
Graphs and colorings for answer set

programming: Abridged Report?

Kathrin Konczak, Thomas Linke, and Torsten Schaub??

Institut für Informatik, Universität Potsdam, Postfach 90 03 27, D–14439 Potsdam

Abstract. We investigate rule dependency graphs and their colorings
for characterizing the computation of answer sets of logic programs. To
this end, we develop a series of operational characterizations in terms
of operators on partial colorings. Our characterizations are expressed
as (non-deterministically formed) sequences of colorings, turning an un-
colored graph into a totally colored one. This results in an operational
framework in which different combinations of operators result in different
formal properties. Among others, we identify the basic strategy employed
by the noMoRe system and justify its algorithmic approach.

1 Introduction

We elaborate upon using graphs for characterizing the computation of answer
sets of logic programs. To this end, we take advantage of the concept of a rule
dependency graph [9, 1], wherein each node represents a rule in the underlying
program and two types of edges stand for positive and negative rule depen-
dencies. For expressing the applicability status of rules, that is, whether a rule
contributes to an answer set or not, we color the respective nodes in the graph.
In this way, an answer set can be expressed by a total coloring of the rule depen-
dency graph. In what follows, we are interested in the inverse, that is, when does
a graph coloring correspond to an answer set; and, in particular, how can we
compute such a total coloring. To this end, we start by identifying graph struc-
tures that allow for characterizing answer sets in terms of totally colored graphs.
We then build upon these for developing an operational framework for answer
set formation. The idea is to start from an uncolored rule dependency graph and
to employ specific operators that turn a partially colored graph gradually into
a totally colored one that represents an answer set. This approach is strongly
inspired by the concept of a(n SLD-)derivation. Accordingly, a program has a
certain answer set iff there is a sequence of operations turning the uncolored
graph into a totally colored one, expressing the answer set.

2 Rules, programs, graphs, and colorings

A logic program is a finite set of rules like p0 ← p1, . . . , pm,not pm+1, . . . ,not pn,
where n ≥ m ≥ 0, and each pi (0 ≤ i ≤ n) is an atom. For such a rule r, head (r)

? This work was supported by DFG under grant SCHA 550/6, TP C.
?? Affiliated with the School of Computing Science at Simon Fraser University, Canada.

denotes the head p0 of r and body(r) the body {p1, . . . , pm,not pm+1, . . . ,not pn}
of r. Let body+(r) = {p1, . . . , pm} and body−(r) = {pm+1, . . . , pn}. A program
is basic if body−(r) = ∅ for all its rules. The reduct, ΠX , of a program Π

relative to a set X of atoms is defined by ΠX = {head(r) ← body+(r) | r ∈
Π, body−(r) ∩X = ∅}. A set of atoms X is closed under a basic program Π if
for any r ∈ Π , head (r) ∈ X if body+(r) ⊆ X . The smallest set of atoms being
closed under a basic program Π is denoted by Cn(Π). Then, a set X of atoms is
an answer set of a program Π if Cn(ΠX) = X . We use AS (Π) for denoting the
set of all answer sets of Π . The set of generating rules of a set X of atoms from
program Π is given by RΠ(X) = {r ∈ Π | body+(r) ⊆ X, body−(r) ∩X = ∅}.

Next, we lay the graph-theoretical foundations of our approach. A graph is
a pair (V, E) where V is a set of vertices and E ⊆ V × V a set of (directed)
edges. Labeled graphs posses multiple sets of edges. A graph (V, E) is acyclic if E

contains no cycles. For W ⊆ V , we denote E ∩ (W ×W) by E|W and abbreviate
G = (V ∩W, E|W) by G|W . A subgraph of (V, E) is a graph (W, F) such that
W ⊆ V and F ⊆ E|W .

In the sequel, we are interested in graphs reflecting dependencies among rules.

Definition 1. Let Π be a logic program. The rule dependency graph (RDG)
ΓΠ = (Π, E0, E1) of Π is a labeled directed graph with

E0 =
{

(r, r′) | r, r′ ∈ Π, head (r) ∈ body+(r′)
}

;

E1 =
{

(r, r′) | r, r′ ∈ Π, head (r) ∈ body−(r′)
}

.

We omit subscript Π from ΓΠ whenever the program is clear from the context.
An i-subgraph (V, E) of Γ is a subgraph of Γ with E ⊆ Ei for i ∈ {0, 1}.

For illustration, consider the logic program Π1 = {r1, . . . , r6}, where

r1 : p←
r2 : b← p

r3 : f ← b, not f ′

r4 : f ′ ← p, not f

r5 : b← m

r6 : x← f, f ′, not x
(1)

The RDG of Π1 is depicted graphically in Figure 1a. The RDG ΓΠ1
has among

r1i r2i

r4i r3i

r6i r5i

? ?-�

-

6�
�

�	?

� �
��

0

0

0

0

1

0

1

0
⊕i ⊕i

r4i r3i

	i r5i

? ?-�

-

6�
�

�	?

� �
��

0

0

0

0

1

0

1

0
⊕i ⊕i

	i ⊕i

	i 	i

? ?-�

-

6�
�

�	?

