
On the Input Language of ASP Grounder Gringo

Martin Gebser, Roland Kaminski, Max Ostrowski, Torsten Schaub?, and Sven Thiele

Universität Potsdam, Institut für Informatik, August-Bebel-Str. 89, D-14482 Potsdam

Abstract. We report on recent advancements in the development of grounder
Gringo for logic programs under answer set semantics. Like its relatives, DLV
and Lparse, Gringo has in the meantime reached maturity and offers a rich mod-
eling language to program developers. The attractiveness of Gringo is fostered by
the fact that it significantly extends the input language of Lparse while supporting
a compatible output format, recognized by many state-of-the-art ASP solvers.

1 Introduction

Answer Set Programming (ASP; [1]) is an attractive paradigm for knowledge repre-
sentation and reasoning. On the one hand, its popularity is due to the availability of
efficient off-the-shelf solvers (cf. [2]). But equally or even more important under the
aspect of usability is its rich modeling language, including first-order variables, func-
tion symbols, aggregates, etc. In fact, search problems are in ASP usually modeled in a
uniform way by means of a data part, called instance, and a general part, called encod-
ing (cf. [3–7]). The computation of answer sets, corresponding to problem solutions, is
then typically performed in two phases: first, grounding the encoding on the problem
instance, and second, solving the resulting propositional program.

In contrast to the multitude of available solvers, the field of ASP grounders is still
underrepresented. To the best of our knowledge, there are only three popular grounders,
namely, (the grounding component of) DLV [8], Lparse [9], and Gringo [10]. While
DLV processes the grounding result internally or prints it as text, the numerical output
format of Lparse and Gringo is recognized by many state-of-the-art ASP solvers. In
view of this transparency from the solver side and the progress made since the first
description of Gringo [11], Gringo has become a real alternative to Lparse. In particular,
the attractiveness of Gringo is fostered by the fact that it significantly extends the input
language of Lparse, providing advanced modeling features to ASP programmers. This
paper reports on such new features of Gringo, potentially useful for ASP applications.

2 Modeling Features

The input language of Gringo is designed to be in large parts compatible to the one of
Lparse [9], so that the majority of Lparse programs can still be grounded with Gringo.
Assuming basic familiarity with Lparse, we focus our description on extensions avail-
able in Gringo and also mainly take Lparse as the grounder to contrast with.

? Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.

λ-Restricted Programs [11]. The class of programs processable with Gringo is a proper
superclass of ω-restricted programs [12] accepted by Lparse. The underlying idea is that
all relevant ground instances of a rule (that is, ground instances whose bodies can po-
tentially be true wrt an answer set) are implicitly given if, for each variable in the rule,
we find some atom in the positive rule body such that its predicate’s relevant ground
instances are known. As the basic grounding algorithm of Gringo works rule-wise, the
latter is the case when all rules with the predicate occurring in the head have already
been instantiated. In fact, before beginning with instantiation, Gringo computes an or-
dering such that all rules with a predicate in the head are completely processed before
the predicate is used to restrict variable domains in other rules where it occurs in the
positive body. Notably, Gringo imposes no additional restrictions, such as being definite
or stratified, on the rules to be ordered. To see this, consider the following example [10]:

zig(0) :- not zag(0). zig(1) :- not zag(1).
zag(0) :- not zig(0). zag(1) :- not zig(1).

zigzag(X,Y) :- zig(X), zag(Y). zagzig(Y,X) :- zigzag(X,Y).

Here, Gringo first looks at the (ground) rules with zig/1 and zag/1 in the head, and
so it determines that 0 and 1 are all argument values for which the predicates can hold
wrt answer sets. This is used to restrict ground instances of X and Y in the rule with
zigzag/2 in the head, which in turn restricts X and Y in the rule with zagzig/2.
Hence, Gringo grounds the above program without complaints, while Lparse rejects
it because of not being ω-restricted. In order to use Lparse, we would have to add a
domain predicate, saying that X and Y must be 0 or 1, to the bodies of the last two
rules. Of course, such information would be redundant, and thus λ-restrictedness helps
to write more focused programs, concentrating on the relevant information within rules.

