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Abstract. We propose a model to manage the distributed computation of answer
sets within a general framework. This design incorporates a variety of software
and hardware architectures and allows its easy use with a diverse cadre of com-
putational elements. Starting from a generic algorithmic scheme, we develop a
platform for distributed answer set computation, describe its current state of im-
plementation, and give some experimental results.

1 Introduction

The success of Answer Set Programming (ASP) has been greatly boosted by the avail-
ability of highly efficient ASP solvers [1, 2]. However, its expanding range of appli-
cation creates an increasing demand for more powerful computational devices. We ad-
dress this by proposing a generic approach to distributed answer set solving that permits
exploitation of the increasing availability of clustered and/or multi-processor machines.

We observe that the search strategies of most current answer set solvers naturally
decompose into a deterministic and a non-deterministic part, borrowing from the well-
known DPLL satisfiability checking algorithm [3]. While the non-deterministic part is
usually realized through heuristically drivenchoiceoperations, the deterministic one
is normally based on advancedpropagationoperations, often amounting to the com-
putation of Fitting’s [4] or well-founded semantics [5]. Roughly, the idea is: starting
with an empty (partial) assignment of truth values to atoms, successively apply prop-
agation and choice operations, gradually extending a partial assignment, until finally a
total assignment, expressing an answer set, is obtained. The overall approach is made
precise in Algorithm 1, which closely followssmodels [1].4,5 When called with
SMODELS((∅, ∅)), it computes all answer sets of a logic program via backtracking.
A partial assignment is represented as a pair(X, Y ) of sets of atoms, in whichX and
Y contain those atoms assigned true and false, respectively. Informally, propagation is
done with the EXPAND function (in Line 1); choices are done with CHOOSE(in Line 4).
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The first if -statement accounts for invalid assignments indicating an inconsistency (in
Line 2), and the second, for the case of a total assignment representing an answer set
(in Line 3). Otherwise, a case-analysis is performed on the chosen atom,6 assuming it
to be true in Line 5 and false in Line 6, respectively.

Algorithm 1 : SMODELS

Global : A logic programΠ over alphabetA.
Input : A partial assignment(X, Y ).
Output : Print all answer sets ofΠ ∪ {← not A | A ∈ X} ∪ {← A | A ∈ Y }.
begin

(X ′, Y ′) ← EXPAND((X, Y ))1

if X ′ ∩ Y ′ 6= ∅ then return2

if X ′ ∪ Y ′ = A then3

print X ′

return
A ← CHOOSE(A \ (X ′ ∪ Y ′))4

SMODELS((X ′ ∪ {A}, Y ′))5

SMODELS((X ′, Y ′ ∪ {A}))6

end

Our approach takes advantage of this idea by relying on an encapsulated module
for propagation. For sake of comparability, this is currently embodied bysmodels ’
expansion procedure. Unlikesmodels , however, we are interested in distributing parts
of the search space, as invoked by the two recursive calls in Algorithm 1. To this end,
we propose a general approach, based on pioneering work in distributed tree search, that
accommodates a variety of different architectures for distributing the search for answer
sets over different processes and processors, respectively. Distributed tree search in ASP
solvers [6–8] has been significantly influenced by the general-purpose backtracking
package, DIB [9], the culmination of a decade of research in distributed tree search.
Also, much work has been carried out in the area of parallel logic programming, among
which our work is particularly analogous to or-parallelism; see [10, 11] for surveys of
this field. However, an important difference is that concurrent prolog implementations
seek to parallelize query evaluation, whereas our goal is to distribute the search for
answer sets. The latter is more closely related to distributed satisfiability checking (see
e.g. [12, 13]), although differing in the sense that it typically suffices for satisfiability
checking to find only one satisfying assignment. An early attempt to compute answer
sets in parallel was made in [14] by using the model generation theorem prover MGTP.

