
introducing equibel
An Implementation of Consistency-Based Belief Change

Paul Vicol1 James Delgrande1 Torsten Schaub2

LPNMR - September 28, 2015
1Simon Fraser University

2University of Potsdam

1

multi-agent belief change

• We have a network of agents
• Each agent has some initial beliefs about the state of the world
• Agents communicate and share information
• Goal: Determine what each agent believes after learning as much as

possible from other agents
• How do we do this?

2

a motivating example

Example: Drones looking for people in a disaster site

• Each drone has an initial belief:
• Drone 1 believes that there is a person in the bookstore, and one in

the atrium: b ∧ a
• Drone 2 believes that there cannot be missing people in both the

atrium and the bookstore: ¬b ∨ ¬a
• Drone 3 just believes that there is a person in the cafeteria: c

• The drones communicate, and learn from one another
• Each drone is willing to incorporate new information that does not

conflict with its initial beliefs
3

the consistency-based framework for belief change

• An agent starts out with initial beliefs that it does not want to give
up, and then includes as much information as consistently possible
from other agents

• We want to determine what pieces of information an agent can
incorporate from others

• How is this done?
• Agent i expresses its beliefs in a language Li over superscripted

atoms P i = {pi, qi, ri, . . . } (i.e. agent 1 believes p1 ∧ ¬q1)
• We “force” the languages used by adjacent agents to agree on the

truth values of corresponding atoms as much as consistently possible
• This yields one or more maximal sets of equivalences, EQ, between

atoms in the languages of adjacent agents
• These equivalences provide a means to consistently translate

information from one agent to another

4

equibel overview

• Purpose: To make it easy for students and researchers to
experiment with belief change

• Equibel is an implementation of the consistency-based framework, in
ASP and Python

• Allows users to simulate belief sharing in arbitrary networks of agents
• Users create a graph and assign formulas to nodes

• Supports standard belief change operations like revision and merging
by automatically constructing implicit graph topologies

• Users specify a set of formulas and an operation to be performed
• Behind the scenes, Equibel constructs a graph, finds the completion,

and returns only the relevant formulas

5

equibel architecture

• The main operation performed by Equibel is finding the completion
of a G-scenario

• The steps to find the completion are:
1. Find maximal sets of equivalences between atoms of adjacent agents
2. Translate beliefs between the languages of adjacent agents
3. Combine beliefs resulting from different maximal equivalence sets

• Two architectural layers:
• The ASP layer performs the core maximization procedure
• The Python layer post-processes answer sets and provides

programmatic and interactive interfaces

6

equibel system design

7

encoding a belief change scenario in asp

• The graph structure is encoded using node/1 and edge/2, and
formulas are associated with nodes using formula/2

• Formulas are created using neg/1, and/2, or/2, implies/2, and
iff/2

Example

node(1). node(2). node(3). node(4).
edge(1,2). edge(1,3). edge(2,3). edge(2,4).
formula(1, and(p,q)).
formula(2, or(q,neg(r))).
formula(3, implies(and(p,neg(q)),neg(r))).
formula(4, p).

8

generating eq sets in asp

• First, we break down formulas into subformulas and extract atoms
• We generate candidate equivalences px ≡ py with:

{ eq(P,X,Y) : atom(P), edge(X,Y), X < Y }.

• Then we attempt to assign truth values to the atoms at each node:

1 { tv(N,P,1) ; tv(N,P,0) } 1 :- atom(P), node(N).

• Such that atoms px and py that participate in an equivalence
px ≡ py have the same truth value:

:- eq(P,X,Y), edge(X,Y), tv(X,P,V), tv(Y,P,W), V != W.

• We build up the original formulas from the bottom-up, checking
satisfiability; all agents’ original formulas must be satisfied:

:- formula(N,F), not sat(N,F).

9

translation and post-processing in python

• ASP gives us a collection of maximal equivalence sets
• In Python, we translate formulas between the languages of

connected agents based on the EQ sets
• An agent may obtain different information from different EQ sets

• Each EQ set represents an equally plausible way to share information
• So we take the disjunction of beliefs obtained from different EQ sets

10

equibel is easy

• Equibel can be used interactively, by invoking the equibel prompt:

equibel (g) > add_nodes [1..4]
nodes: [1, 2, 3, 4]

equibel (g) > add_edges [(1,2), (2,3), (3,4)]
edges: 1 <-> 2 2 <-> 3 3 <-> 4

equibel (g) > add_formula 1 p & q
node 1: q & p

equibel (g) > add_formula 4 ~p & r
node 4: ~p & r

equibel (g) > completion
node 1: q & p & r
node 2: q & r
node 3: q & r
node 4: q & ~p & r

11

simulating the drone example

• The following script simulates belief sharing in the drone scenario:

import equibel
G = equibel.complete_graph(3)
G.add_formula(0, 'a & b')
G.add_formula(1, '~a | ~b')
G.add_formula(2, 'c')
R = equibel.completion(G)
print(R.formulas())

• python drones.py

{0: a & c & b, 1: c & ((a & ~b) | (~a & b)), 2: (a | b) & c}

12

implicit graph topologies: belief revision

• Belief revision = Incorporating a new belief α into a belief set K
• equibel.revise(['p', 'q | ~r'], 'r') constructs the graph:

• Agent 2 will incorporate as much information as possible from agent
1, while not giving up its initial belief

• The revision of K = {p, q ∨ ¬r} by α = r is the belief of agent 2 in
the completion

13

implicit graph topologies: belief merging

• Two types of merging: projection-based and consensus-based
• equibel.merge(['p&q', '~p|r', 'q->r'],

type=equibel.PROJECTION) constructs a star graph:

• The input formulas are projected onto the central node
• The result is the formula at the central node in the completion

14

conclusion

Equibel

• Is a software system for working with equivalence-based belief change
• Simulates belief sharing in multi-agent scenarios
• Supports standard belief change operations (revision and merging)

by constructing implicit graphs
• Provides a Python package, as well as an interactive prompt
• Is open source, hosted at

www.github.com/asteroidhouse/equibel
• Is available on PyPI, so it can be installed using pip:

pip install equibel

15

