
nlp: A Compiler for Nested Logic Programming?

Vladimir Sarsakov1, Torsten Schaub1??, Hans Tompits2, and Stefan Woltran2

1 Institut für Informatik, Universität Potsdam, Postfach 90 03 27, D–14439 Potsdam,
2 Institut für Informationssysteme, TU Wien, Favoritenstraße 9–11, A–1040 Wien,

Abstract. nlp is a compiler for nested logic programming under answer
set semantics. It is designed as a front-end translating nested logic pro-
grams into disjunctive ones, whose answer sets are then computable by
disjunctive logic programming systems, like dlv or gnt. nlp offers differ-
ent translations: One is polynomial but necessitates the introduction of
new atoms, another is exponential in the worst case but avoids extending
the language. We report experimental results, comparing the translations
on several classes of benchmark problems.

1 Nested Logic Programs and their Compilation

Nested logic programs allow for arbitrarily nested formulas in heads and bodies
of logic program rules under answer set semantics [4]. Nested expressions can
be formed using conjunction, disjunction, and the negation-as-failure operator
in an unrestricted fashion. Previous results [4] show that nested logic programs
can be transformed into standard (unnested) disjunctive logic programs in an
elementary way, applying the negation-as-failure operator to body literals only.
This is of great practical relevance since it allows us to evaluate nested logic
programs by means of off-the-shelf disjunctive logic programming systems, like
dlv [3] and gnt [2]. However, it turns out that this straightforward transforma-
tion results in an exponential blow-up in the worst-case, despite the fact that
complexity results indicate a polynomial translation among both formalisms.
In [5], we provide such a polynomial translations of nested logic programs into
disjunctive ones. This translation introduces new atoms reflecting the structure
of the original program; in the sequel, we refer to it as the structural translation.
Likewise, we refer to the possibly exponential one as being language-preserving.

2 The nlp System

Both translations are implemented as a front-end to dlv [3] and gnt [2], rep-
resenting state-of-the-art implementations for disjunctive logic programs under
answer set semantics. The resulting compiler, called nlp, is publicly available at

http://www.cs.uni-potsdam.de/∼torsten/nlp/.
? The first two authors were supported by DFG under grant SCHA 550/6, TP C. All

authors acknowledge support within IST-2001-37004 project WASP.
?? Affiliated with the School of Computing Science at Simon Fraser University, Canada.



p;not_t:-not q,q.

p;not_t:-not q,not s.

not_t:-not t.

:-t,not_t.

p;not_t:-not q,l1.

q;not_s:-l1.

l1:-q.

l1:-not s.

not_t:-not t.

:-t,not_t.

not_s:-not s.

:-s,not_s.

Fig. 1. Resulting (optimized) code for program Π under the (a) language-preserving
translation (example.dlp); and (b) structural translation (example.htl).

The current implementation runs under SICStus and SWI Prolog and comprises
roughly 1000 lines of code. In addition, it contains a number of optional im-
provements that allow for more compact code generation.

Consider program Π = {p← ¬(q∨¬t)∧ (q∨¬s)}, where ‘¬’ expresses nega-
tion as failure; it is expressed by p :- not (q;not t), (q;not s). Once a file
is read into nlp, it is subject to multiple transformations. Most of these trans-
formations are rule-centered in the sense that they apply in turn to each rule.
While the original file is supposed to have the extension nlp, the result of the
respective compilation is indicated by the extension dlp (language-preserving)
and htl (structural), respectively. The system is best used with the command
nlp2T2S for T ∈ {dlp, htl} and S ∈ {dlv, gnt}; e.g., nlp2htl2gnt(ex) ap-
plies the structural translation (htl) to file ex.nlp and calls gnt on the result.
Applying both transformations to our example Π yields the files in Figure 1a
and 1b, respectively. The first rule in Figure 1a illustrates that we (currently)
refrain from any sophisticated logical simplifications. On the other hand, the
implemented versions of our translations are optionally improvable (via a flag)
in two simple yet effective ways: First, no labels are generated for literals and
second only a single label is generated for n-ary disjunctions or conjunctions.
All our experiments are conducted using this optimization. Also, three different
schemes for label generation are supported; here, we adhere to a number-oriented
version (as seen in Figure 1b by l1).

3 Experimental Analysis

In view of the already diverging sizes on our toy example, it is interesting to
compare the resulting images of our translations in a systematic way. To this
end, we have implemented two different benchmark series that produce scalable
problem instances.

Normal form series. The first one generates nested logic programs whose rule
heads and bodies consist of two-level disjunctive and/or conjunctive normal form
formulas. The generation of such programs is guided by 10 parameters: on the
one hand, the number of variables, rules, facts, and constraints; and, on the other
hand, the structure of heads and bodies is fixed by 3 parameters: the number of
connectives on the first and second level plus the number of literals connected to



the first level. The placement of literals (p, ¬p, and ¬¬p), respectively, is done
randomly. These parameters are also reflected in the name of the source file.
E.g., file test_50.20_5_0.3_2_0.2_3_1.30.2.nlp comprises a program over
an alphabet of 50 variables, containing 20 rules, such as

p42,p4;p11,not p50;p46,p26 :-
(not not p10;p37;p27),(p20;p34;p39),not not p11.

plus 5 facts and 0 constraints, expressed by 20_5_0. While the primary connec-
tive of the head is a disjunction, namely ‘;’, the one of the body is conjunction
‘,’. Although this can be arbitrarily fixed, it is currently set this way in order to
provoke a significant blow-up when translating programs by means of successive
applications of distributivity. The above head parameters, ‘3_2_0’, enforce heads
(being disjunctions) composed of 3 conjunctions, containing 2 literals, along with
zero literal disjuncts. The body parameters, ‘2_3_1’, lead to conjunctions with
2 disjunctions, containing 3 literals, and 1 literal conjunct, viz. ‘not not p11’
in the rule above. Finally, the filename ends with an estimated blow-up factor
for the language-preserving translation, viz. ‘30.2’ in our example.

