
Clingraph: A System for ASP-based

Visualization∗

SUSANA HAHN
University of Potsdam, Germany, and Potassco Solutions

ORKUNT SABUNCU
TED University, Turkey, and Potassco Solutions

TORSTEN SCHAUB, TOBIAS STOLZMANN
University of Potsdam, Germany, and Potassco Solutions

Abstract

We present the ASP-based visualization tool clingraph, which aims at
visualizing various concepts of ASP by means of ASP itself. This idea
traces back to the aspviz tool and clingraph redevelops and extends it in
the context of modern ASP systems. More precisely, clingraph takes graph
specifications in terms of ASP facts and hands them over to the graph
visualization system graphviz. The use of ASP provides a great interface
between logic programs and/or answer sets and their visualization. Also,
clingraph offers a Python API that extends this ease of interfacing to
clingo’s API, and in turn to connect and monitor various aspects of the
solving process.

1 Introduction

With the advance of Answer Set Programming (ASP; [8]) into more and more
complex application domains, also the need for inspecting problems as well as
their solution increases significantly. The intrinsic difficulty lies in the fact that
ASP constitutes a general problem solving paradigm, whereas the wide spectrum
of applications rather calls for customized presentations.

We address this by taking up the basic idea of aspviz [3], to visualize ASP
by means of ASP itself, and extend it in the context of modern ASP systems.
The resulting system is called clingraph (v1.1.0).1,2 The common idea is to
specify a visualization in terms of a logic program that defines special atoms
capturing graphic elements. This allows us to customize the presentation of

∗This paper is an extended version of an article presented at LPNMR’22 (Hahn et al. 2022).
1https://github.com/potassco/clingraph
2https://clingraph.readthedocs.io

1

ar
X

iv
:2

30
3.

10
11

8v
1

 [
cs

.A
I]

 1
7

M
ar

 2
02

3

an application domain by means of ASP, and thus to easily connect with the
problem specification and its solutions.

The visualization in clingraph rests upon graph structures that are passed on
to the graph layout system graphviz.3 To this end, clingraph takes—in its basic
setting—a set of facts over predicates graph, node, edge, and attr as input,
and produces an output visualizing the induced graph structure.

As a simple example, consider the graph coloring problem in Listing 1.

1 node (1..6).

2 edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5).

3 edge(2,6). edge(3,4). edge(3,5). edge(5,6).

4 color(red; green; blue).

6 { assign(N, C) : color(C) } = 1 :- node(N).

7 :- edge(N, M), assign(N, C), assign(M, C).

9 #show node /1.

10 #show edge((N,M)) : edge(N, M).

11 #show attr(graph nodes, default, style, filled).

12 #show attr(node, N, color, C) : assign(N, C).

Listing 1: Graph coloring instance, encoding and display (color.lp)

The actual problem instance and encoding are given in Lines 1–4 and 6–7,
respectively. However, of particular interest are Lines 9–12 that use #show

directives to translate the resulting graph colorings into clingraph’s input format.
While Line 9 and 10 account for the underlying graph, the two remaining lines
comprise instructions to graphviz. Line 11 fixes the layout of graph nodes. More
interestingly, Line 12 translates the obtained graph coloring to layout instructions
for graphviz. Our omission of an atom over graph/1 groups all entities under a
default graph labeled default (which can be changed via an option; similarly,
graphs are taken to be undirected unless changed by option --type).

Launching clingo so that only the resulting stable model is obtained as a set
of facts allows us to visualize the result via clingraph:

clingo --outf=0 -V0 --out -atomf =%s. color.lp | head -n1 | \

clingraph --out=render --format=png

The used options suppress clingo output and transform atoms into facts; the
intermediate UNIX command extracts the line comprising the stable model.
Note that one can also use a solver other than clingo to generate the stable
model in the expected form. The final call to clingraph produces a file in PNG
format, shown in Figure 1.

Obviously, the above proceeding only reflects the very basic functionality
of clingraph. We elaborate upon its extended functionality in the next section
and present a series of illustrative cases studies in Section 3. They range from
the visualization of stable models, including animated dynamic solutions as well
as interactive ones, over visualizing the actual solving process, to the visual
inspection of the structure of logic programs. Finally, we present in Section 4

3https://graphviz.org

2

Figure 1: Visualization of the (first) stable model of the logic program in Listing 1

some support for generating strings by using a template engine. We summarize
our approach and relate it to others’ in Section 6.

2 Clingraph

In its most basic setting, clingraph can be regarded as a front-end to graphviz
that relies on the fact format sketched above. In fact, the full-fledged version
of the fact format allows for specifying multiple graphs as well as subgraphs.
The former is done by supplying several instances of predicate graph/1 whose
only argument provides an identifier for regrouping all elements belonging to
the graph at hand. To that effect, there are also binary versions of predicates
node and edge, whose second argument refers to the encompassing graph. For
example, the following facts describe n graphs, each with one edge connecting
two nodes.

1 id(1..n).

2 graph(g(X)) :- id(X).

3 node(n((a;b), X),g(X)) :- id(X).

4 edge((n(a,X),n(b,X)),g(X)) :- id(X).

Multiple graphs are of particular interest when visualizing dynamic domains, as
in planning, where each graph may represent a state of the world. We illustrate
this in Section 3 and show how the solution to a planning problem can be turned
into an animation.

Subgraphs4 are specified by the binary version of graph/2, whose second
argument indicates the super-ordinate graph. For instance, replacing Line 2
above by the following two rules makes g(X) a subgraph of g(X+1) for X=1..n-1.

graph(g(X)) :- id(X), not id(X+1).

graph(g(X),g(X+1)) :- id(X), id(X+1).

Clingraph allows for selecting designated graphs by supplying their identifier
to option --select-graph; several ones are selected by repeating the option
with the respective identifiers on the command line.

As mentioned, the quaternary predicate attr/4 describes properties of graph
elements; this includes all attributes of graphviz. The first argument fixes the

4Subgraphs correspond to clusters in graphviz.

3

type of the element, namely, graph, node, and edge, along with keywords
graph_nodes and graph_edges to refer to all nodes and edges of a graph. The
second argument gives the identifier of the element, and the last two provide the
name and value of the graphviz attribute. Some attributes, mainly labels, are
often constructed by concatenating multiple values. We simplify this burden by
providing an integration with a template engine to allow string formatting. In
Section 4, we describe this extension in detail.

In order to avoid name clashes, clingraph offers the option --prefix to
change all graph-oriented predicates by prepending a common prefix. For in-
stance, --prefix=’viz-’ changes the dedicated predicate names to viz-graph,
viz-node, viz-edge, and viz-attr while maintaining their arities.

The more interesting use cases emerge by using visualization encodings. While
in our introductory example, the latter was mimicked by #show statements, in
general, a visualization encoding can be an arbitrary logic program producing
atoms over the four graph-oriented predicates. Obviously, when it comes to visu-
alization, a given problem encoding can then be supplemented with a dedicated
visualization encoding, whose output is then visualized by clingraph as shown in
the introductory section.

In practice, however, it turns out that this joint approach often results in a
significant deceleration of the solving process. Rather, it is often advantageous
to resort to a sequential approach, in which the stable models of the problem
encoding are passed to a visualization encoding. This use case is supported by
clingraph with extra functionality when using the ASP system clingo. More
precisely, this functionality relies upon the clingo feature to combine the output
of a run, possibly comprising various stable models, in a single json object.5 To
this end, clingraph offers the option --select-model to select one or multiple
stable models from the json object. Multiple models are selected by repeating
the option with the respective number.

To illustrate this, let us replace Line 1 above by

{ id(1..n) } = 1.

to produce n stable models with one graph each, rather than a single model
with n graphs as above. The handover of all stable models of the resulting
logic program in multiple.lp to clingraph can then be done by the following
command:

clingo --outf=2 -c n=10 0 multiple.lp | \

clingraph --out=tex --select -model=0 --select -model=9

The option --outf=2 instructs clingo to produce a single json object as output.
We request all 10 stable models via ‘-c n=10 0’. Then, clingraph produces a
LATEX file depicting the graphs described in the first and tenth stable model.