We start by developing an iterative enhancement of Algorithm 1 that is based on an
explicit representation of the search space. Whenever the system environment allows us
to delegate a part of this search space, it may be transferred to another computational
device. Although our early efforts have focused onsmodels as the computing engine,
we differ from [7] and [8] in that their design philosophy is to build distributed versions

6 In fact, smodels chooses a literal, thereby dynamically deciding the order between the two
calls in Line 5 and Line 6.



of smodels , whereas our approach (1) modularizes (and is thus independent of) the
propagation engine, and (2) incorporates a flexible distribution scheme, accommodat-
ing different distribution policies and distribution architectures, for instance. Regarding
the latter, the current system supports a multiple process (by forking) and a multiple
processor (by MPI [15]) architecture. A multi-threaded variant is currently under de-
velopment. The multi-process and multi-threaded architectures can also be run on a
multi-processor environment to achieve real speed-ups (compared to a one-processor
environment).

2 Definitions and notation

A logic programis a finite set of rules of the form

p0 ← p1, . . . , pm, not pm+1, . . . , not pn , (1)

wheren ≥ m ≥ 0, and eachpi (0 ≤ i ≤ n) is anatom in some alphabetA. Given
a ruler as in (1), we lethead(r) denote thehead(set),{p0}, of r andbody+(r) =
{p1, . . . , pm} andbody−(r) = {pm+1, . . . , pn}, the sets of positive and negativebody
literals, respectively. Also, we allow forintegrity constraints, wherehead(r) = ∅. The
reduct, ΠX , of a programΠ relative toa setX of atoms is defined as

ΠX = {head(r)← body+(r) | r ∈ Π, body−(r) ∩X = ∅} .

Then,7 a setX of atoms is ananswer setof a programΠ if X is a⊆–minimal model
of ΠX . We useAS (Π) for denoting the set of all answer sets of a programΠ.

As an example, consider programΠ, consisting of rules

p← not q, r ← p, s← r, not t,

q ← not p, r ← q, t← r, not s.
(2)

ProgramΠ has 4 answer sets,{p, r, s}, {p, r, t}, {q, r, s}, and{q, r, t}. Adding in-
tegrity constraint← q, r eliminates the two last sets.

For computing answer sets, we rely onpartial assignments, mapping atoms inA
onto true, false, or undefined. We represent such assignments as pairs(X, Y ) of sets of
atoms, in whichX contains all true atoms andY all false ones. An answer setX is then
represented by the total assignment(X,A\X). In general, a partial assignment(X, Y )
aims at capturing a subset of the answer sets of a programΠ, viz.

AS (X,Y )(Π) = {Z ∈ AS (Π) | X ⊆ Z,Z ∩ Y 6= ∅} .

3 The PLATYPUS approach

A key observation leading to our approach is that once the program along with its
alphabet is fixed, the outcome of Algorithm 1 depends only on the partial assignment

7 We use this definition since it easily includes integrity constraints. Note that any integrity
constraint← body(r) can be expressed asx← body(r), not x by using a new atomx.



given asInput . As made precise in theOutput field, the resulting answer sets are then
uniquely determined. Moreover, partial assignments provide a straightforward way for
partitioning the search space, as witnessed by Lines 5 and 6 in Algorithm 1. In fact,
incompatible partial assignments represent different parts of the search space.

For illustration, let us compute the answer sets of ProgramΠ, given in (2). Starting
with SMODELS((∅, ∅)) forces us to choose immediately among the undefined atoms
in {p, q, r, s, t} because(∅, ∅) cannot be extended by EXPAND. Choosingp makes
us call SMODELS first with ({p}, ∅) and then with(∅, {p}). This case-analysis parti-
tions the search space into two subspaces, the one containing all assignments making
p true and the other with all assignments makingp false. Following up the first call
with ({p}, ∅), the latter gets expanded to({p, r}, {q}) before a choice must be made
among{s, t}. Again, the search space becomes partitioned, and we obtain two total as-
signments,({p, r, s}, {q, t}) and({p, r, t}, {q, s}), whose first components are printed
as answer sets. The two remaining answer sets are obtained analogously, but with the
roles ofp andq interchanged.

For distributing the computation of answer sets, the idea is to decompose the search
space by means of partial assignments. For instance, instead of invoking a single pro-
cess via SMODELS((∅, ∅)), we may initiate two independent ones by calling SMODELS

on ({p}, ∅) and(∅, {p}), possibly even on different machines. Although this static dis-
tribution of the search space results in a fair division of labor, such a balance is hardly
achievable in general. To see this, consider the choice ofr instead ofp, resulting in
calling SMODELS with ({r}, ∅) and(∅, {r}). While the former process gets to compute
all 4 answer sets, the latter terminates almost immediately, since the EXPAND function
yields an invalid assignment.8 In such a case a dynamic redistribution of the search
space is clearly advantageous. That is, once the second process is terminated, the first
one may delegate some of its remaining tasks to the second one.

