
Loops: Relevant or Redundant?

Martin Gebser and Torsten Schaub

Institut für Informatik, Universiẗat Potsdam, Postfach 900327, D–14439 Potsdam

Abstract. Loops and the corresponding loop formulas play an important role in
answer set programming. On the one hand, they are used for guaranteeing cor-
rectness and completeness in SAT-based answer set solvers. On the other hand,
they can be used by conventional answer set solvers for finding unfounded sets
of atoms. Unfortunately, the number of loops is exponential in the worst case.
We demonstrate that not all loops are actually needed for answer set computa-
tion. Rather, we characterize the subclass ofelementary loopsand show that they
are sufficient and necessary for selecting answer sets among the models of a pro-
gram’s completion. Given that elementary loops cannot be distinguished from
general ones in atom dependency graphs, we show how the richer graph structure
provided bybody-head dependency graphscan be exploited for this purpose.

1 Introduction

The success of Answer Set Programming (ASP) is largely due to the availability of
efficient solvers, e.g. [1, 2]. A similar situation is encountered in the area of satisfiabil-
ity checking (SAT), in which manifold solvers show an impressive performance. This
has led to ASP solvers mapping answer set computation to model generation via SAT
solvers [3–5]. Since the answer sets of a program form a subset of its classical models,
however, additional measures must be taken for eliminating models that are no answer
sets. To this end, a program is transformed viaClark’s completion[6]. The models of the
resulting completed program are calledsupported models; they are generally still a su-
perset of the program’s answer sets. However, supported models coincide with answer
sets ontight programs, that is, programs having an acyclic positive atom dependency
graph [7]. For example, the program{p ← p} is non-tight; it admits a single empty
answer set, while its completion,{p ≡ p}, has two models,∅ and{p}. While early
SAT-based ASP solvers [3] reject non-tight programs, the next generation of solvers,
e.g. [4, 5], exploits the circular structures within the atom dependency graph for han-
dling non-tight programs. As put forward in [4], the idea is to extend a program’s com-
pletion byloop formulasin order to eliminate the supported models that are no answer
sets. Loop formulas are generated fromloops, which are sets of atoms that circularly
depend upon each other in a program’s atom dependency graph. Unfortunately, a pro-
gram may yield exponentially many loops in the worst case [8], so that exponentially
many loop formulas may be necessary for filtering out the program’s answer sets.

We show that not all loops are needed for selecting the answer sets among the mod-
els of a program’s completion. Rather, we introduce the subclass ofelementary loops,
whose corresponding loop formulas are sufficient for determining the answer sets of a
program from its completion. Moreover, elementary loops are essential in the sense that

generally none on their loop formulas can be omitted without reintroducing undesired
supported models. Given that elementary loops cannot be distinguished from general
ones in atom dependency graphs, we show how the richer graph structure provided by
body-head dependency graphs[9] can be exploited for recognizing elementary loops.
Body-head dependency graphs extend atom dependency graphs by an explicit represen-
tation of rules’ bodies. Their richer graph structure allows for identifying elementary
loops in an efficient way. Finally, we show that the set of elementary loops lies between
the set of⊆-minimal loops and the set of all loops. As a consequence, there may still be
an exponential number of elementary loops, since there may already be an exponential
number of⊆-minimal loops in the worst case. On the other hand, we show that there
may also be exponentially fewer elementary loops than general ones in the best case.

The next section provides the background of this paper. In Section 3, we charac-
terize elementary loops and show that they are sufficient and, generally, necessary for
capturing answer sets. Section 4 introduces body-head dependency graphs as a device
for recognizing elementary loops. In Section 5, we provide lower and upper bounds for
programs’ elementary loops. We conclude with Section 6.

2 Background

A logic programis a finite set ofrules of form a ← b1, . . . , bm,not c1, . . . ,not cn

wherea, b1, . . . , bm, c1, . . . , cn are atoms form ≥ 0, n ≥ 0. Given such a ruler, we
denote itsheada byhead(r) and itsbody{b1, . . . , bm,not c1, . . . ,not cn} by body(r).
Furthermore, we letbody+(r) = {b1, . . . , bm} andbody−(r) = {c1, . . . , cn} be the
positiveandnegative bodyof r, respectively. The set of bodies in logic programΠ is
body(Π) = {body(r) | r ∈ Π}. The set of atoms appearing inΠ is given byatom(Π).
A logic programΠ is basic, if body−(r) = ∅ for every ruler ∈ Π. The smallest set
of atoms closed under basic programΠ is denoted byCn(Π). The reductof a logic
programΠ relative to a setX of atoms is the basic programΠX = {head(r) ←
body+(r) | r ∈ Π, body−(r) ∩X = ∅}. An answer setof a logic programΠ is a set
X of atoms satisfyingX = Cn(ΠX).

TheClark completionof a program can be defined as follows [6]. For a logic pro-
gramΠ and a ruler ∈ Π, define

comp(r) =
∧

b∈body+(r)b ∧
∧

c∈body−(r)¬c ,

comp(Π) = {a ≡
∨

r∈Π,head(r)=acomp(r) | a ∈ atom(Π)} .

An answer set ofΠ is also a model1 of comp(Π). Models ofcomp(Π) are also called
supported modelsof Π.

