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Abstract. This paper describes an abstract problem derived from a combina-
tion of Siemens product configuration problems encountered in practice. Often
isolated parts of configuration problems can be solved by mapping them to well-
studied problems for which efficient heuristics exist (graph coloring, bin-packing,
etc.). Unfortunately, these heuristics may fail to work when applied to a problem
that combines two or more subproblems. In the paper we show how to formu-
late a combined configuration problem in Answer Set Programming (ASP) and
to solve it using heuristics à la hclasp. In addition, we present a novel method
for heuristic generation based on a combination of greedy search with ASP that
allows to improve the performance of an ASP solver.
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1 Introduction

Configuration is a design activity aiming at creation of an artifact from given com-
ponents such that a set of requirements reflecting individual needs of a customer and
compatibility of the system’s structures are satisfied. Configuration is a fully or partly
automated approach supported by a knowledge-based information system called con-
figurator. Originally configurators appeared because configurable products were expen-
sive and very complex. They were developed by a significant number of highly qualified
workers by order and single-copy. Emerging research on expert systems in the 1980s
resulted in a number of approaches to knowledge-based configuration, such as Mc-
Dermott’s R1/XCON ‘configurer’ [13]. Since then many companies such as ConfigIt,
Oracle, SAP, Siemens or Tacton have developed configurators for large complex sys-
tems reducing the production costs significantly. With the lapse of time the focus has
been shifted more in the direction of mass customization. Currently configurators cover
a wide range of customers and can be found in practically every price segment. One can
configure a car, a computer, skis and even a forage for a dog.

Researchers in academia and industry have tried different approaches to configu-
ration knowledge representation and reasoning, including production rules, constraints



languages, heuristic search, description logics, etc.; see [19, 17, 10] for surveys. Al-
though constraint-based methods remain de facto standard, ASP has gained much at-
tention over the last years because of its expressive high-level representation abilities.
Normal rules as well as rules including weight and cardinality atoms were used in the
first application of ASP to configuration problems [18]. Regarding knowledge represen-
tation, [21] suggests a high-level object-oriented modeling language and a web-based
graphical user interface to simplify the modeling of requirements.

In [5] important aspects for formalizing and tackling real-world configuration sce-
narios with ASP are discussed. Recently a framework for describing object-oriented
knowledge bases was presented in [15]. The authors suggested a general mapping from
an object-oriented formalism to ASP for S’UPREME based configurators. S’UPREME
is a configuration engine of Siemens AG, which is applied to configure complex large-
scale technical systems such as railway safety systems within Siemens. In fact, more
than 30 applications are based on this system [9].

As evaluation shows ASP is a compact and expressive method to capture configura-
tion problems [10], i.e. it can represent configuration knowledge consisting of compo-
nent types, associations, attributes, and additional constraints. The declarative seman-
tics of ASP programs allows a knowledge engineer to freely choose the order in which
rules are written in a program, i.e. the knowledge about types, attributes, etc. can be
easily grouped in one place and modularized. Sound and complete solving algorithms
allow to check a configuration model and support evolution tasks such as reconfigura-
tion. However, empirical assessments indicate that ASP has limitations when applied to
large-scale product configuration instances [1, 5]. The best results in terms of runtime
and solution quality were achieved when domain-specific heuristics were used [20, 14].

In this paper we introduce a combined configuration problem that reflects typical
requirements frequently occurring in practice of Siemens. The parts of this problem
correspond (to some extent) to classical computer science problems for which there
already exist some well-known heuristics and algorithms that can be applied to speed
up computations and/or improve the quality of solutions.

As the main contribution, we present a novel approach on how problem-specific
heuristics generated by a greedy solver can be incorporated in an ASP program to
improve computation time (and obtain better solutions). The application of domain-
specific knowledge formulated succinctly in an ASP heuristic language [8] allows for
better solutions within a shorter solving time, but it strongly deteriorates the search
when additional requirements (conflicting with the formulated heuristics) are included.
On the other hand, the formulation of complex heuristics might be cumbersome using
greedy methods. Therefore, we exploit a combination of greedy methods with ASP for
the generation of heuristics and integrate them to accelerate an ASP solver. We evaluate
the method on a set of instances derived from configuration scenarios encountered by us
in practice and in general. Our evaluation shows that solutions for three sets of instances
can be found an order of magnitude faster than compared to a plain ASP encoding.

