
The Conflict-Driven Answer Set Solver clasp:
Progress Report

Martin Gebser, Benjamin Kaufmann, and Torsten Schaub?

Universität Potsdam, Institut für Informatik, August-Bebel-Str. 89, D-14482 Potsdam

Abstract. We summarize the salient features of the current version of the answer
set solver clasp, focusing on the progress made since version RC4 of clasp. Apart
from enhanced preprocessing and search-supporting techniques, a particular em-
phasis lies on advanced reasoning modes, such as cautious and brave reasoning,
optimization, solution projection, and incremental solving.

1 Introduction

The solver clasp for Answer Set Programming (ASP; [1]) is based upon advanced
Boolean constraint solving technology. The theoretical foundations and basic algo-
rithms underlying clasp can be found in [2, 3]. It is freely available as open source
package at [4]. This paper reports on the progress made since the first system descrip-
tion of clasp [5] covering the features of version RC4: it mainly dealt with an empirical
evaluation of clasp’s features related to conflict-driven nogood learning, comparing var-
ious strategies for restarts, nogood deletion, and decision heuristics. In the meantime,
clasp won the solving categories SCore and SLparse at the first ASP system competi-
tion and is currently participating in the second one. Also, clasp qualified for this year’s
final round of the industrial Satisfiability checking (SAT) competition and competed in
SAT-Race 2008 as well as in the 2007 Pseudo-Boolean (PB) evaluation1.

2 Features

This section describes the major features of version 1.2.1 of clasp added since RC4.

Reasoning Modes. As almost all ASP solvers, clasp relies on a grounder providing a
representation of a propositional logic program. Its major input format is Lparse out-
put, provided by either Lparse [6] or Gringo [7]. Although clasp’s primary use case is
the computation of a given number of answer sets, it also allows for computing the sup-
ported models of a logic program (via command line option --supp-models). As
detailed below, in either case, options --cautious and --brave permit comput-
ing the intersection and union, respectively, of the respective types of models. Finally,
the --dimacs option allows for using clasp as a SAT solver computing the classical
models of a propositional formula supplied in DIMACS format.

? Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.
1 Thanks to Gayathri Namasivayam and Mirosław Truszczyński, University of Kentucky.



Preprocessing. At the beginning, a propositional logic program is subject to extensive
preprocessing [8]. The idea is to simplify a logic program while identifying equiva-
lences among its relevant constituents. These equivalences are then used for building
a compact representation of the program (in terms of Boolean constraints). Notably,
sometimes preprocessing is able to turn a non-tight program into a tight one (cf. [9]).
Preprocessing is configured via option --eq, taking an integer value fixing the number
of iterations. Once a program has been transformed into a set of Boolean constraints, it
is subject to further preprocessing, mostly borrowed from the area of SAT [10]. SAT-
based preprocessing is invoked with option --sat-prepro and further parameters.
However, care must be taken when adapting such techniques from SAT because prepro-
cessing must not eliminate variables that are relevant to the unfounded set checker or
that occur in optimize statements or weight rules.

Dedicated Propagation. Not all parts of a logic program are turned into nogoods by
clasp (in its default setting). Rather clasp employs specialized propagation algorithms
and has a dedicated implementation for cardinality and weight constraints [11]. These
are particular count and sum aggregates offered by Lparse and Gringo. As detailed
in [11], their treatment involves a dedicated, source-pointer-based unfounded set algo-
rithm that computes loop nogoods only on demand, while aiming at lazy unfounded
set checking and backtrack-freeness. Although per default all cardinality and weight
constraints are subject to dedicated propagation, their treatment can be configured
through option --trans-ext. Propagation with loop nogoods is influenced by op-
tion --loops controlling their creation.

