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Abstract. Answer Set Programming (ASP) is a prominent knowledge represen-
tation language with roots in logic programming and non-monotonic reasoning.
Biennial competitions are organized in order to furnish challenging benchmark
collections and assess the advancement of the state of the art in ASP solving. In
this paper, we report about the design of the Seventh ASP Competition, which
is jointly organized by the University of Calabria (Italy), the University of Gen-
ova (Italy), and the University of Potsdam (Germany), in affiliation with the 14th
International Conference on Logic Programming and Non-Monotonic Reasoning
(LPNMR 2017). A novel feature of this competition edition is the re-introduction
of a Model&Solve track, complementing the usual System track with problem do-
mains where participants need to provide dedicated encodings and solving means.

1 Introduction

Answer Set Programming (ASP) [8, 14, 20, 27, 34, 38, 41] is a prominent knowledge
representation language with roots in logic programming and non-monotonic reasoning.
The goal of the ASP Competition series is to promote advancements in ASP methods,
collect challenging benchmarks, and assess the state of the art in ASP solving (see, e.g.,
[1, 3, 9, 15, 16, 24, 25, 37, 39] for recent ASP systems). In this paper, we report about the
design of the Seventh ASP Competition,4 which is jointly organized by the University
of Calabria (Italy), the University of Genova (Italy), and the University of Potsdam
(Germany), in affiliation with the 14th International Conference on Logic Programming
and Non-Monotonic Reasoning (LPNMR 2017).5

The Seventh ASP Competition includes a System track, oriented at the design of
previous competition editions [17, 26]: (i) benchmarks adhere to the ASP-Core-2 stan-
dard modeling language,6 (ii) sub-tracks are based on language features utilized in
problem encodings (e.g., aggregates, choice or disjunctive rules, queries, and weak
constraints), (iii) problem instances are classified and selected according to their ex-
pected hardness, and (iv) the best-performing systems are given more solving time in
a Marathon track. A novel feature of this competition edition is the re-introduction of
a Model&Solve track, complementing the System track with problem domains where

4 http://aspcomp2017.dibris.unige.it
5 http://lpnmr2017.aalto.fi
6 https://www.mat.unical.it/aspcomp2013/ASPStandardization/
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participants need to provide dedicated encodings and solving means. In contrast to ear-
lier ASP competitions with a Model&Solve track, i.e., the 2009, 2011, and 2013 edi-
tions (cf. [17]), the problem domains are purposefully limited to showcases in which
features going beyond ASP-Core-2 are of interest. Namely, the Model&Solve track of
the Seventh ASP Competition aims at domains involving discrete as well as continuous
dynamics [7], so that extensions like Constraint Answer Set Programming (CASP) [40]
and incremental ASP solving [23], which are beyond the scope of the System track,
may be exploited.

The rest of this paper focuses on the System track of the Seventh ASP Competition
and is organized as follows. Section 2 presents new problem domains contributed to
this competition edition, followed by a survey of participant systems in Section 3, and
Section 4 concludes the paper.

2 Benchmark Suite

Eight new problem domains, which are further detailed below, have been kindly pro-
vided for the System track of the Seventh ASP Competition. In addition, we acknowl-
edge the contribution of new instances, augmenting the collection of benchmarks from
previous competition editions, to the Graph Colouring domain.

Bayesian Network Learning. Bayesian networks are directed acyclic graphs represent-
ing (in)dependence relations between variables in multivariate data analysis. Learning
the structure of Bayesian networks, i.e., selecting edges such that the resulting graph fits
given data best, is a combinatorial optimization problem amenable to constraint-based
solving methods like the one proposed in [18]. In fact, data sets from the literature serve
as instances in this domain, while a problem encoding in ASP-Core-2 expresses optimal
Bayesian networks, given by directed acyclic graphs whose associated cost is minimal.

Crew Allocation. This scheduling problem, which has also been addressed by related
constraint-based solving methods [28], deals with allocating crew members to flights
such that the amount of personnel with certain capabilities (e.g., role on board and spo-
ken language) as well as off-times between flights are sufficient. Instances with different
numbers of flights and available personnel further restrict the amount of personnel that
may be allocated to flights in a way that no schedule is feasible under these restrictions.

Markov Network Learning. As with Bayesian networks, the learning problem for
Markov networks [31] aims at the optimization of graphs representing the dependence
structure between variables in statistical inference. In this domain, the graphs of inter-
est are undirected and required to be chordal, while associated scores express marginal
likelihood w.r.t. given data. Problem instances of varying hardness are obtained by tak-
ing samples of different size and density from literature data.

Paracoherent ASP. Given an incoherent logic program P , a paracoherent (or semi-
stable) answer set corresponds to a gap-minimal answer set of the epistemic transfor-
mation of P [30]. The instances in this domain, used in [5] to evaluate genuine imple-
mentations of paracoherent ASP, are obtained by grounding and transforming incoher-
ent programs stemming from previous editions of the ASP Competition. In particular,
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weak constraints single out answer sets of a transformed program such that the associ-
ated gap is cardinality-minimal.