Uninterpreted Functions. The input language of Gringo allows for using functions in
the heads and bodies of rules, and unification is applied for instantiating variables in
uninterpreted functions. For instance, this enables Gringo to ground the program:

parent(joan,mother(jane)). female(Y) :- parent(X,mother(Y)).
parent(joan,father(john)). male(Y) :- parent(X,father(Y)).

Though Lparse also tolerates uninterpreted functions, it internally handles them like
interpreted (arithmetic) functions, and so it refuses to instantiate Y in the above program.
For modeling, the full support of uninterpreted functions by Gringo can be beneficial.

Conditions. Conditions are indicated by “:” in the input languages of Lparse and
Gringo. Their purpose is to instantiate “local” variables on the left-hand side with val-
ues for which (a set of) literals over domain predicates on the right-hand side holds
(cf. [9, 10]). For illustration, consider the following program:

od(1). ne(1).
ev(2). pr(2).

od(3). pr(3).
and_1 :- pr(X) : od(X). % and_1 :- pr(1), pr(3).
and_2 :- ne(X) : od(X) : not pr(X). % and_2 :- ne(1).
and_3 :- not ev(X) : ev(X) : not pr(X). % and_3.
or(X) : od(X). % or(1) | or(3).

For comparison, the ground rules qualified by the rules with conditions are provided in
comments. First, observe that Gringo expands conditions in the bodies of rules into con-
junctions of the required length, while disjunction is used for conditions in rule heads.
Furthermore, default negation via not can be used on the right-hand side and, in rule
bodies, also on the left-hand side of a condition. A particular case is illustrated by the
rule with head and 3, where the left-hand side is the negation of an atom on the right-
hand side. In this situation, the set of literals on the right-hand side must be unsatisfied
by all of its ground instances, as it happens with the above rule, or the expansion of
the condition is immediately unsatisfied. This phenomenon can be exploited for testing
whether certain properties do not hold wrt all ground instances of a set of literals. Com-
paring with conditions in Lparse yields that it accepts only the rule with head and 1,
while neither negative literals nor occurrences in rule heads are supported. To illustrate
the usefulness of the latter, let us consider a disjunctive encoding of N -Coloring:

#const n=3.
col(X,C) : C = 1..n :- node(X).
% col(X,1) | ... | col(X,n) :- node(X).
:- col(X,C), col(Y,C), edge(X,Y).

To keep the encoding general, we make use of a constant n for defining the number
of available colors. All values from 1 to n can successively be assigned to C in the
condition of the first rule. Hence, we obtain a disjunction ranging over all colors for
each node X. Without this opportunity, it is more involved to make use of disjunction
for arbitrary N . In fact, as the length of the required disjunction is open (illustrated also
by the uncommented rule), other ways of encoding it would have to be used instead.

Aggregates. Aggregates (and associated comparison operations), like the ones sup-
ported by DLV [13] or cardinality and weight constraints of Lparse [9], permit a
compact representation of (numerical) constraints on sets of literals. The aggregates
currently supported by Gringo are: #count, #sum, #times, #avg, #min, #max,
#even, and #odd. Each aggregate applies to either a set of literals, enclosed in curly
brackets, or a multiset of literals with associated weights, enclosed in square brackets,
where 1 is used as a default for omitted weights. The result of applying an aggregate
can be compared to a lower bound (−∞ if omitted) and an upper bound (∞ if omitted)
in order to obtain a truth value. The only exceptions to this are #even and #oddwhose
meanings are fixed independently of bounds. Before we illustrate individual aggregates,
we note that [14] provides a general semantics for them. An objective of Gringo is to
respect this semantics as far as possible, with the modification of applying “choice se-
mantics” [15, 16] instead of minimization to atoms occurring positively in an aggregate
being the head of a rule. However, some compromises are needed for compatibility to
the output format of Lparse, supporting only #count and #sum (all other aggregates
are compiled into them), and only non-negative weights in #sum aggregates (negative
weights are eliminated by translation [15]). As a consequence, compliance with the
“choice version” of the semantics in [14] is only guaranteed if dependencies through
#avg as well as #sum and #times aggregates with negative weights are not subject to
(positive) recursion, i.e., an atom appearing in such an aggregate in a rule body should
not be defined (directly or indirectly) by any atom occurring positively in the rule head.
Now illustrating the available aggregates, we begin with the ones familiar from Lparse:

1 #count {a, not b, c} 2. % 1 {a, not b, c} 2.
1 #count {a,a, not b, c} 2. % 1 {a, not b, c} 2.