In the quite frequent case that the stable models are produced exclusively
by the problem encoding, an explicit visualization encoding can be supplied
via option --viz-encoding to make clingraph internally produce the graphic
representation from the given stable models employing the clingo API. To ease

5https://www.json.org

4

the development of visualization encodings, clingraph also provides a set of
external Python functions (see Section 3 for an example).

Just like clingraph’s input, also its output may consist of one or several graph
representations. The specific representation is controlled by option --out that
can take the following values:

• facts produces the facts obtained after preprocessing (default)

• dot produces graph representations in the language DOT

• render generates images with the rendering method of graphviz

• animate generates a GIF after rendering

• tex produces a LATEX file

The default option facts allows us to inspect the processed input to clingraph in
fact format. This involves the elimination of atoms irrelevant to clingraph as well
as the normalization of the graph representation (e.g., turning unary predicates
node and edge into binary ones, etc.). Options dot and tex result in text-based
descriptions of graphs in the languages DOT and LATEX. These formats allows for
further post-processing and editing upon document integration. The LATEX file is
produced with dot2tex.6 Arguments to dot2tex can be passed through clingraph
via --tex-param. At long last, the options render and animate synthesize
images for the graphs at hand. While the former aims at generating one image
per graph, the latter allows us to combine several graphs in an animation. The
format of a rendered graph is determined by option --format; it defaults to
PDF and alternative formats include PNG and SVG (cf. Section 3.3). Animation
results in a GIF file. It is supported by options --fps to fix the number of frames
per second and --sort to fix the order of the graphs’ images in the resulting
animation. The latter provides a handful of alternatives to describe the order in
terms of the graph identifiers.

Also, it is worth mentioning that clingraph’s option --engine allows us to
choose among the eight layout engines of graphviz ;7 it defaults to dot which is
optimized for drawing directed graphs.

Last but not least, clingraph also offers an application programming interface
(API) for Python. Besides graphviz, it heavily relies on clorm,8 a Python library
providing an Object Relational Mapping (ORM) interface to clingo. Accordingly,
the major components of clingraph’s API are its Factbase class, providing
functionality for manipulating sets of facts via clorm, and the graphviz package,
gathering functionality for interfacing to graphviz. We refer the interested reader
to the API documentation for further details.9 In conjunction with clingo, the
API can be used for visualizing the solving process. Two natural interfaces for
this are provided by the on_model callback of clingo’s solve method as well

6https://dot2tex.readthedocs.io
7http://www.graphviz.org/docs/layouts
8https://github.com/potassco/clorm
9https://clingraph.readthedocs.io/en/latest/clingraph/api.html

5

1 1 { queen(I,1..n) } 1 :- I = 1..n.

2 1 { queen (1.. n,J) } 1 :- J = 1..n.

3 :- 2 { queen(D-J,J) }, D = 2..2*n.

4 :- 2 { queen(D+J,J) }, D = 1-n..n-1.

6 cell (1.. n,1..n).

Listing 2: Queens puzzle (queens.lp)

clingo’s Propagator class. For example, the former would allow for visualizing
the intermediate stable models obtained when converging to an optimal model
during optimization. The latter provides an even more fine-grained approach
that allows for monitoring the search process by visualizing partial assignments
(cf. Section 3.4).

3 Case studies

In this section, we list several case studies as examples that showcase various
features of clingraph. Our first example, in Section 3.1, visualizes a solution of
the well-known Queens puzzle. The next one, in Section 3.2, aims at visualizing
a dynamic problem of a robotic intra-logistics scenario where the resulting
animation points out temporal aspects of the problem. Then, in Section 3.3, we
explore interactivity in visualizations via clingraph’s SVG extension. Finally,
the last two case studies concentrate on visualizing aspects other than solutions
of a problem. To that end, these approaches visualize the solving process of the
solver (Section 3.4) and the structure of the input program (Section 3.5).

Many of these case studies need complex attributes, mainly labels, which
are composed of various values. Thanks to the template engine integrated in
clingraph, one can specify such an attribute conveniently by a template string
having variables. Then, separate rules may set values of these variables in a
modular way. Note that details on the usage of templates can be found in
Section 4.

The interested reader is referred for further details on these examples and
many others to clingraph’s distribution.10

3.1 Visualizing a solution of the Queens puzzle

As a first example, consider the encoding of the Queens puzzle in Listing 2.11

The idea is to place n queens on an n × n chessboard so that no two queens
attack one another. A solution is captured by atoms over predicate queen/2.
The one comprised in the first stable model of queens.lp for n=5 is depicted in
Figure 2. First of all, we note that the actual graph is laid out as a 5× 5 grid of
white and gray squares. Each atom queen(x,y) is then represented by putting

10https://github.com/potassco/clingraph/tree/master/examples
11https://github.com/potassco/clingraph/tree/master/examples/queens

6

(4,4)

(5,3)

(4,2)

(1,1)

(2,5)

(3,2)

(3,3)

(4,5)

(1,3)

(4,1)

(3,4)

(2,3)

(5,4)

(5,5)

(2,1)

♕

♕
(1,2) ♕ (5,2)

(1,5)

(3,1)

(2,4)♕

♕

Figure 2: Visualization of (first) stable model of the logic program in Listing 2

1 node((X,Y)) :- cell(X,Y).

3 attr(node,(X,Y),width,1) :- cell(X,Y).

4 attr(node,(X,Y),shape,square) :- cell(X,Y).

5 attr(node,(X,Y),style,filled) :- cell(X,Y).

6 attr(node,(X,Y),fillcolor,gray) :- cell(X,Y),(X+Y)\2 = 0.

7 attr(node,(X,Y),fillcolor,white) :- cell(X,Y),(X+Y)\2 != 0.

8 attr(node,(X,Y),fontsize,"50") :- queen(X,Y).

9 attr(node,(X,Y),label,"Q") :- queen(X,Y).

10 attr(node,(X,Y),pos,@pos(X,Y)) :- cell(X,Y).

Listing 3: Visualization encoding for Queens puzzle (viz.lp)

the symbol Q on the square with coordinate (x, y). All other squares are simply
labeled with their actual coordinate.

The visualization encoding producing the chessboard in Figure 2 is given in
Listing 3; it is used to generate the PDF in Figure 2 in the following way.

clingo queens.lp -c n=5 --outf=2 | \

clingraph --viz -encoding=viz.lp --out=render --engine=neato

To better understand the visualization encoding, it is important to realize that we
use neato as layout engine, since it is better-suited for dealing with coordinates
than the default engine dot.

Let us now have a closer look at the encoding in Listing 3. Interestingly, our
graph consists of nodes only; no edges are provided. This is because nodes are
explicitly positioned and no edges are needed to connect them. More precisely,
one node is introduced in Line 1 for each cell of the chessboard.12 The remainder
of the encoding is concerned with the layout and positioning of each individual
node, as reflected by the first and second argument of all remaining atoms over
attr/4. This is done in a straightforward way in Lines 3 to 5 to fix the width,
shape, and style of each node. Line 6 and 7 care about the alternating coloration

12Strictly speaking, the definition of predicate cell/2 belongs to the visualization encoding.
Nonetheless, we add it to the problem encoding since the dimension of the board, viz. n, is
unavailable in the visualization encoding. This is a drawback of the sequential approach:
information must be shared via the stable models.