To this end, we propose a general approach that accommodates a variety of different
modes for distributing the search for answer sets over different processes and/or proces-
sors. We start by developing an iterative enhancement of Algorithm 1 that is based on an
explicit representation of the search space in terms of partial assignments. Algorithm 2
gives our generic PLATYPUS9 algorithm for distributed answer set solving. A principal
goal in its design is to allow for as muchgeneralityas possible. Specific instances con-
tain trade-offs, for example, arbitrary access to the search space versus compact spatial
representations of it. Another major design goal isminimal communicationin terms
of message size. To this end, PLATYPUS relies on the omnipresence of the given logic
programΠ along with its alphabetA as global parameters. Communication is limited
to passing partial assignments as representatives of parts of the search space.

The only input variableS delineates the initial search space given to a specific in-
stance of PLATYPUS. S is thus a set of partial assignments over alphabetA. Although
this explicit representation offers an extremely flexible access to the search space, it
must be handled with care since it grows exponentially in the worst case. Without

8 This nicely illustrates that the choice of the branching atom is more crucial in a distributed
setting.

9 platypus, small densely furred aquatic monotreme of Australia and Tasmania having a broad
bill and tail and webbed feet.



Algorithm 2 : PLATYPUS

Global : A logic programΠ over alphabetA.
Input : A nonempty setS of partial assignments.
Output : Print a subset of the answer sets ofΠ (cf. (3)).

repeat
(X, Y ) ← CHOOSE(S )1

S ← S \ {(X, Y )}2

(X ′, Y ′) ← EXPAND((X, Y ))3

if X ′ ∩ Y ′ = ∅ then4

if X ′ ∪ Y ′ = A then5

print X ′6

else
A ← CHOOSE(A \ (X ′ ∪ Y ′))7

S ← S ∪ { (X ′ ∪ {A}, Y ′), (X ′, Y ′ ∪ {A}) }8

S ← DELEGATE(S )9

until S = ∅

Line 9, Algorithm 2 computes all answer sets in
⋃

(X,Y )∈S AS (X,Y )(Π), or equiva-
lently, ⋃

(X,Y )∈S

AS (Π ∪ {← not A | A ∈ X} ∪ {← A | A ∈ Y }) . (3)

With Line 9, a subset of this set of answer sets is finally obtained (from a specific
PLATYPUS instance). Clearly, depending on which parts of the search space are re-
moved by delegation (see below), this algorithm is subject to incomplete and redundant
search behaviour, unless an appropriate delegation strategy is used.

A PLATYPUS instance iterates until its local search space has been processed. Be-
fore detailing the loop’s body, let us fix the formal behavior of the functions and proce-
dures used by PLATYPUS (in order of appearance).

CHOOSE: Given a set10 X, CHOOSE(X) gives somex ∈ X.
EXPAND: Given a partial assignment(X, Y ), EXPAND((X, Y )) computes a partial as-

signment(X ′, Y ′) such that
1. X ⊆ X ′ andY ⊆ Y ′,
2. AS (X′,Y ′)(Π) = AS (X,Y )(Π),
3. if X ′ ∩ Y ′ = ∅ andX ′ ∪ Y ′ = A, thenAS (X′,Y ′)(Π) = {X ′},

and furthermore(X ′, Y ′) can be closed under propagation principles such as those
based on well-founded semantics and contraposition [1].11

DELEGATE: Given a setX, DELEGATE(X) returns a subsetX ′ ⊆ X.

Both functions CHOOSE and DELEGATE are in principle non-deterministic selection
functions. As usual, CHOOSE is confined to a single element, whereas DELEGATE

10 The elements ofX are arbitrary in view of Lines 1 and 7.
11 In practice, propagation may even go beyond well-founded semantics, as for instance with

smodels ’s lookahead.



selects an entire subset. In sum, PLATYPUS adds two additional sources of non-
determinism. While the one in Line 1 is basically a “don’t care” choice, the one in
Line 9 must be handled with care since it removes assignments from the local search
space. The EXPAND function hosts the deterministic part of Algorithm 2; it is meant
to be accomplished by an off-the-shelf system that is used as a black-box providing
both sufficiently firm as well as efficient propagation operations which aim to reduce
the remaining local search space resulting from choice operations.