Model Enumeration. Different ways of enumerating models are supported by clasp.
In fact, solution enumeration is non-trivial in the context of backjumping and no-
good learning. A popular approach consists in recording solutions as nogoods and
exempting them from nogood deletion. Although clasp supports this via option
--solution-recording, it is prone to blow up in space in view of an exponen-
tial number of solutions in the worst case. Unlike this, the default enumeration algo-
rithm of clasp runs in polynomial space [3]. Both approaches also allow for projecting
solutions on a subset of atoms [12]; invoked with --project and configured via
the well-known directives #hide and #show of Lparse and Gringo. For example,
the program consisting of the choice rule {a,b,c}. has eight (obvious) answer sets.
When augmented with directive #hide c., still eight solutions are obtained, yet in-
cluding four duplicates. Unlike this, invoking clasp with --project yields only four
duplicate-free solutions. This option is of great practical value whenever one faces over-
whelmingly many answer sets, involving solution-irrelevant variables having a proper
combinatorics. As regards implementation, it is interesting to note that clasp offers a
dedicated interface for enumeration. This allows for abstracting from how to proceed
once a model was found and thus makes the search algorithm independent of the con-
crete enumeration strategy. One further strategy implemented via the enumeration in-
terface consists of computing the intersection or union of all answer sets of a program
(via --cautious and --brave, respectively). Rather than computing a set of (pos-
sibly) exponentially many answer sets, the idea is to compute a first answer set, record
a constraint eliminating it from further solutions, then compute a second answer set,
strengthen the constraint to represent the intersection (or union) of the first two answer



sets, and to continue in this way until no more answer sets are obtained. This process in-
volves computing at most as many answer sets as there are atoms in the input program.
Either the cautious or the brave consequences are then given by the atoms captured by
the final constraint.

Optimization. Another application-oriented feature is optimization. As common in
Lparse-like languages, an objective function is specified by a sequence of #minimize
and #maximize statements. For finding optimal solutions, clasp offers several op-
tions. First, clasp allows for computing one or all (--opt-all) optimal solutions.
Second, the objective function can be initialized via --opt-value. The latter turns
out to be useful when one is interested in computing consequences belonging to all
optimal solutions (in combination with --cautious). One starts with a search for
an optimum and then re-launches clasp by bounding its search with the value of the
optimum. Doing the latter with --cautious yields all consequences true in all op-
timum answer sets. On applications, it turned out to be very useful to optimize using
the option --restart-on-model (making clasp restart after each (putative) mini-
mum solution) in order to ameliorate the convergence to an optimum solution. Again,
optimization is implemented via the aforementioned enumeration interface. When a so-
lution is found, the optimization constraint is updated by the corresponding value. Then,
the decision level invalidating the updated constraint is identified and backtracked; if the
constraint is violated on the top-level, search terminates. Furthermore, it is worth men-
tioning that clasp also propagates over optimization statements. For this, optimization
statements are themselves stored as Boolean constraints [5] in the solver. As such, they
can derive (and provide reasons for) implications during unit propagation.

Restarts. The robustness of clasp is boosted by advanced restart strategies. Apart from
the policies already discussed in [5], namely, geometric, fixed-interval, and Luby-style
policies, a nested policy, first used in picosat [13], is meanwhile also offered by clasp.
This policy takes three parameters x, y, z and makes restarts follow a two dimensional
pattern that increases geometrically in both dimensions. The geometric restart sequence
x ∗ y i is repeated when it reaches an outer limit z ∗ yj , where i counts the number of
restarts and j how often the outer limit was hit so far. Usually, restart strategies as
listed above are based on a global number of conflicts. Moreover, clasp features local
restarts [14]. Here, one counts the number of conflicts at each decision level in order to
localize the measure of difficulty. For this, we maintain a counter c(d) for each decision
level d. When a new decision level d is created, c(d) is set to the global number of
conflicts. When backtracking to level d, a restart is only initiated if the difference be-
tween the global number of conflicts and c(d) is now larger than the strategy-dependent
threshold. It is worth noting that despite the fact that recent SAT solvers use rather
aggressive restart strategies (cf. Section 3), clasp still defaults to a more conservative
geometric policy because this performs better on our ASP-specific benchmarks.