7

of nodes, depending on whether the sum of their coordinates is even or odd. The
next two lines deal with cells occupied by queens. Unlike the previous rules that
only refer to the problem instance, here the derived attributes depend on the
obtained solution. That is, for each atom queen(x,y), Line 8 fixes the fontsize
of the label Q attributed to node (x,y) in Line 9. Whenever no label is
given to a node, its name is used instead, as witnessed by Figure 2. Finally,
Line 10 handles the positioning of nodes. In neato, positions are formatted by
two comma-separated numbers and entered in a node’s pos attribute. If an
exclamation mark ‘!’ is given as a suffix, the node is also pinned down. The
necessary transformation from pairs of terms is implemented by the external
Python function pos(x,y) provided by clingraph. This function turns a node
identifier (x,y) into a string of form "x,y!". For each node, the result is then
inserted as the fourth argument of predicate attr/4 in Line 10.

3.2 Visualizing dynamic problems

As a second example, let us look at a dynamic problem whose solutions can
be visualized in terms of animations. To this end, we have chosen a robotic
intra-logistics scenario from the asprilo framework [4]. This scenario amounts to
an extended multi-agent pathfinding problem having robots transport shelves to
picking stations and back somewhere. The goal is to satisfy a batch of orders
by transporting shelves covering all requested products to the picking station.
For brevity, we do not reproduce the actual problem encoding13 here and rather
restrict our attention to the input to the visualization encoding. The input
consists of action and fluent atoms accounting for a solution and how it progresses
the problem scenario over time, namely,

• move(robot(r),(dx,dy),t)
14 and

• position(o,(x,y),t) for o among robot(r), shelf(s), and station(p).

A move atom indicates that a robot r moves in the cardinal direction (dx,dy) at
time step t (for dx, dy ∈ {−1, 0, 1} such that |dx + dy| = 1). A position atom
tells us that object o is at position (x,y) at time step t. All atoms sharing a
common time step capture a state induced by the resulting plan.

The idea of the visualization encoding is now to depict a sequence of such
states by combining the visualizations of individual states in an animation. Each
state is represented by a graph that lays out the grid structure of a warehouse.
We use consecutive time steps to identify and to order these graphs. This results
in an atom graph(t) for each time step t. Similarly, we identify nodes with their
coordinate along with a timestamp. This is necessary because nodes require a
unique identifier across all (sub)graphs. As well, we use edges indexed by time
steps to trace (the last) movements.

• node(((x,y),t),t)

13https://github.com/potassco/asprilo-encodings
14We refrain from visualizing pickup and putdown actions, and rather represent them

implicitly.

8

• edge((((x′,y′),t),((x′ + dx,y
′ + dy),t)),t)

The first atom expresses that node ((x,y),t) belongs to graph t. Simi-
larly, the second one tells us that the edge from node ((x′,y′),t) to node
((x′ + dx,y

′ + dy),t) belongs to graph t. It is induced by an action move(robot(r),(dx,dy),t)
and its precondition position(robot(r),(x′,y′),t− 1).

Having settled the representation of graphs along with their nodes and edges,
the rest of the visualization encoding mainly deals with setting their attributes.
To see this, consider Table 1, giving excerpts of the actual visualization encoding

10 free(P,T) :- not position(,P,T), position(P), step(T).

12 occo(P,T,robot(R)) :- position(robot(R),P,T),
13 not position(station(),P,T),
14 not position(shelf(),P,T).

19 graph(T) :- step(T).

27 node((P,T),T) :- position(P), step(T).

30 edge ((((X,Y),T),((X+DX,Y+DY),T)),T) :- move(robot(R),(DX,DY),T),
31 position(robot(R),(X,Y),T -1).

39 attr(node,(P,T),label,"R{{ robot }}") :- position(robot(R),P,T), not position(shelf(),P,T).
40 attr(node,(P,T),label,"S{{ shelf }}") :- not position(robot(),P,T), position(shelf(S),P,T).
41 attr(node,(P,T),label,"R{{ robot }}S{{ shelf }}") :- position(robot(R),P,T),
42 position(shelf(S),P,T).
43 attr(node,(P,T),(label,robot),R) :- position(robot(R),P,T).
44 attr(node,(P,T),(label,shelf),S) :- position(shelf(S),P,T).

47 attr(node,(P,T),shape,"point") :- free(P,T).

50 attr(node,(P,T),shape,"circle") :- occo(P,T,robot()).

53 attr(node,(P,T),color,white) :- free(P,T).

59 attr(node,(P,T),colorscheme,"blues9") :- occo(P,T,robot()).
60 attr(node,(P,T),fillcolor,R) :- occo(P,T,robot(R)).

Table 1: Selected lines from the visualization encoding for an asprilo scenario
(viz-asprilo.lp)

(using line numbers in the full encoding; lines in between have been dropped for
brevity).15 The definition of graphs, nodes, and edges is given in Line 19, Line 27,
and Line 30-31. Let us discuss the remaining lines of interest of viz-asprilo.lp
by inspecting some features of a visualization, produced as follows.

clingo asprilo.lp instance.lp -c horizon =19 --outf=2 | \

clingraph --viz -encoding=viz -asprilo.lp --engine=neato \

--out=animate --sort=asc -int \

--select -model =0 --type=digraph

The initial call to clingo takes the problem encoding and instance and yields a
plan of length 19, executed on a 7× 7 grid with three robots, three shelves, and
one picking station. The individual 20 images underlying the resulting animation
are given in Figure 3. At the beginning, robots are represented by solid blue
circles, shelves by solid orange squares, and the only picking station by a solid
green circle. This layout changes in the course of the plan.

15https://github.com/potassco/clingraph/tree/master/examples/asprilo

9

S1

S2 S3

R1 R2 R3

S1

S2 S3

R3

R1 R2

S1

S2 S3

R3

R1 R2

S1

R3 S2 S3

R1

R2

R3S1

S2 S3

R1

R2

R3S1

R1 S2 S3

R2

R3S1

R1 R2S2 S3

R3S1

R1S2 R2S3

R3S1

R1S2 R2S3

R3S1

R2S3

R1S2

R3S1

R1S2 R2S3

R3S1

R1S2 R2S3

R3S1 R1S2

R2S3

R3S1 R1S2 R2S3

R3S1

R2S3

R1S2

R2S3

R3S1 R1S2

R2S3

R3S1 R1S2

R2S3

R3S1 R1S2 R2S3R3S1 S2

R1

R3S1 R2S3 S2

R1

Figure 3: Individual graph representations making up an animated plan

Let us explain how this works by focusing on unoccupied nodes and robots;
shelves and picking stations are treated analogously. An unoccupied position p at
a time step t is captured by free(p,t) in Line 10. Similarly, occo(p,t,robot(r))
tells us that robot r is the only object on position p at a time step t. This
is thus neither derivable when a robot is under a shelf, carrying one, or at a
picking station. With this in mind, we see that Line 47 and 53 depict a position
as a circle on a white node (plus omitted details) whenever the position is free.
And analogously, Line 50, 59, and 60 represent solitary robots by solid blue
circles. Here, robots are differentiated using multiple shades of blue via the

10

1 attr(node,X,style,"filled") :- node(X).
2 edge((X,Y)) :- parent(X,Y).

4 react(node,X,X) :- node(X).
5 react(node,Y,X) :- edge((X,Y)).
6 react(edge,(X,Y),X) :- edge((X,Y)).

8 attr(node,X,class,@svg init(" visibility ","hidden")) :- node(X), not root(X).
9 attr(edge,E,class,@svg init(" visibility ","hidden")) :- edge(E).

10 attr(T,E,class,@svg("click",X," visibility ","visible")) :- react(T,E,X).
11 attr(T,E,class,@svg(" mouseenter ",X,"opacity","1")) :- react(T,E,X).
12 attr(T,E,class,@svg(" mouseleave ",X,"opacity","0.2")) :- react(T,E,X).

Listing 4: Specification of interaction on trees based on clingraph’s SVG capabil-
ities (tree-viz.lp)

graphviz attribute colorscheme, where each robot selects one color option using
an integer in attribute fillcolor. Once a robot shares a position with a shelf
or picking station, the graphical representation changes (and instead the robot
adopts the one of the shelf or picking station).

