
Verifying Strong Equivalence of Programs
in the Input Language of gringo

Vladimir Lifschitz1[0000−0001−6051−7907], Patrick Lühne2[0000−0001−5902−4152],
and Torsten Schaub2?[0000−0002−7456−041X]

1 University of Texas at Austin, USA
2 University of Potsdam, Germany

Abstract. The semantics of the input language of the ASP grounder
gringo uses a translation that converts a logic program, which may
contain variables and arithmetic operations, into a set of infinitary propo-
sitional formulas. In this note, we show that the result of that translation
can be replaced in some cases by a finite set of first-order sentences. The
translator anthem constructs that set of sentences and converts it to a
format that can be processed by automated reasoning tools. anthem, in
combination with the first-order theorem prover vampire, allows us to
verify the strong equivalence of programs in the language of gringo.

1 Introduction

The semantics of the input language of the ASP grounder gringo [3] uses a
translation τ that converts a logic program, which may contain variables and
arithmetic operations, into a set of infinitary propositional formulas. In this note,
we show that the set produced by τ can be replaced in some cases by a finite set
of first-order sentences. The translator anthem constructs that set of sentences
and converts it to a format that can be processed by automated reasoning tools.

In combination with the first-order theorem prover vampire [7], anthem
allows us to verify strong equivalence of programs in the language of gringo with
a computer-assisted proof. This relation between logic programs is important
because it guarantees the possibility of replacing one program by the other in
any context [9]. Earlier work on verifying strong equivalence [6, 1] was restricted
to programs that do not contain arithmetic operations.

The definition of a logic program in Section 2 largely follows [3, 5], and it
disregards some details of the syntax of gringo. For instance, about the set
of symbolic constants we assume only that it is countably infinite and totally
ordered; in gringo, symbolic constants are actually strings, and they are ordered
lexicographically. Dropping the condition abc < acb from the body of a rule in
a gringo program does not change the set of stable models, but this fact is not
reflected in our more abstract theory of strong equivalence.

The class of programs studied in this note is more restricted than that in the
papers quoted above. In particular, local variables are not allowed. Accordingly,
? Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.

2 Vladimir Lifschitz, Patrick Lühne, and Torsten Schaub

the version of τ defined in Section 3 does not use infinite conjunctions and
disjunctions. It produces, generally, an infinite set of finite formulas. Some of the
theorems in this paper refer, however, to infinitary propositional formulas and to
the strong equivalence relation between them [4].

This paper is structured as follows. Sections 2 and 3 revisit background on
logic programs and stable models. Section 4 extends strong equivalence from the
propositional case to logic programs as defined in Section 2. Section 5 outlines
the target language of τ∗, our new translation from logic programs to finite sets
of first-order sentences. τ∗ is then introduced in Section 6. Section 7 discusses the
important special case of positive programs. The translator anthem is presented
in Section 8. Finally, Section 9 shows how to programmatically verify the strong
equivalence of positive programs with anthem and the theorem prover vampire,
and Section 10 concludes this paper with ideas for future work.

2 Background: Logic Programs

We assume that three countably infinite sets of symbols are selected: numerals,
symbolic constants, and program variables. (We talk about “program” variables to
distinguish them from “integer” variables, introduced in Section 5 below. Integer
variables are allowed in formulas but not in programs.) We assume that a 1-to-1
correspondence between numerals and integers is chosen; we denote the numeral
corresponding to an integer n by n.

Program terms are defined recursively as follows. (Program terms are to be
distinguished from “formula terms,” defined in Section 5.)

– Numerals, symbolic constants, program variables, and the symbols inf and
sup are program terms;

– if t1, t2 are program terms and op is one of the operation names

+ − × / \ . .

then (t1 op t2) is a program term.

If t is a term, then −t is shorthand for 0−t. A program term, or another syntactic
expression, is ground if it does not contain variables. A ground expression is
precomputed if it does not contain operation names.

We assume that a total order on precomputed program terms is chosen, where

– inf is its least element and sup is its greatest element,
– for any integers m and n, m < n iff m < n, and
– for any integer n and any symbolic constant c, n < c.