In the following, Section 2 introduces a combined configuration problem (CCP)
which is exemplified in Section 3. Its ASP encoding is shown in Section 4. Section 5
discusses heuristics for solving the CCP problem and we present our evaluation results
in Section 6. Finally, in Section 7 we conclude and discuss future work.



2 Combined Configuration Problem

The Combined Configuration Problem (CCP) is an abstract problem derived from a
combination of several problems encountered in Siemens practice (railway interlocking
systems, automation systems, etc.). A CCP instance is defined by a directed acyclic
graph (DAG). Each vertex of the DAG has a type and each type of the vertices has a
particular size. In addition, each instance comprises two sets of vertices specifying two
vertex-disjoint paths in the DAG. Furthermore, an instance contains a set of areas, sets
of vertices defining possible border elements of each area and a maximal number of
border elements per area. Finally, a number of available colors as well as a number of
available bins and their capacity are given.

Given a CCP instance, the goal is to find a solution that satisfies a set of require-
ments. All system requirements are separated into the corresponding subproblems which
must be solved together or in particular combinations:

– P1 Coloring Every vertex must have exactly one color.
– P2 Bin-Packing For every color a Bin-Packing problem must be solved, where the

same number of bins are available for each color. Every vertex must be assigned to
exactly one bin of its color and for every bin, the sum of sizes must be smaller or
equal to the bin capacity.

– P3 Disjoint Paths Vertices of different paths cannot be colored in the same color.
– P4 Matching Each border element must be assigned to exactly one area such that

the number of selected border elements of an area does not exceed the maximal
number of border elements and all selected border elements of an area have the
same color.

– P5 Connectedness Two vertices with the same color must be connected via a path
that contains only vertices of that color.

Origin of the problem The considered CCP originates in the railway domain. The
given DAG represents a track layout of a railway line. A coloring P1 can then be thought
as an assignment of resources (e.g. computers) to the elements of the railway line. In
real-world scenarios different infrastructure elements may require different amounts
of a resource that is summarized in P2. This may be hardware requirements (e.g. a
signal requiring a certain number of hardware parts) or software requirements (e.g. an
infrastructural element requiring a specific processing time). The requirements of P1
and P2 are frequently used in configuration problems during an assignment of entities
of one type to entities of another type [12, 5]. The constraint of P3 increases availability,
i.e. in case one resource fails it should still be possible to get from a source vertex (no
incoming edges) of the DAG to a target vertex (no outgoing edges) of the DAG. In
the general version of this problem one has to find n paths that maximize availability.
The CCP uses the simplified problem where 2 vertex-disjoint paths are given. P4 stems
from detecting which elements of the graph are occupied. The border elements function
as detectors for an object leaving or entering an area. The PUP problem [2, 1] is a
more elaborate version of this problem. P5 arises in different scenarios. For example, if
communication between elements controlled by different resources is more costly, then
neighboring elements should be assigned to the same resource whenever possible.



3 Example

Fig. 1 shows a sample input CCP graph. In this section we illustrate how particular
requirements can influence a solution. Namely, we add the constraints of each subprob-
lem one by one. If only P1 is active, any graph corresponds to a trivial solution of P1
where all vertices are colored white.

Fig. 1. Input CCP graph and a trivial solution of Coloring (P1)

Let us consider the input graph as a Bin-Packing problem instance with four colors
and three bins per color of a capacity equal to five. The vertices of type b, e, s and p
have the sizes 1, 2, 3 and 4 respectively. A sample solution of Coloring and Bin-Packing
(P1-P2) is presented in Fig. 2 and Fig. 3.

For instance, when activating the Disjoint Paths constraint (P3), two vertex-disjoint
paths path1 = {b1, s1, p1, b2, p2, b3, p3, s2, b4} as well as path2 = {b7, s3, p4, b8, p5,
b9, p6, s4, b10}may be declared. Consequently, in this case the solution shown in Fig. 2
violates the constraint and must be modified as displayed in Fig. 4, where the vertices of
different paths are colored with different colors (path1 with dark grey and grey whereas
white and light grey are used for path2).

Fig. 2. Used colors in a solution of the Coloring and Bin-Packing problems (P1-P2)

Fig. 5 shows a Matching example (P4). There are seven areas in the matching input
graph, each corresponding to a subgraph surrounded with border elements (Fig. 1). For
example, area a1 represents the subgraph {b1, s1, p1, b2, b5} and area a2 the subgraph
{b5, e1, b6}. The corresponding border elements are {b1, b2, b5} and {b5, b6} (Fig. 5).