2 #sum [a=1, not b=1, c=2] 3. % 2 [a=1, not b=1, c=2] 3.
2 #sum [a, not b, c,c] 3. % 2 [a=1, not b=1, c=2] 3.

The above (ground) facts specify #count and #sum aggregates. In comments, we
provide their notations in terms of cardinality and weight constraints, also accepted
by Gringo for compatibility to Lparse. Note that Gringo properly deals with the set
semantics of #count and multisets of #sum, while Lparse turns a,a as in the second
fact into a=2. However, given that the above facts contain negative literal not b (in the
head), Lparse would not accept them either. Such restrictions do not apply to Gringo,
capable of handling negative literals in aggregates occurring as rule heads. The next
examples demonstrate the use of the further aggregates supported by Gringo:

2 #times [a=1, not b=2, c=3] 3.
2 #times [a, not b,not b, c,c,c] 3.
% 2 #times [a=1, not b=1, c=1] 3.

2 #avg [a=3, not b=1, c=0] 2.
2 #avg [a,a, not b=2]. % 2 #avg [a=1, a=1, not b=2].

2 #min [a=1, not b=2, c=3] 2.
2 #min [a, not b,not b, c,c,c] 2.
% 2 #min [a=1, not b=1, c=1] 2.

2 #max [a=1, not b=2, c=3] 2.
2 #max [a, not b,not b, c,c,c] 2.
% 2 #max [a=1, not b=1, c=1] 2.

#even {a, not b, c}. #odd {a, not b, c}.
#even {a,a, not b, c}. #odd {a,a, not b, c}.
% #even {a, not b, c}. % #odd {a, not b, c}.

For aggregates over repeated literals and omitted weights, semantically equivalent coun-
terparts are provided in comments. With multisets, repeated literals appear also repeat-
edly in the output of Gringo, while the effect of such repetitions depends on the aggre-
gate at hand. As regards the #avg aggregate, a=2 contributes one and a,a two ad-
dends to the numerator and denominator, respectively, in the average calculation. Also
note that the meanings of a=2 and a,a are different from one another in #times,
#min, and #max aggregates. Finally, as #even and #odd determine the parity of
the number of (true) literals in sets, repeated literals are collapsed into one. Though
not demonstrated above, aggregates (and associated comparison operations) can also
be used in rule bodies. In addition to comparing aggregate results to bounds, Gringo
supports assigning the result to a variable, as exemplified in the following program:

q(X) :- X = #sum [p(Y) : p(Y) : Y #mod 2 != 0 = Y]. p(1..3).

Such assignments of aggregate results are also possible with DLV (cf. [17]), but not in
Lparse. Their main application is to identify deterministic properties of instances that
can be calculated from the stratified part of a program [10].

Runtime Options. The default output format of Gringo is the same as the one of
Lparse [9]. Via (experimental) option --aspils, the output is printed in one of the
normal forms of ASPils, an intermediate format proposed in [18]. As with Lparse, op-
tion --text (or -t) makes Gringo print ground rules in human-readable text format.
In addition, option --debug can be provided to investigate internal representations of
(non-ground) rules during grounding. Via --const (or -c), also available in Lparse,
occurrences of a constant can be replaced with another term, e.g., beneficial with N -
Coloring as encoded above. For disjunctive programs, in particular, “head-cycle-free”
ones, option --shift replaces disjunction in rule heads with default negation in rule
bodies, so that solvers for non-disjunctive ASP can be applied. To improve efficiency, if
an input program is already ground, it can be signaled to Gringo via option --ground.
This allows Gringo to avoid unnecessary yet non-negligible overhead, which is useful,
e.g., for running in a mode similar to category SCore of the first ASP system competi-
tion [2]. Note that any occurrences of variables are considered as syntax errors if Gringo
expects an input program to be ground. The binder-splitting technique [11], applied by
default, can be switched off via option --bindersplit; this is mainly to admit ex-
perimental comparisons. Finally, options --ifixed and --ibase enable Gringo to
ground incremental programs, written for iClingo [19] and containing meta-directives
#base, #cumulative, and #volatile [10].