An atom is an expression of the form p(t), where p is a symbolic constant
and t is a tuple of program terms. A literal is an atom possibly preceded by one
or two occurrences of not . A comparison is an expression of the form (t1 rel t2),
where t1, t2 are program terms and rel is one of the relation names

= 6= < > ≤ ≥ (1)

Verifying Strong Equivalence of Programs in the Input Language of gringo 3

A rule is an expression of the form

Head ← Body , (2)

where

– Body is a conjunction (possibly empty) of literals and comparisons, and
– Head is either an atom (then we say that (2) is a basic rule), or an atom in

braces (then (2) is a choice rule), or empty (then (2) is a constraint).

A program is a finite set of rules.

3 Background: Stable Models

An interpretation is a set of precomputed atoms. We define which interpretations
are stable models of a program Π by first transforming Π into a set τΠ of
propositional formulas formed from precomputed atoms and then referring to the
definition of a stable model (answer set) [2] of a set of propositional formulas.

In propositional formulas, we consider the connectives

⊥ (“false”), ∧, ∨, → (3)

primitives; > is shorthand for ⊥ → ⊥, ¬F is shorthand for F → ⊥, and F ↔ G
is shorthand for (F → G) ∧ (G→ F).

Before defining τ , we define, for every ground program term t, the set [t] of
its values:

– if t is a numeral, a symbolic constant, inf , or sup, then [t] is {t};
– if t is (t1 + t2), then [t] is the set of numerals n1 + n2 for all integers n1, n2

such that n1 ∈ [t1] and n2 ∈ [t2]; similarly when t is (t1 − t2) or (t1 × t2);
– if t is (t1/t2), then [t] is the set of numerals bn1/n2c for all integers n1, n2

such that n1 ∈ [t1], n2 ∈ [t2], and n2 6= 0;
– if t is (t1\t2), then [t] is the set of numerals n1 − n2 · bn1/n2c for all integers
n1, n2 such that n1 ∈ [t1], n2 ∈ [t2], and n2 6= 0;

– if t is (t1 . . t2), then [t] is the set of numerals m for all integers m such that
some integers n1, n2 satisfy n1 ∈ [t1], n2 ∈ [t2], and n1 ≤ m ≤ n2.

It is clear that values of a ground program term are precomputed program terms.
For example,

– the only value of 2× 2 is 4;
– the values of 1 . . 3 are 1, 2, 3;
– 1/0 has no values;
– a+ 1, where a is a symbolic constant, has no values.

For any ground terms t1, . . . , tn, by [t1, . . . , tn] we denote the set of tuples
r1, . . . , rn for all r1 ∈ [t1], . . . , rn ∈ [tn].

Now, we can turn to the definition of τ . For any ground atom p(t),

4 Vladimir Lifschitz, Patrick Lühne, and Torsten Schaub

– τp(t) stands for
∨

r∈[t] p(r),
– τ(not p(t)) stands for

∨
r∈[t] ¬p(r), and

– τ(not not p(t)) stands for
∨

r∈[t] ¬¬p(r).

For example,

– τp(1 . . 3) is p(1) ∨ p(2) ∨ p(3),
– τ(not p(1 . . 3)) is ¬p(1) ∨ ¬p(2) ∨ ¬p(3).

For any ground comparison t1 rel t2, we define τ(t1 rel t2) as

– > if the relation rel holds between some r1 from [t1] and some r2 from [t2];
– ⊥ otherwise.

For example, τ(1 = 1 . . 3) is >.
If each of C1, . . . , Ck is a ground literal or a ground comparison, then τ(C1 ∧

· · · ∧ Ck) stands for τC1 ∧ · · · ∧ τCk.
If R is a ground basic rule p(t)← Body , then τR is the propositional formula

τ(Body)→
∧

r∈[t] p(r).

If R is a ground choice rule {p(t)} ← Body , then τR is the propositional formula

τ(Body)→
∧

r∈[t](p(r) ∨ ¬p(r)).

If R is a ground constraint ← Body , then τR is ¬τ(Body).
An instance of a rule is a ground rule obtained from it by substituting

precomputed program terms for program variables. For any program Π, τΠ is
the set of the propositional formulas τR for all instances R of the rules of Π.

