 25.3 75.5 47.2 26 60.6 18.9 56.9 13.5 21.7 47 247.1 245.5 70.2 49.8
5 lp.200.01000.22 24.2 21.4 77.1 46.2 25.4 62.1 18.4 55.7 13.3 23.2 43.9 234 232.4 68.8 57.9
6 b5 43.4 45.5 67.6 56.5 45.6 • 158 • 19.4 35.8 216.6 108.5 103.4 • 279.5
7 b9 51 49 72.6 60.6 48.1 • 254.6 • 24.8 37.1 257.4 127.4 131 • •
8 b10 54.7 52.4 87.8 61.6 55.6 • 243.3 • 25.1 43.4 276.4 165.7 164.9 • •
9 b17 29.7 25.9 49.7 58 24.6 153.1 50.3 174.1 10.8 21.1 154.6 80.8 76.3 233.1 182.8
10 b26 32.4 36.7 26.7 60.2 55.9 114.7 26.5 151.2 27 17.4 103.8 81.3 177.9 269.9 172.8
11 104 rand 45 250 1727040059 0 48.8 45.9 24.1 52.8 40.6 52.6 45.8 41.7 50.9 48.9 48.9 • • 296.1 152.3
12 104 rand 45 250 1727040917 0 56.3 51.7 24.9 57.6 39.8 60.7 42.1 42.3 42.2 56.3 56.3 • • 297.6 184.2
13 104 rand 45 250 1727042043 0 61.7 65 27.5 108.5 40.2 78.8 41.6 56.2 41.6 61.7 61.7 • • 287.5 102.3
14 104 rand 45 250 1727044175 0 47.4 43.6 24.8 47.8 38.7 53.6 42.3 42.7 42.2 47.5 47.4 • • 298.7 163.3
15 104 rand 45 250 1727068226 0 48.8 49.1 26.5 57.8 40.7 57 41.2 41.9 41.2 48.8 48.8 • • 296.9 122.1
16 207 rand 35 138 2077101081 0 12.8 16.3 8.2 18.9 12.9 13.4 11.7 10.9 11.7 12.8 12.8 191.8 225.7 85.8 11.6
17 207 rand 35 138 2077159055 0 10.2 10.6 7.6 13.3 12.8 10.2 10 10.1 10 10.2 10.2 290 296.5 76.7 10.5
18 209 rand 45 138 1119566817 0 23.3 23.1 15.4 31.2 23.4 24.1 25.4 23.6 30.3 23.3 23.3 • • 215.9 21.4
19 209 rand 45 138 1119569108 0 26.8 27.9 21.4 44.1 24.5 27.7 25.4 25.1 25.5 26.8 26.8 • • 222.3 19.4
20 209 rand 45 138 1119571853 0 24 25 15.4 37.4 22.5 24.2 22.7 21 22.7 24 24 • • 202.7 30.4
21 rand 200 1800 1154991214 4 6.6 19.9 28 9.3 10 7.1 24.9 5.2 68.9 6.6 6.6 179.9 71.8 18.7 106.7
22 rand 200 1800 1154991214 7 5.1 18.6 4.1 5.4 9.4 5 27.1 5.4 95.1 5.1 5.1 219.5 123.7 16.8 127.2
23 rand 200 1800 1154991214 9 6 14.9 5.7 5.6 7.9 9.5 60.2 7.9 182 6 6 218.2 57.5 28 120.6
24 rand 200 1800 1154991214 11 5.6 19.7 8 6.9 9 6.5 40 6 93.3 5.6 5.6 • 206.1 17.3 91.9
25 rand 200 1800 1154991214 14 5.9 18.2 6.4 4.9 9 8.3 21.4 5.6 53.1 5.8 5.9 154.6 82.8 21.3 96.5
26 yoshio.2.n16.len15 24 26.5 32.9 56.7 19.3 26.4 26.1 29.4 26.1 32.3 26.1 • • 63 78.6
27 yoshio.2.n16.len16 24 37.7 48.2 50.6 16.8 34.3 21.9 26.9 19.6 31.2 33.2 • • 62.2 92.5
28 yoshio.11.n15.len14 4.8 4.9 7.3 28.1 5 4.6 4.7 4.8 4.7 4.9 4.8 • • 12.8 18.7
29 yoshio.11.n15.len15 4.5 6.2 8.6 31.2 6.3 5.2 5.8 6.2 5.9 5.3 4.5 • • 12.8 36.4
30 yoshio.36.n14.len13 13.8 13.7 15.7 38.9 9.1 10.4 12.1 12 12 15 43.8 • • 18.2 22.7