As shown in [4], answer sets can be distinguished among the supported models
by means ofloopsin atom dependency graphs (cf. [10, 11]). To be precise, thepositive
atom dependency graphof a programΠ is the directed graph(atom(Π), E(Π)) where
E(Π) = {(b, a) | r ∈ Π, b ∈ body+(r), head(r) = a}. A set L ⊆ atom(Π) is
a loop in Π, if (L,E(Π,L)) is a strongly connected subgraph2 of the positive atom

1 That is, an interpretation is represented by its entailed set of atoms.
2 A (sub)graph is strongly connected, if there is a path between any pair of contained nodes.

Π1 =

8>>>><>>>>:
a← not d̄ b← not ē
a← c b← c
c← a,not d c← b,not e
d← not d̄ e← not ē
d̄← not d ē← not e

9>>>>=>>>>;
(a) Logic programΠ1.

aj cj bj-� -�

(b) Atom depen-
dency graph ofΠ1

(restricted to con-
nected nodes).

aj
cj

bj{c}

{a,not d} {b,not e}
6 6

- �

?
� -

(c) Body-head depen-
dency graph ofΠ1 (re-
stricted to connected
nodes).

Fig. 1.Logic programΠ1 yielding loop(Π1) = {{a, c}, {b, c}, {a, b, c}}.

dependency graph(atom(Π), E(Π)) such thatE(Π,L) = E(Π) ∩ (L × L) 6= ∅.
Given a loopL in Π, we partition the rules whose heads are inL into two sets, namely

R+(Π,L) = {r ∈ Π | head(r) ∈ L, body+(r) ∩ L 6= ∅} ,

R−(Π,L) = {r ∈ Π | head(r) ∈ L, body+(r) ∩ L = ∅} .

The loop formulaassociated with loopL is

LF (Π,L) = ¬
(∨

r∈R−(Π,L)comp(r)
)
→

∧
a∈L¬a . (1)

We denote the set of all loops inΠ by loop(Π). The set of all loop formulas ofΠ is
LF (Π) = {LF (Π,L) | L ∈ loop(Π)}. As shown in [4], a setX of atoms is an answer
set of a logic programΠ iff X is a model ofcomp(Π) ∪ LF (Π).

For illustration, consider ProgramΠ1 in Figure 1(a). This program has four answer
sets:{a, b, d, e}, {b, d̄, e}, {a, d, ē}, and{d̄, ē}. Apart from these,Π1 has three addi-
tional supported models:{a, b, c, d̄, e}, {a, b, c, d, ē}, and{a, b, c, d̄, ē}. Observe that
each additional supported model is a superset of some answer set. A closer look re-
veals that all of them contain atomsa, b, andc, which are the ones being involved in
loops. In fact, the loops are responsible for the supported models that are no answer
sets since they allow for a circular support among atoms. To see this, consider the pos-
itive atom dependency graph ofΠ1 in Figure 1(b). (We omit atomsd, d̄, e, andē since
they are not involved in any positive dependencies.) We can identify three loops:{a, c},
{b, c}, and{a, b, c}. Each of them induces a strongly connected subgraph that reflects
the possibility of circular derivations among these atoms (via rules inR+(Π1, {a, c}),
R+(Π1, {b, c}), andR+(Π1, {a, b, c})). This circular behavior can be counterbalanced
by the corresponding loop formulas

LF (Π1, {a, c}) = ¬(¬d̄ ∨ (b ∧ ¬e))→ ¬a ∧ ¬c ≡ d̄ ∧ (¬b ∨ e)→ ¬a ∧ ¬c ,
LF (Π1, {b, c}) = ¬(¬ē ∨ (a ∧ ¬d))→ ¬b ∧ ¬c ≡ ē ∧ (¬a ∨ d)→ ¬b ∧ ¬c ,
LF (Π1, {a, b, c}) = ¬(¬d̄ ∨ ¬ē)→ ¬a ∧ ¬b ∧ ¬c ≡ d̄ ∧ ē→ ¬a ∧ ¬b ∧ ¬c .

While these formulas are satisfied by all answer sets ofΠ1, one of them is falsi-
fied by each of the additional supported models. In this way,LF (Π1, {a, c}) elimi-
nates{a, b, c, d̄, e}, LF (Π1, {b, c}) excludes{a, b, c, d, ē}, andLF (Π1, {a, b, c}) for-

Π2 =

8>>>><>>>>:
a← not d̄ b← not ē
a← c,not d b← c,not e
c← a, b
d← not d̄ e← not ē
d̄← not d ē← not e

9>>>>=>>>>;
(a) Logic programΠ2.

aj cj bj-� -�

(b) Atom depen-
dency graph ofΠ2

(restricted to con-
nected nodes).

aj
cj

bj{a, b}

{c,not d} {c,not e}

? ?

� -

6

- �

(c) Body-head depen-
dency graph ofΠ2 (re-
stricted to connected
nodes).

Fig. 2.Logic programΠ2, whereeloop(Π2) = {{a, c}, {b, c}} ⊂ loop(Π2).

bids{a, b, c, d̄, ē}. Observe that each loop formula prohibits a different supported model
and can, thus, not be omitted (although loop{a, b, c} contains the two other ones).

