
Application of ASP for Automatic Synthesis of Flexible
Multiprocessor Systems from Parallel Programs?

Harold Ishebabi, Philipp Mahr, Christophe Bobda, Martin Gebser, and Torsten Schaub??

University of Potsdam, Institute for Informatics, August-Bebel-Str. 89, D-14482 Potsdam
{ishebabi,pmahr,bobda,gebser,torsten}@cs.uni-potsdam.de

Abstract. Configurable on chip multiprocessor systems combine advantages of
task-level parallelism and the flexibility of field-programmable devices to cus-
tomize architectures for parallel programs, thereby alleviating technological lim-
itations due to memory bandwidth and power consumption. Given the huge size
of the design space of such systems, it is important to automatically optimize
design parameters in order to facilitate wide and disciplined explorations. Be-
ing a combinatorial problem, system design can be modeled and solved as such,
but the amount of parameters renders the problem difficult to solve for large in-
stances. However, as the synthesis problem usually exhibits structure, Answer
Set Programming (ASP), for which solvers utilizing techniques from the propo-
sitional satisfiability domain are available, can be effectively employed. This pa-
per presents a design flow based on ASP that uses the solver clasp as back-end
engine. Synthesis experiments demonstrate the effectiveness of the approach.

1 Design Flow

The input to the flow in Figure 1 is a parallel program, and optionally information on
task periods. The application is simulated and analyzed to obtain inter-task data traf-
fic and task precedence information. This information is used to specify an instance of
an Integer Linear Programming (ILP) problem or an ASP program. Similar to related
work in this area, the other input to the design flow is information on available process-
ing elements and communication networks, as well as their costs and constraints. In
our approach, the design space is not pre-constrained, and the problem dimensions are
not ranked, which ensures the optimality of solutions. For realtime systems, it is often
sufficient to meet timing constraints so that the interest is not to find the fastest solution.
In such situations, the flow can be used to find the smallest system instead.

The solution obtained from an ILP/ASP solver is used to generate an abstract de-
scription of the system, which is passed to further tool chains described in [1] to gen-
erate the configuration bit-stream. Because post-synthesis results could deviate from
initial cost models used, new cost models can optionally be extracted after placement
and routing to start a new iteration.

? Long version of this paper will appear in International Journal of Reconfigurable Computing.
?? Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.

Fig. 1. Architecture Synthesis Flow

2 ASP Approach

For specifying synthesis in ASP, we build upon the ILP model proposed in [2, 3] and
convert existing ILP instances into ASP programs. The general problem is to map a
number of concurrent tasks on processors and communication resources such that hard
space constraints are satisfied, while the throughput or the overall execution time of
a parallel program is subject to optimization. We use the following notations: Ii ∈
{I0, . . . , In} is a task in a parallel program, Jj ∈ {J0, . . . , Jm} is a processor in an
Intellectual Property (IP) library, and Ck ∈ {C0, . . . , Cp} is a communication resource
in an IP library. Boolean variables xij are used to indicate whether a task Ii is mapped
on processor Jj in a synthesized multiprocessor system.

To represent linear constraints of 0-1 ILP instances in ASP, we use weight con-
straints [4] having the general form:

l [`0 = w0, `1 = w1, . . . , `n = wn] u. (1)

In (1), literals `0, `1, . . . , `n are associated with weights w0, w1, . . . , wn. The lower
bound l and upper bound u can be omitted, in which case they are identified with −∞
and ∞, respectively. Given this, a weight constraint (1) represents linear (in)equality
l ≤ `0 ∗w0 + `1 ∗w1 + · · · + `n ∗wn ≤ u. Notably, weights and bounds of weight
constraints are integers, while ILP usually admits rational numbers. If not mentioned
otherwise, we deal with this by rounding l as well as w0, w1, . . . , wn up and u down
when translating ILP to weight constraints. In principal, rounding can change the se-
mantics of a constraint, but it was unproblematic in our application.

In what follows, we describe how ASP programs are derived from ILP instances.
To begin with, for each task Ii, the associated task mapping constraint [2] is given by

1 [xi0 = 1, xi1 = 1, . . . , xim = 1] 1. (2)

Such constraints stipulate that each task is mapped on exactly one processor Jj .