For example, the instances of the rule

q(X + 1)← p(X) (4)

are the ground rules
q(r + 1)← p(r)

for all precomputed program terms r. If r is a numeral n, then the result of
applying τ to this instance is

p(n)→ q(n+ 1). (5)

If r is not a numeral, then the result is

p(r)→ > (6)

(because the empty conjunction is understood as >). Consequently, the result of
applying τ to rule (4) consists of propositional formulas (5) for all integers n and
propositional formulas (6) for all precomputed program terms r except numerals.

Similarly, the result of applying τ to the rule

q(X)← p(X − 1) (7)

Verifying Strong Equivalence of Programs in the Input Language of gringo 5

consists of the propositional formulas

p(n− 1)→ q(n) (8)

for all integers n and the propositional formulas

⊥ → q(r) (9)

for all precomputed program terms r other than numerals.
An interpretation is a stable model of a programΠ if it is a stable model of τΠ.

4 Strong Equivalence

Recall that sets Γ1 and Γ2 of propositional formulas are said to be strongly
equivalent to each other if for every set Γ of propositional formulas, Γ1 ∪ Γ has
the same stable models as Γ2 ∪Γ . Two sets of propositional formulas are strongly
equivalent iff each of them can be derived from the other in the propositional logic
of here-and-there, which is intermediate between classical and intuitionistic [9].

We extend the definition of strong equivalence to programs in the sense of
Section 2 as follows: Programs Π1 and Π2 are strongly equivalent to each other
if τΠ1 is strongly equivalent to τΠ2.

For example, one-rule program (4) is strongly equivalent to (7). To justify this
claim, note that the sets of formulas obtained from these two rules by applying the
transformation τ are intuitionistically equivalent. Indeed, the set of formulas (5)
for all integers n is identical to the set of formulas (8) for all integers n; on the
other hand, all formulas (6) and (9) are provable intuitionistically.

This argument is quite simple, but it involves reasoning about infinite sets of
propositional formulas. It is not immediately clear how to automate generating
proofs of this kind. This is the challenge that we are interested in. Our approach is
to replace τ by a transformation τ∗, defined in Section 6 below, which produces a
finite set of first-order sentences. Sets of that kind can be processed by automated
reasoning tools. The transformation τ∗ is somewhat similar to the transformations
defined in [5] and implemented in an earlier version of anthem [8].

To take another example, consider the rules

q(X)← p(X), (10)

q(X + 1)← p(X + 1). (11)

They are not strongly equivalent to each other. Indeed, adding the rule p(a),
where a is a symbolic constant, to the former gives a program with the stable
model {p(a), q(a)}; adding that rule to the latter gives a program with the stable
model {p(a)}.

We call a rule trivial if it is strongly equivalent to the empty program. It
is clear that a rule R is trivial iff τR is provable in the logic of here-and-there.
Removing a trivial rule from a program does not affect its stable models. For
example, the rule

p(4)← p(2× 2) (12)

6 Vladimir Lifschitz, Patrick Lühne, and Torsten Schaub

is trivial because the result
p(4)→ p(4)

of applying τ to it is intuitionistically provable. The rule

p(1 . . 3)← p(1 . . 3) (13)

is not trivial because the program obtained by adding it to the fact p(1) has p(2)
and p(3) in its stable model.

Other examples of strong equivalence are given in Section 9.

5 Formulas

In this section, we define the target language of the new translation τ∗. This
is a first-order language with variables of two sorts. First, we include program
variables, introduced in Section 2; they range over precomputed program terms.
Second, integer variables range over numerals (or, equivalently, integers).

Arithmetic terms are formed from numerals and integer variables using the
operation symbols +, −, and ×. Note that / and \ are not allowed in arithmetic
terms. This is because division by 0 is undefined, and in first-order logic, a
function symbol is expected to denote a total function. Intervals are not allowed
either because an interval expression, generally, does not have a single value.

We collectively refer to arithmetic terms, symbolic constants, program vari-
ables, and the symbols inf and sup as formula terms. Thus, the set of program
terms (defined in Section 2) and the set of formula terms partially overlap. In a
program term, integer variables are not allowed; on the other hand, in a formula
term, arithmetic operations cannot be applied to symbolic constants and program
variables. It is clear that the only precomputed arithmetic terms are numerals.
Precomputed formula terms are identical to precomputed program terms so that
we can talk simply about “precomputed terms.”