DELEGATE permits some answer set computation tasks embodied inS to be as-
signed to other processes and/or processors. The assignments returned in Line 9 have
not been delegated and thus remain inS . The removed assignments are either dealt with
by other PLATYPUS instances or even algorithms other than PLATYPUS. The elimina-
tion of search space constituents is a delicate operation insofar as we may lose complete-
ness or termination. For example, an implementation of DELEGATE that does not re-
assign all removed constituents is incomplete. Accordingly, passing certain constituents
around forever would lead to non-termination.12

For illustration, we present some concrete specifications of DELEGATE, given in
Algorithms 3 and 4. The common idea is that the system wide number of PLATYPUS

Algorithm 3 : DELEGATE1

Global : Two integersk, n indicating the current and maximum number of PLATYPUS

instances.
Input : A setS of partial assignments.
Output : A subset ofS .
begin

while (k < n) ∧ (S 6= ∅) do
(X, Y ) ← CHOOSE(S )
S ← S \ {(X, Y )}
k ← k + 1
distribute PLATYPUS({(X, Y )})

return S
end

instances is limited (byn). Variablek holds the current number of PLATYPUS instances.
Accordingly, in this specific setting,k must be declared in Algorithm 2 as a global vari-
able and decremented after each execution of therepeat loop. In Algorithm 3, the dele-
gation procedure tries to maximize the global number of PLATYPUS instances. Without
external interference (a changingk), DELEGATE1 tries to produce(n− k) new PLATY-
PUS instances. Each instance is created13 following one of a variety of strategies, for
instance, taking into account temporal or structural criteria on the partial assignments
in S as well as system-specific balance criteria. Algorithm 4 is less greedy insofar as
it “removes”14 a subset fromS and creates only a single new PLATYPUS instance. As

12 In fact, this cannot happen in a pure PLATYPUS setting, since at least one element is removed
by each PLATYPUS instance in Line 2.

13 To be precise, MPI instances are merely reinitialized; they live throughout the computation.
14 Given a setX, SPLIT(X) returns a partition(X1, X2) of X.



Algorithm 4 : DELEGATE2

Global : Two integersk, n indicating the current and maximum number of PLATYPUS

instances.
Input : A setS of partial assignments.
Output : A subset ofS .
begin

if k < n then
(S ,D)← SPLIT(S )
k ← k + 1
distribute PLATYPUS(D )

return S
end

with CHOOSEpreviously, SPLIT can be guided by various strategies, e.g. trying to share
the remaining search space equally among processes/processors in order to minimize
communication costs that result from delegation operations. Also, numerous mixtures
of both strategies can be envisaged. Both delegation procedures guarantee complete-
ness. To see this, it is enough to observe that every assignment and thus every part of
the search space is investigated by one PLATYPUS instance in one way or another. Also,
duplicate solutions are avoided by having exactly one solver investigate each part of the
search space.

k/n PLATYPUS I PLATYPUS II PLATYPUS III
{(∅, ∅)}

1/3 (∅, ∅)
{({s}, ∅), (∅, {s})}
{({s}, ∅)} {(∅, {s})}

2/3 ({s, r}, {t}) (∅, {s})
{({s, r, q}, {t}), ({s, r}, {t, q})} {({p}, {s}), (∅, {s, p})}

{({s, r, q}, {t})} {({p}, {s}), (∅, {s, p})} {({s, r}, {t, q})}
3/3 ({s, r, q}, {t, p}) ({p, r, t}, {s, q}) ({s, r, p}, {t, q})

∅ {(∅, {s, p})} ∅
{(∅, {s, p})}

1/3 ({r, t, q}, {s, p})
∅

0/3

Table 1.Three PLATYPUS instances computing the answer sets ofΠ2.