Random Disjunctive ASP. The disjunctive logic programs in this domain express ran-
dom 2QBF formulas, given as conjunctions of terms in disjunctive normal form, by
an extension of the Eiter-Gottlob encoding in [19]. Parameters controlling the random
generation of 2QBF formulas (e.g., number of variables and number of conjunctions)
are set such that instances lie close to the phase transition, while having an expected
average solving time below the competition timeout of 20 minutes per run.

Resource Allocation. This scheduling problem deals with allocating the activities of
business processes to resources such that role requirements and temporal relations be-
tween activities are met [29]. Moreover, the total makespan of schedules is subject to
an upper bound as well as optimization. The hardness of instances in this domain varies
w.r.t. the number of activities, temporal relations, available resources, and upper bounds.

Supertree Construction. The goal of the supertree construction problem [33] is to com-
bine the leaves of several given phylogenetic subtrees into a single tree fitting the sub-
trees as closely as possible. That is, the structures of subtrees shall be preserved, yet tol-
erating the introduction of intermediate nodes between direct neighbors, while avoiding
such intermediate nodes is an optimization target as well. Instances of varying hardness
are obtained by mutating projections of binary trees with different numbers of leaves.

Traveling Salesperson. The well-known traveling salesperson problem [6] is to opti-
mize the round trip through a (directed) graph in terms of the accumulated edge cost.
Instances in this domain are twofold by stemming from the TSPLIB repository7 or be-
ing randomly generated to increase the variety in the ASP Competition, respectively.

3 Participant Systems

Fifteen systems, registered by four teams, participate in the System track of the Seventh
ASP Competition. The majority of systems runs in the single-processor category, while
two (indicated by the suffix “-MT” below) exploit parallelism in the multi-processor
category. In the following, we survey the registered teams and systems.

Aalto. The team from Aalto University registered nine systems that utilize
normalization [11, 12] and translation [10, 13, 22, 32, 35] means. Two systems,
LP2SAT+LINGELING and LP2SAT+PLINGELING-MT, perform translation to SAT and use
LINGELING or PLINGELING, respectively, as back-end solver. Similarly, LP2MIP and
LP2MIP-MT rely on translation to Mixed Integer Programming along with a single-
or multi-threaded variant of CPLEX for solving. The LP2ACYCASP, LP2ACYCPB, and
LP2ACYCSAT systems incorporate translations based on acyclicity checking, supported
by CLASP run as ASP, Pseudo-Boolean, or SAT solver as well as the GRAPHSAT solver

7 http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html



4 Martin Gebser, Marco Maratea, and Francesco Ricca

in case of SAT with acyclicity checking. Moreover, LP2NORMAL+LP2STS takes advan-
tage of the SAT-TO-SAT framework to decompose complex computations into several
SAT solving tasks. Unlike that, LP2NORMAL confines preprocessing to the (selective)
normalization of aggregates and weak constraints before running CLASP as ASP solver.

ME-ASP. The ME-ASP team from the University of Genova, the University of Sassari,
and the University of Calabria registered the multi-engine ASP system ME-ASP2, which
is an updated version of ME-ASP [36, 37], the winner system in the Regular track of the
Sixth ASP Competition. Like its predecessor version, ME-ASP2 investigates features of
an input program to select its back ends from a pool of ASP grounders and solvers. As
regards grounders, ME-ASP2 can pick either DLV or GRINGO, while the available solvers
include a selection of those submitted to the Sixth ASP Competition as well as CLASP.

UNICAL. The team from the University of Calabria plans to submit four systems utiliz-
ing the recent I-DLV grounder [16], developed as a redesign of (the grounder component
of) DLV going along with the addition of new features. Moreover, back ends for solving
will be selected from the variety of existing ASP solvers.

WASPINO. The WASPINO team from the University of Calabria and the University of
Genova registered the WASPINO system. In case an input program is tight [21], WASPINO

uses MAXINO [4], a MaxSAT solver extended with cardinality constraints, and otherwise
the ASP solver WASP [2, 3], winner in the Marathon track of the Sixth ASP Competition.

4 Conclusion

We have presented the design of the Seventh ASP Competition, with particular focus on
new problem domains and systems registered for the System track. A novel feature of
this competition edition is the re-introduction of a Model&Solve track, complementing
the System track with problem domains where features going beyond the ASP-Core-2
standard modeling language are of interest.

At the time of writing, we are finalizing the collection of benchmarks for both tracks.
This goes along with the classification of problem instances according to their expected
hardness and the installation of participant systems on the competition platform. The re-
sults and winners of the Seventh ASP Competition will be announced at LPNMR 2017.
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35. G. Liu, T. Janhunen, and I. Niemelä. Answer set programming via mixed integer program-
ming. In G. Brewka, T. Eiter, and S. McIlraith, editors, Proceedings of KR’12, pages 32–42.
AAAI Press, 2012.

36. M. Maratea, L. Pulina, and F. Ricca. A multi-engine approach to answer-set programming.
Theory and Practice of Logic Programming, 14(6):841–868, 2014.

37. M. Maratea, L. Pulina, and F. Ricca. Multi-level algorithm selection for ASP. In F. Calimeri,
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