Processor sharing constraints [2] on program sizes sij of tasks and program mem-
ory sj of a processor Jj are specified as

[x0j = s0j , x1j = s1j , . . . , xnj = snj] sj . (3)

The omission of a lower bound in (3) reflects that we admit Jj to remain unallocated,
while the upper bound makes sure that the memory capacity of Jj is not exceeded.

The area constraint for processors on an FPGA can be specified in terms of three
linear constraints [2]. The first one forces a Boolean variable vj to be true if at least one
task is mapped on processor Jj :

[x0j = 1, x1j = 1, . . . , xnj = 1, vj = −(n+ 1)] 0. (4)

The second constraint stipulates vj to be false when Jj remains unallocated:

[x0j = −1, x1j = −1, . . . , xnj = −1, vj = 1] 0. (5)

Finally, the third constraint connects areas (coefficients aj) required by processors Jj

on an FPGA with the available area AJ on the FPGA:

[v0 = a0, v1 = a1, . . . , vm = am] AJ . (6)

Note that, if a0+a1+· · ·+am > AJ , it is not permissible to allocate all of the available
processors.

We next consider network resources, needed whenever two communicating tasks
Ii1 , Ii2 are mapped on different processors Jj1 , Jj2 for i1 < i2 and j1 6= j2. Such a
situation is indicated by an auxiliary atom αi1i2j1j2 , defined by the following rule:

αi1i2j1j2 ← xi1j1 , xi2j2 . (7)

Given this, the next constraint stipulates another auxiliary atom λi1i2 to be true precisely
when communicating tasks Ii1 , Ii2 require a communication resource:

0 [αi1i2j0j1 =1, αi1i2j0j2 =1, . . . , αi1i2jmjm−2 =1, αi1i2jmjm−1 =1, λi1i2 =−1] 0. (8)

The following constraints then stipulate exactly one communication resource Ck to be
allocated for distributed communicating tasks Ii1 , Ii2 , and yk indicates allocation ofCk:

0 [z0i1i2 = 1, z1i1i2 = 1, . . . , zpi1i2 = 1, λi1i2 = −1] 0. (9)
[zki1i2 = 1, yk = −1] 0. (10)

For a communication resource allocation, the next constraints finally check that the
capacity Mk of Ck as well as the available FPGA area AC for communication infras-
tructure, where a coefficient ak gives the area required by Ck, are not exceeded:

[zki1i2 = 1, zki1i3 = 1, . . . , zkin−2in
= 1, zkin−1in

= 1] Mk. (11)
[y0 = a0, y1 = a1, . . . , yp = ap] AC . (12)

Furthermore, we consider scheduling feasibility constraints [3], where a parameter
Fgj ∈ {0, 1} indicates whether any group G = {Ig0 , Ig1 , . . . , Igl

} of tasks can be

mapped on a processor Jj without violating realtime constraints. The fact that all tasks
in G are mapped on the same processor and the feasibility requirement are combined in
the following rule:

1 [Mgj = 1] Fgj ← xg0j , xg1j , . . . , xglj . (13)

Note that an atomMgj is derived when all tasks in the group are mapped on Jj , and
when each task in the group can meet its deadline. In the worst case, all nonempty
groups of tasks in the power set of I are considered in (13), so that the cardinality of I
is critical for the problem size. Avoiding such space blow-up is a subject to the future
(cf. Section 4).

Finally, we turn our attention to the objective function to be minimized, dealing with
scheduling costs of largest groups mapped on processors [3]. For a group G mapped on
processor Jj and associated super-groups indicated by Ms1j , . . . ,Mshj , we use the
next rule to derive γgj precisely when G is the largest group mapped on Jj :

γgj ← Mgj , notMs0j , notMs1j , . . . , notMshj . (14)

The objective function can now be stated in terms of a minimize statement [4]:

minimize [. . . , xij = Tij , . . . , γgj = (T ′
gj ∗ tj +Oj),

. . . , zki1i2 = (Lk ∗Di1i2 + τk ∗ pk ∗Bi1i2), . . .]. (15)

Note that, when optimizing in makespan mode, the weights Tij expressing task execu-
tion times are set to zero for tasks Ii not on any critical path. Similarly, weights T ′

gj ∗ tj
and Oj representing scheduling and operating system overhead are set to zero when the
corresponding group G contains no critical task. Weights Lk ∗Di1i2 and τk ∗ pk ∗Bi1i2

represent data transfer latency and network arbitration overhead [2], respectively.
Notably, it is important to recognize that the weights in (15) cannot simply be

rounded up (as with constraints) because doing so disrupts the cost structure of a prob-
lem unless small time units are used. However, using such small units can result in
huge numbers, which can easily overflow the computation of the value of the objective
function. Instead of time units, we thus use processor cycles, normalized by the slowest
processor and the smallest weight occurring in the objective function.