Assume that an area can have at most 2 border elements assigned to it. In the re-
sulting matching (Fig. 5) b1, b2 are assigned to a1 whereas b5, b6 are assigned to a2.
Note that the sample selected matching shown in Fig. 5 is not valid with the coloring
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Fig. 3. Used bins in a solution of the Coloring and Bin-Packing problems (P1-P2)

Fig. 4. Solution of the Coloring, Bin-Packing and Disjoint Paths problems (P1-P3)

Fig. 5. A sample input and solution graphs for P4. The selected edges of the input graph are
highlighted with solid lines.
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Fig. 6. A valid solution for P1-P5

presented previously, because, for example, b5 and b6 are assigned to the same area a2
although they are colored differently. In addition, the coloring solution shown in Fig. 4
violates the Connectedness constraint (P5). Therefore, the previous solutions must be
updated to take the additional requirements into account. Fig. 6 shows a valid coloring
of the given graph that satisfies all problem conditions (P1-P5).

4 ASP encoding of the Combined Configuration Problem

A CCP instance is defined using the following atoms. An edge between two vertices in
the DAG is defined by edge(Vertex1,Vertex2). For each vertex, type(Vertex ,Type)
and size(Vertex , Size) are declared. pathN (Vertex ) expresses that a vertex belongs
to a particular path. In addition, each border element must be connected to one of the



possible areas given by edge matching(Area,Vertex ) whereas each area can control
at most maxborder(C) border elements. The number of colors and bins are defined
using nrofcolors(Color) and nrofbins(Bin). Finally, the capacity of a bin is fixed by
maxbinsize(Capacity).

Our ASP encoding for the CCP is shown in Listing 1. Line 1-5 implements Col-
oring (P1), assigning colors to vertices. The atoms vertex color(Vertex ,Color) and
usedcolor(Color) express that a Vertex is connected to a Color , i.e. used in a solution
via usedcolor(Color). An assignment of a Vertex to a Bin , i.e. Bin-Packing problem
(P2), is accomplished using Line 6-10, where the atoms vertex bin(Vertex ,Bin) and
usedbin(Bin) represent a solution. Further, the atoms bin(Color ,Bin,Vertex ) repre-
sent a combined solution for P1 and P2. The Disjoint paths constraint (P3) is stated in
Line 11. In accordance with Matching (P4), i.e. Line 12-17, one has to find a match-
ing between areas and border elements using edge matching selected(Area,Vertex )
atoms. Finally, the Connectedness requirement (P5) is ensured in line 18-24.

1 vertex(V):-type(V,_). vertex(V):-size(V,_). % P1
2 vertex(V):-edge(V,_). vertex(V):-edge(_,V).
3 color(1..MaxC):-nrofcolors(MaxC).
4 1{vertex_color(V,C):color(C)}1:-vertex(V).
5 usedcolor(C):-vertex_color(V,C).

6 1{vertex_bin(V,B):B=1..K}1 :- vertex(V), nrofbins(K). % P2
7 bin(C,B,V):-vertex_color(V,C),vertex_bin(V,B).
8 :-color(C),nrofbins(K),maxbinsize(MaxS), B=1..K,
9 MaxS+1 #sum{S,V:bin(C,B,V),size(V,S)}.

10 usedbin(B):-bin(C,B,V).

11 :-path1(V1),path2(V2),vertex_color(V1,C),vertex_color(V2,C).%P3

12 area(A):-edge_matching(A,B). % P4
13 borderelement(B):-edge_matching(A,B).
14 1{edge_matching_selected(A,B):edge_matching(A,B)}1 :-

borderelement(B).
15 :-area(A),maxborder(MaxB),MaxB+1{edge_matching_selected(A,B)}.
16 edge_matching_color(A,C):-edge_matching_selected(A,B),

vertex_color(B,C).
17 :-area(A), 2{edge_matching_color(A,C)}.

18 e(X,Y):-edge(X,Y). e(X,Y):-edge(Y,X). % P5
19 pred(V1,V2):-vertex(V1;V2),V1 < V2,V <= V1:vertex(V),V<V2.
20 first(C,V2):-color(C), pred(V1,V2),
21 not vertex_color(V1,C),first(C,V1):pred(V,V1).
22 reach_col(C,V1):-color(C),vertex(V1),first(C,V1):pred(V,V1).
23 reach_col(C,V2):-reach_col(C,V1),e(V1,V2),vertex_color(V1,C).
24 :-vertex_color(V,C),not reach_col(C,V).