Moreover, a robot’s label changes whenever it is under a shelf or carries
one. This is handled in Line 39 to 44. A template (cf. Section 4) is selected
depending on whether there is a robot, a shelf, or both in the corresponding
position (Lines 39, 40 and 41 to 42, respectively). The variables robot and
shelf, used in the templates, are defined in Line 43 and 44, respectively.

3.3 Scalable Vector Graphics and interactivity

An image format of particular interest is the Scalable Vector Graphics (SVG)16

format as it supports interactivity. More precisely, SVG is a text-based web
standard for describing images in XML format integrated with Cascading Style
Sheets (CSS) and JavaScript. In order to allow for interactive actions on graphic
elements, we extend the SVG capabilities supported by graphviz. Our extension
is implemented in JavaScript; it listens to events being performed on an element
and reacts by changing a CSS style property on another element. To this end,
the class attribute assigned to an element defines how the element changes on
a given event: click, mouseenter, mouseleave and contextmenu (right click).
Notably, all interaction is single-shot. That is, the resulting SVG file is generated
once by a single call to clingo and no further interplay with the solver is possible.
Therefore, all information for interactivity needs to be rendered in the same SVG
file and no information of what actions are taken can be returned to the solver.

For illustration, we visualize the mouse-driven expansion of simple trees,
defined by predicates node/1, parent/2 and root/1 (see Listing 5 for an ex-
ample). The corresponding visualization encoding is given in Listing 4. Line 1
adds a filled style to the nodes and Line 2 generates an edge for each instance
of predicate parent/2. Lines 4 to 6 assign the reactions based on the un-
derlying graph element using atoms of form react(t,e1,e2) that are read as:
“element e1 of type t reacts to actions on element e2”. These atoms affect

16https://www.w3.org/TR/SVG/Overview.html

11

1 root(a).

2 node(a). node(b). node(c). node(d). node(e). node(f).

3 parent(a,b). parent(a,d). parent(b,c). parent(b,e). parent(d,f).

Listing 5: Facts representing a simple tree (mytree.lp)

the visibility and opacity of nodes. For instance, Line 5 tells us that if there
is an edge from X to Y then node Y reacts to actions on X. Lines 8 to 12
define the interactivity of the elements by assigning their class attribute to
a formatted string. This string is handled by our extension, while the for-
matting of the strings is done by functions @svg_init(property,value) and
@svg(event,element,property,value). For instance, in Lines 8 and 9, func-
tion @svg_init is used to express that node X and edge E have the initial value
hidden for property visibility. Line 10 states that an element E changes the
value of the CSS property visibility to visible when X is clicked. The func-
tion @svg generates the string clicked___X___visibility___visible which
is assigned as a class of E in the SVG file. The string is then parsed by our
extension and mapped into the JavaScript method addEventListener to react
when X is clicked. Similarly, Lines 11 and 12 define that an element E changes
the value of opacity to 1 or 0.2, whenever the mouse enters or leaves element
X, respectively.

As an example, consider the simple tree represented as facts in Listing 5.
Together with the visualization encoding in Listing 4, it can be turned into an
interactive image in SVG format by means of the following command:

clingraph mytree.lp --viz -encoding=tree -viz.lp \

--out=render --format=svg

A possible user interaction via mouse actions is indicated in Figure 4 via a series
of snapshots. While the black pointer highlights positions of interest, the red

Figure 4: Example user interaction via mouse actions expanding the tree.

one indicates a previous click. Each such click leads to the expansion of the
tree by the succeeding nodes. Note, how the opacity of a node and its subnodes
changes whenever the pointer hovers over and away from it, respectively.

The transformation of graphviz into SVG uses the group element <g> to
group all elements related to a node or edge. Since only these group elements
can be indexed in JavaScript, the CSS style properties are set on the SVG group.
This results in the limitation that CSS style properties are not overwritten on the
elements contained in the group. Thus, many property changes have no impact.
In particular, this issue leads to problems when changing the color of elements.

12

1 attr(node,(X,Y),fillcolor,@svg color ()) :- cell(X,Y).

3 attr(node,(X,Y),class,@svg init("color","gray")) :- cell(X,Y), (X+Y)\2 != 0.
4 attr(node,(X,Y),class,@svg init("color","white")) :- cell(X,Y), (X+Y)\2 == 0.
5 attr(node,C,class,@svg(" mouseenter ",Q,"color","red")) :- attack(Q,C).
6 attr(node,(X,Y),class,@svg(" mouseleave ",Q,"color","gray")) :- attack(Q,(X,Y)), (X+Y)\2 != 0.
7 attr(node,(X,Y),class,@svg(" mouseleave ",Q,"color","white")) :- attack(Q,(X,Y)), (X+Y)\2 == 0.

Listing 6: SVG interactive queens (svg-queens.lp)

To address this, we offer a workaround for changing colors dynamically. That is,
we provide the function @svg_color to represent the CSS value currentcolor.
This can be used with any graphviz color attribute, such as color, fillcolor,
and fontcolor, and serves as a placeholder for the color set using the SVG
class.

For illustrating this functionality, Listing 6 extends the queens example
with interactive elements for visualizing all cells attacked by a queen once it is
hovered over by the mouse pointer. To this end, we replace Lines 6 and 7 in the
visualization encoding in Listing 2 by Line 1 in Listing 6 to use the color set by
the interactions specified in the following lines. Lines 3 and 4 set the initial color
of the nodes to gray and white, respectively. Line 5 adds functionality to a node
C attacked by queen Q so that the color is set to red when the mouse enters Q.
When the mouse leaves Q, Lines 6 and 7 set the color back to the original value.
We illustrate this by means of three snapshots in Figure 5. In the one on the
left, the mouse pointer hovers over position (2,2). Accordingly, all cells on the
same row, column, and diagonals are colored in red. The same happens in the
two other scenarios, though initiated from position (5,1) and (1,4), respectively.

Figure 5: Three snapshots of the user hovering the mouse pointer over specific
cells on the board.

The approach has further limitations. For example, labels are independent
of a CSS style and thus cannot be changed interactively. A way around this
is to create multiple layers of nodes with the same position and change their
visibility.17 However, we have no control over which elements appear on top and
which on the bottom. Rather this must be handled manually by assuring that

17A nice example for this is the minesweeper puzzle given at https://github.com/potassco/
clingraph/tree/master/examples/minesweeper.

13

only a single element is visible in each position at each time. Another issue is
that the position of all elements is fixed; therefore, expanding the size of the
image on demand is impossible, only its visibility can be changed.

3.4 Visualizing the solving process of a Sudoku puzzle

Up to now, all case studies take answer sets as input for visualization. For the
next example, however, we visualize partial assignments appearing during the
search process of clingo. Specifically, we discuss a visualization of the solving
process of a Sudoku puzzle. To this end, we rely on clingo’s capacity of integrating
user-defined propagators18 into the solving process and use clingraph’s API for
streamlining the declarative visualization of partial assignments.

In Table 2, we provide a generic propagator that can be used directly to
monitor solving or as a template to create a domain-specific propagator. Basically,
ClingraphPropagator class implements the user-defined propagator interface
expected by clingo’s Python API. Its instance variables are initialized in Lines 10
to 12. The viz_encoding variable holds the path of the visualization encoding
specific to the problem domain. The propagator uses this encoding to generate
the facts defining the graph to visualize each partial assignment, which are
stored in the factbases list. Additionally, the instance variable l2s maps each
literal used internally by clingo to the corresponding list of atomic symbols
from the problem encoding. Specifically, this mapping is formed in Line 17, just
before solving process starts, when clingo calls the init function (Line 14) of
ClingraphPropagator. Note that in Line 18 the propagator requests the solver
to be notified when the truth value of these internal literals changes. Hence,
with the help of l2s, the propagator functions can find the corresponding atoms
of a solver literal whose truth value has changed during solving.