3 Comparison of Synthesis Results

We applied conflict-driven learning ASP solver clasp [5], embedded into ASP system
clingo [6] (version 2.0.2), to synthesis problems translated from ILP. Previous empirical
investigations [5] have shown that learning solvers perform well, at least for structured
problems like the ones on synthesis. For comparison, we used ILP solver lp solve [7]
(version 5.5.0.14). We conducted experiments with five applications described in [2]:
filtering (FIR), Derivation, Simpson’s method, N-Body problem, and matrix Inversion.
Figure 2 summarizes runtimes for synthesis scenarios using 16 processors and 5 com-
munication resources for increasing number of tasks from 4 to 22. All benchmarks
were run on a machine equipped with a 1.66GHz T5500 processor and 2048Mb of
main memory, using a timeout of 28,800 seconds.

All columns that terminate at the boundary of 28,800s in Figure 2 indicate that a
suboptimum solution was found. Columns that exceed the boundary, i.e., those which
touch the 100,000s line, indicate that no solution was found by timeout. Otherwise,
optimum solutions were obtained. The results show that ASP-based synthesis outper-
forms ILP for 4 to 12 tasks. Beyond that region, ILP-based synthesis is either faster or
at least finds a suboptimum solution by timeout. A closer look however showed that,
when ASP-based synthesis performs badly, then most of the runtime is spent on reading
ASP programs. In fact, in almost all cases where clingo timed out, clasp did not get any
chance to start searching. The reason was that, when reading large ASP programs gen-
erated for greater number of tasks, clingo was running out of memory and swapped. As
scheduling feasibility (13) is mainly responsible for the observed file size explosion, a
more compact representation of it would likely enable scaling up ASP-based synthesis.

4 Summary and Conclusion

We have presented a method for automated architecture synthesis of FPGA multipro-
cessor systems using ASP. We showed that ASP-based synthesis has a great potential for
solving difficult system design problems. Our continuing work addresses the compact
representation of scheduling feasibility constraints to avoid file size explosion. More-
over, as our ASP programs were obtained from existing ILP instances, we made use of
available ASP solving technology, but not (yet) of knowledge representation capacities
of ASP. Future work includes the development of direct ASP solutions for automated
synthesis, building on a uniform encoding and grounding.

Acknowledgments. This work was partially funded by DFG under Grant BO 2480/5-1
and under Grant SCHA 550/8-1.

References
1. Bobda, C., Haller, T., Mühlbauer, F., Rech, D., Jung, S.: Design of adaptive multiprocessor

on chip systems. In Petraglia, A., Pedroni, V., Cauwenberghs, G., eds.: Proceedings of the
Twentieth Annual Symposium on Integrated Circuits and Systems Design (SBCCI’07), ACM
Press (2007) 177–183

2. Ishebabi, H., Bobda, C.: Automated architecture synthesis for parallel programs on FPGA
multiprocessor systems. Microprocessors and Microsystems 33(1) (2009) 63–71

3. Ishebabi, H., Mahr, P., Bobda, C.: Automatic synthesis of multiprocessor systems from paral-
lel programs under preemptive scheduling. In Torres, C., ed.: Proceedings of the International
Conference on Reconfigurable Computing and FPGAs (ReConFig’08), IEEE Press (2008)
19–24

4. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics.
Artificial Intelligence 138(1-2) (2002) 181–234

5. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving.
In Veloso, M., ed.: Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence (IJCAI’07), AAAI Press/MIT Press (2007) 386–392

6. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.:
A user’s guide to gringo, clasp, clingo, and iclingo. Available at
http://potassco.sourceforge.net

7. http://lpsolve.sourceforge.net/5.5/

(a) FIR (b) Derivation

(c) Simpson (d) N-Body

(e) Inversion

Fig. 2. ASP-ILP Comparison: Increasing the number of tasks