Given a nested program Π, its blow-up factor, θ(Π), is computed as follows:

θ(Π) = [r·(u1+u3+v1+v3)·v
v1
2 ·uu1

2 ]+[h·(u1+u3)·u
u1
2 ]+[b·(v1+v3)·v

v1
2 ]

[(r+h)·(u1·u2+u3)]+[(r+b)·(v1·v2+v3)]
,

where r stands for the number of rules; h, b gives the number of heads and bodies
in the program; u1, u2, u3 are the head parameters; and v1, v2, v3 are the body
parameters. The denominator of θ(Π) gives the size of Π in terms of its number
of literals, whilst the numerator captures the size of the disjunctive program
resulting from the language-preserving translation.

Cardinality constraints series. The second generator is based on the idea that
(single headed) logic programs with cardinality literals can be transformed into
nested ones [1]. A cardinality literal of form m{L1, . . . , Ln}n means informally
that the resulting answer set must contain at least m and at most n literals out
of {L1, . . . , Ln}; see [6] for a semantics. Such literals can then be used in the
same way as ordinary literals in the head as well as the body of rules. As above,
we start with generating a parameterized program with cardinality literals. For
brevity, we omit further details and refer the interested reader to the URL below.

Experiments. The generators and test series can be downloaded at
http://www.cs.uni-potsdam.de/∼torsten/nlp/bench/.

In all, we generated 4661 programs, all of which where translated by each of the
translations and the respective image was subsequently passed to dlv. All tests
were run under Linux (Mandrake 8.1) on bi-processors based on AMD Athlon
MP 1200 MHz with 1GByte main memory. For simplicity, we fixed the initial size
of the programs: While in the first series all nested programs contain 20 rules and
5 facts, the same holds in the second series regarding cardinality constraints. For
simplicity, both series are further divided into subseries according to the number
of variables involved; in fact, we ran subseries with 10, 15, 20,. . . , 45, 50 variables.

Since the results of all these subseries are reported at the aforecited URL, we
concentrate here on one representative, given by the 25 variables subseries. This
subseries comprises 260 normal form programs and 426 cardinality constraints



Table 1. Quantitative comparison.

Normal form Cardinality constraints

Feature dlp<htl htl<dlp dlp<htl htl<dlp

Size in Bytes 15 245 146 279
Size in Rules 22 238 208 217
Compilation time 10 250 182 243
Runtime 63 190 282 115

programs. The corresponding plots are given at the above URL at node20.html
and node66.html. In all cases, we observe, as expected, a significant increase in
the size of the image under the language-preserving translation. This is confirmed
in the experiments through the ratios between the size of the output and input
file. Also, looking at Table 1 (where x < y indicates how many times x is “larger”
than y), we see that the majority of test cases has a smaller image under the
structural transformations than under the language-preserving one. However,
this is less significant for the cardinality constraints series than for the normal
form series. Clearly, the size of the image affects also the compilation time.
We thus get a similar behavior as regards compilation time, as we obtained
for the size of the image (cf. Table 1). Things become more interesting when
comparing the respective running times (for computing all answer sets of a
given program; cf. the aforecited URLs). For the first time, we obtain a kind of
threshold beyond which the structural transformations always outperform the
language-preserving one. While this is the case for an estimated blow-up factor
of 500 for the normal-form test cases, the one for the cardinality-constraint test
cases is at 200. The fact that the results of all translations appear to be scattered
below this threshold is confirmed by the detailed results under the threshold.
Interestingly, the language-preserving translation may even be outperformed on
rather small blow-up factors, as witnessed by the range of 0–50 (cf. again the
above given URLs). Although these thresholds are sometimes less clear cut in
the other test series, their existence seems to be a recurring feature.

References

1. P. Ferraris and V. Lifschitz. Weight constraints as nested expressions. Theory and
Practice of Logic Programming, 2003. To appear.

2. T. Janhunen, I. Niemelä, P. Simons, J. You. Unfolding partiality and disjunctions in
stable model semantics. In Proc. KR-00, pages 411–419. Morgan Kaufmann, 2000.

3. N. Leone et al. The dlv system for knowledge representation and reasoning. ACM
Transactions on Computational Logic, 2003. To appear.

4. V. Lifschitz, L. Tang, and H. Turner. Nested expressions in logic programs. Annals
of Mathematics and Artificial Intelligence, 25(3-4):369–389, 1999.

5. D. Pearce, V. Sarsakov, T. Schaub, H. Tompits, S. Woltran. A polynomial transla-
tion of logic programs with nested expressions into disjunctive logic programs. In
Proc. ICLP-02, pages 405–420. Springer, 2002.

6. P. Simons, I. Niemelä, T. Soininen. Extending and implementing the stable model
semantics. Artificial Intelligence, 138(1-2):181–234, 2002.


