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Abstract. We describe a new grounder system for logic programs under answer
set semantics, called GrinGo. Our approach combines and extends techniques
from the two primary grounding approaches of lparse and dlv. A major emphasis
lies on an extensible design that allows for an easy incorporation of new language
features in an efficient system environment.

1 Motivation, Features, and System Architecture

A major advantage of Answer Set Programming (ASP; [1]) is its rich modeling lan-
guage. Paired with high-performance solver technology, it has made ASP a popular
tool for declarative problem solving. As a consequence, all ASP solvers rely on sophis-
ticated preprocessing techniques for dealing with the rich input language. The primary
purpose of preprocessing is to accomplish an effective variable substitution in the input
program. This is why these preprocessors are often referred to as grounders.

Although there is meanwhile quite a variety of ASP solvers, there are merely two
major grounders, namely lparse [2] and dlv’s grounding component [3]. We enrich this
underrepresented area and present a new grounder, called GrinGo, that combines and
extends techniques from both aforementioned systems. A salient design principle of
GrinGo is its extensibility that aims at facilitating the incorporation of additional lan-
guage constructs. In more detail, GrinGo combines the following features:

– its input language features normal logic program rules, cardinality constraints, and
further lparse constructs,

– its parser is implemented by appeal to flex and bison++ paving an easy way for
language extensions,

– it offers the new class of λ-restricted programs (detailed in Section 2) that extends
lparse’s ω-restricted programs [4],

– its instantiation procedure uses back-jumping and improves on the technique used
in dlv’s grounder [5] by introducing binder-splitting (see Section 3),

– its primary output language currently is textual, as with dlv’s grounding component;
lparse format will be supported soon.

We identify four phases in the grounding process and base the core components
of GrinGo upon them. The primary GrinGo architecture is shown in Figure 1. First,
the parser checks the syntactical correctness of an input program and creates an inter-
nal representation of it. Subsequently, the checker verifies that the input program is λ-
restricted, so that the existence of a finite equivalent ground instantiation is guaranteed.
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Fig. 1. The GrinGo architecture

From this analysis, the checker also schedules the grounding tasks. The instantiator
computes ground instances of rules as scheduled. Note that the grounding procedure
of the instantiator is based on an enhanced version of dlv’s back-jumping algorithm.
The generated ground rules are then passed to the evaluator which identifies newly de-
rived ground instances of predicates. The evaluator also checks for potential program
simplifications and finally decides whether a ground rule is output or not.

2 λ-Restricted Programs

For simplicity, we confine ourselves to normal logic programs with function symbols
and first-order variables. Let F and V be disjoint sets of function and variable symbols,
respectively. As usual, a term is defined inductively: Each variable v ∈ V is a term, and
f(t1, . . . , tk) is a term if f/k ∈ F and t1, . . . , tk are terms. Note that the arity k of f/k
can be zero. For a term t, we let V (t) denote the set of all variables occurring in t.

A rule r over F and V has the form

p0(t10 , . . . , tk0) ← p1(t11 , . . . , tk1), . . . , pm(t1m , . . . , tkm),
not pm+1(t1m+1 , . . . , tkm+1), . . . ,not pn(t1n , . . . , tkn) , (1)

where p0/k0, . . . , pn/kn are predicate symbols, p0(t10 , . . . , tk0), . . . , pn(t1n , . . . , tkn)
are atoms, and tji is a term for 0 ≤ i ≤ n and 1 ≤ j ≤ ki. For an atom
p(t1, . . . , tk), we let P(p(t1, . . . , tk)) = p/k be its predicate, and V (p(t1, . . . , tk)) =
(V (t1) ∪ · · · ∪ V (tk)) be the set of its variables. For r as in (1), we define the head
as H (r) = p0(t10 , . . . , tk0). The sets of atoms, positive body atoms, predicates, and
variables, respectively, in r are denoted by A(r) = {pi(t1i , . . . , tki) | 0 ≤ i ≤ n},
B(r) = {pi(t1i , . . . , tki) | 1 ≤ i ≤ m}, P(r) = {P(a) | a ∈ A(r)}, and
V (r) =

⋃
a∈A(r) V (a). For a rule r and a variable v ∈ V , we let B(v, r) = {P(a) |

a ∈ B(r), v ∈ V (a)} be the set of binders for v in r. Note that the set of binders is
empty if v does not occur in any positive body atom of r.

A normal logic program Π over F and V is a finite set of rules over F and V . We
let P(Π) =

⋃
r∈Π P(r) be the set of predicates in Π . For a predicate p/k ∈ P(Π),

we let R(p/k) = {r ∈ Π | P(H (r)) = p/k} be the set of defining rules for p/k in Π .
Program Π is ground if V (r) = ∅ for all r ∈ Π . The semantics of ground programs is
given by their answer sets [1]. We denote by AS(Π) the set of all answer sets of Π .