The main functionality of the propagator is to compile and prepare partial
assignments appearing during various stages of the search process as reified
atoms, which are passed to the visualization encoding. Such facts are of the
form _true(a), _false(a) and _undefined(a) for each atom a if it is assigned
to true, false or neither in the current partial assignment, respectively. The key
stages account for times when clingo reaches a fixpoint during unit propagation;
decides on a literal; or faces a conflict and is about to backtrack. In each situation,
clingo calls the corresponding propagator function propagate (Line 20), decide
(Line 51) or undo (Line 35), respectively, and makes the partial assignment
accessible to them. Hence, these functions are suitable for preparing the reified
atoms of the partial assignment at the time of the call. In the propagate

function, for instance, these facts are generated in Lines 23 to 27 and functions
decide and undo have the same corresponding statements. Note that for each
solver literal, corresponding atoms are found via the mapping l2s and truth
values of such atoms are queried in the current partial assignment in Line 24.
Additionally, in each stage we generate the fact _step_type(t,i) where t is either
propagate, decide or undo, and i is a natural number identifying the solving

18https://potassco.org/clingo/python-api/current/clingo/propagator.html

14

8 class ClingraphPropagator:
9 def init (self, viz encoding):

10 self.viz encoding = viz encoding
11 self.factbases = []
12 self.l2s = {}

14 def init(self, init): ...
15 for atom in init.symbolic atoms:
16 lit = init.solver literal(atom.literal)
17 self.l2s.setdefault(lit, []). append(str(atom.symbol))
18 init.add watch(lit)

20 def propagate(self, ctl, changes):
21 i = len(self.factbases)
22 propagation prg = [f" step type(propagate, {i}).", f" level ({ ctl. assignment .decision level })."]
23 for l,symbols in self.l2s.items ():
24 v = ctl.assignment.value(l)
25 t = ’ undefined ’ if v is None else ’ true ’ if v else ’ false ’
26 for s in symbols:
27 propagation prg.append(f"{t}({s}).")
28 for l in changes:
29 symbols = self.l2s[l]
30 for s in symbols:
31 propagation prg.append(f" change ({s}).")
32 self.add factbase(propagation prg)
33 return True

35 def undo(self, solver id, assign, undo):
36 i = len(self.factbases)
37 propagation prg = [f" step type(undo,{i}).", f" level ({ assign.decision level })."]

39 for l,symbols in self.l2s.items ():
40 v = assign.value(l)
41 t = ’ undefined ’ if v is None else ’ true ’ if v else ’ false ’
42 for s in symbols:
43 propagation prg.append(f"{t}({s}).")
44 for l in undo:
45 symbols = self.l2s[l]
46 for s in symbols:
47 propagation prg.append(f" change ({s}).")

49 self.add factbase(propagation prg)

51 def decide(self, thread id, assign, fallback):
52 i = len(self.factbases)
53 propagation prg = [f" step type(decide,{i}).", f" level ({ assign.decision level })."]

55 for l,symbols in self.l2s.items ():
56 v = assign.value(l)
57 t = ’ undefined ’ if v is None else ’ true ’ if v else ’ false ’
58 for s in symbols:
59 propagation prg.append(f"{t}({s}).")
60 if abs(fallback) in self.l2s:
61 for s in self.l2s[abs(fallback)]:
62 pol = "pos" if fallback > 0 else "neg"
63 propagation prg.append(f" decide ({s},{pol }).")

65 self.add factbase(propagation prg)
66 return 0

68 def add factbase(self, prg list):
69 fb = Factbase ()
70 ctl = Control ([])
71 ctl.load(self.viz encoding)
72 ctl.add("base",[],"".join(prg list))
73 ctl.ground ([("base",[])] ,ClingraphContext ())
74 ctl.solve(on model=fb.add model)
75 self.factbases.append(fb)

Table 2: The propagator class for visualizing solving
15

step (in Lines 22, 37 and 53). Such facts are required not only to designate the
type of the current stage, but also to order the visualization of each generated
partial assignment. This ordering allows us to represent clingo’s solving process
by combining individual graphs as an animation. The functions propagate and
undo generate additional facts of the form _change(a), where the truth value
assignment to atom a has changed during the propagation (Lines 28 to 31) or
will be undone during backtracking (Lines 44 to 47), respectively. Similarly, the
function decide generates a reified fact of the form _decide(a,p) in Lines 60
to 63 to represent clingo chooses atom a to have a truth value of true or false
depending on p being pos or neg, at a decision point, respectively.

For each solving stage, we process the reified atoms of the active partial
assignment with the problem domain’s visualization encoding to generate the
facts defining the graph. This is achieved by calling the add_factbase function
defined in Lines 68 to 75 at the end of each solving stage. Each resulting graph
facts gets stored in a Factbase object of clingraph’s API in Line 75. Once
clingo’s solving is done, we process all Factbase objects accumulated in the
propagator using clingraph to generate individual graphs for each of the partial
assignments. Finally, we combine these graphs to generate an animation of
clingo’s solving process. Unlike the previous examples, we rely on clingraph’s
API functions (eg., compute_graphs and save_gif) to carry out these tasks.

To illustrate the process described above, we use the Sudoku puzzle from
clingraph’s examples folder.19 In this encoding, we use predicate sudoku(x,y,v)
to represent a cell with coordinates (x,y) in a 9× 9 grid with an assigned digit v
from 1 to 9. A cell can have an initial value defined in the instance by predicate
initial(x,y,v) or it can be empty if no such predicate appears. Then, the
problem encoding and instance are handed to clingo’s solving process which is
observed by our propagator. Partial assignments accumulated by the propagator
are passed to the visualization encoding, which is shown in Table 3. Additionally,
Figure 6 depicts the resulting animation’s key frames visualizing the partial
assignments reached during solving.

Let us now examine how the frames from Figure 6 are constructed. Each cell
with an initial value is visualized by setting the corresponding digit as the label
of its node (rule in Line 39 from Table 3) and using a relatively larger font size
(rule in Line 38). These rules have the reified literal _true(initial(X,Y,V))
in the body to represent cells with initial values. Notice that facts appearing
in the problem input, such as initial(X,Y,V), will always have their truth
value set to true. For each node of an empty cell, we construct an HTML-like
label that allows us to use rich visual elements like tables with different borders
and background colors. In order to ease constructing long HTML-like labels
we rely on template strings (see Section 4). Let us first cover empty cells that
must be filled with one specific digit. The HTML-like label for such a cell
represents a table having only one slot for the respective digit. The rule in
Lines 43 to 48 generates such a label as a template string by concatenating the
constituent strings using the concat external function provided by clingraph.

19https://github.com/potassco/clingraph/tree/master/examples/propagator/sudoku

16

38 attr(node, pos(X,Y), fontsize,40) :- true(initial(X,Y,V)).
39 attr(node, pos(X,Y), label, V) :- true(initial(X,Y,V)).

42 attr(node, pos(X,Y), fontsize, 20) :- true(sudoku(X,Y,V)), not true(initial(X,Y,)).
43 attr(node, pos(X,Y), label, @concat("<<table BORDER =’0’>",
44 "<tr ><td BGCOLOR =’{{ color[",V,"]}}{{ opacity[",V,"]}}’",
45 " BORDER =’{{ border[",V,"]}}’>",
46 "{{ value[",V,"]}}",
47 " </td ></tr ></table >>")) :-
48 true(sudoku(X,Y,V)), not true(initial(X,Y,)).