Progress Saving. Another search-related feature of clasp is progress saving, as de-
scribed in [15]. The idea is as follows. On backjumping (or restarting), the values of
variables whose assignment is about to be erased are saved for all but those variables as-
signed on the last decision level. The saved values are then used during decision making.
That is, when a variable for which a value was saved is selected by the decision heuris-
tic, it is assigned to that value. The intuition behind this strategy is that the assignments



made prior to the last decision level did not lead to a conflict and may have satisfied
some subproblem. Hence, repeating those assignments may help to avoid solving sub-
problems multiple times. Progress saving is invoked with option --save-progress;
its computational impact depends heavily on the structure of the application at hand.
Application Programming Interface. A major yet internal feature of clasp is that it
can be used in a stateful way. That is, clasp may keep its state, involving program
representation, learned constraints, heuristic values, etc, and be invoked under addi-
tional (temporary) assumptions and/or by adding new atoms and rules. The correspond-
ing interfaces are fundamental for supporting incremental ASP solving as realized in
iClingo [16], a combination of Gringo and clasp for incremental grounding and solv-
ing. Furthermore, they allow for solving under assumptions [17]; an important feature
that is, for example, used in our parallel ASP solver claspar [18].

3 Fine-Tuning

Advanced Boolean constraint solving technology adds a multitude of degrees of free-
dom to ASP solving. For instance, currently, clasp has roughly 40 options, half of which
control the search strategy. Although considerable efforts were taken to find default pa-
rameters for optimizing robustness and speed, the default setting still leaves room for
drastic improvements on specific benchmark classes by fine-tuning the parameters. The
question arises how to deal with this vast “configuration space” and how to conciliate it
with the idea of declarative problem solving. Currently, there seems to be no alternative
to manual fine-tuning when addressing highly demanding application problems.

As rules of thumb, we usually start by investigating the following options:

--heuristic: Try VSIDS instead of clasp’s default BerkMin-style heuristic.
--sat-prepro: SAT-based preprocessing works best on tight programs with few

cardinality and weight constraints. It should (almost) always be used if extended
rules are transformed into nogoods (via --trans-ext).

--restarts: Try aggressive restart policies, like Luby-256 or the nested policy, or
try disabling restarts, whenever a problem is deemed to be unsatisfiable.

--save-progress: Progress saving typically works nicely if the average back-
jump length (or the #choices/#conflicts ratio) is high (≥10). It usually performs
best if combined with aggressive restarts.

--trans-ext: Applicable if the program contains extended rules, that is, rules in-
cluding cardinality and weight constraints. Try at least the dynamic transformation.

The impact of simple fine-tuning can be seen on the following examples. As
shown in [19], clasp times out on satisfiable 4-Coloring problems. However, with
--save-progress, clasp solves all instances in less than 2 sec (the average back-
jump length is >60). For another example, consider the benchmark WeightBounded-
DominatingSet from the second ASP competition. The default configuration of clasp
results in six timeouts, all of which vanish once aggressive restarts are used. Similar
effects are observed on application problems featuring yet different characteristics.

Although such fine-tuning may greatly improve the efficiency of clasp, it is hard
to accomplish for an unpracticed user, and after all it takes us away from the ideals



of declarative problem solving. To this end, we advocate an extension of clasp, called
claspfolio, that maps benchmark features to solver configurations (via machine learning
techniques). It is interesting future work to see whether this allows for an automatic
selection of effective parameter settings.

4 Discussion

Since its inception in 2007, clasp has become an efficient, full-fledged ASP solver.
Beyond its computational power, it meanwhile features various reasoning modes that
make it an attractive tool for knowledge representation and reasoning. This is witnessed
by an increasing number of applications relying on clasp or derivatives as reasoning
engine, e.g., [20–25]. clasp constitutes a central component of Potassco, the Potsdam
Answer Set Solving Collection bundling tools for Answer Set Programming developed
at the University of Potsdam. An extension of clasp, called claspD [26], allows for
dealing with disjunctive ASP programs. Meanwhile, the family has grown and two new
systems, Clingo and iClingo [16], have emerged. Clingo is a monolithic combination of
clasp and Gringo. iClingo is an ASP system that allows for dealing incrementally with
parametrized problems, as encountered for instance in bioinformatics, planning, and
model checking. The latest addition to the family is Clingcon [27], augmenting Clingo
with (non-Boolean) constraint processing capacities. Also, there is a distributed version
of clasp, called claspar [18], designed for running on clusters with MPI. Sources (and
binaries) of our systems are publicly available at [4].

