Making your hands dirty inspires your brain!
Or how to switch ASP into Production Mode

Torsten Schaub*

Universitdt Potsdam, Institut fiir Informatik, August-Bebel-Str. 89,
D-14482 Potsdam, torsten@cs.uni-potsdam.de

Rising from strong theoretical foundations in Logic Programming and Nonmono-
tonic Reasoning, Answer Set Programming (ASP) came to life as a declarative prob-
lem solving paradigm [1,2,3] in the late nineties. The further development of ASP was
greatly inspired by the early availability of efficient and robust ASP solvers, like smod-
els [4] and dlv [5]. The community started modeling with ASP and a first milestone was
the conception of TheoryBase [6] providing a systematic and scalable source of bench-
marks stemming from combinatorial problems. Although the scalability of such bench-
marks is of great value for empirically evaluating systems, the need for application-
oriented benchmarks was early perceived. The demand for systematic benchmarking led
to the Dagstuhl initiative and with it the creation of the web-based benchmark archive
asparagus [7]. This repository has in the meantime grown significantly, mainly due to
the two past ASP competitions [8,9], and contains nowadays a whole variety of different
types of benchmarks, although it is still far from being comprehensive.

Meanwhile, the prospect of ASP has been demonstrated in numerous application
scenarios.! A highlight among them is arguably the usage of ASP for the high-level
control of the space shuttle [10]. What makes this application so special is the fact that
it was solving an application problem in a real-world environment. Although we still
need many more elaborated proofs of concept, showing how ASP addresses different
application scenarios, solving such real(-world) problems is yet another issue. Let me
approach this by answering some preliminary questions.

What is a real problem? Such a problem could be an unsolved combinatorial or
mathematical problem. Also, it could stem from an application that is traditionally
solved with different methods. In either case, the problem is not academic anymore,
but rather about producing an effective solution. To accomplish this, we have to switch
to a production mode,* that is, the process of organizing the production of a solution
to truly challenging problems. This mode of operation goes (currently) quite beyond
conceptual modeling and benchmarking that most of us are used to so far.

Why should we solve real problems? Apart from the fact that the prospect of doing
so partly nourishes our right of existence, real problems are a tremendously fruitful
source of new research questions. For instance, concepts like cardinality and weight
constraints [11], magic set transformations [12], constraint additions to ASP [13,14],
or projection [15], had never been pushed so hard without a real problem driving their
development. In other words, making our hands dirty inspires our brain!

* Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.

! See http://www.kr.tuwien.ac.at/research/projects/WASP and/or http:
//www.cs.uni-potsdam.de/~torsten/asp for an overview.

2 This term goes back to Marxist theory and has been adopted in informatics in various ways.



Where do we find real problems? One source are open problems known to academia.
For instance, deciding the fifth Schur number.? In fact, the benchmarking repository of
the Automated Theorem Proving community used to contain unsolved challenge prob-
lems that were a driving force for the development of theorem provers. And after all,
they made it into the New York Times by proving Robbins’ conjecture.* Actually, in-
teresting challenge problems are often simply down the hall, sitting on your colleagues’
desks. Getting interested in their problems, makes them discover ASP and exhibits us to
non-artificial problems. The least expected result is a proof of concept or a benchmark
suite, the greatest is to make a difference with ASP!

How do we solve real problems? To begin with, one still starts with a proof of
concept addressing a toy version of the actual problem. If this scales and the solution
is satisfactory, one just hit the jackpot. Unfortunately, this never happens (to me) and
brings us back to the aforementioned production mode of ASP. The dilemma is that we
must address real problems in order to further develop ASP as a tool for addressing real
applications. This vicious cycle makes current production processes far from ideal and
dominated by pragmatics, and often not even addressable by means of ASP only.

The first bottleneck in the ASP production mode is the encoding. This has become a
true art and often the initial, rather declarative problem specification bears little resem-
blance with the final stream-lined encoding reducing combinatorics. This also applies
to automatically generated encodings. This is not to say that the final encoding is not
indicative but it needs quite some experience to be produced. Moreover, the optimiza-
tion of encodings is also tightly connected to the target ASP system, and in particular,
its grounding component. It makes quite a difference whether the grounder relies on do-
main predicates or not, and whether it provides special-purpose methods, like constraint
handling techniques or unification for avoiding grounding large domains. Clearly, this
track leaves the idea of declarative problem solving behind and the burden of optimiz-
ing encodings has to be partly taken off the user and handled (semi-)automatically in
the long run.

