
A Combined Mapping and Routing Algorithm for 3D NoCs
Based on ASP

Benjamin Andres, Martin Gebser and Torsten Schaub
University of Potsdam, Germany

{bandres,gebser,torsten}@cs.uni-potsdam.de

Christian Haubelt
University of Rostock, Germany

christian.haubelt@uni-rostock.de

Felix Reimann and Michael Glaß
University of Erlangen-Nuremberg, Germany
{felix.reimann,glass}@cs.fau.de

Abstract
Networks on a Chip (NoCs) have been proposed to solve the communication challenges

in Multi-Processor Systems on a Chip (MPSoCs) with ever increasing number of processing
cores. They provide high bandwidth in combination with high connectivity, which is espe-
cially interesting in 3D integrated systems. However, efficiently exploiting both, processors
and communication infrastructure, also requires new design approaches when mapping appli-
cations onto such complex architectures. While state of the art approaches show good mapping
performance for systems with only a few routing options, they tend to fail in the presence of
densely connected systems. In this paper, we propose a novel combined mapping and routing
algorithm based on Answer Set Programming (ASP). A case-study composed of three dimen-
sional Networks-on-Chip (3D NoC) illustrates the scalability of our proposed mapping and
routing approach.

1. Introduction

The increasing complexity of interdependent decisions in embedded computing systems design,
namely allocation, mapping & routing, and scheduling & arbitration, demands for compact de-
sign space representations and highly efficient automatic decision engines, resulting in automatic
system synthesis approaches. Especially, formal methods have shown to be useful in past. (Pseudo-
)Boolean Satisfiability (PB/SAT; [BHvW09]) solving has been successfully applied in the past to
such problems. In particular, explicit modeling of routing decisions in PB formulas has recently
enhanced the range of applicability of PB/SAT solvers in synthesizing networked embedded sys-
tems [Luk09].
Step-based approaches to combined mapping and routing as employed in [Luk09], work well in the
presence of system specifications offering a limited amount of routing options. Such system spec-
ifications can be found, e.g., in the bus-based Multi-Processor System-on-Chip (MPSoC) domain.

However, there is a trend towards densely connected networks also for single-chip multi-processor
systems. In fact, future MPSoCs are expected to be composed of several hundred processors con-
nected by Networks-on-Chip (NoC) [Bor07]. Hence, mapping and routing approaches will face
vast design spaces for densely connected networks, resulting in prohibitively long solving times
when using step-based approaches.
In this paper, we investigate a combined mapping and routing algorithm relying on reachabil-
ity for message routing. We propose a formal approach employing Answer Set Programming
(ASP; [Bar03]), a solving paradigm stemming from the area of Knowledge Representation. In
contrast to PB/SAT, ASP provides a rich modeling language as well as a more stringent semantics,
which allows for succinct design space representations. In particular, ASP supports expressing
reachability directly in the modeling language. As a result, much smaller problem descriptions
lead to significant reductions in solving time for densely connected networks.
After surveying related work, Section 3 introduces the mapping and routing setting studied in the
sequel, while Section 4 gives a brief introduction to problem solving with ASP. Section 5 provides
dedicated ASP formulations of the combined mapping and routing problem. The experiments in
Section 6 illustrate the effectiveness of our ASP-based approach. Section 7 concludes the paper.

2. Related Work

Symbolic system synthesis approaches based on Integer Linear Programming (ILP) can be found
in the area of hardware/software partitioning (cf. [NM97]). Such approaches were often limited to
the classical bipartitioning problem, i.e., the target platform is composed of a CPU and an FPGA.
An extension towards multiple resources and a simple single-hop communication mapping can
be found in [BTT98]. In the same work, SAT is reduced to the problem of computing feasible
allocations and bindings in platform-based system synthesis approaches, thereby showing that
system synthesis is NP-complete. In turn, [HTFM03] shows how to reduce the system synthesis
problem to SAT in polynomial time; this allows for symbolic SAT-based system synthesis. An
analogous approach based on binary decision diagrams is presented in [Nee01]. Since the space
requirements of binary decision diagrams may grow exponentially, it could only be applied to small
systems. In [Luk08], a first approach to integrate linear constraint checking into SAT-based system
synthesis is reported, leading to a PB problem encoding. All aforementioned approaches still
use simple single-hop communication as underlying model. However, single-hop communication
models are no longer appropriate when designing complex multi-core systems.
In [Luk09], the authors show how to perform symbolic system synthesis including multi-hop com-
munication routing with PB solving techniques. However, the PB-based approach published in
[Luk09] does not scale well for system specifications permitting many routing options. The rea-
son lies in the step-based routing encoding. In contrast, our proposed approach exploits semantic
features of ASP in expressing reachability. As a consequence, symbolic system synthesis can
be applied to more complex system specifications based on densely connected communication
networks. Topologies providing many routing options are typically based on Networks on Chip
(NoCs) [KJS+02]. With the emergence of multi-layered chip technology, novel NoC architectures,
utilizing a third routing dimension, become possible (3D NoC). In contrast to traditional NoC
architectures these new architecture offer an increased number of interconnections, reducing net-
work latency and power consumption [PF06, FP09]. The additional routing options of 3D NoCs
magnify the difficulty of combined mapping and routing. [KPSD11] proposes an XYZ multi-cast