� �
��

0

0

0

0

1

0

1

0
⊕i ⊕i

⊕i 	i

	i 	i

? ?-�

-

6�
�

�	?

� �
��

0

0

0

0

1

0

1

0

Fig. 1. (a) The RDG of logic program Π1; (b) The (partially) colored RDG (ΓΠ1
, C2);

(c+d) The totally colored RDGs (ΓΠ1
, C4a) and (ΓΠ1

, C4b).

others 0-subgraph ({r1, . . . , r4}, {(r1, r2)}) and 1-subgraph ({r5, r6}, {(r6, r6)}).
We call C a coloring of ΓΠ if C is a mapping C : Π → {⊕,	}. We de-

note the set of all partial colorings of a RDG ΓΠ by CΓΠ
. For readability, we

often omit the index ΓΠ . Intuitively, the colors ⊕ and 	 indicate whether a
rule is supposedly applied or blocked. We define C⊕ = {r | C(r) = ⊕} and

C	 = {r | C(r) = 	} for obtaining all vertices colored by C with ⊕ or 	.
If C is total, (C⊕, C) is a binary partition of Π . That is, Π = C⊕ ∪ C	 and
C⊕∩C	 = ∅. Accordingly, we often identify a coloring C with the pair (C⊕, C).
A partial coloring C induces a pair (C⊕, C) of sets such that C⊕∪C	 ⊆ Π and
C⊕ ∩ C	 = ∅. For comparing partial colorings, C and C ′, we define C v C ′, if
C⊕ ⊆ C ′

⊕ and C	 ⊆ C ′
	. The “empty” coloring (∅, ∅) is the v-smallest coloring.

Accordingly, we define CtC ′ as (C⊕∪C ′
⊕, C	∪C ′

). If C is a coloring of ΓΠ , we
call the pair (ΓΠ , C) a colored RDG. For example, “coloring” the RDG of Π1 with

C2 = ({r1, r2}, {r6}) (2)

yields the colored graph in Figure 1b. For simplicity, when coloring, we replace
the label of a node by the respective color.

We are interested in computing the total colorings of a RDG correspond-
ing to the answer sets of a underlying program. The colorings of interest can
be distinguished as follows. Let Π be a logic program along with its RDG

Γ. Then, for every answer set X of Π , define an admissible coloring C of Γ

as C = (RΠ(X), Π \ RΠ(X)). By way of the generating rules, we associate
with a program a set of admissible colorings whose members are in 1–1 corre-
spondence with its answer sets. Any admissible coloring is total; also, we have
X = head (C⊕). We use AC (Π) for denoting the set of all admissible colorings of
a RDG ΓΠ . For a partial coloring C, we define AC Π(C) as the set of all admissible
colorings of ΓΠ compatible with C. Formally, given the RDG Γ of a logic program
Π and a partial coloring C of Γ, define AC Π(C) = {C ′ ∈ AC (Π) | C v C ′} .
Clearly, C1 v C2 implies ACΠ(C1) ⊇ ACΠ(C2). Also, note that AC (Π) =
ACΠ((∅, ∅)). Regarding program Π1 and coloring C2, we get AC Π1

(C2) =
AC (Π1) = {({r1, r2, r3}, {r4, r5, r6}), ({r1, r2, r4}, {r3, r5, r6})} as shown in Fig-
ure 1c+d. Accordingly, define ASΠ(C) as the set of all answer sets X compatible
with partial coloring C: ASΠ(C) = {X ∈ AS (Π) | C⊕ ⊆ RΠ(X) and C	 ∩
RΠ(X) = ∅}. We get ASΠ1

(C2) = AS (Π1) = {{b, p, f}, {b, p, f ′}}.
We need the following concepts for describing a rule’s status of applicability.

Definition 2. Let Γ = (Π, E0, E1) be the RDG of logic program Π and C be a
partial coloring of Γ. For r ∈ Π, we define:

1. r is supported in (Γ, C), if body+(r) ⊆ {head(r′) | (r′, r) ∈ E0, r
′ ∈ C⊕};

2. r is unsupported in (Γ, C), if {r′ | (r′, r) ∈ E0, head (r′) = q} ⊆ C	 for some
q ∈ body+(r);

3. r is blocked in (Γ, C), if r′ ∈ C⊕ for some (r′, r) ∈ E1;
4. r is unblocked in (Γ, C), if r′ ∈ C	 for all (r′, r) ∈ E1.

We use S(Γ, C), S(Γ, C), B(Γ, C), and B(Γ, C) for denoting the sets of all sup-
ported, unsupported, blocked, and unblocked rules in (Γ, C). For illustration,
consider the sets obtained regarding the colored RDG (ΓΠ1

, C2) in Figure 1b.

S(ΓΠ1
, C2) = {r1, r2, r3, r4} S(ΓΠ1

, C2) = {r5}
B(ΓΠ1

, C2) = ∅ B(ΓΠ1
, C2) = {r1, r2, r5, r6}

(3)

The next results are important for understanding the idea of our approach.