52 attr(node, pos(X,Y), label, @concat("<<table BORDER =’0’>",
53 "<tr >",
54 "<td BGCOLOR =’{{ color [1]}}{{ opacity [1]}} ’ BORDER =’{{ border [1]}} ’ >{{ value [1]}} </td >",
55 "<td BGCOLOR =’{{ color [2]}}{{ opacity [2]}} ’ BORDER =’{{ border [2]}} ’ >{{ value [2]}} </td >",
56 "<td BGCOLOR =’{{ color [3]}}{{ opacity [3]}} ’ BORDER =’{{ border [3]}} ’ >{{ value [3]}} </td >",
57 " </tr >",
58 "<tr >",
59 "<td BGCOLOR =’{{ color [4]}}{{ opacity [4]}} ’ BORDER =’{{ border [4]}} ’ >{{ value [4]}} </td >",
60 "<td BGCOLOR =’{{ color [5]}}{{ opacity [5]}} ’ BORDER =’{{ border [5]}} ’ >{{ value [5]}} </td >",
61 "<td BGCOLOR =’{{ color [6]}}{{ opacity [6]}} ’ BORDER =’{{ border [6]}} ’ >{{ value [6]}} </td >",
62 " </tr >",
63 "<tr >",
64 "<td BGCOLOR =’{{ color [7]}}{{ opacity [7]}} ’ BORDER =’{{ border [7]}} ’ >{{ value [7]}} </td >",
65 "<td BGCOLOR =’{{ color [8]}}{{ opacity [8]}} ’ BORDER =’{{ border [8]}} ’ >{{ value [8]}} </td >",
66 "<td BGCOLOR =’{{ color [9]}}{{ opacity [9]}} ’ BORDER =’{{ border [9]}} ’ >{{ value [9]}} </td >",
67 " </tr >",
68 " </table >>")) :-
69 true(pos(X,Y)), not true(initial(X,Y,)), not true(sudoku(X,Y,)).

74 attr(node, pos(X,Y), (label,opacity,V), 25) :- not change(sudoku(X,Y,V)),
75 not decide(sudoku(X,Y,V),), true(sudoku(X,Y,V)).
76 attr(node, pos(X,Y), (label,opacity,V), "00") :- not true(sudoku(X,Y,V)),
77 not decide(sudoku(X,Y,V),neg), true(pos(X,Y)), value(V).

80 attr(node, pos(X,Y), (label,border,V), 1) :- decide(sudoku(X,Y,V),).
81 attr(node, pos(X,Y), (label,border,V), 0) :- not decide(sudoku(X,Y,V),),
82 true(pos(X,Y)), value(V).

85 attr(node, pos(X,Y), (label,color,V), white) :- not true(sudoku(X,Y,V)),
86 not decide(sudoku(X,Y,V),), true(pos(X,Y)), value(V).
87 attr(node, pos(X,Y), (label,color,V), green) :- true(sudoku(X,Y,V)).
88 attr(node, pos(X,Y), (label,color,V), red) :- decide(sudoku(X,Y,V),neg).
89 attr(node, pos(X,Y), (label,color,V), green) :- decide(sudoku(X,Y,V),pos).

92 attr(node, pos(X,Y), (label,value,V), V) :- true(sudoku(X,Y,V)).
93 attr(node, pos(X,Y), (label,value,V), V) :- undefined(sudoku(X,Y,V)).
94 attr(node, pos(X,Y), (label,value,V), "") :- false(sudoku(X,Y,V)).

Table 3: Selected lines from the encoding visualizing Sudoku solving
(viz-sudoku-solving.lp)

Note that the rule body designates an initially empty cell (captured by the
body literal not _true(initial(X,Y,_))) that must be filled with a specific
digit (_true(sudoku(X,Y,V))). We set the font size of these cells via the rule
in Line 42. An example of this can be found on the third cell in the topmost row
of the top leftmost graph in Figure 6, where this initially empty cell is now filled
with digit 4 with dark green background. For adding style to such cells, the label
template uses variables to represent the color, opacity, border and value. The
values for these variables are obtained through different rules that generate atoms
over attr/4. For this specific cell, the RGB code of dark green as the value of
variable color[V] is set via the rule in Line 87. Furthermore, the rule in Line 81

17

1 2

5

2

5 7
1 2

5

9
8 1 2

5 4 6 3

1 3

5 4 5 6
1

5

1

4 5 7 8 2 9

2

8

2

4

8
9 3 2

4 6 5 7 1

7 6 5 4 1 2 1 2 9 3 8

4 3 2 8 6 9 7 1 5

9 1 8 5

7

3

5

3

5 2 4 6

6 2

5 1
2

5 7 8 3 9 4

5

8 7 3 6 9 4 5 1 5

8
2

2

5

8

2

5

8 9
4

1 2

5

1 2 3

5

1 2 3

5 6 5

8
7

1 2

5

2

5 7
1 2

5

9
8 1 2

5 4 6 3

1 3

5 4 5 6
1

5

1

4 5 7 8 2 9

2

8

2

4

8
9 3 2

4 6 5 7 1

7 6 5 4 1 2 1 2 9 3 8

4 3 2 8 6 9 7 1 5

9 1 8 5

7

3

5

3

5 2 4 6

6 2

5 1
2

5 7 8 3 9 4

5

8 7 3 6 9 4 5 1 5

8
2

2

5

8

2

5

8 9
4

1 2

5

1 2 3

5

1 2 3

5 6 5

8
7

1 2

5

2

5 7
2

5

9
8 2

5 4 6 3

3

5 4 5 6 1 4 5 7 8 2 9

2

8

2

4

8
9 3 2

4 6 5 7 1

7 6 5 4 1 2 1 2 9 3 8

4 3 2 8 6 9 7 1 5

9 1 8 5

7

3

5

3

5 2 4 6

6 2

5 1
2

5 7 8 3 9 4

5

8 7 3 6 9 4 5 1 5

8
2

2

5

8

2

5

8 9
4

2

5

1 2 3

5

1 2 3

5 6 5

8
7

1 2

5

2

5 7
2

5

9
8 2

5 4 6 3

3

5 4 5 6 1 4 5 7 8 2 9

2

8

2

4

8
9 3 2

4 6 5 7 1

7 6 5 4 1 2 1 2 9 3 8

4 3 2 8 6 9 7 1 5

9 1 8 5

7

3

5

3

5 2 4 6

6 2

5 1
2

5 7 8 3 9 4

5

8 7 3 6 9 4 5 1 5

8
2

2

5

8

2

5

8 9
4

2

5

1 2 3

5

1 2 3

5 6 5

8
7

1 2

5

2

5 7
1 2

5

9
8 1 2

5 4 6 3

1 3

5 4 5 6
1

5

1

4 5 7 8 2 9

2

8

2

4

8
9 3 2

4 6 5 7 1

7 6 5 4 1 2 1 2 9 3 8

4 3 2 8 6 9 7 1 5

9 1 8 5

7

3

5

3

5 2 4 6

6 2

5 1
2

5 7 8 3 9 4

5

8 7 3 6 9 4 5 1 5

8
2

2

5

8

2

5

8 9
4

1 2

5

1 2 3

5

1 2 3

5 6 5

8
7

1 5 7 9 8 2 4 6 3

3 4 6 1 5 7 8 2 9

2 8 9 3 4 6 5 7 1

7 6 5 4 2 1 9 3 8

4 3 2 8 6 9 7 1 5

9 1 8 7 3 5 2 4 6

6 2 1 5 7 8 3 9 4

5

8 7 3 6 9 4 1 5

8
2

5

8
9 4 2 1 3 6 5

8
7

1 5 7 9 8 2 4 6 3

3 4 6 1 5 7 8 2 9

2 8 9 3 4 6 5 7 1

7 6 5 4 2 1 9 3 8

4 3 2 8 6 9 7 1 5

9 1 8 7 3 5 2 4 6

6 2 1 5 7 8 3 9 4

5

8
7 3 6 9 4 1 5

8
2

5

8
9 4 2 1 3 6 5

8
7

1 5 7 9 8 2 4 6 3

3 4 6 1 5 7 8 2 9

2 8 9 3 4 6 5 7 1

7 6 5 4 2 1 9 3 8

4 3 2 8 6 9 7 1 5

9 1 8 7 3 5 2 4 6

6 2 1 5 7 8 3 9 4

8 7 3 6 9 4 1 5 2

5 9 4 2 1 3 6 8 7

Figure 6: Visualizations of the stages while solving a Sudoku puzzle

to 82 assigns value 0 to variable border[V] to avoid setting borders and the
rule in Line 92 assigns 4 to value[V]. We also add opacity to the background
color codes to highlight changes in the current partial assignment from the ones
propagated in previous assignments by reducing the opacity of older ones. In this
specific cell, since variable opacity[V] gets empty string as a default value due
to absence of any rule generating a specific value for the variable, the opacity of
the background color is not modified. The same cell but in the following graph,
has a light green background color, which designates that clingo filled it in an
earlier propagation step. In order to generate the light green color, in that step
variable opacity[V] gets its value 25 via the rule in Line 74 to 75. Note that its
body literal not _change(sudoku(X,Y,V)) captures the respective cell is not
filled in the current partial assignment. These rules generating variable values
are also used for the Sudoku cells that have multiple options. We describe such
cells below.