Listing 1. ASP encoding for the Combined Configuration Problem



5 Combining Heuristics for Configuration Problems

To formulate a heuristic within ASP we use the declarative heuristic framework devel-
oped by Gebser et al. [8]. In this formalism the heuristics are expressed using atoms
heuristic(a,m, v, p), where a denotes an atom for which a heuristic value is de-

fined, m is one of four modifiers (init, factor, level and sign), and v, p are integers
denoting a value and a priority, respectively, of the definition. A number of shortcuts
are available, e.g. heuristic(a, v, l), where a is an atom, v is its truth value and l is
a level. The heuristic atoms modify the behavior of the VSIDS heuristic [11]. Thus,
if a heuristic atom is true in some interpretation, then the corresponding atom a
might be preferred by the ASP solver at the next decision point. For instance, given
the choice rule 1{vertex color(V,C) : color(C)}1 :- vertex(V ). and adding only the
atom heuristic(vertex color(’b1’, 1), true, 1)) to a program, the solver prefers the
atom vertex color(’b1’, 1) over all other atoms vertex color(’b1’, X) for X 6= 1. If
several atoms vertex color/2 are provided, the atom with the higher level l is preferred.

There are different ways to incorporate heuristics in a program. The standard ap-
proach [8] requires an implementation of a heuristic at hand using a pure ASP encoding,
whereas the idea of our method is to delegate the (expensive) generation of a heuristic
to an external tool and then to extend the program with generated heuristic atoms to
accelerate the ASP search. Below we exemplify how both approaches can be applied.

5.1 Standard generation of heuristics in ASP

Several heuristics can be used for the problems that compose the CCP, e.g. for the
coloring of vertices (P1) we seek to use as few colors as possible by the following rule:

1 _heuristic(vertex_color(V,C),true,MC-C) :- vertex(V), color(C),
nrofcolors(MC).

Listing 2. Heuristic for an assignment of colors to vertices

Additionally, we can apply well-known Bin-Packing heuristics for the placement of
colored vertices into the bins of specified capacity (P2). The Bin-Packing problem is
known to be an NP-hard combinatorial problem. However, there is a number of approxi-
mation algorithms (construction heuristics) that allow efficient computation of good ap-
proximations of a solution [6], e.g. Best/First/Next-Fit heuristics. They can, of course,
be used as heuristics for the CCP. As shown in Listing 3, given a (decreasing) order of
vertices using order(V,O) atoms, we can force the solver to place vertex Vi into the
lowest-indexed bin for which the size of already placed vertices does not exceed the
capacity, i.e. in a first-fit bin:

1 binDomain(1..NB) :- nrofbins(NB). offset(NB+1) :- nrofbins(NB).
2 _heuristic(vertex_bin(V,B),true,M+O*NB-B) :- binDomain(B),

nrofbins(NB), order(V,O), offset(M).

Listing 3. First-Fit heuristic for an assignment of vertices to bins



The heuristic never uses a new bin until all the non-empty bins are full and it can be
expressed by rules that generate always a higher level for the bins with smaller number.
It is also possible (with an intense effort) to express other heuristics for P1-P5 that
guide the search appropriately and allow to speed up the computation of solutions if
we solve these problems separately. However, as our experiments show, the inclusion
of heuristics for different problem at the same time might drastically deteriorate the
performance for real-world CCP instances.

5.2 Greedy Search

From our observations in the context of product configuration, it is relatively easy to
devise a greedy algorithm to solve a part of a configuration problem. This is often
the case in practice, because products are typically designed to be easily configurable.
The hard configuration instances usually occur when new constraints arise due to the
combination of existing products and technologies.