Atomic formulas are expressions of the forms
– p(t), where p is a symbolic constant and t is a tuple of formula terms
(separated by commas, possibly empty), and

– (t1 rel t2), where t1, t2 are formula terms and rel is one of relation names (1).

Formulas are formed from atomic formulas using propositional connectives (3)
and the quantifiers ∀ and ∃ as usual in first-order logic. It is clear that every
propositional formula in the sense of Section 3—a propositional combination of
precomputed atoms—is a closed formula in the sense of this definition.

The satisfaction relation between interpretations and propositional formulas
is extended to arbitrary closed formulas as usual in classical logic; program
variables range over precomputed program terms, and integer variables range
over numerals. Two closed formulas are classically equivalent to each other if
they are satisfied by the same interpretations.

For describing the relationship between the translations τ and τ∗, we need a
translation that converts closed formulas in this language into infinitary proposi-
tional formulas formed from precomputed atoms. The infinitary propositional
formula F prop corresponding to a closed formula F is defined as follows:

Verifying Strong Equivalence of Programs in the Input Language of gringo 7

– if F is p(t), then F prop is obtained from F by replacing each member of t by
its value;

– if F is (t1 rel t2), then F prop is > if the values of t1 and t2 are in the relation rel ,
and ⊥ otherwise;

– ⊥prop is ⊥;
– (F �G)prop is (F prop �Gprop) for every binary connective �;
– (∀XF (X))prop is the conjunction of the formulas F (r)prop over all precom-

puted terms r if X is a program variable, and over all numerals r if X is an
integer variable;

– (∃XF (X))prop is the disjunction of the formulas F (r)prop over all precom-
puted terms r if X is a program variable, and over all numerals r if X is an
integer variable.

It is clear that a closed formula F is satisfied by the same interpretations
as the corresponding infinitary propositional formula F prop. Closed formulas F
and G are classically equivalent iff the infinitary propositional formulas F prop

and F prop are classically equivalent. If F prop and Gprop are strongly equivalent,
then F and G are classically equivalent.

For example, if F is

∀X∃N(N ≥ 0 ∧ p(X,N)),

where X is a program variable and N is an integer variable, then F prop is∧
r

(∨
n≥0(> ∧ p(r, n)) ∨

∨
n<0(⊥ ∧ p(r, n))

)
,

where r ranges over precomputed terms and n ranges over integers. This formula
is strongly equivalent to ∧

r

∨
n≥0 p(r, n).

6 Transforming Programs into Formulas

Prior to defining τ∗, we define, for every program term t, a formula val t(Z),
where Z is a program variable that does not occur in t. That formula expresses,
informally speaking, that Z is one of the values of t. This property is made precise
in Proposition 1 below.

The definition is recursive:

– if t is a numeral, a symbolic constant, a program variable, inf , or sup, then
val t(Z) is Z = t;

– if t is (t1 op t2), where op is +, −, or ×, then val t(Z) is

∃IJ(Z = I op J ∧ val t1(I) ∧ val t2(J)),

where I, J are fresh integer variables;

8 Vladimir Lifschitz, Patrick Lühne, and Torsten Schaub

– if t is (t1/t2), then val t(Z) is

∃IJQR(I = J ×Q+R ∧ val t1(I) ∧ val t2(J)

∧ J 6= 0 ∧R ≥ 0 ∧R < Q ∧ Z = Q),

where I, J , Q, R are fresh integer variables;
– if t is (t1\t2), then val t(Z) is

∃IJQR(I = J ×Q+R ∧ val t1(I) ∧ val t2(J)

∧ J 6= 0 ∧R ≥ 0 ∧R < Q ∧ Z = R),

where I, J , Q, R are fresh integer variables;
– if t is (t1 . . t2), then val t(Z) is

∃IJK(val t1(I) ∧ val t2(J) ∧ I ≤ K ∧K ≤ J ∧ Z = K),

where I, J , K are fresh integer variables.

For example, valX+1(Z) is

∃IJ(Z = I + J ∧ I = X ∧ J = 1),

where I, J are integer variables.