Theorem 1. Let Γ be the RDG of logic program Π and C be a partial coloring
of Γ. Then, we have for every X ∈ ASΠ(C) that

1 .S(Γ, C) ∩ B(Γ, C) ⊆ RΠ(X) 2 .S(Γ, C) ∪ B(Γ, C) ⊆ Π \RΠ(X).

If C is admissible, we have for {X} = ASΠ(C) that

3 .S(Γ, C) ∩ B(Γ, C) = RΠ(X) 4 .S(Γ, C) ∪ B(Γ, C) = Π \RΠ(X).

Equation 3 and 4 are equivalent since C is total. Reconsider the partially colored
RDG (ΓΠ1

, C2) in Figure 1b. For every X ∈ ASΠ1
(C2) = {{b, p, f}, {b, p, f ′}},

S(ΓΠ1
, C2) ∩ B(ΓΠ1

, C2) = {r1, r2} ⊆ RΠ1
(X);

S(ΓΠ1
, C2) ∪ B(ΓΠ1

, C2) = {r5} ⊆ Π \RΠ1
(X).

3 Deciding answersetship from colored graphs

The result in Theorem 1 started from an existing answer set induced from a
given coloring. We now develop concepts that allow us to decide whether a total
coloring represents an answer set by purely graph-theoretical means. To begin
with, we define a graph structure accounting for the notion of recursive support.

Definition 3. Let Γ be the RDG of logic program Π and C be a partial coloring
of Γ. Define a support graph of (Γ, C) as an acyclic 0-subgraph (V, E) of Γ such
that body+(r) ⊆ {head(r′) | (r′, r) ∈ E} for all r ∈ V , C⊕ ⊆ V , and C	∩V = ∅.

Intuitively, support graphs constitute the graph-theoretical counterpart of oper-
ator Cn. Every uncolored RDG (with C = (∅, ∅)) has a unique support graph
possessing a largest set of vertices. We refer to such support graphs as maxi-
mal ones; all of them share the same set of vertices. For example, the maximal
support graph of (ΓΠ1

, (∅, ∅)), given in Figure 1a, excludes r5, since it cannot
be supported (recursively); otherwise, it contains, except for (r5, r3), all 0-edges
of ΓΠ1

. The maximal support graph of the colored RDG (ΓΠ1
, C2), given in

Figure 1b, is ({r1, r2, r3, r4}, {(r1, r2), (r1, r4), (r2, r3)}). It includes all positively
colored and excludes all negatively colored nodes in (ΓΠ1

, C2).
Given a program {q, p ← q} a coloring like ({p ← q}, {q}) may deny the

existence of a support graph. For colored graphs, we have the following conditions
guaranteeing the existence of (maximal) support graphs.

Theorem 2. Let Γ be the RDG of logic program Π and C be a partial coloring
of Γ. If AC Π(C) 6= ∅, then there is a (maximal) support graph of (Γ, C).

The existence of a support graph implies that of a maximal one. Note further-
more that support graphs of totally colored graphs are necessarily maximal.

Corollary 1. Let Γ be the RDG of logic program Π and C be an admissible
coloring of Γ. Then, (C⊕, E) is a support graph of (Γ, C) for some E ⊆ (Π×Π).

Taking this result together with Property 3 or 4 in Theorem 1, we get a sufficient
characterization of admissible colorings (and their induced answer sets).

Theorem 3. Let Γ be the RDG of logic program Π and let C be a total coloring
of Γ. Then, the following statements are equivalent.

1. C is an admissible coloring of Γ;
2. C⊕ = S(Γ, C) ∩ B(Γ, C) and there is a support graph of (Γ, C);
3. C	 = S(Γ, C) ∪ B(Γ, C) and there is a support graph of (Γ, C).

For illustration, let us consider the two admissible colorings of RDG ΓΠ1
, corre-

sponding to the two answer sets of program Π1:

C4a = ({r1, r2, r3}, {r4, r5, r6}) and C4b = ({r1, r2, r4}, {r3, r5, r6}). (4)

The resulting colored RDGs are given in Figure 1c+d. We detail the case of C4a:

S(ΓΠ1
, C4a) ∩ B(ΓΠ1

, C4a) = {r1, r2, r3} = (C4a)⊕;
S(ΓΠ1

, C4a) ∪ B(ΓΠ1
, C4a) = {r4, r5, r6} = (C4a)	.

The maximal support graph of (ΓΠ1
, C4a) is given by ((C4a)⊕, {(r1, r2), (r2, r3)}).

4 Operational characterizations

The goal of this section is to provide operational characterizations of answer
sets. The idea is to start with the empty coloring (∅, ∅) and to successively apply
operators that turn a partial coloring C into another one C ′ such that C v C ′,
if possible. 1 This is done until an admissible coloring, encompassing an answer
set, is obtained. We concentrate first on deterministic operations.

Definition 4. Let Γ be the RDG of logic program Π and C be a partial coloring
of Γ. Define PΓ : C→ C as PΓ(C) = Ct(S(Γ, C)∩B(Γ, C), S(Γ, C)∪B(Γ, C)) .

A partial coloring C is closed under PΓ , if C = PΓ(C). Note that PΓ(C) does
not always exist. To see this, observe that PΓ(({a← not a}, ∅)) would be ({a←
not a}, {a← not a}), which is no mapping and thus no partial coloring.