18

The remaining type of cells are those initially empty cells in which more than
one digit may appear in a partial assignment. Their HTML-like label represents
a 3 × 3 table allowing a slot for each digit from 1 to 9. Our aim is to visualize
digits that can possibly appear in such a cell in this tabular form. For instance,
the top leftmost graph shows that either 2, 5 or 8 can be placed in the first cell.
The rule in Lines 52 to 69 constructs the label as a template string representing
the 3 × 3 table. The body literal not _true(sudoku(X,Y,_)) captures these
initially empty cells with multiple options. Consider clingo has reasoned that
digit d from 1 to 9 cannot appear in an empty cell (x, y) in a partial assignment,
which is represented by the reified fact _false(sudoku(x,y,d)) generated by
the propagator (e.g., _false(sudoku(1,9,1)) for the cell mentioned above).
We do not show d in its respective slot. To this end, template variable value[d]

is assigned to empty string via the rule in Line 94. Additionally, its transparent
background color is controlled via rules in Line 85 to 86 and in Line 76 to
77 by setting white to variable color[d] and "00" to variable opacity[d],
respectively. Also consider clingo may be undecided on whether digit d is the
value of the empty cell or not (e.g., digits 2, 5 and 8 for the cell mentioned
above). This is reflected by the fact _undefined(sudoku(x,y,d)) generated
by the propagator for a partial assignment. We show d in its respective slot by
setting variable value[d] to d this time via the rule in Line 93. Its transparent
background is set via the same rules in Line 85 to 86 and Line 76 to 77. We can
also visualize whenever the propagation during solving reaches a fixpoint, and
clingo may decide on a truth value of an undefined atom to continue search. For
instance, the second graph in the first row of Figure 6 shows such a decision
point as digit 5 in red background with a border where clingo selects the atom
sudoku(4,2,5) to be false. Its background color and border are set via rules in
Line 88 and Line 80, respectively. Whenever clingo selects an atom to be true
at a decision point, we visualize it as green (rule in Line 89).

Ultimately, our animation allows us to analyze different aspects of the solving
process of the Sudoku. For instance, the first graph illustrates that during the
initial propagation clingo already fills many cells with digits (those having digits
with green background) and constrains the remaining empty cells that only
possible digits are shown. This can be an indicator of how simple the Sudoku
instance is. Finally, when we reach the last graph (bottom rightmost) passing
through various stages of solving in order, we get an answer set representing a
solution of the puzzle instance.

3.5 Visualizing the program structure

So far, we have visualized the solving process, input and/or result of a program.
However, we may also visualize information about the program itself. In this
section, we concentrate on the abstract syntax tree (AST) of a program, as it
is accessible via the clingo.ast module of clingo’s Python API. Visualizing
a program’s AST eases the understanding of its internal structure. This is of
particular interest when dealing with non-ground programs. To this end, we
follow a three-stage process. First, we translate the AST into an intermediate

19

fact format using a simple Python script called reify_ast.py. Then, we employ
a visualization encoding to convert these facts into clingraph’s format. Finally,
we run clingraph to render the graph. All examples can be found in clingraph’s
repository.20

Our intermediate fact format uses two predicates: ast_node/3 and ast_edge/3

represent the nodes and edges in an AST. These predicates are meant to be
semantic triples, linking a subject, in our case a node or edge, via a key to a value.
This is inspired by the representation of graph data, as used in the Resource
Description Framework21. To illustrate how ASTs are stored in terms of triples,
let us look at the translation of the program in Listing 1. It is partially depicted
in Listing 7 and may be obtained by running reify_ast.py color.lp.

1 ast node (875 ,type,"AST").
2 ast node (875 ,variant,"Rule").
3 ast node (875 ,value,"#false :- edge(N,M), assign(N,C), assign(M,C).").
4 ast edge ((875 ,885),key,"head").
5 ast edge ((875 ,898),key,"body").

Listing 7: Partial translation of the program in Listing 1 into our intermediate
fact format

Nodes are represented by unique integers which are arbitrarily chosen by
our script. Edges are identified using the integers of the adjacent nodes. Line 1
tells us that a node 875 exists and that it stands for an instance of the class
clingo.ast.AST in the Python API of clingo. The other possible types are
ASTSequence, Location, Position, Symbol, int, str and None. They cover
the respective classes in clingo.ast and the necessary basic types in Python.
If the type of a node is AST, declaring a variant as in Line 2 is mandatory. The
variant reflects the clingo.ast.ASTType of each instance of clingo.ast.AST.
The possible variants include Rule, Variable, SymbolicAtom and many more.
Line 3 assigns a value to node 875, in this case a string representing the rule
represented by node 875. Line 4 and 5 reflect two outgoing edges of node 875,
named head and body. As the names suggest, these edges point to nodes
capturing the head and body of the rule.

1 ast show(edge, I) :- ast edge(I, ,), I = (I1,), ast show(node, I1).
2 ast show(node, I) :- ast show(edge, (, I)).

4 ast hide(node, I) :- ast hide(edge, (, I)).
5 ast hide(edge, I) :- ast edge(I, ,), I = (I1,), ast hide(node, I1).

7 node(I) :- ast node(I, ,), ast show(node, I), not ast hide(node, I).
8 edge(I) :- ast edge(I, ,), ast show(edge, I), not ast hide(edge, I).

10 attr(node, I, label, @concat(
11 "<<table border =’0’ cellborder =’1’ cellspacing =’0’ cellpadding =’3’>",
12 "<tr >",
13 "<td >{{ id}}</td >",
14 "<td >{{ type }}</td >",
15 "{% if variant %}<td >{{ variant }}</td >{% endif %}",
16 " </tr >",
17 "{% if value %}",
18 "<tr ><td colspan =’{{ colspan }}’>",
19 " {{ value }} ",
20 " </td ></tr >",

20https://github.com/potassco/clingraph/tree/master/examples/ast
21https://www.w3.org/TR/rdf11-concepts/

20

21 "{% endif %}",
22 " </table >>"
23)) :- node(I).

25 attr(node, I, (label, id), I)
26 :- node(I).
27 attr(node, I, (label, type), T)
28 :- node(I), ast node(I, type, T).
29 attr(node, I, (label, variant), V)
30 :- node(I), ast node(I, variant, V).
31 attr(node, I, (label, colspan), 2)
32 :- node(I), ast node(I, value,), not ast node(I, variant,).
33 attr(node, I, (label, colspan), 3)
34 :- node(I), ast node(I, value,), ast node(I, variant,).
35 attr(node, I, (label, value), @html escape(V))
36 :- node(I), ast node(I, value, V).

38 attr(edge, I, label, L) :- edge(I), ast edge(I, key, L).

40 attr(graph nodes, default, fontsize, 10).
41 attr(graph nodes, default, shape, plain).

43 attr(graph edges, default, fontsize, 10).