Algorithm 1: GreedyMatching
Input: A bipartite graph GA = (BE , A,E), where BE is a set of border elements, A is a

set of areas and E ⊆ BE ×A is a set of edges
Output: A matching set M

1 M ← ∅;
2 foreach v ∈ BE do

// Select areas with the minimum number of matched elements
3 A′ ← argmina∈A |{v′ | v′ ∈ BE , (v′, a) ∈M, (v, a) ∈ E}|;
4 a← pop(A′);
5 M ←M ∪ {(v, a)};
6 return M ;

The same can be said for the CCP problem. Whereas it is easy to develop greedy
search algorithms for the individual subproblems, it becomes increasingly difficult to
come up with an algorithm that solves the combined problem. Algorithm 1 shows a
greedy method that solves the Matching problem of the CCP (P4). For every vertex v
it finds a related area a with the fewest assigned vertices so far and matches v with a.
The algorithm assumes that all border elements are colored with one color, as it trivially
satisfies the coloring requirement of the matching problem. Algorithm 2 shows a greedy
approach to solving the CCP wrt. Coloring, Bin-Packing and Connectedness (P1, P2
and P5). Every call to pop returns and removes the first element v of the set V and
all corresponding edges. Then, the vertex v is assigned a color and is put into a bin
according to some heuristic Bin-Packing algorithm. For instance, one can use classic
heuristics as First-Fit or Best-Fit [6]. Our implementation of assignVertexToBin
puts vertices of only one color into a bin. If the number of bins K is not enough to
pack a vertex, then the set of bins B is not modified and the vertex is ignored. In case
the vertex was placed into a bin, Algorithm 2 retrieves and removes from G all vertices



Algorithm 2: GreedyColoringBinPackingConnectedness
Input: A graph G = (V,E), a maximum number of bins K for each color and a bin

capacity C
Output: A set B that comprises all bins of a solution

1 B ← ∅; color ← 1; Q← ∅;
2 while V 6= ∅ do
3 q ← pop(V ); Q← {q};
4 while Q 6= ∅ do
5 v ← pop(Q);
6 labelVertexWithColor(v, color);
7 B ← assignVertexToBin(B, v, C,K); // v is ignored, if it does not fit
8 if ∃b ∈ B (v ∈ b) then
9 V ← V \ {v};

10 Q← Q ∪ popNeigbours(v,G);

11 color ← color + 1;

12 return B;

adjacent to v. The loop continues until all vertices that can be reached from v are colored
and assigned to some bin. Finally, the number of colors is increased and the algorithm
colors and removes another subgraph of G until no vertices in G are left.

Suppose one wants to combine these two algorithms. One strategy would be to run
greedy Matching and then solve the Bin-Packing problem taking matchings into ac-
count. Thus, a combined algorithm first calls Algorithm 1 and gets a set of matchings
M = {(v1, a1), . . . , (vn, am)}. Then, for each vertex vi of the input graph G the algo-
rithm (i) assigns a new color to vi, if vi has no assigned color, and (ii) puts vi into a bin,
as in Algorithm 2. In case vi is a border element, the combined algorithm retrieves an
area aj that matches vi in M and colors all vertices of this area in the same color as vi.

The combined algorithm might violate the Connectedness property, because it col-
ors all border vertices assigned to an area with the same color. However, these vertices
are not necessarily connected. That is, there might be a solution with a different match-
ing, but the greedy algorithm tests only one of all possible matchings. Moreover, there
is no obvious way how to create an algorithm solving all 3 problems efficiently. This is
a clear disadvantage of using ad-hoc algorithms in contrast to the usage a logic-based
formalism like ASP, where the addition of constraints is just a matter of adding some
rules to an encoding. On the other hand, domain-specific algorithms are typically faster
and scale better than ASP-based or SAT-based approaches that cannot be used for very
large instances. For instance, the memory demand of the greedy Algorithm 2 is almost
independent of graph size.

5.3 Combining Greedy Search and ASP

One way to let a complete ASP solver and a greedy search algorithm benefit from each
other is to use the greedy algorithm to compute upper bounds for the problem to solve.
The tighter upper bound usually means smaller grounding size and shorter solving time



Algorithm 3: Greedy & ASP
Input: A problem P , an ASP program Π solving the problem P
Output: A solution S

1 GreedySolution ← solveGreedy(P );
2 H ← generateHeuristic(GreedySolution);
3 return solveWithASP(Π,H);

because the greedy solver being domain-specific usually outperforms ASP for the re-
laxed version of the problem. For instance, running the greedy algorithm for the Bin-
Packing problem and Matching problem gives upper bounds for the maximal number of
colors, i.e. number of different Bin-Packing problems to solve. The same applies to the
Matching problem. This kind of application of greedy algorithms has a long tradition in
branch and bound search algorithms, where greedy algorithms are used to compute the
upper bound of a problem. For an example see [22], where a greedy coloring algorithm
is used to find an upper bound for the clique size in a graph in order to compute max-
imum cliques. In this paper we investigate a novel way to combine greedy algorithms
and ASP (Algortihm 3). Given all required inputs, first, a greedy algorithm is used to
solve the Matching and Bin-Packing problems. The greedy algorithm typically solves
a relaxed version of the problem, therefore, the solution found by the greedy algorithm
may not be a consistent solution for ASP. This solution is converted into a heuristic for
an ASP solver by giving the atoms of the solution a higher heuristic value.