Interestingly, PΓ exists on colorings expressing answer sets.

Theorem 4. Let Γ be the RDG of logic program Π and C a partial coloring of
Γ. If ACΠ(C) 6= ∅, then PΓ(C) exists.

Note that PΓ(C) may exist although AC Π(C) = ∅. To see this, consider Π =
{a← , c← a, not c}. Although AC Π(C) = ∅, PΓ((∅, ∅)) = ({r1}, ∅) exists.

Now, we can define our principal propagation operator in the following way.

Definition 5. Let Γ be the RDG of logic program Π and C a partial coloring of
Γ. Define P∗

Γ : C→ C where P∗
Γ(C) is the v-smallest partial coloring containing

C and being closed under PΓ .

An iterative definition of P∗
Γ in terms of PΓ is given in the full paper.

Also, P∗
Γ(C) is not necessarily defined. This situation is made precise next.

1 Recall that C v C′ implies AC Π(C) ⊇ AC Π(C′)).

Theorem 5. Let Γ be the RDG of logic program Π and C a partial coloring of
Γ. If ACΠ(C) 6= ∅, then P∗

Γ(C) exists.

The non-existence of P∗
Γ is a key feature since an undefined application of P∗

Γ

amounts to backtracking at the implementation level. Note that P∗
Γ((∅, ∅)) al-

ways exists, even though we may have AC Π((∅, ∅)) = ∅ (because of AS (Π) = ∅).
For illustration, consider program Π1. We get:

PΓ((∅, ∅)) = ({r1}, {r5})
PΓ(({r1}, {r5})) = ({r1, r2}, {r5})

PΓ(({r1, r2}, {r5})) = ({r1, r2}, {r5}) and so P∗
Γ((∅, ∅)) = ({r1, r2}, {r5}) .

Let us now elaborate upon the formal properties of PΓ and P∗
Γ . First, we

observe that both are reflexive, that is, C v PΓ(C) and C v P∗
Γ(C) provided

they exist. As shown in the full paper, both operators are monotonic: For partial
colorings C, C ′ of Γ such that AC Π(C ′) 6= ∅, we have: If C v C ′, then PΓ(C) v
PΓ(C ′); analogously for P∗

Γ . Consequently, we have C v PΓ(C) v PΓ(PΓ(C)).
Moreover, PΓ and P∗

Γ are answer set preserving: AC Π(C) = AC Π(PΓ(C)) =
ACΠ(P∗

Γ(C)). PΓ can be used for deciding answersetship in the following way.

Corollary 2. Let Γ be the RDG of logic program Π and let C be a total coloring
of Γ. Then, C is an admissible coloring of Γ iff PΓ(C) = C and (Γ, C) has a
support graph.

For relating P∗
Γ to the well-known Fitting operator [7], we need the following.

Definition 6. Let Γ be the RDG of logic program Π and let C be a partial
coloring of Γ. Define XC = {head(r) | r ∈ C⊕} and YC = {q | for all r ∈
Π, if head (r) = q, then r ∈ C	}.

The pair (XC , YC) is a 3-valued interpretation of Π . By letting the pair mapping
ΦΠ(X, Y) be Fitting’s operator [7], we have the following result.

Theorem 6. Let Γ be the RDG of logic program Π. If C = P∗
Γ((∅, ∅)), then

Φω
Π(∅, ∅) = (XC , YC).

The next operation draws upon the maximal support graph of colored RDGs.

Definition 7. Let Γ be the RDG of logic program Π and C be a partial coloring
of Γ. Furthermore, let (V, E) be a maximal support graph of (Γ, C) for some
E ⊆ (Π ×Π). Define UΓ : C→ C as UΓ(C) = (C⊕, Π \ V).

This operator allows for coloring rules with 	 whenever it is clear from the
given partial coloring that they will remain unsupported. Observe that Π \V =
C	∪(Π\V). Like P∗

Γ , UΓ(C) is an extension of C. Unlike P∗
Γ , however, UΓ allows

for coloring nodes unconnected with the already colored part of the graph. For
Π1, for instance, we obtain UΓ((∅, ∅)) = (∅, {r5}). While this information on r5

can also be supplied by PΓ , it is not obtainable for “self-supporting 0-loops”, as
in Π = {p← q, q ← p}. In this case, we obtain UΓ((∅, ∅)) = (∅, {p← q, q ← p}),
which is not obtainable through PΓ .
UΓ is defined on colorings guaranteeing the existence of support graphs.

Corollary 3. Let Γ be the RDG of logic program Π and C be a partial coloring
of Γ. If (Γ, C) has a support graph, then UΓ(C) exists.

We show in the full paper that UΓ is reflexive, idempotent, monotonic, and
answer set preserving. That is, for partial colorings C and C ′ of Γ such that
ACΠ(C) 6= ∅ and AC Π(C ′) 6= ∅, we have C v UΓ(C), UΓ(C) = UΓ(UΓ(C)), and
if C v C ′, then UΓ(C) v UΓ(C ′). Moreover, we have AC Π(C) = AC Π(UΓ(C)).
Note that unlike PΓ , operator UΓ leaves the support graph of (Γ, C) unaffected.