To illustrate, let us compute the answer sets of the program given in (2) in an en-
vironment with at most 3 PLATYPUS instances, using the delegation procedure in Al-
gorithm 4. Thedistribute procedure is used for creating new processes. Our instance
of SPLIT transfersb|S |/2c assignments to another PLATYPUS instance. These assign-
ments are overlined in Table 1, while the ones chosen in Lines 1 and 7 in Algorithm 2



are underlined. Theprint of an answer set (in Line 5) is indicated by boldface letters.
A cell in Table 1 represents an iteration in Algorithm 2. In each cell the first entry is
S after Line 1, the second presents the result of the EXPAND function, and the last
one isS before Line 9. Once the environment has been initialized, settingn = 3 and
k = 1 among other things, the first PLATYPUS instance is invoked with{(∅, ∅)}. After
the first iteration, its search space contains({s}, ∅), while (∅, {s}) is used to create a
second instance of PLATYPUS. Also, variablek is incremented by DELEGATE2. After
one more iteration, each PLATYPUS instance could potentially create yet another in-
stance. Since the maximum number of processes is limited to3, only one of them is
able to create a new PLATYPUS instance. Once this is donek equals3, which prevents
DELEGATE2 from creating any further processes. In our case, PLATYPUS I manages to
delegate({s, r}, {t, q}) while blocking any delegation by PLATYPUS II. The three pro-
cesses output their answer sets. Whereas the first and third terminate, having emptied
their search spaces, the second one iterates once more to compute the fourth and last
answer set. (No delegation is initiated sinceb|S |/2c = b1/2c = 0.)

4 Theplatypus platform

Current technology provides a large variety of software and hardware mechanisms for
distributed computing. Among them, we find single- and multi-threaded processes, mul-
tiple processes, as well as multiple processors, sometimes combined with multiple pro-
cesses and threads.

The goal of theplatypus platform is to provide an easy and flexible use of these
architectures for ASP. To begin with, we have implemented a multiple process and a
multiple processor variant ofplatypus . A multi-threaded variant is currently under
development. To enable the generality of the approach, theplatypus system is de-
signed in a strictly modular way. The central module consists of ablack-boxproviding
the functionality of the EXPAND function. This module provides a fixed interface that
permits wrapping different off-the-shelf propagation engines. A second module deals
with the search space given by variableS in Algorithms 2, 3, and 4. Last but not least,
distribution is handled by a dedicated control module fixing the respective implementa-
tion of thedistribute operation. That is, this module controls forking, threading or MPI.
With this module, each variant is equipped with a common set of distribution policies;
currently all of them are realized through controllers being variations of DELEGATE2

(cf. Algorithm 4), where SPLIT is replaced by CHOOSE. Hence, the currently imple-
mented policies vary the strategy of the CHOOSEoperation. Each policy depends upon
the underlying distribution capabilities of the software and hardware architectures.

The multiple process variant is implemented with theUNIX fork mechanism,
which creates a child process managed by the same operating system that controls the
parent process. The forking policy requires a local controller in each process to perform
the delegation task. Communication among the processes is accomplished via shared
memory. The forking policy provides an easily manageable framework to test design
alternatives and to experiment with low-level distribution policy decisions, such as re-
source saturation caused by having too many processes. The multiple processor variant
runs on a cluster and relies onThe Message Passing Interface(MPI [15]) library to per-



form the distribution to a process controlled by another operating system on a distinct
processor. As with forking, we rely on a local controller in each process to control the
delegation task; in addition, we use a global controller to manage the processes on the
separate processors and the communication among processes.

To reduce the size of partial assignments and thus of passed messages, we fol-
low [8] in storing only atoms whose truth values were assigned by a choice oper-
ation (cf. atomA in Lines 7 and 8 of Algorithm 2). Given an assignment(X, Y )
along with the subsetsXc ⊆ X andYc ⊆ Y of atoms treated in this way, we have
(X, Y ) = EXPAND((Xc, Yc)). Accordingly, some care must be taken when imple-
menting the tests in Lines 4 and 5. To this end, the current design foresees two signals
provided by the EXPAND module. The search space module (1) must support multiple
access modes for accommodating the varying choice policies in Lines 1 and 9 (or better
the subsequent delegation procedures) of Algorithm 2, and (2) must be handled with
care, since it may grow exponentially without appropriate restrictions. So that, at this
stage of the project, we can focus on issues arising from our distribution-oriented set-
ting, the current implementation is based on the design decision that a non-distributing
platypus instance must correspond to a traditional solver, as given in Algorithm 1.
This has the advantage that we obtain a “bottom-line” solver instance that we can use
for comparison with state-of-the-art solvers as well as all distributedplatypus in-
stances for measuring the respective trade-offs. To this end, we restrict the search space
(in S ) to a single branch of the search tree and implement the “local” choice opera-
tion in Line 1 of Algorithm 2 through a LIFO strategy. In this way, the “local” view
of the search space can be realized by stack-based operations. Unlike this, the second
access to the search space, described in the delegation procedures 3 and 4 is completely
generic. This allows us to integrate various delegation policies (cf. Section 5). Follow-
ing the above decision, our design also foresees the option of using a choice proposed
by a given EXPAND module for implementing Line 7 in Algorithm 2, provided that this
is supported by the underlying propagation engine.