Proposition 1. For any ground program term t and any precomputed term r,
the formula val t(r)

prop is strongly equivalent to > if r ∈ [t] and to ⊥ otherwise.

This assertion can be proved by induction on t.
The last thing to do in preparation for defining τ∗ is to define the transla-

tion τB that is applied to expressions in the body of the rule:

– τB(p(t1, . . . , tk)) is

∃Z1 . . . Zk(val t1(Z1) ∧ · · · ∧ val tk(Zk) ∧ p(Z1, . . . , Zk));

– τB(not p(t1, . . . , tk)) is

∃Z1 . . . Zk(val t1(Z1) ∧ · · · ∧ val tk(Zk) ∧ ¬p(Z1, . . . , Zk));

– τB(not not p(t1, . . . , tk)) is

∃Z1 . . . Zk(val t1(Z1) ∧ · · · ∧ val tk(Zk) ∧ ¬¬p(Z1, . . . , Zk));

– τB(t1 rel t2) is

∃Z1Z2(val t1(Z1) ∧ val t2(Z2) ∧ Z1 rel Z2);

where each Zi is a fresh program variable.
From Proposition 1, we conclude:

Verifying Strong Equivalence of Programs in the Input Language of gringo 9

Proposition 2. If L is a ground literal or ground comparison, then (τBL)prop

is strongly equivalent to τL.

Now, we define
τ∗(Head ← B1 ∧ · · · ∧Bn)

as the universal closure of the formula

τB(B1) ∧ · · · ∧ τB(Bn)→ H,

where H is

– ∀Z1 . . . Zk(val t1(Z1) ∧ · · · ∧ val tk(Zk)→ p(Z1, . . . , Zk))
if Head is p(t1, . . . , tk);

– ∀Z1 . . . Zk(val t1(Z1) ∧ · · · ∧ val tk(Zk)→ p(Z1, . . . , Zk) ∨ ¬p(Z1, . . . , Zk))
if Head is {p(t1, . . . , tk)};

– ⊥ if Head is empty;

where each Zi is a fresh program variable.
For example, the result of applying τ∗ to rule (4) is

∀X(∃Z(Z = X∧p(Z))→ ∀Z1(∃IJ(Z1 = I+J∧I = X∧J = 1)→ q(Z1))). (14)

The result of applying τ∗ to rule (7) is

∀X(∃Z(∃IJ(Z = I−J∧I = X∧J = 1)∧p(Z))→ ∀Z1(Z1 = X → q(X))). (15)

From Proposition 2, we conclude:

Proposition 3. For any rule R, (τ∗R)prop is strongly equivalent to τR.

For any program Π, τ∗Π stands for the set of formulas τR for all rules R
of Π. From Proposition 3, we conclude:

Proposition 4. A program Π1 is strongly equivalent to a program Π2 iff (τ∗Π1)
prop

is strongly equivalent to (τ∗Π2)
prop.

For example, the question about the strong equivalence of rule (4) to rule (7),
resolved in Section 4, can be reformulated as the question about the strong
equivalence of the propositional counterparts of formulas (14) and (15).

With Proposition 4 available, our goal of verifying strong equivalence of
programs using automated reasoning tools for classical logic is not yet within
reach; what we need in addition is a way to use these tools to verify the condition

(τ∗Π1)
prop is strongly equivalent to (τ∗Π2)

prop. (16)

This can be achieved using an additional transformation that replaces each
predicate symbol by two, corresponding to the two worlds of the logic of here-and-
there, and thus reduces that logic to classical. A transformation of this kind is
part of the design of selp [1]. Implementing this idea in the context of anthem is
a topic for future work. In the next section, we show, however, that for “positive”
rules, such as (4), (7), and (10)–(13), condition (16) can be replaced by

τ∗Π1 is classically equivalent to τ∗Π2,

which can be verified by vampire and similar systems directly.

10 Vladimir Lifschitz, Patrick Lühne, and Torsten Schaub

7 Positive Programs

A positive rule is a basic rule or constraint such that its body is a conjunction of
atoms and comparisons.