3 Elementary Loops

Our main focus lies in characterizing a set of relevant loops, whose loop formulas are
sufficientandnecessaryfor capturing a program’s answer sets (together with the com-
pleted program). Sufficiency simply means that each model is an answer set. The mean-
ing of necessity is not that straightforward and needs some clarification (see below).

Based on these preliminaries, we introduce the notion of anelementary loop.

Definition 1 (Elementary Loop). LetΠ be a logic program and letL ∈ loop(Π).
We defineL as an elementary loop inΠ, if, for each loopL′ ∈ loop(Π) such that

L′ ⊂ L,3 we haveR−(Π,L′) ∩R+(Π,L) 6= ∅.

In words, a loop is elementary if each of its strict sub-loops possesses a non-circular
support that positively depends on the loop. This characterization is inspired by the
structure of loop formulas in (1), according to which non-circular supports form loop
formulas’ antecedents. If a sub-loop has no non-circular support from the genuine loop,
its loop formula’s antecedent is satisfied independently. Notably, Section 4 gives a direct
characterization of elementary loops that avoids the inspection of sub-loops. As with
loops, we denote the set of all elementary loops in a programΠ by eloop(Π). The set
of all elementary loop formulas ofΠ is denoted byeLF (Π) = {LF (Π,L) | L ∈
eloop(Π)}. Obviously, we haveeloop(Π) ⊆ loop(Π) andeLF (Π) ⊆ LF (Π).

ProgramΠ1 in Figure 1(a) yields the⊆-minimal loops{a, c} and{b, c}. Such loops
are by definition elementary. Moreover,{a, b, c} is an elementary loop: Its strict sub-
loops,{a, c} and{b, c}, yield R−(Π1, {a, c}) ∩ R+(Π1, {a, b, c}) = {c ← b,not e}
andR−(Π1, {b, c}) ∩ R+(Π1, {a, b, c}) = {c ← a,not d}. The difference between
elementary and non-elementary loops shows up when looking at ProgramΠ2 in Fig-
ure 2(a). Similar toΠ1, ProgramΠ2 has four answer sets:{a, b, c, d, e}, {b, d̄, e},
{a, d, ē}, and{d̄, ē}. Also, both programs share the same positive atom dependency

3 We use ‘⊂’ to denote the strict subset relation; that is,L′ ⊂ L iff L′ ⊆ L andL′ 6= L.

graph, as witnessed by Figures 1(b) and 2(b), respectively. Hence, given that Pro-
gramsΠ1 andΠ2 are indistinguishable from their positive atom dependency graphs,
both programs yield the same set of loops, namely,loop(Π2) = loop(Π1) = {{a, c},
{b, c}, {a, b, c}}. Unlike this, both programs yield a different set of elementary loops.
To see this, observe that for loop{a, b, c} and its sub-loops{a, c} and{b, c}, we have

R−(Π2, {a, c}) ∩R+(Π2, {a, b, c}) = {a← not d̄} ∩R+(Π2, {a, b, c}) = ∅ ,
R−(Π2, {b, c}) ∩R+(Π2, {a, b, c}) = {b← not ē} ∩R+(Π2, {a, b, c}) = ∅ .

Thus,{a, b, c} is not an elementary loop inΠ2, andeloop(Π2) = {{a, c}, {b, c}} is a
strict subset ofloop(Π2).

As mentioned above, we are interested in a minimal set of essential loops such that
their loop formulas in addition to a program’s completion capture the program’s answer
sets. Our next result is a step towards characterizing a sufficient set of loops.

Proposition 2. LetΠ be a logic program and letL ∈ loop(Π) such thatL 6∈ eloop(Π).
Let I be an interpretation ofatom(Π) such thatL ⊆ I andI |= ¬LF (Π,L).

Then, there is a loopL′ ∈ loop(Π) such thatL′ ⊂ L andI |= ¬LF (Π,L′).

This shows that non-elementary loops are prone to redundancy.
Our first major result is an enhancement of [4, Theorem 1]. That is, elementary

loop formulas are, in addition to a program’s completion, sufficient for capturing the
program’s answer sets.

Theorem 3. LetΠ be a logic program and letX ⊆ atom(Π).
Then,X is an answer set ofΠ iff X is a model ofcomp(Π) ∪ eLF (Π).

Let us illustrate the two last results byΠ2 in Figure 2(a). Recall that we have

eloop(Π2) = {{a, c}, {b, c}} ⊂ {{a, c}, {b, c}, {a, b, c}} = loop(Π2) .

For ProgramΠ2, the setloop(Π2) of general loops induces the loop formulas

LF (Π2, {a, c}) = ¬(¬d̄)→ ¬a ∧ ¬c ≡ d̄→ ¬a ∧ ¬c ,
LF (Π2, {b, c}) = ¬(¬ē)→ ¬b ∧ ¬c ≡ ē→ ¬b ∧ ¬c ,
LF (Π2, {a, b, c}) = ¬(¬d̄ ∨ ¬ē)→ ¬a ∧ ¬b ∧ ¬c ≡ d̄ ∧ ē→ ¬a ∧ ¬b ∧ ¬c .

Observe that

LF (Π2, {a, c}),LF (Π2, {b, c}) |= LF (Π2, {a, b, c}) .

That is, loop formulaLF (Π2, {a, b, c}) is redundant and can be removed fromLF (Π2)
without any risk of producing models ofcomp(Π2)∪ (LF (Π2)\{LF (Π2, {a, b, c})})
that are no answer sets ofΠ2. This outcome is directly obtained when considering
elementary loop formulas becauseeLF (Π2) = LF (Π2) \ {LF (Π2, {a, b, c})}.