ps c1 pm

c2c3 c4

p1 p2

c5 pa

rcpu1rcpu2 rcpu3

rbus1 rbus2

rsen2rsen1 ract1

Figure 1: A system model consisting of a task graph, a platform graph and mapping options.

routing approach. Multible-layer-per-hop [RL09] routing reduces the hardware consumption of
the network at the cost of reduced routing options. In [YL08] an application specific synthesis
algorithm for 3D NoC with separated mapping and routing is proposed. However, no combined
mapping and routing approach for 3D NoCs based on ASP exists today.
The potential of ASP for system synthesis was already discovered in [IMB+09], where it was
shown to outperform an ILP-based approach by several orders of magnitude. In contrast to our
work, the system synthesis problem considered in [IMB+09] does not involve multi-hop commu-
nication routing. Moreover, contrary to the genuine ASP encoding(s) developed in Section 5, the
one in [IMB+09] was derived from an ILP specification without making use of any elaborate ASP
features.

3. Combined Mapping and Placement Problem

In order to automate the mapping and routing of an application onto a a system, the application is
modeled by a task graph (T,ET). Its vertices T represent tasks and are bipartitioned into process
tasks P and communication tasks C, that is, T = P ∪ C and P ∩ C = ∅. The directed edges
ET ⊆ (P × C) ∪ (C × P) model data and control dependencies between tasks, where every
communication task has exactly one predecessor and an arbitrary (positive) number of successors,
thus assuming single-source multicast communication.
An exemplary task graph is shown in the upper part of Figure 1. The leftmost task ps reads data
from a sensor and sends it to a master task pm via communication task c1. The master task then
schedules the workload and passes data via communication task c2 on to the worker tasks p1 and
p2. Both workers send their results back to the master via communication tasks c3 and c4. Finally,
the master uses the combined result to control an actuator task pa via communication task c5.
The system architecture is modeled by a platform graph (R,ER). Its vertices R represent resources
like processors, buses, memories, etc., and the directed edges ER ⊆ R×R model communication
connections between them. Given a task graph (P∪C,ET) and a platform graph (R,ER), mapping
options of processing tasks p ∈ P are determined by Rp ⊆ R, providing resources on which p can
be implemented. The lower part of Figure 1 shows a platform graph containing six computational
and two communication resources along with 18 connections. It is assumed that communication
tasks can be routed via every resource. The mapping and routing model also includes a function
f : P ×R→ N, returning the work load generated by mapping a process to a resource in percent.

cpu

router

p1 p2c

Figure 2: A possible mapping of two communicating processes to resources connected via a 4x4 mesh
network.

Following the system synthesis model from [Luk09], the combined mapping and routing problem
can be defined as follows. For (T,ET) and (R,ER) as above, select a binding b : T → 2R such
that the following conditions are fulfilled:

• b(t) ⊆ Rt for each task p ∈ P ,

• |b(p)| = 1 for each process task p ∈ P ,

•
∑

b(p)=r f(p, r) ≤ 100 for all resources R, and

• for each (p, c) ∈ (P × C) ∩ ET , there is an arborescence (b(c), E) with root r ∈ b(p) such
that E ⊆ ER and {r̂ | (c, p̂) ∈ ET , r̂ ∈ b(p̂)} ⊆ b(c).