As an example for solving the complete CCP problem, we can, first, find an un-
connected solution for the combination of Coloring, Bin-Packing, Disjoint paths and
Matching problems (P1-P4), and then, use the ASP solver to fix the Connectedness
property (P5). The idea of combining local search with a complete solver is also found
in large neighborhood search [4].

6 Experimental results

Experiment1 In our evaluation we compared a plain ASP encoding of the CCP with
an ASP encoding extended with domain-specific knowledge. The Bin-Packing problem
(P2) of the CCP corresponds to the classic Bin-Packing problem and the same heuristics
can be applied. We implemented several Bin-Packing heuristics such as First/Best/Next-
Fit (Decreasing) heuristics using ASP as shown in Section 5.1. For the evaluation we
took 37 publicly available Bin-Packing problem instances1, for which the optimal num-
ber of bins optnrofbins is known, and translated them to CCP instances. The biggest
instance of the set includes 500 vertices and 736 bins of the capacity 100. In the ex-
periment, the maximal number of colors was set to 1 and the maximal number of bins
was set to 2 · optnrofbins . All instances were solved by both approaches2. For a plain
ASP encoding the solver required at most 27 seconds to find a solution whereas for

1 The instances were taken from: http://www.wiwi.uni-jena.de/Entscheidung/binpp/index.htm.
2 The evaluation was performed using clingo version 4.3.0 from the Potassco ASP collection [7]

on a system with Intel i7-3030K CPU (3.20 GHz) and 64 GB of RAM, running Ubuntu 11.10.



the heuristic ASP program solving took at most 6 seconds, which is 4.5 times faster.
The best results for the heuristic approach were obtained using the First-Fit heuristic
with the decreasing order of vertices. Corresponding solutions utilized less bins then
the ones obtained with the plain ASP program. Moreover, using First-Fit heuristic, for
23 from 37 instances a solution with optimal number of bins was found and for 13 other
instances at most 4 bins more were required. The plain ASP encoding resulted in so-
lutions that used on average 4 bins more than corresponding solutions of the heuristic
approach. Only for 1 instance the heuristic program generated a worse solution than the
plain ASP encoding.

Experiment2 In the next experiment we tested the same Bin-Packing heuristics imple-
mented in ASP for the combined CCP, i.e. when all subproblems P1-P5 are active, on
100 real-world test instances of moderate size (maximally 500 vertices in an input).
The instances in this experiment were derived from a number of real-world configura-
tions. Neither the plain program nor the heuristic programs were able to improve run-
time/quality of solutions. Moreover, our greedy method described in Section 5.2 also
failed to find a connected solution, i.e. when P5 is active. For this reason, we investi-
gated the combined approach (Greedy & ASP) described in Section 5.3. This approach
uses the greedy method to generate a partial solution ignoring the Connectedness con-
straint and provides this solution as heuristic atoms to the ASP solver. Our exper-
iments show (see Fig. 7a) that the combined approach can solve all 100 benchmarks
from the mentioned set, whereas the plain encoding presented in Section 4 solves only
54 instances (the time frame was set to 900 seconds in this and the next experiment).
Moreover, for those instances which were solved using both approaches, the quality of
solutions measured in terms of used bins and colors was the same. However, the run-
time of the combined approach was 18 times faster on average and required at most 24
seconds instead of 848 seconds needed for the plain ASP encoding.