In what follows, we consider the “necessity” of elementary loops. The problem here
is that whether or not a loop formula eliminates unwanted supported models is context
dependent because of possible interactions with the completed program and/or among
loop formulas. To see this, consider ProgramΠ = {a ← ; b ← a ; b ← c ; c ← b}.

We haveeloop(Π) = {{b, c}}, but loop formulaLF (Π, {b, c}) = ¬a → ¬b ∧ ¬c is
not violated in the single supported model{a, b, c} of Π because atomb is supported
anyhow by ruleb ← a. Furthermore, consider ProgramΠ ′ = {a ← not b ; b ←
not a ; c ← d,not a,not b ; d ← c,not a,not b} having elementary loop{c, d}. The
supported models ofΠ ′ are{a} and{b} such thatLF (Π ′, {c, d}) = > → ¬c ∧ ¬d is
not needed for inhibiting circular support among atomsc andd.

In order to capture elementary loops that really produce unwanted supported mod-
els, we introduce the notion of anactive elementary loop.

Definition 4 (Active Elementary Loop). Let Π be a logic program and letI be an
interpretation ofatom(Π).

We defineL ∈ eloop(Π) as an active elementary loop with respect toI, if

1. for each ruler ∈ R−(Π,L), we haveI |= ¬comp(r), and
2. L is an elementary loop inΠ \ {r ∈ Π | I |= ¬comp(r)}.

By Condition1. an active elementary loop is not non-circularly supported. Condition2.
ensures that an active elementary loop is still elementary with respect to the rules satis-
fied by an interpretation; i.e. the rules connecting the elementary loop are not falsified.

The distinguishing property of elementary loops that are active with respect to an
interpretationI, as opposed to general loops, is thatI “automatically” satisfies the loop
formula of any of their sub-loops.

Theorem 5. Let Π be a logic program, letL ∈ eloop(Π), and letI be an interpreta-
tion ofatom(Π) such thatL is active with respect toI.

Then, we haveI |= ¬LF (Π,L) , and, for each loopL′ ∈ loop(Π) such that
L′ ⊂ L, we haveI |= LF (Π,L′).

For illustration, reconsider ProgramsΠ1 andΠ2 (cf. Figures 1(a) and 2(a)). Both
programs yield the loops{a, c}, {b, c}, and{a, b, c}. The difference betweenΠ1 and
Π2 is that{a, b, c} is an elementary loop inΠ1, but not inΠ2. For Π1, this means
that, if {a, b, c} is active with respect to a supported modelM of comp(Π1), M is also
model ofcomp(Π1) ∪ eLF (Π1) \ {LF (Π1, {a, b, c})}. In fact, the supported model
M = {a, b, c, d̄, ē} violates

LF (Π1, {a, b, c}) = ¬(¬d̄ ∨ ¬ē)→ ¬a ∧ ¬b ∧ ¬c ≡ d̄ ∧ ē→ ¬a ∧ ¬b ∧ ¬c

but satisfies

LF (Π1, {a, c}) = ¬(¬d̄ ∨ (b ∧ ¬e))→ ¬a ∧ ¬c ≡ d̄ ∧ (¬b ∨ e)→ ¬a ∧ ¬c ,
LF (Π1, {b, c}) = ¬(¬ē ∨ (a ∧ ¬d))→ ¬b ∧ ¬c ≡ ē ∧ (¬a ∨ d)→ ¬b ∧ ¬c .

Hence, we cannot skipLF (Π1, {a, b, c}) without producing a supported model that is
no answer set. In contrast to this, no model ofcomp(Π2) violatesLF (Π2, {a, b, c})
and satisfies bothLF (Π2, {a, c}) andLF (Π2, {b, c}). This follows directly from The-
orem 3, as{a, b, c} is not an elementary loop inΠ2.

4 Graph-Theoretical Characterization of Elementary Loops

We have seen in the previous section that elementary and non-elementary loops cannot
be distinguished using atom dependency graphs (cf. Figures 1(b) and 2(b)). Further-
more, Definition 1 suggests examining all strict sub-loops for finding out whether a
loop is elementary. This is intractable as a loop may have exponentially many strict
sub-loops. In what follows, we show that identifying elementary loops can be done
efficiently based on a refined concept of a dependency graph.

First of all, we introduce thebody-head dependency graphof a program.

Definition 6 (Positive Body-Head Dependency Graph).LetΠ be a logic program.
We define the positive body-head dependency graph ofΠ as the directed graph

(atom(Π) ∪ body(Π) , E0(Π) ∪ E2(Π)) where

E0(Π) = {(b, B) | r ∈ Π, b ∈ body+(r), body(r) = B} ,

E2(Π) = {(B, a) | r ∈ Π, body(r) = B, head(r) = a} .

Body-head dependency graphs were introduced in [9] as a formal device for charac-
terizing answer set computation. In fact, fully-fledged body-head dependency graphs
constitute the primary data structure of thenomore answer set solver [12]. In addition
to the edges inE0(Π) andE2(Π), they contain a type of edges for negative depen-
dencies, namely,E1(Π) = {(c,B) | r ∈ Π, c ∈ body−(r), body(r) = B}.4 In
what follows, we often drop the attribute ’positive’ and simply write body-head or atom
dependency graph, respectively, since loops exclusively rely on positive dependencies.