The second bottleneck is the configuration of the actual ASP solver. Modern ASP
solvers relying on Boolean constraint technology offer a manifold arsenal of param-
eters for controlling the search for answer sets. For instance, clasp has roughly forty
options [16], half of which control the search strategy. Choosing the right parameters
often makes the difference between being able to solve a problem or not. But again
this takes us away from the idea of declarative problem solving and automatic methods
must be conceived for partially relieving this second burden.’

As a matter of fact, the two aforementioned bottlenecks are not regarded as prob-
lematic in the SAT community. Rather encodings are often presented to a solver at its
convenience and industrial problems are solved with particular parameter settings (eg.
aggressive restart strategies). This marks a true difference in the philosophy of both
communities.

3 Thanks to Mirostaw Truszczyfiski for pointing this out.

‘http://www.nytimes.com/library/cyber/week/1210math.html

3 For instance, a first such prototype is claspfolio using machine learning techniques for mapping
problem features to solver parameters.



Finally, it is surprising that the lack of software engineering tools is yet not even an
issue in ASP’s production mode. The reason is simply that the production mode in ASP
is up to now accomplished by experts in ASP and no end users. This lack will become
a true bottleneck once ASP would principally be ready for real applications.

So, let’s make our hands dirty and get inspired!

References

1. Niemeld, I.: Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4) (1999) 241-273

2. Marek, V., Truszczynski, M.: Stable models and an alternative logic programming paradigm.
In Apt, K., Marek, W., Truszczyriski, M., Warren, D., eds.: The Logic Programming
Paradigm: a 25-Year Perspective. Springer (1999) 375-398

3. Lifschitz, V.: Answer set planning. In de Schreye, D., ed.: Proceedings of ICLP’99, The
MIT Press (1999) 23-37

4. Niemeld, I., Simons, P.: Evaluating an algorithm for default reasoning. In: Working Notes of
the IICATI’95 Workshop on Applications and Implementations of Nonmonotonic Reasoning
Systems. (1995) 66-72

5. Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: A deductive system for non-
monotonic reasoning. In DiXx, J., Furbach, U., Nerode, A., eds.: Proceedings of LPNMR’97.
Springer (1997) 363-374

6. Cholewinski, P., Marek, V., Mikitiuk, A., Truszczyniski, M.: Experimenting with nonmono-
tonic reasoning. In Sterling, L., ed.: Proceedings of ICLP’95, The MIT Press (1995) 267-281

7. Borchert, P., Anger, C., Schaub, T., Truszczynski, M.: Towards systematic benchmarking
in answer set programming: The Dagstuhl initiative. In Lifschitz, V., Niemeld, I., eds.: Pro-
ceedings of LPNMR’04. Springer (2004) 3—7

8. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyriski, M.: The
first answer set programming system competition. In Baral, C., Brewka, G., Schlipf, J., eds.:
Proceedings of LPNMR’07. Springer (2007) 3-17

9. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczynski, M.: The second answer
set programming competition. [17] To appear.

10. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-prolog decision
support system for the space shuttle. In Ramakrishnan, I., ed.: Proceedings of PADL'01.
Springer (2001) 169-183

11. Simons, P., Niemel4, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2) (2002) 181-234

12. Faber, W., Greco, G., Leone, N.: Magic sets and their application to data integration. Journal
of Computer and System Sciences 73(4) (2007) 584-609

13. Mellarkod, V., Gelfond, M.: Integrating answer set reasoning with constraint solving tech-
niques. In Garrigue, J., Hermenegildo, M., eds.: Proceedings of FLOPS’08. Springer (2008)
15-31

14. Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In Hill, P., Warren,
D., eds.: Proceedings of ICLP’09. Springer (2009) 235-249

15. Gebser, M., Kaufmann, B., Schaub, T.: Solution enumeration for projected Boolean search
problems. In van Hoeve, W., Hooker, J., eds.: Proceedings of CPAIOR’09. Springer (2009)
71-86

16. Gebser, M., Kaufmann, B., Schaub, T.: The conflict-driven answer set solver clasp: Progress
report. [17] To appear.

17. Erdem, E., Lin, F,, Schaub, T., eds.: Proceedings of LPNMR’09. Springer (2009)