The first condition requires that each processing task may only mapped to a valid resource. Fur-
thermore, each processing task must be mapped exactly once, while the total workload of any
resource in the network may not exceed 100 percent, as enforced by the second and third condition
respectively. The last condition requires that each communication task is routed (acyclicly) form
the sender resource to all resources of its targets.
For the example in Figure 1, a feasible implementation is given by with the following mapping b:

b(ps) = {rsen1} b(c1) = {rsen1, rbus1, rcpu1}
b(pm) = {rcpu1} b(c2) = {rcpu1, rbus1, rcpu2, rbus2, rcpu3}
b(p1) = {rcpu2} b(c3) = {rcpu2, rbus2, rcpu1}
b(p2) = {rcpu3} b(c4) = {rcpu3, rbus2, rcpu1}
b(pa) = {ract1} b(c5) = {rcpu1, rbus1, ract1}

A possible routing of c2 leads from the resource rcpu1 of the master task pm over rbus1, rcpu2, and
rbus2 to rcpu3, thus visiting the resources rcpu2 and rcpu3 of the workers p1 and p2.
The approach in [Luk09] utilizes a step-based routing algorithm, working well for sparcely con-
nected networks, inducing a limited amount of of routing options. However, the representation of
routing options scales proportionally to |ER| ∗ |R|, given that resources may be pairwisely con-
nected and each resource may be visited in the worst case.
As a consequence, for densely connected networks, such as (3D) NoCs, the size required for a step-
based representation of routing options can be prohibitively large. For example, let us consider

possible routes from (the resource of) a sender p1 to p2 available in the 4x4 mesh network shown
in Figure 2. The longest of these routes pass all 16 routers and potentially visit any of them at
each of the 15 intermediate steps. This yields 16∗15 = 240 routing options per communication
task to represent the message exchange between routers, since the task may potentially be routed
over all of the 16 routers at each of the 15 intermediate steps. On the other hand, for inductively
verifying whether a message reaches its target(s), it is sufficient to consider individual routing hops
without relying on an explicit order given by steps. The latter strategy scales linearly in |ER|, thus
avoiding a significant blow-up in space. As the semantics of ASP inherently supports efficient
representations of inductive concepts like reachability, the potential space savings motivate our
desire to switch from the PB-based approach in [Luk09] to using ASP instead.

4. Answer Set Programming

The basic idea of ASP is to represent a given problem by a logic program1 such that particular mod-
els, called answer sets, correspond to solutions, and then to use an ASP solver for finding answer
sets. While ASP’s input language is inspired by Logic Programming and thus allows for specify-
ing first-order logical rules, the computation of answer sets relies on instantiation (or grounding)
followed by Boolean Constraint Solving. The model-oriented approach of ASP shares similarities
with PB/SAT-based problem solving; for instance, Kautz and Selman [KS92] pioneered SAT plan-
ning by devising propositional theories such that models (not proofs) describe solutions, and logic
programs whose answer sets represent plans were provided by Lifschitz [Lif02]. Although we here
refrain from going into semantic details (cf. online appendix), an important advantage of ASP in
comparison to PB/SAT lies in its more stringent notion of modelhood, requiring any true atom to
be “constructible” by applying the rules of a logic program. This constructive flavor allows for
more succinct representations of inductive concepts like closures, fixpoints, and reachability than
available in PB/SAT.2

For a pragmatic introduction to ASP, we outline its application to the well-known Hamiltonian
cycle problem. The first step in solving this problem for the graph shown in Figure 3(a) consists of
describing the graph in terms of facts, yielding the ASP instance (i.e., a logic program consisting
solely of facts) in Figure 3(b). Observe that the representation of a graph by an associated ASP
instance is straightforward; for example, the atoms node(a), edge(a,b), and edge(a,d) stand
for node a along with its outgoing edges (a, b) and (a, d). The second and more sophisticated step
is to specify logical rules such that answer sets satisfying them match problem solutions. Our rules
describing Hamiltonian cycles (for arbitrary instances) are shown in Figure 3(c); such an instance-
independent logic program part is called an ASP encoding. While Line 1, 4, and 7 give comments
only, the rules in Line 2 and 3, “generating” Hamiltonian cycle candidates, can be read as follows:
for each instantiation of first-order variable X (or Y) such that node(X) (or node(Y)) holds (i.e.,
belongs to an answer set), cycle(X,Y) must hold for exactly one instantiation of Y (or X) such
that edge(X,Y) holds. Given the facts in Figure 3(b), the variable-free (or ground) rules obtained
by instantiating X (or Y) with a are as follows:

1In view of ASP’s quest for declarativeness, the term program is of course a misnomer but historically too well
established to be dropped.