Because UΓ implicitly enforces the existence of a support graph, our operators
furnish yet another characterization of answer sets.

Corollary 4. Let Γ be the RDG of logic program Π and let C be a total coloring
of Γ. Then, C is an admissible coloring of Γ iff C = PΓ(C) and C = UΓ(C).

C = UΓ(C) cannot guarantee that all supported unblocked rules belong to C⊕.
For instance, (∅, {a ←}) has an empty support graph; hence (∅, {a ←}) =
UΓ((∅, {a←})). That is, the trivially supported fact a← remains in C	. Such a
miscoloring is detected by PΓ . That is, PΓ((∅, {a←})) is no partial coloring.

Finally, we can express well-founded semantics [17] with our operators. For
this, given a partial coloring C, define (PU)∗Γ (C) as the v-smallest partial col-
oring containing C and being closed under PΓ and UΓ .

Theorem 7. Let Γ be the RDG of logic program Π. If C = (PU)∗Γ ((∅, ∅)), then
(XC , YC) is the well-founded model of Π.

We continue by providing a very general operational characterization that
possesses a maximum degree of freedom. To this end, we observe that Corollary 4
can serve as a straightforward check for deciding whether a given total coloring
constitutes an answer set. A corresponding guess can be provided through an
operator capturing a non-deterministic (don’t know) choice.

Definition 8. Let Γ be the RDG of logic program Π and C be a partial coloring
of Γ. For ◦ ∈ {⊕,	}, define C◦Γ : C→ C as

1. C⊕Γ (C) = (C⊕ ∪ {r}, C) for some r ∈ Π \ (C⊕ ∪ C);

2. C	Γ (C) = (C⊕, C	 ∪ {r}) for some r ∈ Π \ (C⊕ ∪ C).

We use C◦Γ if the distinction between C⊕Γ (C) and C	Γ (C) is of no importance.
Strictly speaking, C◦Γ is also parametrized with r; we leave this implicit.

Combining the previous guess and check operators yields our first operational
characterization of admissible colorings (along with its underlying answer sets).

Theorem 8. Let Γ be the RDG of logic program Π and let C be a total coloring
of Γ. Then, C is an admissible coloring of Γ iff there exists a sequence (C i)0≤i≤n

1. C0 = (∅, ∅);
2. Ci+1 = C◦Γ(Ci) for some ◦ ∈ {⊕,	} and 0 ≤ i < n;
3. Cn = UΓ(Cn);
4. Cn = PΓ(Cn);
5. Cn = C.

We refer to such sequences also as coloring sequences. All sequences satisfying
conditions 1-5 of Theorem 8 are successful as their last element corresponds to
an answer set. If a program has no answer set, then no such sequence exists.

Although this guess and check approach is of no implementational value, it
supplies us with a skeleton for the coloring process. In particular, it stresses the
basic fact that we possess complete freedom in forming a coloring sequence as
long as we can guarantee that the resulting coloring is a fixed point of PΓ and
UΓ . It is worth mentioning that this simple approach is inapplicable when fixing
◦ to either ⊕ or 	 (see full paper). We observe the following properties.

Theorem 9. Given the prerequisites in Theorem 8, let (C i)0≤i≤n be a sequence
satisfying conditions 1-5 in Theorem 8. Then, we have the following properties
for 0 ≤ i ≤ n.

1. Ci is a partial coloring;
2. Ci v Ci+1;
3. ACΠ(Ci) ⊇ ACΠ(Ci+1);
4. ACΠ(Ci) 6= ∅;
5. (Γ, Ci) has a (maximal) support graph.

All these properties represent invariants of the consecutive colorings. While the
first three properties are provided by operator C◦Γ in choosing among uncolored
rules only, the last two properties are actually enforced by the “check” on the
final coloring Cn expressed by conditions 3–5. In fact, sequences only enjoying
conditions 1 and 2 in Theorem 8, fail to satisfy Property 4 and 5. Hence, the
corresponding computations may be led numerous times on the “garden path”.

As well-known, the number of choices can be significantly reduced by apply-
ing deterministic operators.

Theorem 10. Let Γ be the RDG of logic program Π and let C be a total coloring
of Γ. Then, C is an admissible coloring of Γ iff there exists a sequence (C i)0≤i≤n

1. C0 = (PU)∗Γ ((∅, ∅));

2. Ci+1 = (PU)∗Γ(C◦Γ(Ci)) for some ◦ ∈ {⊕,	} and 0 ≤ i < n;
3. Cn = C.

The continuous applications of PΓ and UΓ extend colorings after each choice.
This proceeding guarantees that each partial coloring C i is closed under PΓ and
UΓ . In view of Theorem 8, any number of iterations of PΓ and UΓ can be done
after C◦Γ as long as (PU)∗Γ is the final operation leading to Cn in Theorem 10.
Consider the coloring sequence in Figure 2, obtained for answer set {b, p, f ′} of
program Π1. The decisive operation in this sequence is the application of C⊕Γ
leading to C(r3) = ⊕. The same final result is obtained when choosing C	Γ such
that C(r4) = 	. So, several coloring sequences may lead to the same answer set.