Acknowledgments. This work was partially funded by DFG under Grant SCHA 550/8-1
and by the GoFORSYS project under Grant 0313924.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

2. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In
Veloso, M., ed.: Proc. of IJCAI’07, AAAI Press (2007) 386–392

3. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set enumera-
tion. [28] 136–148

4. http://potassco.sourceforge.net/
5. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A conflict-driven answer set

solver. [28] 260–265
6. Syrjänen, T.: Lparse 1.0 user’s manual.
7. Gebser, M., Schaub, T., Thiele, S.: GrinGo: A new grounder for answer set programming.

[28] 266–271
8. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Advanced preprocessing for answer set

solving. In Ghallab, M., Spyropoulos, C., Fakotakis, N., Avouris, N., eds.: Proc. of ECAI’08,
IOS Press (2008) 15–19

9. Babovich, Y., Lifschitz, V.: Computing answer sets using program completion. (2003)
10. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination.

In Bacchus, F., Walsh, T., eds.: Proc. of SAT’05, Springer (2005) 61–75



11. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: On the implementation of weight
constraint rules in conflict-driven ASP solvers. [29] 250–264

12. Gebser, M., Kaufmann, B., Schaub, T.: Solution enumeration for projected Boolean search
problems. In van Hoeve, W., Hooker, J., eds.: Proc. of CPAIOR’09, Springer (2009) 71–86

13. Biere, A.: PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Computation
4 (2008) 75–97

14. Ryvchin, V., Strichman, O.: Local restarts. In Kleine Büning, H., Zhao, X., eds.: Proc. of
SAT’08, Springer (2008) 271–276

15. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability
solvers. In Marques-Silva, J., Sakallah, K., eds.: Proc. of SAT’07, Springer (2007) 294–299

16. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering
an incremental ASP solver. [30] 190–205

17. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electronic Notes
in Theoretical Computer Science 89(4) (2003)

18. Ellguth, E., Gebser, M., Gusowski, M., Kaminski, R., Kaufmann, B., Liske, S., Schaub, T.,
Schneidenbach, L., Schnor, B.: A simple distributed conflict-driven answer set solver. In
Erdem, E., Lin, F., Schaub, T., eds.: Proc. of LPNMR’09, Springer (2009) To appear

19. Janhunen, T., Niemelä, I., Sevalnev, M.: Computing stable models via reductions to Boolean
circuits and difference logic. In Denecker, M., ed.: Proc. of LaSh’08, (2008) 16–30

20. Mileo, A., Merico, D., Bisiani, R.: A logic programming approach to home monitoring for
risk prevention in assisted living. [30] 145–159

21. Boenn, G., Brain, M., de Vos, M., Fitch, J.: Automatic composition of melodic and harmonic
music by answer set programming. [30] 160–174

22. Gebser, M., Schaub, T., Thiele, S., Usadel, B., Veber, P.: Detecting inconsistencies in large
biological networks with answer set programming. [30] 130–144

23. Ishebabi, H., Mahr, P., Bobda, C., Gebser, M., Schaub, T.: Answer set vs integer linear
programming for automatic synthesis of multiprocessor systems from real-time parallel pro-
grams. Journal of Reconfigurable Computing (2009) To appear

24. Kim, T., Lee, J., Palla, R.: Circumscriptive event calculus as answer set programming. In
Boutilier, C., ed.: Proc. of IJCAI’09, AAAI Press (2009) To appear

25. Thielscher, M.: Answer set programming for single-player games in general game playing.
[29] To appear

26. Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M., Schaub, T.:
Conflict-driven disjunctive answer set solving. In Brewka, G., Lang, J., eds.: Proc. of KR’08,
AAAI Press (2008) 422–432

27. Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. [29] 235–249
28. Baral, C., Brewka, G., Schlipf, J., eds.: Proc. of LPNMR’07. Springer (2007)
29. Hill, P., Warren, D., eds.: Proc. of ICLP’09. Springer (2009)
30. Garcia de la Banda, M., Pontelli, E., eds.: Proc. of ICLP’08. Springer (2008)