31 yoshio.36.n14.len14 12.3 10.4 12.5 29.2 6.7 9.5 8.9 10.2 8.9 13.3 13.7 • 258.4 21.7 27.7
32 yoshio.46.n13.len12 13.5 15 18.2 24.5 12.9 14.6 13.6 12.7 13.6 17.6 13.4 • • 34.3 36.3
33 yoshio.46.n13.len13 14.5 20.7 17.7 15.1 11.1 11 15.3 12.9 15.3 11.8 14.5 • • 48.3 30.7
34 yoshio.52.n12.len11 10.8 13.2 19 23 11.5 12.6 11.3 11.8 11.3 12.7 10.8 180.4 181.5 29.8 32.4
35 yoshio.52.n12.len12 10.3 10.7 13.6 20.5 11.9 9.5 8.9 8.3 8.9 11.6 11.2 • • 24.4 40.3
36 gryzzles.0 38.2 24.1 44.2 37.5 22.7 12.4 30.4 2.8 210.3 42.3 90.8 • 181 117.1 26.1
37 gryzzles.3 0.3 0.3 0.3 0.3 0.7 0.3 1.2 0.3 1.6 0.2 0.3 21.7 0.5 0.6 1
38 gryzzles.7 0.3 0.5 0.5 0.4 0.8 0.3 3.7 0.4 81.3 0.5 0.3 180.5 3 2 1.1
39 gryzzles.18 0.6 0.7 0.7 0.6 1 0.6 6.3 0.6 34.8 1 0.6 4.8 1.8 2 2.5
40 gryzzles.47 1.3 1.4 1.9 1.7 1.9 1.5 7.6 1.5 116 1.4 1.1 • 18.7 8.5 11.3
41 dp 10.formula1-i-O2-b12 6.9 9.7 14.1 47.5 10.5 11.8 18.3 6.4 15.9 8.7 6.9 165.6 273.3 10.8 38
42 dp 12.formula1-i-O2-b14 44.8 73.6 102.6 200.1 43.6 70.6 77.9 88.1 234.8 38.4 64.6 • • 75.4 150.5
43 dp 12.formula1-s-O2-b10 3.8 5.6 9.8 10.8 5.4 2.7 3.6 4.3 3.6 3.2 2.9 • • 6.4 16.6
44 dp 10.fsa-D-i-O2-b10 2.4 0.4 0.3 10.4 4.1 1.5 6.8 0.9 39.7 0.8 3.5 294 6.5 33.9 1.2
45 dp 12.fsa-D-i-O2-b9 • • • • • • • • 287.6 • • • • • •
46 elevator 2-D-i-O2-b12 10.1 8.7 7.8 26.7 10 11.7 8.3 10.2 8.4 10.1 10.1 4.4 22.4 14.4 7.4
47 elevator 4-D-s-O2-b10 3.4 5.2 3.2 7.8 4.5 3.3 4.4 4 4.4 3.5 3.4 97 7.4 21 5.1
48 key 2-D-i-O2-b29 25.2 33.5 39.5 140.2 22.7 31 36.3 30.4 35.1 25.6 25.2 • • 83.6 50.2
49 key 2-D-s-O2-b29 33.1 32.7 39 91 28 30.6 30.1 30.7 28.7 29.3 35.2 • • 65 40.8
50 mmgt 3.fsa-D-i-O2-b10 9.6 15.9 23.8 35 6.5 9 10.6 8.7 10.6 8.6 9.6 40.8 16.9 13 9.5
51 mmgt 4.fsa-D-i-O2-b12 180.2 95.4 120.8 217 126.8 76.7 139.5 96 144.6 115.9 180.6 • 274.9 28.3 36.4
52 q 1.fsa-D-i-O2-b17 221.7 187 278.9 293.1 132.3 274.9 176.1 290 161.6 87.8 292.3 • • 201.1 281.6
53 csp010-SocialGolfer w3 g3 s6 35 35.7 50.3 103.3 57.9 50.7 34.8 33.4 38.9 84.3 34 • • 57.2 23.8
54 csp010-SocialGolfer w4 g3 s6 34.9 41.2 61.7 102.7 60.9 44.3 35.9 38.7 44.2 76 38.9 • • 64.2 31
55 csp010-SocialGolfer w6 g3 s4 14.8 24.2 9.5 277.9 97.1 14.8 9.2 20.6 9.3 17.2 16.9 189.2 187.7 40 38.5
56 csp010-SocialGolfer w6 g3 s5 40.9 60.5 13.7 234.4 141.6 59.3 52.5 49.4 42.9 70.5 55.7 • • 62.3 40
57 csp010-SocialGolfer w7 g3 s6 40.1 79.8 18.4 284.5 52.1 91.8 38.7 38.4 45.3 80.6 45.4 • • 75.1 35.5