The usage of continuous propagations leads to further invariant properties.

Theorem 11. Given the prerequisites in Theorem 10, let (C i)0≤i≤n be a se-
quence satisfying conditions 1-3 in Theorem 10. Then, we have properties 1–5
in Theorem 9 and

r1i r2i

r4i r3i

r6i r5i

? ?-�

-

6�
�

�	?

� �
��

0

0

0

0

1

0

1

0

(PU)∗
Γ

7−→

⊕i ⊕i

r4i r3i

r6i 	i

? ?-�

-

6�
�

�	?

� �
��

0

0

0

0

1

0

1

0

C
⊕

Γ

7−→

⊕i ⊕i

r4i ⊕i

r6i 	i

? ?-�

-

6�
�

�	?

� �
��

0

0

0

0

1

0

1

0

(PU)∗
Γ

7−→

⊕i ⊕i

	i ⊕i

	i 	i

? ?-�

-

6�
�

�	?

� �
��

0

0

0

0

1

0

1

0

Fig. 2. A coloring sequence.

6. Ci+1
⊕ ⊇ S(Γ, Ci) ∩B(Γ, Ci);

7. Ci+1
	 ⊇ S(Γ, Ci) ∪B(Γ, Ci).

Taking Property 6 and 7 together with 5 in Theorem 9, we see that propagation
gradually enforces the attributes on partial colorings expressed in Theorem 3.

Given that we obtain only two additional properties, one may wonder whether
exhaustive propagation truly pays off. Its value becomes apparent when looking
at the properties of prefix sequences, not necessarily leading to a successful end.

Theorem 12. Given the prerequisites in Theorem 10, let (C j)0≤j≤m be a se-
quence satisfying Condition 1 and 2 in Theorem 10. Then, we have properties
1–3, 5 in Theorem 9 and 6–7 in Theorem 11.

Using exhaustive propagations, we observe that except for Property 4 all prop-
erties of successful sequences, are shared by (possibly unsuccessful) prefix se-
quences. In the full paper, we prove that propagation leads to shorter and fewer
(prefix) sequences.

What else may cut down the number of choices? Looking at the graph struc-
tures underlying an admissible coloring, we observe that support graphs possess
a non-local, since recursive, structure, while blockage exhibits a rather local
structure, based on arc-wise constraints. Consequently, it seems advisable to
prefer choices maintaining support structures over those maintaining blockage
relations, since the former have more global repercussions than the latter. To this
end, we develop in what follows a strategy that is based on a choice operation
restricted to supported rules.

Definition 9. Let Γ be the RDG of logic program Π and C be a partial coloring
of Γ. For ◦ ∈ {⊕,	}, define D◦

Γ : C→ C as

1. D⊕
Γ (C) = (C⊕ ∪ {r}, C) for some r ∈ S(Γ, C) \ (C⊕ ∪ C);

2. D	
Γ (C) = (C⊕, C	 ∪ {r}) for some r ∈ S(Γ, C) \ (C⊕ ∪ C).

The number of rules colorable by D◦
Γ is normally smaller than that by C◦Γ . De-

pending on how the non-determinism of D◦
Γ is dealt with algorithmically, this

may either lead to a reduced depth of the search tree or a reduced branching
factor.

In a successful coloring sequence (C i)0≤i≤n, all rules in Cn
⊕ belong to an en-

compassing support graph. Also, using D⊕
Γ (C) (and P∗

Γ) the supportness of each

set Ci
⊕ is made invariant. Hence, such a proceeding allows for establishing the

existence of support graphs “on the fly” and offers a much simpler approach to

the task(s) previously accomplished by UΓ . In fact, one may completely dispose
of operator UΓ and color in a final step all uncolored rules with 	.

Definition 10. Let Γ be the RDG of logic program Π and C a partial coloring
of Γ. Then, define NΓ : C→ C as NΓ(C) = (C⊕, Π \ C⊕).

Roughly speaking, the idea is then to “actively” color only supported rules
and rules blocked by supported rules; all remaining rules are then unsupported
and “thrown” into C	 in a final step.

Theorem 13. Let Γ be the RDG of logic program Π and let C be a total coloring
of Γ. Then, C is an admissible coloring of Γ iff there exists a sequence (C i)0≤i≤n

1. C0 = (∅, ∅);
2. Ci+1 = D◦

Γ(Ci) where ◦ ∈ {⊕,	} and 0 ≤ i < n− 1;
3. Cn = NΓ(Cn−1);
4. Cn = PΓ(Cn);
5. Cn = C.

We note that there is a little price to pay for turning UΓ into NΓ , expressed in
Condition 4. Without it, one could use NΓ to obtain a total coloring by coloring
rules with 	 in an arbitrary way. We obtain the following properties for this
type of sequences.

Theorem 14. Given the prerequisites in Theorem 13, let (C i)0≤i≤n be a se-
quence satisfying conditions 1-5 in Theorem 13. Then, we have properties 1–5
in Theorem 9 and

8. (Ci
⊕, E) is a support graph of (Γ, C i) for some E ⊆ Π ×Π.