Definition 7 (Induced Subgraph).LetΠ be a logic program and letA ⊆ atom(Π).
We define the induced subgraph ofA in Π as the directed graph(A∪ body(Π,A),

E0(Π,A) ∪ E2(Π,A)) where

body(Π,A) = {B ∈ body(Π) | b ∈ A, (b, B) ∈ E0(Π), a ∈ A, (B, a) ∈ E2(Π)} ,

E0(Π,A) = E0(Π) ∩ (A× body(Π,A)) ,

E2(Π,A) = E2(Π) ∩ (body(Π,A)×A) .

Note that, in the induced subgraph of a setA of atoms, we only include those bodies
that contain an atom inA and that also occur in a rule whose head is inA. That is, the
bodies, which are responsible for edges in atom dependency graphs, are made explicit
in body-head dependency graphs as nodes in-between atoms.

Figure 1(c) shows the body-head dependency graph ofΠ1. As in Figure 1(b), we
leave out isolated nodes, that is here, purely negative bodies and atoms not occurring
in positive bodies. Unlike this, atoma is contained in the graph since it occurs in the
positive body of rulec← a,not d; accordingly, the edge(a, {a,not d}) belongs to the
set of edgesE0(Π1) of the body-head dependency graph. Among the edges inE2(Π1),
we find ({a,not d}, c) because of rulec ← a,not d. The induced subgraph of{a, c}
in Π1 contains atomsa andc, bodies{a,not d} and{c}, and their connecting edges.

As with atom dependency graphs, a set of atoms is a loop if its induced subgraph is
a non-trivial strongly connected graph.

4 The notation traces back to [13]; the sum of labels in a cycle indicates whether the cycle is
even or odd.

Proposition 8. LetΠ be a logic program and letL ⊆ atom(Π).
L is a loop inΠ iff the induced subgraph ofL in Π is a strongly connected graph

such thatbody(Π,L) 6= ∅.

In order to describe elementary loops graph-theoretically, we introduce theelemen-
tary subgraphof a set of atoms, which is more fine grained than the induced subgraph.

Definition 9 (Elementary Subgraph).Let Π be a logic program, letA ⊆ atom(Π),
and let (A∪ body(Π,A) , E0(Π,A)∪E2(Π,A)) be the induced subgraph ofA in Π.

We define the elementary closure ofA in Π as the seteCl(Π,A) of edges where

eCl0(Π,A) = ∅ ,

eCl i+1(Π,A) = eCl i(Π,A) ∪ {(b, B) ∈ E0(Π,A) | there is

a path in(A ∪ body(Π,A) , eCl i(Π,A) ∪ E2(Π,A))
from b ∈ A to eachb′ ∈ A such that(b′, B) ∈ E0(Π,A) } , 5

eCl(Π,A) =
⋃

i∈INeCl i(Π,A) .

We define the elementary subgraph ofA in Π as the directed graph(A∪body(Π,A),
eCl(Π,A) ∪ E2(Π,A)).

The general purpose of elementary subgraphs is to distinguish essential from superflu-
ous dependencies. Let us illustrate this by rulec ← a, b in Π2 and consider the body-
head dependency graph ofΠ2 in Figure 2(c). Here, atomc positively depends on atoms
a andb through body{a, b}. In Π2, c is unfounded if eithera or b andc itself are not
non-circularly supported; that is, the other atom cannot help in non-circularly support-
ing a andc or b andc, respectively. The situation changes ifa andb take part in a loop
independently fromc. Then,a andb non-circularly supportc if there is a non-circular
support for eithera or b. The elementary closure reflects these issues by stipulating that
there is already a path from one to the other predecessors of a body before an edge
to the body can be added. This allows for distinguishing essential dependencies from
superfluous ones.

Our next major result shows that elementary subgraphs make the difference between
elementary loops and non-elementary ones.

Theorem 10. LetΠ be a logic program and letL ⊆ atom(Π).
L is an elementary loop inΠ iff the elementary subgraph ofL in Π is a strongly

connected graph such thatbody(Π,L) 6= ∅.

For illustrating the previous result, reconsider Figure 1(c) showing the connected
part of the body-head dependency graph of ProgramΠ1. Observe that each contained
body is reached by precisely one edge. Therefore, we haveeCl1(Π1, A) = E0(Π1, A)
for everyA ⊆ atom(Π1), and elementary subgraphs coincide with induced subgraphs.

The body-head dependency graph of ProgramΠ2 is different from the one of Pro-
gramΠ1, as witnessed by Figures 1(c) and 2(c). In Figure 2(c), we see the connected

5 Note that the path fromb to b′ can be trivial, i.e.b = b′.

part of the body-head dependency graph ofΠ2, which coincides with the induced sub-
graph of loop{a, b, c} in Π2. Regarding the elementary closure of{a, b, c}, we have

eCl(Π2, {a, b, c}) = eCl1(Π2, {a, b, c}) = {(c, {c,not d}), (c, {c,not e})} .