3 Discussion

We have presented relevant features of grounder Gringo (version 2.0.3), significantly
extending the functionalities of Lparse. Gringo constitutes an integral part of Potassco,
the Potsdam Answer Set Solving Collection bundling tools for ASP, for which sources
(and binaries) are publicly available at http://potassco.sourceforge.net.
In addition to its executable, Gringo comes as library. As such, it is used inside ASP
systems Clingo, iClingo, and Clingcon, all belonging to the Potassco suite. However,
due to supporting the output format of Lparse, Gringo is not limited to work only in
integrated tools, but can be used as a front-end for many state-of-the-art ASP solvers.
Recent applications modeled and grounded with Gringo include [20–24]. For the fu-
ture, we plan to integrate grounding techniques beyond rule-wise working ones and,
accordingly, to relax the required input program properties (currently λ-restrictedness).
Acknowledgments. This work was partially funded by DFG under Grant SCHA 550/8-1
and by the GoFORSYS project under Grant 0313924.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

2. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The
first answer set programming system competition. [25] 3–17

3. Schlipf, J.: The expressive powers of the logic programming semantics. Journal of Computer
and System Sciences 51 (1995) 64–86

4. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm.
In: The Logic Programming Paradigm: a 25-Year Perspective. Springer (1999) 375–398

5. Niemelä, I.: Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4) (1999) 241–273

6. Gelfond, M., Leone, N.: Logic programming and knowledge representation — the A-Prolog
perspective. Artificial Intelligence 138(1-2) (2002) 3–38

7. Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence 138(1-2)
(2002) 39–54

8. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic 7(3) (2006) 499–562

9. Syrjänen, T.: Lparse 1.0 user’s manual. http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
10. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s

guide to gringo, clasp, clingo, and iclingo. http://potassco.sourceforge.net
11. Gebser, M., Schaub, T., Thiele, S.: GrinGo: A new grounder for answer set programming.

[25] 266–271
12. Syrjänen, T.: Omega-restricted logic programs. In: Proceedings of the Sixth International

Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’01). Springer
(2001) 267–279

13. Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., Ielpa, G.: Design and implementation of
aggregate functions in the DLV system. Theory and Practice of Logic Programming 8(5-6)
(2008) 545–580

14. Ferraris, P.: Answer sets for propositional theories. In: Proceedings of the Eighth Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’05).
Springer (2005) 119–131

15. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2) (2002) 181–234

16. Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theory and Practice of
Logic Programming 5(1-2) (2005) 45–74

17. Terracina, G., De Francesco, E., Panetta, C., Leone, N.: Experiencing ASP with real world
applications. In: Proceedings of the Fifteenth RCRA Workshop on Experimental Evaluation
of Algorithms for Solving Problems with Combinatorial Explosion (RCRA’08). (2008)

18. Gebser, M., Janhunen, T., Ostrowski, M., Schaub, T., Thiele, S.: A versatile intermediate lan-
guage for answer set programming. In: Proceedings of the Twelfth International Workshop
on Nonmonotonic Reasoning (NMR’08). (2008) 150–159

19. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering
an incremental ASP solver. [26] 190–205

20. Mileo, A., Merico, D., Bisiani, R.: A logic programming approach to home monitoring for
risk prevention in assisted living. [26] 145–159

21. Boenn, G., Brain, M., de Vos, M., Fitch, J.: Automatic composition of melodic and harmonic
music by answer set programming. [26] 160–174

22. Gebser, M., Schaub, T., Thiele, S., Usadel, B., Veber, P.: Detecting inconsistencies in large
biological networks with answer set programming. [26] 130–144

23. Kim, T., Lee, J., Palla, R.: Circumscriptive event calculus as answer set programming. In:
Proceedings of the Twenty-first International Joint Conference on Artificial Intelligence (IJ-
CAI’09). AAAI Press (2009) To appear

24. Thielscher, M.: Answer set programming for single-player games in general game play-
ing. In: Proceedings of the Twenty-fifth International Conference on Logic Programming
(ICLP’09). Springer (2009) To appear

25. Proceedings of the Ninth International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR’07). Springer (2007)

26. Proceedings of the Twenty-fourth International Conference on Logic Programming
(ICLP’08). Springer (2008)