Unlike the coloring sequences only enjoying Condition 5 in Theorem 9, the se-
quences formed by means of D◦

Γ guarantee that each Ci
⊕ forms an independent

support graph.
In fact, there is some overlap among operator D	

Γ and NΓ . To see this, con-

sider Π = {a ← , b← not a}. Initially, we must apply D⊕
Γ to obtain ({a ←}, ∅)

from (∅, ∅). Then, however, we may either apply D	
Γ or NΓ for obtaining admis-

sible coloring ({a}, {b ← not a}). Interestingly, this overlap can be eliminated
by adding propagation operator P∗

Γ . This results in the basic strategy used in
the noMoRe system [1].

Theorem 15. Let Γ be the RDG of logic program Π and let C be a total coloring
of Γ. Then, C is an admissible coloring of Γ iff there exists a sequence (C i)0≤i≤n

1. C0 = P∗
Γ((∅, ∅));

2. Ci+1 = P∗
Γ(D◦

Γ(Ci)) where ◦ ∈ {⊕,	} and 0 ≤ i < n− 1;
3. Cn = NΓ(Cn−1);
4. Cn = PΓ(Cn);
5. Cn = C.

Indeed, the strategy of noMoRe applies operatorD◦
Γ as long as there are supported

rules. Once no more uncolored supported rules exist, operator NΓ is called.
Finally, PΓ is applied (in practice, only to those rules colored previously by
NΓ). At first sight, this approach may seem to correspond to a subclass of the
coloring sequences described in Theorem 15, in the sense that noMoRe enforces
a maximum number of transitions described in Condition 2. To see that this is
not the case, we observe the following property.

Theorem 16. Given the prerequisites in Theorem 15, let (C i)0≤i≤n be a se-
quence satisfying conditions 1-5 in Theorem 15. Then, we have (NΓ(Cn−1)	 \
Cn−1

) ⊆ S(Γ, C).

That is, no matter which (supported) rules are colored 	 by D	
Γ , operator NΓ

only applies to unsupported ones. It is thus no restriction to enforce the consec-
utive application of P∗

Γ and D◦
Γ until no more supported rules are available. In

fact, it is the interplay of the two last operators that guarantees this property.
For instance, looking at Π = {a, b← not a}, we see that we directly obtain the
final total coloring because ({a}, {b ← not a}) = P∗

Γ(D⊕
Γ ((∅, ∅))), without any

appeal to NΓ . Rather it is P∗
Γ that detects that b← not a is blocked. Generally

speaking, D⊕
Γ consecutively chooses the generating rules of an answer set, finally

gathered in C⊕ = S(Γ, C) ∩ B(Γ, C). Clearly, every rule in B(Γ, C) is blocked
by some rule in C⊕. So whenever a rule r is added by D⊕

Γ to C⊕, operator P∗
Γ

adds all rules blocked by r to C	. In this way, P∗
Γ and D⊕

Γ gradually color all

rules in S(Γ, C) ∩ B(Γ, C) and B(Γ, C), so that all remaining uncolored rules,
subsequently treated by NΓ , must belong to S(Γ, C). We obtain the following
properties.

Theorem 17. Given the prerequisites in Theorem 15, let (C i)0≤i≤n be a se-
quence satisfying conditions 1-5 in Theorem 15. Then, we have properties 1–5
in Theorem 9, 6–7 in Theorem 11, and 8 in Theorem 14.

In the full paper, we discuss alternative support-driven operational character-
izations using an incremental version of UΓ instead of NΓ . As well, we elaborate
upon unicoloring strategies, using only one of the choice operators for ⊕ or 	
instead of both.

5 Discussion, related work, and conclusions

Among the many graph-based approaches in the literature, we find some dealing
with stratification [2], existence of answer sets [6, 3], or the actual characteriza-
tion of answer sets or well-founded semantics [4, 3, 9, 11]. Our own approach has
its roots in earlier work on default logic [12, 13, 16]. The usage of rule-oriented
dependency graphs is common to [4, 3, 9]. In fact, the coloration of such graphs
for characterizing answer sets was independently developed in [3] and [9]. While
we borrow the term of an admissible coloring from the former, the work reported

in Section 3 builds upon the latter and revises its definitions by appeal to the
concept of a support graph. 2

Our major goal is however to provide an operational framework for answer
set formation that allows us to bridge the gap between formal yet static charac-
terizations of answer sets and algorithms for computing them. For instance, in
the seminal paper [15] describing the smodels approach, answer sets are given in
terms of so-called full-sets and their computation is directly expressed in terms
of procedural algorithms. Our operational semantics aims at offering an interme-
diate stage that facilitates the formal elaboration of computational approaches.
Our approach is strongly inspired by the concept of a derivation, in particular,
that of an SLD-derivation [14]. This attributes our coloring sequences the fla-
vor of a derivation in a family of calculi, whose respective set of inference rules
correspond to the selection of operators.