Proposition 5. A positive program Π1 is strongly equivalent to a positive pro-
gram Π2 iff τΠ1 is classically equivalent to τΠ2.

This is immediate from the following lemma:

For any positive program Π and any positive ground rule R, if τR is derivable
from τΠ classically, then τR is derivable from τΠ intuitionistically.

This lemma can be proved using [10, Theorem 3].
Proposition 3 shows that for any program Π, τΠ is classically equivalent to

τ∗Π. In view of this fact, from Proposition 5, we can conclude:

Proposition 6. A positive program Π1 is strongly equivalent to a positive pro-
gram Π2 iff τ∗Π1 is classically equivalent to τ∗Π2.

This theorem justifies the use of anthem for verifying strong equivalence of
positive programs described below.

8 anthem

anthem 0.2 implements τ∗ as specified in Section 6. anthem supports input
programs in the input language of gringo of the form described in Section 2,
including nonpositive programs (Section 7), and generates output formulas in
human-readable form by default. For example, anthem translates the simple
positive program consisting of rule (7),

q(X) :- p(X - 1).

into the formula

forall X
(exists X1

(exists N1, N2 (X1 = N1 - N2 and N1 = X and N2 = 1)
and p(X1))

-> forall X2 (X2 = X -> q(X2)))

In the output language of anthem, integer variables are denoted by N1, N2,
etc., while all other variables are program variables. For this program, anthem
additionally prints a note that the input program was detected to be positive:

info: positive program

When instead passing a nonpositive program to anthem, such as

q :- not p.

anthem still performs the translation to

Verifying Strong Equivalence of Programs in the Input Language of gringo 11

not p -> q

but issues the following note:

info: nonpositive program

anthem’s implementation takes advantage of gringo’s library functionality
for accessing the abstract syntax tree (AST) of a nonground program. The AST
obtained from gringo is taken by anthem and turned into the AST of the
collection of formulas representing the rules of the program according to τ∗. Since
both the input and output of anthem are small, its runtime is negligible.

anthem’s source code and usage instructions are available at GitHub.3

9 Proving Strong Equivalence of Programs with vampire

When given two input programs, anthem generates an output formula expressing
that the collections of formulas obtained by applying τ∗ to both programs are
equivalent. For positive programs, it is sufficient to prove equivalence classically to
conclude that both programs are strongly equivalent (because of Proposition 6).

In order to verify the strong equivalence of two positive programs progra-
matically, anthem is able to communicate with automated first-order theorem
provers supporting integer arithmetic such as vampire. To that end, anthem
can be instructed to generate output in the syntax of TPTP [11], a standard
input language for theorem provers. More precisely, anthem leverages the typed
first-order form (TFF) of TPTP with interpreted integer arithmetic.

In the output of anthem, there are variables of two sorts—integer and
program variables (see Sections 5 and 8), where the domain of integer variables
is a subset of the domain of program variables. In TPTP, there may be variables
of multiple sorts, but it is not clear how to express that one sort is a subsort
of another. anthem works around this limitation by applying an additional
transformation to the output formulas when TPTP output is requested. For this
purpose, a custom sort object is introduced; all integer and symbolic constants
are then mapped to distinct values of type object through auxiliary functions
integer and symbolic. Then, all variables in the output formulas are changed to
the object domain; if a quantifier binds an integer variable, anthem restricts
it to the condition that the value of the variable is in the range of the function
integer. For example, the TPTP counterpart of

forall N1 (p(N1))

is

![N1: object]: ((?[X1: $int]: N1 = integer(X1)) => p(N1))

With this transformation, anthem can be used in combination with a first-
order theorem prover to verify the strong equivalence of positive programs. The
remainder of this section presents experimental results obtained with vampire.
3 https://github.com/potassco/anthem

12 Vladimir Lifschitz, Patrick Lühne, and Torsten Schaub

The experiments were conducted on a Linux system with an Intel Core i7-7700K
(4 physical cores, 4.5 GHz) and 16 GB of RAM. vampire was invoked with the
options --mode casc --cores 4.

Example 1: Predecessor/Successor

Program 1 Program 2
q(X + 1) :- p(X). q(X) :- p(X - 1).

These two programs represent rules (4) and (7) from Section 3. vampire proves
the strong equivalence of these programs in about 2.4 s.