2Under common assumptions in complexity theory, any vocabulary-preserving translation from ASP to SAT must be
worst-case exponential [LR06], while there are linear-size as well as modular translations from SAT to ASP.

a

b

c

e

d

f

(a) A directed graph.

node(a). edge(a,b). edge(a,d).
node(b). edge(b,c). edge(b,e).
node(c). edge(c,a). edge(c,f).
node(d). edge(d,a). edge(d,f).
node(e). edge(e,b). edge(e,d).
node(f). edge(f,c). edge(f,e).

(b) ASP instance describing the graph in (a) by facts.

1 % GENERATE
2 1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).
3 1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).
4 % DEFINE
5 reached(X) :- X := #min[node(Y) = Y].
6 reached(Y) :- reached(X), cycle(X,Y).
7 % TEST
8 :- node(Y), not reached(Y).

(c) ASP encoding of the Hamiltonian cycle problem.

Figure 3: Solving the Hamiltonian cycle problem with ASP.

1 { cycle(a,b), cycle(a,d) } 1 :- node(a).
1 { cycle(c,a), cycle(d,a) } 1 :- node(a).

Observe that the atoms cycle(a,b) and cycle(a,d) (or cycle(c,a) and cycle(d,a)) cor-
relate with outgoing (or incoming) edges of node a in Figure 3(a). The lower as well as upper
bound 1 of the so-called cardinality constraints over outgoing or incoming edges, respectively,
express that exactly one edge of each kind must contribute to a Hamiltonian cycle, while atoms
representing the edges as such are merely used to instantiate, but not subject to, the cardinality
constraints. The rules in Line 5 and 6 contribute the key ingredient to our encoding by “defining”
reachability wrt a generated Hamiltonian cycle candidate. While the rule in Line 5, making use of
built-in features offered by the ASP grounder gringo [GKK+11], is instantiated to a fact providing
some (arbitrary) starting node of a cycle, instantiations of the rule in Line 6 trace the edges of a
Hamiltonian cycle candidate to thus obtain the closure of reached nodes. For example, the ground
rules obtained from the rule in Line 5 and by instantiating Y with b in Line 6 are:
reached(a).
reached(b) :- reached(a), cycle(a,b).
reached(b) :- reached(e), cycle(e,b).

Ground rules similar to the last two are also obtained by instantiating Y with c, d, e, and f instead
of b in Line 6. As a consequence, an atom reached(n) is constructible by applying (ground)
rules precisely if node n is reached from a singular starting node via the edges of a Hamiltonian
cycle candidate. Given this, the so-called integrity constraint in Line 8 (the omitted left-hand side
of the implication expressed by “:-” refers to an implicitly false consequence) denies candidates
such that reached(n) cannot be constructed for some node n. For example, by instantiating Y

with b, we get:
:- node(b), not reached(b).

While such (ground) integrity constraints require reached(n) to hold for each node n, they

do not provide a construction of reached(n); reachability of n (from some starting node) is
thus faithfully captured by reached(n). Indeed, the Hamiltonian cycle (a, b, c, f, e, d, a) of
the graph in Figure 3(a) coincides with an answer set containing cycle(a,b), cycle(b,c),
cycle(c,f), cycle(f,e), cycle(e,d), and cycle(d,a). Unlike this, the candidate includ-
ing cycle(a,b), cycle(b,c), cycle(c,a), cycle(d,f), cycle(f,e), and cycle(e,d)

does not yield an answer set since reached(d), reached(e), and reached(f) are not con-
structible (in view of unconnected subcycles). Finally, note that the size of an instantiation of the
encoding in Figure 3(c) is linear in the size of an instance, such as the one in Figure 3(b), given
that each first-order rule refers to an individual node or edge specified within the instance.

5. ASP Encoding

The ASP instance for a task graph (P ∪ C,ET) and a platform graph (R,ER) along with the
underlying mapping options, (Rp)p∈P and the work load function f is defined as follows:

{pt(p). | p ∈ P} ∪
{send(p, c). | (p, c) ∈ ET , p ∈ P, c ∈ C} ∪
{read(p, c). | (c, p) ∈ ET , p ∈ P, c ∈ C} ∪
{pr(r). | p ∈ P, r ∈ Rp} ∪

{load(p, r, l). | p ∈ P, r ∈ Rp, l = f(p, r)} ∪
{edge(r, s). | (r, s) ∈ ER} ∪

{s(i). | i ∈ {1, . . . , n}}

(1)