Observe thateCl(Π2, {a, b, c}) does not contain edges(a, {a, b}) and(b, {a, b}). This
is becausea as well asb must have a path to the other atom before the respective edge
can be added to the elementary closure. Since there are no such paths, none of the
edges can ever be added. As a consequence, atomsa andb have no outgoing edges in
the elementary subgraph of{a, b, c} in Π2, which is not strongly connected. This agrees
with the observation made in Section 3 that{a, b, c} is not an elementary loop inΠ2.
In contrast to{a, b, c}, the elementary subgraphs of loops{a, c} and{b, c} in Π2 are
strongly connected, verifyingeloop(Π2) = {{a, c}, {b, c}}.

As observed on ProgramΠ1, elementary subgraphs coincide with induced sub-
graphs on unary programs, having at most one positive body atom. For such programs,
every general loop is also an elementary one.

Proposition 11. LetΠ be a logic program such that|body+(r)| ≤ 1 for all r ∈ Π.
Then, we haveeloop(Π) = loop(Π).

Note that unary programs are strictly less expressive than general ones, as shown in [14].
The analysis of elementary subgraphs yields that each contained atom must be the

unique predecessor of some body; otherwise, the atom has no outgoing edge in the
elementary closure. Moreover, the induced subgraph of an elementary loop cannot be
torn apart by removing edges to bodies, provided that each body is still reachable.

Proposition 12. LetΠ be a logic program and letL ∈ eloop(Π).
Then, the induced subgraph ofL in Π, (L ∪ body(Π,L) , E0(Π,L) ∪ E2(Π,L)) ,

has the following properties:

1. For each atomb ∈ L, there is a bodyB ∈ body(Π,L) such that{b} = {b′ ∈ L |
(b′, B) ∈ E0(Π,L)}.

2. For every setE⊆
0 ⊆ E0(Π,L) of edges such that{B ∈ body(Π,L) | b ∈ L,

(b, B) ∈ E⊆
0 } = body(Π,L), we have that(L ∪ body(Π,L) , E⊆

0 ∪ E2(Π,L)) is
a strongly connected graph.

Although we refrain from giving a specific algorithm, let us note that the concept of
elementary subgraphs allows for computing elementary loops efficiently by means of
standard graph algorithms. In particular, deciding whether a set of atoms is an elemen-
tary loop can be done in linear time.

5 Elementary versus Non-Elementary Loops

This section compares the sets of a program’s elementary and general loops. By Theo-
rem 3, loop formulas for non-elementary loops need not be added to a program’s com-
pletion in order to capture the program’s answer sets. With this information at hand,
we are interested in how many loop formulas can be omitted in the best or in the worst
case, respectively.

First, we determine a lower bound on the set of a program’s elementary loops.
Such a bound is immediately obtained from Definition 1, because a loop is trivially
elementary if it has no strict sub-loops. Thus, we havemloop(Π) ⊆ eloop(Π) where
mloop(Π) denotes the set of⊆-minimal loops in a programΠ. Second, the set of a
program’s loops constitutes an upper bound for the program’s elementary loops, also
by Definition 1. Thus, we haveeloop(Π) ⊆ loop(Π). Finally, the question is how the
set of a program’s loops can be bound from above. In order to answer it, we define the
set of loops that are⊆-minimal for an atoma ∈ atom(Π) asaloop(Π, a) = {L ∈
loop(Π) | a ∈ L, there is no loopL′ ∈ loop(Π) such thata ∈ L′ andL′ ⊂ L}. For a
programΠ, we letaloop(Π) =

⋃
a∈atom(Π) aloop(Π, a).

In the worst case, any non-empty combination of loops inaloop(Π) is a loop, and
we obtain the following upper bound for a program’s loops.

Proposition 13. LetΠ be a logic program.
Then, we haveloop(Π) ⊆ {

⋃
L∈A L | A ∈ 2aloop(Π) \ {∅}}.

Taking the above considerations together, we obtain the following estimation.

Corollary 14. LetΠ be a logic program. Then, we have

mloop(Π) ⊆ eloop(Π) ⊆ loop(Π) ⊆ {
⋃

L∈AL | A ∈ 2aloop(Π) \ {∅}} .

In what follows, we give some schematic examples with programsΠ for which
loop(Π) = {

⋃
L∈A L | A ∈ 2aloop(Π) \ {∅}}. Our first program sketches the worst

case, i.e.eloop(Π) = {
⋃

L∈A L | A ∈ 2aloop(Π) \ {∅}}, whereas the second program
reflects the best case thateloop(Π) = mloop(Π). The programs show that the set of
elementary loops can vary significantly between the given lower and the upper bound.

For illustrating the worst case, consider ProgramΠ3 in Figure 3(a). First observe
that |body+(r)| = 1 for every ruler ∈ Π3. Thus by Proposition 10, each loop inΠ3

is elementary. The atom dependency graph ofΠ3 is a complete graph because there is
a ruleai ← aj for every pair of distinct atomsai ∈ atom(Π3), aj ∈ atom(Π3). As
a consequence, any combination of distinct elementary loops gives a new elementary
loop, and we haveeloop(Π3) = {

⋃
L∈A L | A ∈ 2aloop(Π3) \ {∅}}.