Example 2: Multiplication by 2

Program 1 Program 2 Program 3
q(X + X) :- p(X). q(X + Y) :- p(X), X = Y. q(2 * X) :- p(X).

vampire proves the strong equivalence of Programs 1 and 2 in about 5 ms. The
strong equivalence of the other combinations is proved in about 3.0 s.

Example 3: Integer Between 3 and 5

Program 1 Program 2
p(X) :- X > 3, X < 5. p(4).

vampire proves the strong equivalence of these two programs in about 3.5 s.
This result is particularly interesting because Program 1 contains an unsafe rule.
While the program would be rejected by gringo, anthem is able to prove the
strong equivalence to Program 2.

Example 4: Trivial Rule

Program 1 Program 2
p(X) :- X < 3, X > 5. q :- q.

vampire verifies that the rule in Program 1 is trivial by checking that Program 1
is strongly equivalent to Program 2. The trivial rule q :- q. is used here because
anthem does not support the empty program yet. vampire proves the strong
equivalence in about 14 ms.

Example 5: Incorrect Refactoring

Program 1 Program 2
q(X) :- p(X). q(X + 1) :- p(X + 1).

These programs contain rules (10) and (11) from Section 4, respectively. As
explained earlier, these two programs aren’t strongly equivalent, which might
come as a surprise to a programmer rewriting Program 2 as Program 1. vampire
refuses to prove the strong equivalence within 300 seconds.

Verifying Strong Equivalence of Programs in the Input Language of gringo 13

Example 6: Infinite Stable Models

Program 1 Program 2 Program 3
p(X + 0). p(X + 1). p(X).

vampire proves the strong equivalence of Programs 1 and 2 in about 87 ms. The
stable model of Program 3 is the infinite set of atoms p(r) for all precomputed
terms r. In contrast, the stable models of Programs 1 and 2 include p(r) only if
r is an integer. Consequently, vampire does not prove the strong equivalence of
Program 3 to Programs 1 or 2.

10 Future Work

We plan to extend this research effort in several directions. First, investigate using
theorem provers other than vampire to verify strong equivalence. Second, enable
anthem to use theorem provers for verifying strong equivalence of nonpositive
programs. Third, enable anthem to use theorem provers for verifying the correct-
ness of tight programs in the language of gringo by proving the equivalence of
the given specification to the program’s completion. Fourth, extend anthem to
cover a larger subset of the language of gringo, including symbolic functions.

Acknowledgements We would like to thank Pedro Cabalar for his suggestion
to use anthem for verifying the strong equivalence of logic programs.

References

1. Chen, Y., Lin, F., Li, L.: SELP—a system for studying strong equivalence between
logic programs. In: Proceedings of LPNMR, pp. 442–446 (2005)

2. Ferraris, P.: Answer sets for propositional theories. In: Proceedings of LPNMR,
pp. 119–131 (2005)

3. Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., Schaub, T.: Abstract Gringo.
TPLP 15(4-5), 449–463 (2015)

4. Harrison, A., Lifschitz, V., Pearce, D., Valverde, A.: Infinitary equilibrium logic
and strongly equivalent logic programs. Artificial Intelligence 246, 22–33 (2017)

5. Harrison, A., Lifschitz, V., Raju, D.: Program completion in the input language of
GRINGO. TPLP 17(5-6), 855–871 (2017)

6. Janhunen, T., Oikarinen, E.: LPEQ and DLPEQ—translators for automated equiv-
alence testing of logic programs. In: Proceedings of LPNMR, pp. 336–340 (2004)

7. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Proceedings
of CAV, pp. 1–35 (2013)

8. Lifschitz, V., Lühne, P., Schaub, T.: anthem: Transforming gringo programs into
first-order theories (preliminary report). In: Proceedings of ASPOCP (2018)

9. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs.
TOCL 2(4), 526–541 (2001)

10. Orevkov, V.: Three ways of recognizing inessential formulas in sequents. Journal of
Mathematical Sciences 20, 2351–2357 (1982)

11. Sutcliffe, G.: The TPTP problem library and associated infrastructure. Journal of
Automated Reasoning 59(4), 483–502 (2017)