58 sequence2-ss2 14.9 15.7 14.7 17.3 14.4 16.1 14.2 14.2 14.2 14.9 14.9 83.5 136.8 115.5 38.2
59 sequence3-ss2 27 27 27.2 27.1 27 26.9 26.9 26.9 26.9 27 26.9 22.8 22.8 24.6 12.8
60 sequence3-ss3 170.7 177 128.5 175.5 128.9 209.8 183.9 141.9 185.7 168.4 170.5 • • • 289.5
61 sequence4-ss2 69.2 70.9 80.8 75.8 77.2 73.5 70.1 69.6 70 69.1 69.1 235.6 232.1 225.1 294.8
62 sequence4-ss4 292.5 297.7 293.5 • • • • • • 292.7 292.6 • • • •

Timeouts 23 25 31 66 26 65 33 67 57 22 40 396 342 110 79
Best 51 56 147 41 64 52 47 64 120 60 42 26 17 21 67
Worst 25 25 39 77 28 66 34 67 63 22 40 445 384 115 94
Better 461 379 360 238 431 333 408 378 427 423 386 48 46 103 163
Worse 159 241 260 382 189 287 212 242 193 197 234 572 574 517 457
Average 39.9 41.3 45.3 70.5 40.1 61.5 49.4 58.4 53.4 38.5 58.3 233.8 212.7 109 87.2
Euclidian Distance 341.9 312.2 387.4 685.3 312.6 651.9 476.2 645.9 509 287.2 597.9 1860.5 1753.5 1048.5 825.9

more timeouts. As one might expect, the variant without restarts (R4) is less robust than
the restarting variants N and R2. This is also confirmed by smodels, where the restart
option (Sr) significantly reduces the number of timeouts in comparison to the default
setting (S). On the clasp variants R1 and R3, we however see that very short restart in-
tervals also degrade performance. Except for smodels, all solvers shown in Table 1 use
learning and turn out to be more robust than smodels. But we also observe that keeping
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all recorded nogoods, as done by clasp variant D2, degrades performance. In contrast,
making the dynamic nogood database smaller (D1) was useful on the benchmarked in-
stances. Finally, initial randomized runs (I) tend to slightly increase the solving time
when compared to the fastest non-randomized clasp variants. However, if the determin-
istic variants of clasp fail, then randomization might be useful. The last 6 rows in Table 1
count how often a solver was “Best”, “Worst”, and “Better” or “Worse” than the me-
dian solving time on a (shuffled) instance, provide its “Average” time over all runs, and
finally, the “Euclidian Distance” to the virtual optimum solver (best on all instances) in
a 62–dimensional space. Benchmark results for combinations of different options are
beyond the scope of this paper. However, the fine-tuning of clasp is an ongoing process.
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