We now introduce the notion of λ-restrictedness for normal logic programs.
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Definition 1. A normal logic program Π over F and V is λ-restricted if there is a level
mapping λ : P(Π) → N such that, for every predicate p/k ∈ P(Π), we have

max{

︷ ︸︸ ︷

max{
︷ ︸︸ ︷
min{λ(p′/k′) | p′/k′ ∈ B(v, r)

︸ ︷︷ ︸
} | v ∈ V (r)} | r ∈ R(p/k) } < λ(p/k) .

(We added over- and underbraces for the sake of easier readability.) Intuitively, λ-
restrictedness means that all variables in rules defining p/k are bound by predicates
p′/k′ such that λ(p′/k′) < λ(p/k). If this is the case, then the domains of rules in
R(p/k), i.e., their feasible ground instances, are completely determined by predicates
from lower levels than the one of p/k.

We now provide some properties of λ-restricted programs and compare them with
the program classes handled by lparse and dlv. Recall that lparse deals with ω-restricted
programs [2], while programs have to be safe with dlv [3].

Theorem 1. If a normal logic program Π is ω-restricted, then Π is λ-restricted.

Note that the converse of Theorem 1 does not hold. To see this, observe that the rules

a(1) b(X) ← a(X), c(X) c(X) ← a(X)
c(X) ← b(X)

constitute a λ-restricted program, but not an ω-restricted one. The cyclic definition of
b/1 and c/1 denies both predicates the status of a domain predicate (cf. [2]). This de-
prives rule c(X) ← b(X) from being ω-restricted. Unlike this, the λ-restrictedness of
the above program is witnessed by the level mapping λ = {a �→ 0, b �→ 1, c �→ 2}.

On the one hand, the class of λ-restricted programs is more general than that of
ω-restricted ones. On the other hand, there are safe programs (that is, all variables oc-
curring in a rule are bound by positive body atoms) that are not λ-restricted. In contrast
to safe programs, however, every λ-restricted program has a finite equivalent ground
instantiation, even in the presence of functions with non-zero arity.

Theorem 2. For every λ-restricted normal logic program Π , there is a finite ground
program Π ′ such that AS(Π ′) = AS (Π).

To see the difference between safe and λ-restricted programs, consider the following
program, which is safe, but not λ-restricted:

a(1) a(Y ) ← a(X), Y = X + 1

This program has no finite equivalent ground instantiation, which is tolerated by the
safeness criterion. To obtain a finite ground instantiation, dlv insists on the definition
of a maximum integer value maxint (in the presence of arithmetic operations, like +)
for restricting the possible constants to a finite number.

3 Back-Jumping Enhanced by Binder-Splitting

GrinGo’s grounding procedure is based on dlv’s back-jumping algorithm [5,6]. To avoid
the generation of redundant rules, this algorithm distinguishes atoms binding relevant
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Fig. 2. Back-jumping in (a) dlv and (b) GrinGo

and irrelevant variables. A variable is relevant in a rule, if it occurs in a literal over an
unsolved predicate; and a predicate is solved, if the truth value of each of its ground
instances is known. dlv’s back-jumping algorithm avoids revisiting binders of irrelevant
variables, whenever different substitutions for these variables result in rule instantia-
tions that only differ in solved literals.

The back-jumping algorithm of GrinGo goes a step further and distinguishes
between relevant and irrelevant variables within the same binder. The instantiator in-
ternally splits such binders into two new binders, the first one binding the relevant vari-
ables and the second one binding the irrelevant ones. While the original dlv algorithm
necessitates that a binder is revisited whenever it contains some relevant variables to
find all substitutions for these variables, the GrinGo approach allows us to jump over
the binder of the irrelevant variables, directly to the binder of the relevant ones. This
technique allows us to further reduce the generation of redundant rules.

To illustrate this, consider the rules

a(1, 1..3) b(X) ← a(X, Y ), not c(X) c(X) ← b(X) .

The predicate a/2 is solved before the ground instantiations of the second rule are com-
puted; the atom a(X, Y ) acts as binder for the relevant variable X and the irrelevant
variable Y . Figure 2 illustrates on the left how dlv’s back-jumping algorithm works;
it revisits the binder a(X, Y ) three times to create all possible substitutions and thus
outputs three times the same rule. The scheme on the right in Figure 2 exemplifies
GrinGo’s binder-splitting. The binder a(X, Y ) is replaced with a binder for the rele-
vant variable a(X, ) plus a second binder a(X, Y ) accounting for the bindings of the
irrelevant variable Y , depending on the substitution of X . Due to this binder-splitting,
it is now possible to jump directly from a solution back to the binder of the relevant
variable X , avoiding any further substitutions of Y . As no further substitutions of X
are found, the algorithm terminates and does not generate redundant ground rules.
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Table 1. GrinGo’s back-jumping versus dlv’s back-jumping and lparse’s backtracking