ProgramΠ4 in Figure 3(c) is complementary toΠ3. Here|body+(r)| = |atom(Π4)|
−1 for every ruler ∈ Π4. However, the atom dependency graph ofΠ4 is identical to
that ofΠ3. As observed withΠ1 andΠ2 (cf. Figures 1(b) and 2(b)),Π3 andΠ4 are
thus indistinguishable from their atom dependency graphs. Again the body-head depen-
dency graphs reveal the different natures ofΠ3 andΠ4. We have that, similar toΠ3,
every two-elementary subset ofatom(Π4) forms a⊆-minimal and, thus, elementary
loop. However, looking at the body-head dependency graph ofΠ4 in Figure 3(d), we
see that each atom has a single body as predecessor (i.e. there is a single supporting
rule) such that distinct elementary loops can only be “glued” at bodies. In the resulting
induced subgraph, bodies have several predecessors. Such an induced subgraph does
not satisfy property1. from Proposition 11, and the obtained loop is non-elementary.
Thus, we haveeloop(Π4) = mloop(Π4) and can omit loop formulas for all loops in
{
⋃

L∈A L | A ∈ 2aloop(Π4) \ {∅}} \mloop(Π4).
The achievements obtainable through using elementary instead of general loops

can be underpinned by looking at the approaches ofassat [4] andsmodels [1] for

Π3 =

8>>>>>>>><>>>>>>>>:

a1 ← a2 . . . a1 ← an

...
ai ← a1 . . . ai ← an

ai+1 ← a1 . . . ai+1 ← an

...
an ← a1 . . . an ← an−1

9>>>>>>>>=>>>>>>>>;
(a) Schematic programΠ3.

ai
k

a1k

{a1}

ai+1

�
 �	
{ai+1}

{ai}

kan

{an}

. . .

. . .

�

-

6 ?

HHHY ���*

���1
PPPi

(b) Schematic body-head dependency graph
of Π3.

Π4 =

8>>>>>>>><>>>>>>>>:

a1 ← a2, . . . , an

...
ai ← a1, . . . , ai−1, ai+1, . . . , an

ai+1 ← a1, . . . , ai, ai+2, . . . , an

...
an ← a1, . . . , an−1

9>>>>>>>>=>>>>>>>>;
(c) Schematic programΠ4.

aik
a1k

{a2, . . . , an}

ai+1

�
 �	
{a1, . . . , an} \ {ai+1}

{a1, . . . , an} \ {ai}

kan

{a1, . . . , an−1}

. . .

. . .

-
6

�

?

H
HHj

�
���

����
HHHj

(d) Schematic body-head dependency graph
of Π4.

Fig. 3. Logic programsΠ3 andΠ4, whereloop(Πi) = {
S

L∈A L | A ∈ 2aloop(Πi) \ {∅}},
eloop(Π3) = {

S
L∈A L | A ∈ 2aloop(Π3) \ {∅}}, andeloop(Π4) = mloop(Π4).

dealing with unfounded sets. Theassat system is based on a program’s completion
and identifies loops, whose loop formulas are violated, on demand, that is, whenever a
supported model not representing an answer set has been found. The circular support
of such loops is in future prohibited by loop formulas such that an unwanted supported
model cannot be recomputed. Now assume that the supported model{a, b, c, d̄, ē} is
found first for ProgramΠ2 in Figure 2(a). Thenassat identifies{a, b, c} as a so-
calledterminating loop[4] and adds loop formula

LF (Π2, {a, b, c}) = ¬(¬d̄ ∨ ¬ē)→ ¬a ∧ ¬b ∧ ¬c ≡ d̄ ∧ ē→ ¬a ∧ ¬b ∧ ¬c

to comp(Π2) before searching for another supported model. The problem is that loop
{a, b, c} is non-elementary and that circular support within elementary loops{a, c} and
{b, c} is not prohibited byLF (Π2, {a, b, c}). Consequently,assat may find supported
models{a, b, c, d̄, e} and{a, b, c, d, ē} next, necessitating additional loop formulas

LF (Π2, {a, c}) = ¬(¬d̄)→ ¬a ∧ ¬c ≡ d̄→ ¬a ∧ ¬c and
LF (Π2, {b, c}) = ¬(¬ē)→ ¬b ∧ ¬c ≡ ē→ ¬b ∧ ¬c ,

before finding the first answer set. The possibility of computing the supported models
{a, b, c, d̄, e} and {a, b, c, d, ē} can be avoided by splitting the non-elementary loop
{a, b, c} into its elementary sub-loops{a, c} and {b, c}. Besides{a, c} and {b, c},
LF (Π2, {a, c}) andLF (Π2, {b, c}) prohibit circular support within loop{a, b, c}, and

assat may treat three loops using only two loop formulas. In general, the elementary
closure, as given in Definition 8, can be used for checking whether a terminating loop is
elementary. If not, an elementary sub-loop, whose loop formula also prohibits circular
support within the genuine terminating loop, can be determined.6

The smodels answer set solver falsifies greatest unfounded sets in its function
atmost. At the implementation level,atmostis restricted to strongly connected com-
ponents of a program’s positive atom dependency graph (but may spread over different
components if an unfounded set is detected) [1]. Whenatmostis applied to ProgramΠ4

in Figure 3(c) (or a program having a comparable body-head dependency graph), it has
to take the whole strongly connected component induced byatom(Π4) into considera-
tion, since the atom dependency graph ofΠ4 is complete. The efforts ofatmostcan be
restricted by concentrating on elementary loops, which are pairs of atoms in case ofΠ4.
That is, any pair of unfounded atoms is sufficient for falsifying the bodies of all rules
that contribute to the strongly connected component induced byatom(Π4).