Listing 8: Selected lines from the encoding visualizing the AST (viz-ast.lp)

In order to translate the output of our script into the input format of clingraph,
we employ a visualization encoding, assembling an HTML-like label including
all the data stored in the semantic triples. Its main component is the template
(see Section 4) shown in Listing 8 from Line 10 to 23. Given that even small
programs have large syntax trees, our encoding provides functionalities (Line 1
to 5) to show and hide subtrees. For instance, using ast_show(node, 875).

guarantees that only the subtree of node 875 is shown, while the rule

ast_hide(edge , I) :- ast_edge(I, _, _), I = (_, I2),

ast_node(I2, type , "Location ").

allows us to hide any subtree that is rooted at a node of type Location. Calling

reify_ast.py color.lp | \

clingraph --viz -encoding=viz -ast.lp --type=digraph \

--out=render --format=pdf

with the above line in the visualization encoding instructs clingraph to render
the graph shown in Figure 7.

Showing the abstract syntax tree is by far not the only option to visualize a
program’s structure. In principle, clingraph may render any structured knowledge
about the program provided that a reification format, a tool generating it, and
a visualization encoding exists. To this end, our case study may serve as a
blueprint for future ideas.

4 Formatting attributes with templates

Generating complex string values for attributes can become quite cumbersome,
especially when dealing with HTML-like labels.22 This type of graphviz labels
are formed by an HTML string delimited by <...> which gives a lot of flexibility

22https://graphviz.org/doc/info/shapes.html#html

21

1003 int

 0

969 ASTSequence

981 AST Variable

 C

1

970 AST Variable

 N

0

958 AST Function

 assign(N,C)

arguments

992 int

 0

external

968 str

 assign

name

944 str

 M

933 str

 N

1004 AST SymbolicAtom

 assign(M,C)

1005 AST Function

 assign(M,C)

symbol

1015 str

 assign

909 int

 0

934 AST Variable

 M

name

name

1016 ASTSequence

arguments

1039 int

 0

external

980 str

 N

899 AST Literal

 edge(N,M)

sign

910 AST SymbolicAtom

 edge(N,M)

atom

911 AST Function

 edge(N,M)

symbol

991 str

 C

name

885 AST Literal

 #false

895 int

 0

sign

896 AST BooleanConstant

 #false

atom

name

956 int

 0

1027 str

 M

945 int

 0

1017 AST Variable

 M

0

1028 AST Variable

 C

1

875 AST Rule

 #false :- edge(N,M); assign(N,C); assign(M,C).

head

898 ASTSequence

body

946 AST Literal

 assign(N,C)

sign

957 AST SymbolicAtom

 assign(N,C)

atom

name

921 str

 edge

897 int

 0

value

1038 str

 C

external name

922 ASTSequence

arguments

1

923 AST Variable

 N

0

993 AST Literal

 assign(M,C)

sign atom

symbol

name name

0 1 2

Figure 7: A partial visualization of the AST of the program in Listing 1.

for formatting the text and generating tables. We simplify the generation of
such strings by using the template engine Jinja.23 Attribute values can then
be seen as Jinja templates, which are rendered using the variables provided by
atoms of the form attr(t,id,(n,v),x). In these atoms, the third argument is
a pair indicating that variable v has value x when rendering the template of
attribute n. Furthermore, we can encapsulate values in dictionary variables by
using triples instead, where (n, v, k) indicates that variable v is a dictionary with
entry {k : x}. When no template is provided, the values of all the variables are
concatenated.

For illustration, we visualize the data of people, defined by predicates
person/1, name/1, middlename/1 and lastname/1 (see Listing 10 for an exam-
ple). We visualize the data using HTML-like labels to generate the tables in
Listing 9. Line 1 generates a node for each person and Line 2 removes the shape
of the node (no shape is needed since the label is a table). Line 3 to 7 define
the template for the label using the HTML tags <table>, <tr>, <td> and

to construct a table, row, cell, and boldface text, respectively. Variables are
enclosed in double braces {{...}} and corresponding values are substituted by
Jinja for these variables. The rules in Line 8 to 11, for instance, generate atoms
of attr/4 to populate values for the template variables. Line 8 and Line 11 use
a pair to assign N to the variable id and the last name to lastname. Unlike,

23https://jinja.palletsprojects.com/en/3.1.x/templates

22

1 node(N) :- person(N).
2 attr(node,N,shape,none) :- person(N).
3 attr(node,N,label, @concat(
4 "<<table >",
5 "<tr ><td >{{ id}}</td ></tr >",
6 "<tr ><td >{{ lastname }} ({{ name[’first ’]}} {{ name[’middle ’]}}) </td ></tr >",
7 " </table >>")) :- person(N).
8 attr(node,N,(label,id),N) :- person(N).
9 attr(node,N,(label,name,first),Name) :- name(N,Name).

10 attr(node,N,(label,name,middle),Name) :- middlename(N,Name).
11 attr(node,N,(label,lastname),Lastname) :- lastname(N,Lastname).

Listing 9: Visualization encoding to exemplify the generation of strings via
templates (template.lp).

1 person(anna).
2 name(anna,"Anna"). middlename(anna,"Julia"). lastname(anna,"Scott").
3 person(tom).
4 name(tom,"Thomas"). lastname(tom,"Blake").

Listing 10: Instance for the template example (people.lp).

Line 9 and 10 use a triple, making the variable name a dictionary with the
keys first and middle, which is accessed in the template as name[′first ′] and
name[′middle ′], respectively. The output of this encoding together with the
instance defined in Listing 10 is shown in Figure 8. It produced by means of

Figure 8: Example of HTML-like labels using attribute templates.

the following instruction:

clingraph people.lp --viz -encoding=template.lp --out=render

Jinja’s syntax of templates also includes statements like conditionals, loops,
and several operations. We refer the interested reader to our github repository
for more complex examples of clingraph using such features.24

5 Related work

Many aspects of clingraph are inspired by previous systems described in the
literature. The basic goal—to visualize answer sets by mapping special atoms to
graphic elements—traces back to aspviz [3], a command-line application written
in Java using the Standard Widget Toolkit (SWT) for rendering. It is capable of
rendering two-dimensional graphics with absolute coordinates but does neither

24https://github.com/potassco/clingraph/tree/master/examples/office

23

allow relative positioning nor graph structures. These features were introduced
by kara [6], a plugin written for the SeaLion IDE. The alternative of using
graphviz as a backend was first mentioned by the authors of aspviz, and followed
up with a rather basic implementation in lonsdaleite25. Another visualizer for
answer sets is idpdraw26, although it seems to be discontinued.

The idea of visualizing the solving process was first explored for the nomore
system [1] which uses a graph-oriented computational model. For dlv, there
exists a graphical tool for developing and testing logic programs [9] as well as a
visual tracer [2]. In the realms of clingo, visualizing the solving process has been
explored using a tweaked version of clasp [7].

Our system not only integrates ideas from the literature and makes them
available for modern ASP systems, but also has some features that have—to
the best of our knowledge—never been implemented before. There is a powerful
API which makes it easy to include clingraph in custom projects, a multitude of
different output formats including LATEX and animated GIF, and the capacity of
integrating a propagator for visualizing the solving process of clingo.

6 Discussion

Clingraph provides essentially an ASP-based front-end to the graph visualization
software graphviz. In doing so, it takes up the early approach of aspviz [3]
and extends it in the context of modern ASP technology. The advantage of
clingraph is that one does not have to resort to foreign programming languages
for visualization but rather remains within the realm of ASP. This provides
users with an easy interface among logic programs and/or answer sets and their
visualization. Moreover, clingraph offers a Python API that extends this ease of
interfacing to clingo’s API, and in turn to connect and monitor various aspects
of the solving process. The fact-based interface of clingraph makes it readily
applicable to any ASP system. For more advanced features, like json output
and API functionality, clingraph depends on clingo. Clingraph is open source
software and freely available at https://github.com/potassco/clingraph.

Acknowledgments This work was supported by DFG grants SCHA 550/11
and 15 as well as BMBF project ISCO with support code KK5291302GR1.

25https://github.com/rndmcnlly/Lonsdaleite
26https://dtai.cs.kuleuven.be/krr/files/bib/manuals/IDPDraw-manual.pdf

24