Sudoku
board lparse GrinGo

1 584.28 5.27
2 190.82 5.48
3 1878.91 5.44
4 1.29 5.40
5 42.13 5.14
6 94.78 5.40
7 10901.35 5.32
8 118.75 5.53
9 165.50 5.42

10 1.58 5.32
SUM 13979.39 53.72

Graph 3-Colorability
graph dlv lparse GrinGo

g40 05 0 0.00 57.30 0.01
g40 05 1 0.00 62.27 0.01
g40 05 2 0.24 39.82 4.01
g40 05 3 0.07 3.49 0.04
g40 05 4 0.00 4.49 0.01
g40 05 5 0.01 21.24 0.03
g40 05 6 0.02 159.69 0.00
g40 05 7 0.62 0.81 57.50
g40 05 8 0.00 1.36 1.12
g40 05 9 4.70 71.38 3.48

SUM 5.66 421.85 66.21

4 Experiments

We tested GrinGo [7] (V 0.0.1) together with dlv’s grounder (build BEN/Jul 14 2006)
and lparse (V 1.0.17) on benchmarks illustrating the computational impact of back-
jumping and binder-splitting. All tests were run on an Athlon XP 2800+ with 1024 MB
RAM; each result shows the average of 3 runs.

For demonstrating the effect of back-jumping, we use logic programs encoding Su-
doku games. An encoding consists of a set of facts, representing the numbers in Sudoku
board coordinates, viz. number(1..9), and a single rule that encodes all constraints
on a solution of the given Sudoku instance. All Sudoku instances are taken from news-
papers and have a single solution, the corresponding logic programs are available at [7].
The major rule contains 81 variables, which exceeds the maximum number of variables
that dlv allows in a single rule. We thus only compare our results with lparse,1 the latter
relying on systematic backtracking. However, given that dlv uses back-jumping as well,
we would expect it to perform at least as good as GrinGo (if it would not restrict the
number of allowed variables below the threshold of 81).

Further, we tested logic programs that encode Graph 3-Colorability as grounding
problem on a set of random graphs such that a valid coloring corresponds to the ground
instantiation of a program. We tested 10 randomly generated graphs, each having 40
nodes and a 5% probability that two nodes are connected by an edge.

Table 1 shows the run times of lparse, dlv, and GrinGo in seconds. Due to its
back-jumping technique, GrinGo’s performance is almost constant on the Sudoku
examples. In addition, GrinGo on most instances is faster than lparse, the latter
showing a great variance in run times. Also on the Graph 3-Colorability examples
the grounders using back-jumping techniques turn out to be more robust. The out-
lier of GrinGo on graph ‘g40 05 7’ however shows that also back-jumping needs a
good heuristics for the instantiation order among binders; this is a subject to future
improvement.

1 Note that the grounding procedures of lparse and GrinGo actually solve the Sudokus, and
could in principle be (ab)used for solving other constraint satisfaction problems as well.
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Table 2. The effect of GrinGo’s binder-splitting

dlv lparse GrinGo
n time rules time rules time rules

50 4.13 252500 0.95 252500 0.09 7500
75 24.77 849375 3.14 849375 0.18 16875

100 72.91 1020000 7.80 1020000 0.37 30000
125 166.14 3921875 15.86 3921875 0.68 46875
150 332.40 6772500 26.29 6772500 0.99 67500
175 — — 42.20 10749375 1.44 91875
200 — — 65.89 16040000 1.87 120000

For showing the effect of GrinGo’s binder-splitting, we use a suite of examples that
have a solved predicate with a large domain (viz. b/2) and rules in which this predicate
is used as the binder of both relevant and irrelevant variables:

b(1..n, 1..n).
p(X,Z) :- b(X,Y), b(Y,Z), not q(X,Z).
q(X,Z) :- b(X,Y), b(Y,Z), not p(X,Z).

The programs in this suite mainly aim at comparing dlv and GrinGo, both using back-
jumping but differing in binder-splitting; lparse is included as a reference. The results
for parameter n varying from 50 to 200 are provided in Table 2. It shows the run time
in seconds and the number of generated rules for dlv, lparse, and GrinGo. In fact, all
three systems output the same set of rules, differing only in the number of duplicates.
Interestingly, both dlv and lparse even produce the same collection of n2 + 2n3 rules
(ignoring compute statements in lparse’s output). A hyphen “—” indicates a (repro-
ducible) system failure. The results clearly show that dlv and lparse generate many
(duplicate) rules, avoided by GrinGo, and therefore perform poorly on these (artificial)
examples. This gives an indication on the computational prospect of binder-splitting.

A more general evaluation of all three grounder systems is an ongoing yet difficult
effort, given the small common fragment of the input languages.
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