Although we leave out implementational issues, some remarks relating our ap-
proach, and thus the resulting noMoRe system [1], to the ones underlying dlv [5]
and smodels [15] are in order. A principal difference manifests itself in how
choices are performed. While the two latter’s choice is based on atoms occur-
ring (negatively) in the underlying program, our choices are based on its rules.
An advantage of our approach is that we can guarantee the support of rules on
the fly. Unlike this, support checking is a recurring operation in the smodels

system, similar to operator UΓ . On the other hand, this approach ensures that
the smodels algorithm runs in linear space complexity, while a graph-based ap-
proach needs quadratic space in the worst case. This “investment” pays off once
one is able to exploit the additional structural information offered by a graph.
First steps in this direction are made in [10], where graph compressions are de-
scribed that allow for conflating entire subgraphs into single nodes. Propagation
is more or less done similarly in all three approaches. smodels relies on com-
puting well-founded semantics, whereas dlv uses Fitting’s operator plus some
backpropagation mechanisms.

To sum up, we build upon the basic graph-theoretical characterizations in [9,
11] for developing an operational framework for non-deterministic answer set
formation. The general idea is to start from an uncolored RDG and to employ
specific operators that turn a partially colored graph gradually in a totally col-
ored one, representing an answer set. To this end, we have developed a variety of
deterministic and non-deterministic operators. Different coloring sequences (en-
joying different formal properties) are obtained by selecting different combina-
tions of operators. Among others, we have identified the particular strategy of the
noMoRe system as well as operations yielding Fitting’s and well-founded seman-
tics. Taken together, the last results show that noMoRe’s principal propagation
operation amounts to applying Fitting’s operator. Notably, the explicit detection
of 0-loops is avoided by employing a support-driven choice operation. The noMoRe
system is available at http://www.cs.uni-potsdam.de/∼linke/nomore.

2
RDGs differ from “block graphs” introduced in [9], whose practically motivated
restrictions are superfluous from a theoretical perspective. Also, we abandon the term
“block graphs” in order to give the same status to support and blockage relations.

References

1. C. Anger, K. Konczak, and T. Linke. noMoRe: Non-monotonic reasoning with
logic programs. In S. Flesca et al., editors, Proceedings of the Eighth European
Conference on Logics in Artificial Intelligence, pages 521–524. Springer, 2002.

2. K. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge. In
J. Minker, editor, Foundations of Deductive Databases and Logic Programming,
pages 89–148. Morgan Kaufmann, 1987.

3. G. Brignoli, S. Costantini, O. D’Antona, and A. Provetti. Characterizing and
computing stable models of logic programs: the non-stratified case. In C. Baral
and H. Mohanty, editors, Proceedings of the Conference on Information Technology,
Bhubaneswar, India, pages 197–201. AAAI Press, 1999.

4. Y. Dimopoulos and A. Torres. Graph theoretical structures in logic programs and
default theories. Theoretical Computer Science, 170:209–244, 1996.

5. T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A deductive system for
nonmonotonic reasoning. In J. Dix et al., editors, Proceedings of the Fourth Int’l
Conference on Logic Programming and Non-Monotonic Reasoning, pages 363–374.
Springer, 1997.

6. F. Fages. Consistency of clark’s completion and the existence of stable models.
Journal of Methods of Logic in Computer Science, 1:51–60, 1994.

7. M. Fitting. Fixpoint semantics for logic programming a survey. Theoretical Com-
puter Science, 278(1-2):25–51, 2002.

8. M. Gelfond and V. Lifschitz. Classical negation in logic programs and deductive
databases. New Generation Computing, 9:365–385, 1991.

9. T. Linke. Graph theoretical characterization and computation of answer sets. In
B. Nebel, editor, Proceedings of the Int’l Joint Conference on Artificial Intelligence,
pages 641–645. Morgan Kaufmann Publishers, 2001.

10. T. Linke. Using nested logic programs for answer set programming. In M. De Voss
and A. Provetti, editors, Proceedings of the Workshop on Answer Set Programming:
Advances in Theory and Implementation (ASP03). 181–194, CEUR, 2003.

11. T. Linke, C. Anger, and K. Konczak. More on noMoRe. In S. Flesca et al., editors,
Proceedings of the Eighth European Conference on Logics in Artificial Intelligence,
pages 468–480, 2002.

12. T. Linke and T. Schaub. An approach to query-answering in Reiter’s default
logic and the underlying existence of extensions problem. In J. Dix et al., editors,
Proceedings of the Sixth European Workshop on Logics in Artificial Intelligence,
pages 233–247. Springer, 1998.

13. T. Linke and T. Schaub. Alternative foundations for Reiter’s default logic. Artificial
Intelligence, 124(1):31–86, 2000.

14. J. Lloyd. Foundations of Logic Programming. Springer, 1987.
15. I. Niemelä and P. Simons. Efficient implementation of the well-founded and stable

model semantics. In M. Maher, editor, Proceedings of the Joint Int’l Conference
and Symposium on Logic Programming, pages 289–303. The MIT Press, 1996.

16. C. Papadimitriou and M. Sideri. Default theories that always have extensions.
Artificial Intelligence, 69:347–357, 1994.

17. A. van Gelder, K. Ross, and J. S. Schlipf. The well-founded semantics for general
logic programs. Journal of the ACM, 38(3):620–650, 1991.