Experiment3 In addition, we tested more complex real-world instances (maximally
1004 vertices in an input)3 which we have also submitted to the ASP competition 2015.
Similarly to Experiment2 we compared the plain ASP encoding from Section 4 to the
combined approach in Section 5.3. Again, regarding the quality of solutions, both ap-
proaches are comparable, i.e. they use on average the same number of colors and bins,
with the combined approach having a slight edge. Generally, from 48 instances consid-
ered in this experiment, 36/38 instances were solved using the plain/combined encod-
ing, respectively. On average/maximally the plain encoding needed 69/887 seconds to
find a solution whereas the combined method took 14/196 seconds, respectively, which
is about 5 times faster. Fig. 7b shows the influence of heuristics on the performance
for the instances from Experiment3 that were solved by both approaches within 900
seconds. Although the grounding time is not presented for both experiments, we note
that it requires about 10 seconds using both approaches for the biggest instance when
all subproblems P1-P5 are active.

3 The instances are available at: http://isbi.aau.at/hint/problems
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Fig. 7. Evaluation results using Plain ASP and Greedy & ASP

7 Discussion

Choosing the right domain-specific heuristics for simple backtrack-based solvers is
essential for finding a solution at all, especially for large and/or complex problems.
The role of domain-specific heuristics in a conflict-driven nogood learning ASP solver
seems to be less important when it comes to solving time. Here the size of the grounding
and finding the right encoding is often the limiting factor. Nevertheless, domain-specific
heuristics are very important to control the order in which answer sets are found and
are an alternative to optimization statements. The latter hinder the computation of so-
lutions for many configuration problem instances in a time which is reasonable for the
application domain [1, 5]. As we have shown, domain-specific heuristics also provide a
mechanism to combine greedy algorithms with ASP solvers, which opens up the pos-
sibility to use ASP in a meta-heuristic setting. However, the possible applications go
beyond this. The same approach could be used to repair an infeasible assignment using
an ASP solver. This is currently a field of active research for us and has applications
in the context of product reconfiguration. Reconfiguration occurs when a configuration
problem is not solved from scratch, but some parts of an existing configuration have to
be taken into account.

An open question is how to combine heuristics for different subproblems in a modu-
lar manner without the adaptation of every domain-specific heuristic. Here approaches
like search combinators [16] from the constraint programming community might be
useful. Another interesting topic for future research would be how to learn heuristics
from an ASP solver, i.e. to investigate the variable/value order chosen by an ASP solver
for medium size problem instances and use them as heuristics in a backtrack solver for
larger instances that are out of scope of an ASP solver due to the grounding size. Some
aspects of this topic were discussed in [3]. Moreover, it is worthwhile to investigate
how our method can be generalized to other application domains and whether we will
be generally able to gain better performance if more heuristics are combined.
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configuration based on model generation. In: LoCoCo workshop. pp. 26–35 (2011)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman (1979)

7. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Mor-
gan & Claypool Publishers (2012)

8. Gebser, M., Kaufmann, B., Romero, J., Otero, R., Schaub, T., Wanko, P.: Domain-Specific
Heuristics in Answer Set Programming. In: Proceedings of AAAI (2013)

9. Haselböck, A., Schenner, G.: S’UPREME. Knowledge-Based Configuration: From Research
to Business Cases. pp. 263–269 (2014)

10. Hotz, L., Felfernig, A., Stumptner, M., Ryabokon, A., Bagley, C., Wolter, K.: Configura-
tion Knowledge Representation and Reasoning. Knowledge-Based Configuration: From Re-
search to Business Cases. pp. 41–72 (2014)

11. Madigan, C., Malik, S., Moskewicz, M., Zhang, L., Zhao, Y.: Chaff: Engineering an efficient
SAT solver. In: Proceedings of DAC (2001)

12. Mayer, W., Bettex, M., Stumptner, M., Falkner, A.: On solving complex rack configuration
problems using CSP methods. Proceedings of the IJCAI Workshop on Configuration (2009)

13. McDermott, J.: R1: A rule-based configurer of computer systems. Artificial Intelligence
19(1), 39–88 (1982)

14. Ryabokon, A., Friedrich, G., Falkner, A.A.: Conflict-Based Program Rewriting for Solving
Configuration Problems. In: Proceedings of LPNMR. pp. 465–478 (2013)

15. Schenner, G., Falkner, A., Ryabokon, A., Friedrich, G.: Solving Object-oriented Configura-
tion Scenarios with ASP. In: Proceedings of the Configuration Workshop. pp. 55–62 (2013)

16. Schrijvers, T., Tack, G., Wuille, P., Samulowitz, H., Stuckey, P.J.: Search combinators. Con-
straints 18(2), 269–305 (2013)

17. Sinz, C., Haag, A.: Configuration. IEEE Intelligent Systems 22(1), 78–90 (2007)
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