Finally, it is noteworthy to mention that [15] describes how the computation of a
program’s well-founded model [16] simplifies based on certain properties of the pro-
gram’s full atom dependency graph (i.e. both positive and negative edges are included).
The simplifications can be applied if a strongly connected component contains either
only positive edges or if no atom depends positively on itself. The first case reflects
that the contained atoms are involved in a loop and the second that circular support is
impossible. An interesting topic for future investigation is whether the above conditions
can be refined using the richer structure of body-head dependency graphs, which, for
instance, allows for distinguishing between elementary and non-elementary loops.

6 Conclusion

The purpose of loop formulas is to falsify unfounded sets whose atoms circularly de-
pend upon each other in a given program. The detection of unfounded sets traces back
to well-founded semantics [16]. Basically, the well-founded semantics infers atoms that
are consequences of a program’s rules and falsifies unfounded sets. In accord with the
well-founded semantics, all atoms in an answer set are consequences and no atom is
unfounded. Complementary to [16] concentrating ongreatestunfounded sets, this pa-
per investigates indispensable unfounded sets whose falsification is essential for answer
set computation. To this end, we have introduced the notion of an elementary loop and
have described it using body-head dependency graphs. Although we cannot avoid the
theoretical barrier of exponentially many loops in the worst case, we have shown that el-
ementary loops provide necessary and sufficient criteria for characterizing answer sets.
Apart from their theoretical importance, our results have furthermore a practical im-
pact since they allow to focus the computation in ASP solvers to ultimately necessary
parts. An interesting topic for future research will be generalizing our new concept of
elementary loops to disjunctive programs, as has been done for general loops in [17].

6 A non-elementary loop may yield exponentially many elementary sub-loops. Thus, identify-
ing all elementary sub-loops might be intractable. However, the number of elementary loops
needed to cover the atoms in a (general) terminating loop of sizen is bound byn.

AcknowledgmentsWe are grateful to Enno Schultz and the anonymous referees for
their helpful comments, leading to a new presentation of our contribution. This work
was supported by DFG under grant SCHA 550/6-4 as well as the EC through IST-2001-
37004 WASP project.

References

1. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence138(2002) 181–234

2. Leone, N., Faber, W., Pfeifer, G., Eiter, T., Gottlob, G., Koch, C., Mateis, C., Perri, S., Scar-
cello, F.: The DLV system for knowledge representation and reasoning. ACM Transactions
on Computational Logic (2005) To appear.

3. Babovich, Y., Lifschitz, V.: Computing answer sets using program completion. Unpublished
draft. (2003)

4. Lin, F., Zhao, Y.: Assat: computing answer sets of a logic program by sat solvers. Artificial
Intelligence157(2004) 115–137

5. Lierler, Y., Maratea, M.: Cmodels-2: Sat-based answer sets solver enhanced to non-tight
programs. In Lifschitz, V., Niemelä, I., eds.: Proceedings of the Seventh International Con-
ference on Logic Programming and Nonmonotonic Reasoning. Springer (2004) 346–350

6. Clark, K.: Negation as failure. In Gallaire, H., Minker, J., eds.: Logic and Data Bases.
Plenum Press (1978) 293–322

7. Fages, F.: Consistency of clark’s completion and the existence of stable models. Journal of
Methods of Logic in Computer Science1 (1994) 51–60

8. Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Transactions on
Computational Logic (To appear.)

9. Linke, T.: Suitable graphs for answer set programming. In Vos, M.D., Provetti, A., eds.:
Proceedings of the Second International Workshop on Answer Set Programming. CEUR
Workshop Proceedings (2003) 15–28

10. Apt, K., Blair, H., Walker, A.: Towards a theory of declarative knowledge. In Minker, J., ed.:
Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann Publishers
(1987) 89–148

11. Przymusinski, T.: On the declarative semantics of deductive databases and logic programs.
In Minker, J., ed.: Foundations of Deductive Databases and Logic Programming. Morgan
Kaufmann Publishers (1988) 193–216

12. (http://www.cs.uni-potsdam.de/ ∼linke/nomore)
13. Papadimitriou, C., Sideri, M.: Default theories that always have extensions. Artificial Intel-

ligence69 (1994) 347–357
14. Janhunen, T.: Comparing the expressive powers of some syntactically restricted classes of

logic programs. In Lloyd, J., Dahl, V., Furbach, U., Kerber, M., Lau, K., Palamidessi, C.,
Pereira, L., Sagiv, Y., Stuckey, P., eds.: Proceedings of the First International Conference on
Computational Logic. Springer (2000) 852–866

15. Dix, J., Furbach, U., Niemelä, I.: Nonmonotonic reasoning: Towards efficient calculi and
implementations. In Robinson, J., Voronkov, A., eds.: Handbook of Automated Reasoning.
Elsevier and MIT Press (2001) 1241–1354

16. van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs.
Journal of the ACM38 (1991) 620–650

17. Lee, J., Lifschitz, V.: Loop formulas for disjunctive logic programs. In Palamidessi, C.,
ed.: Proceedings of 19th International Conference on Logic Programming. Springer (2003)
451–465