Finally, let us detail some issues of the current implementation.platypus is writ-
ten in C++. Its major EXPAND module is based on thesmodels API. This also al-
lows us to take advantage ofsmodels ’ heuristics in view of Line 7 in Algorithm 2
(see above). Accordingly, this module requireslparse for parsing logic programs.
All experiments reported in Section 5 are conducted with this implementation of EX-
PAND. However, for guaranteeing modularity, we have also implemented other EXPAND

modules, among them the one of thenomore++ system [16]. While the distribution
architecture of aplatypus instance must be fixed at compile time, the respective pa-
rameters, like constantn in Algorithm 3, or delegation policies, such as the kind of the
delegated choice point, are set via command line options at run-time. More details are
given in the experimental section.

5 Experimental results

To illustrate the feasibility of our approach, we present in Tables 2 and 3 a selection of
experimental results obtained with the multi-process and the multi-processor versions
of platypus . As a point of reference, we mention that on all these testssmodels



platypus -p 1 -l s -p 2 -l s -p 3 -l s -p 4 -l s

color-5-10 6.44 (0) 3.54 (21.1) 2.55 (44.7) 2.12 (69.2)
color-5-15 349.07 (0)178.70 (36.5)120.24 (63.2)91.15 (99.8)
hamcyc-8 4.35 (0) 2.61 (30.9) 1.94 (55.4) 1.66 (87.1)
hamcyc-9 105.88 (0) 54.59 (40.6) 36.73 (88.3)28.13 (134.8)
pigeon-7-8 1.92 (0) 1.60 (38.5) 1.33 (68.5) 1.22 (92.7)
pigeon-7-9 7.44 (0) 4.49 (45.2) 3.35 (84.8) 2.83 (115.8)
pigeon-7-10 24.21 (0) 12.86 (49.0) 9.04 (99.3) 7.24 (142.6)
pigeon-7-11 71.40 (0) 34.93 (55.9) 23.73 (111.8)18.34 (165.2)
pigeon-7-12177.02 (0) 85.71 (60.5) 57.53 (124.2)44.04 (193.3)
pigeon-8-9 18.83 (0) 9.99 (46.3) 7.09 (94.7) 5.73 (138.8)
pigeon-8-10 87.45 (0) 43.23 (49.5) 29.22 (112.3)22.33 (163.4)
pigeon-9-10227.72 (0)107.14 (60.3) 71.14 (123.8)53.56 (189.2)
schur-11-5 1.50 (0) 1.15 (18.1) 0.82 (25.4) 0.71 (34.9)
schur-12-5 5.26 (0) 3.09 (19.6) 2.23 (34.9) 1.80 (48.0)
schur-13-5 22.53 (0) 11.78 (20.6) 8.07 (37.9) 6.22 (56.9)
schur-14-5 74.51 (0) 37.80 (19.9) 25.60 (46.0)19.25 (68.0)
schur-14-4 2.93 (0) 1.88 (16.4) 1.52 (41.9) 1.17 (46.0)
schur-15-4 8.02 (0) 4.54 (20.4) 3.23 (41.3) 2.55 (55.5)
schur-16-4 14.14 (0) 7.64 (24.1) 5.28 (43.9) 4.13 (62.3)
schur-17-4 32.50 (0) 16.92 (22.9) 11.50 (48.1) 8.82 (68.3)
schur-18-4 62.72 (0) 31.23 (21.8) 20.77 (52.8)15.75 (74.7)
schur-19-4 132.30 (0) 65.99 (22.6) 44.02 (54.2)33.24 (77.7)
schur-20-4 164.24 (0) 80.70 (26.1) 53.61 (60.5)40.09 (75.0)

Table 2. Data obtained for computingall answer sets with the multi-process version of
platypus .

is on average 1.62 times faster than the multi-process version ofplatypus limited to
one process. Apart fromplatypus ’ early stage of development, a certain overhead
is created by “double bookkeeping” due to the strict encapsulation of the EXPAND

module. In this way, we trade-off some speed for our modular design.
The multi-process data were generated using the forking architecture limited to 1 to

4 active processes on a quad processor underLinux , comprised of 4 Opteron 2.2GHz
processors with 8 GB shared RAM. The multi-processor tests ran on a cluster of 5 Pen-
tium III 1GHz PCs underLinux with 1 GB RAM each, with 1 to 4 active nodes and
one extra node serving as master.15 All of our timing results reflect the average elapsed
time (in seconds) of the launching process/processor, respectively, over 20 runs, each
computingall answer sets. Timing excludes parsing and printing time. Similarly, the
number in parentheses indicates the average number of forks/messages passed, respec-
tively.

The first column of Tables 2 and 3 lists the benchmarks, largely taken from the
benchmarking site at [17]. Columns 2 to 5 give the forking architecture results, and
columns 6 to 9 contain the data obtained from the cluster using MPI. The first row pro-

15 Note that the former processor type is much faster than the latter.



platypus -p 1 -l s -p 2 -l s -p 3 -l s -p 4 -l s

color-5-10 28.18 (4) 14.57 (119.0) 9.99 (245.1) 7.74 (385.4)
color-5-15 1632.91 (4)821.83 (120.3)549.68 (258.4)413.75 (616.5)
hamcyc-8 16.59 (4) 8.89 (146.8) 6.10 (312.4) 4.77 (454.3)
hamcyc-9 407.43 (4)202.16 (219.8)135.96 (585.8)102.80 (993.6)
pigeon-7-8 6.37 (4) 4.01 (82.8) 3.23 (176.6) 2.87 (243.3)
pigeon-7-9 25.53 (4) 13.99 (131.8) 10.18 (251.6) 8.54 (349.1)
pigeon-7-10 84.28 (4) 42.92 (167.3) 30.08 (335.3) 24.01 (546.9)
pigeon-7-11 238.62 (4)117.46 (198.3) 81.07 (476.1) 62.73 (750.0)
pigeon-7-12 590.83 (4)291.03 (219.3)197.33 (581.1)150.43 (972.6)
pigeon-8-9 62.70 (4) 32.22 (146.3) 22.71 (281.8) 18.44 (486.0)
pigeon-8-10 282.19 (4)139.72 (176.8) 95.51 (453.8) 73.75 (753.7)
pigeon-9-10 695.56 (4)341.25 (214.0)230.35 (586.1)175.02 (1024.1)
schur-11-5 5.45 (4) 3.19 (40.5) 2.67 (83.7) 2.27 (133.6)
schur-12-5 18.85 (4) 9.88 (30.3) 7.19 (81.9) 5.95 (195.6)
schur-13-5 78.90 (4) 40.16 (48.5) 27.36 (104.5) 21.30 (247.5)
schur-14-5 254.78 (4)129.08 (70.5) 86.70 (106.8) 66.05 (297.1)
schur-14-4 10.26 (4) 5.55 (27.5) 4.38 (112.9) 3.77 (187.2)
schur-15-4 27.83 (4) 14.56 (44.5) 10.24 (102.7) 8.52 (251.3)
schur-16-4 48.56 (4) 24.92 (56.3) 17.27 (122.8) 14.16 (291.6)
schur-17-4 113.29 (4) 57.61 (65.8) 39.47 (164.9) 30.36 (291.3)
schur-18-4 206.20 (4)103.74 (47.5) 70.19 (172.5) 53.92 (369.6)
schur-19-4 450.43 (4)225.75 (75.3)151.40 (226.6)113.60 (306.2)
schur-20-4 539.21 (4)270.21 (70.0)180.97 (237.8)135.70 (335.9)

Table 3. Data obtained for computingall answer sets with the multi-processor version of
platypus .

vides the command line options with whichplatypus was invoked. The-p option
indicates the maximum number of processes or processors, respectively (n in Algo-
rithms 3 and 4). And-l stands for the delegation policy. All listed tests are run in
shallowmode, delegating the smallest among all of the delegatable partial assignments
available to the delegation procedure. The current system also supports adeep, middle,
and r andommode. Delegating small partial assignments is theoretically reasonable
since they represent the putatively largest parts of the search space, thus each delegated
platypus instance will be given the largest task to perform, hence minimizing the
amount of delegation. Our early experiments and similar observations reported in [8]
support this view. In fact, selecting the largest assignment (via option-l d ) results in
much more forking/message passing and much poorer performance. For instance, us-
ing the forking architecture, we get on average for schur-20-4 with options-p 4 -l d a
time of 155.43s and a count of 322 forks.

The results in Tables 2 and 3 are indicative of what is expected from distributed
computation. When looking at each benchmark, the forking and MPI experiments show
a qualitatively consistent 2-, 3-, and 4-times speed-up when doubling, tripling, and qua-
drupling the number of processors, with only minor exceptions. The more substantial



the benchmark, the more clear-cut the speed-up. A more global and more quantitative
sense of the speed-up is provided by the sum of times16 for all benchmarks for each
-p setting compared to “-p 1 ”. These ratios are: 1, 1.98, 2.93, 3.85, and 1, 1.99, 2.96,
3.88 for forking and MPI, respectively. With this in mind, we observe on computation-
ally undemanding benchmarks, like hamcyc-8, pigeon-7-8, or schur-11-5 no real gain.
In fact, our overall experiments show that the less substantial the benchmark, the more
insignificant the speed-up as the overhead caused by distribution dominates the actual
search time. Similarly, the sum of messages increases from “-p 2 ” to “ -p 3 ” and to
“ -p 4 ” by 2.03, 2.95, and by 2.41, 4.16, respectively for forking and MPI. To interpret
the number of messages in Tables 2 and 3, the one in the forking results reflects the num-
ber of delegations, whereas the number of messages in our MPI setting include2(n+1)
start-up and shut-down messages plus 5 handshaking messages for each delegation.

6 Summary

Conceptually, the PLATYPUS approach offers a general and flexible framework for man-
aging the distributed computation of answer sets, incorporating a variety of different
software and hardware architectures for distribution. The major design decisions were
to minimize the number and size of the messages passed by appeal to partial assign-
ments and to abstract from a serial ASP propagation system. The latter allows us to
take advantage of efficient off-the-shelf engines, developed within the ASP community
for the non-distributive case.

Meanwhile, theplatypus system furnishes a platform for implementing vari-
ous forms of distribution. All versions ofplatypus share the same code, except for
the control module matching the specific distribution architecture. The current system
supports a multiple process architecture, using theUNIX forking mechanism, and a
multiple processor architecture, running on a cluster via MPI. A multi-threaded variant
is currently under development. Moreover,platypus supports different distribution
policies, being open to further extensions through well-defined interfaces.

Finally, the encouraging results from our experiments suggest that our generic ap-
proach to the distributed computation of answer sets offers a powerful computational
enhancement to classical answer set solvers. In particular, we have seen a virtually
optimal speed-up on substantial benchmarks, that is, the speed-up nearly matched the
number of processes or processors, respectively.

The platypus platform is freely available on the web [18]. The current system
provides us with the necessary infrastructure for manifold future investigations into
distributed answer set solving. This concerns the whole spectrum of different instances
of the procedures CHOOSE and SPLIT, on the one side, anddistribute on the other.
A systematic study of different options in view of dynamic load balancing will be a
major issue of future experimental research. In fact, the given set of benchmarks was
chosen as a representative selection demonstrating the feasibility of our approach. In
view of load balancing, it will be interesting to see how the type of benchmark (and
thus the underlying search space) is related to specific distribution schemes. Also, we

16 Of course, these ratios are biased by the more substantial benchmarks, but these are the more
reasonable indicators of the speed-up.



have so far concentrated on findingall answer sets of a given program. When extending
the system for finding some answer set(s) only, the structure of the search space will
become much more important.
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