While the first six sets capture primary constituents of a problem instance, the introduction of
atoms s(i) for 1 ≤ i ≤ n is needed to account for the PB formulation in [Luk09] in a faithful way.
Two alternative ASP encodings for combined mapping and routing in 3D NoCs systems are shown
in Figure 4(a) and 4(b). The rule in Line 2 of each encoding specifies that every processing task
provided in an instance must be mapped to exactly one of its associated options. Observe that the
mapping of processing tasks p to resources r is represented by atoms map(p,r) in an answer set.
This provides the basis for further specifying communication routings. The integrity constraint in
Line 4 of both encodings ensures that the workload of every resource is not above 100 percent.
Despite of syntactic differences, the step-oriented encoding ASP(S) in Figure 4(a) stays close to the
original PB formulation of constraints, from [Luk09]. In particular, it uses atoms reached(c,r,i)
to express that some message of communication task c is routed over resource r at step i. Note that
the omission of lower and upper bounds for the cardinality constraint in the rule form Line 9 means
that there is no restriction on the number of atoms constructed by applying the rule. The (trivially
satisfied) cardinality constraint is still important because, it allow us to successively construct
reached(c,r,i). Given such atoms, instantiations of the rule in Line 12 (where “_” stands for an
unreused anonymous variable) further provide us with projections reached(c,r), These are used
in the integrity constraints in Line 14 and 16, excluding cases where a communication task is routed
over the same resource at more than one step or does not reach some of its targets, respectively.
The encoding in Figure 4(b), denoted by ASP(R), utilizes ASP’s “built-in” support of recursion to
implement routing without step counting. To still guarantee an acyclic routing of communication
tasks, the idea of ASP(R) is to (recursively) construct non-branching routes from resources of
communication targets back to the resource of a sending task, where the construction stops. This

1 % map each p r o c e s s ta sk to a r e s o u r c e
2 1 { map (P , R) : p r (R) } 1 :− p t (P) .
3 % ensure the l i m i t s o f p r o c e s s i n g u n i t s
4 :− pr (R) , 101[c o s t (R , P , C) : map (P , R) = C] .

6 % s t e p zero of communication task
7 r e a c h e d (C , R , 0) :− send (P , C) , map (P , R) .
8 % forward s t e p s o f communication task
9 { r e a c h e d (C , S , I +1) : edge (R , S) } :− r e a c h e d (C , R , I) , s (I + 1) .

11 % r e s o u r c e s o f communication task
12 r e a c h e d (C , R) :− r e a c h e d (C , R , _) .
13 % reach each r e s o u r c e a t most once
14 :− r e a c h e d (C , R) , 2 { r e a c h e d (C , R , _) } .
15 % reach communication t a r g e t r e s o u r c e s
16 :− r e a d (P , C) , map (P , R) , n o t r e a c h e d (C , R) .

(a) Step-oriented encoding ASP(S).

1 % map each p r o c e s s ta sk to a r e s o u r c e
2 1 { map (P , R) : p r (R) } 1 :− p t (P) .
3 % ensure the l i m i t s o f p r o c e s s i n g u n i t s
4 :− pr (R) , 101[c o s t (R , P , C) : map (P , R) = C] .

6 % root r e s o u r c e o f communication task
7 r o o t (C , R) :− send (P , C) , map (P , R) .
8 % r e s o u r c e s o f communication task per t a r g e t
9 s i n k (C , R , P) :− r e a d (P , C) , map (P , R) .

10 s i n k (C , R , P) :− s i n k (C , S , P) , r e a c h e d (C , R , S) .
11 % reach communication roo t r e s o u r c e
12 :− r e a d (P , C) , r o o t (C , R) , n o t s i n k (C , R , P) .

14 % r e s o u r c e s o f communication task
15 r e a c h e d (C , R) :− s i n k (C , R , _) .
16 % backward hops o f communication task
17 1 { r e a c h e d (C , R , S) : edge (R , S) } 1 :− r e a c h e d (C , S) , n o t r o o t (C , S) .

(b) Recursive encoding ASP(R).

Figure 4: Two alternative ASP encodings of system synthesis.

recursive approach connects each encountered target resource to exactly one predecessor, where
the only exception is due to the sender of a communication task, whose resource, specified by an
atom root(c,r), is not connected back. Finally, the integrity constraint in Line 10 requires that
each target of a communication task is located on a route starting at the sender’s resource. Note that
the target-driven routing approach implemented in ASP(R) intrinsically omits redundant message
hops (not leading to communication targets). While this is an improvement over ASP(S), it is not
the real achivement of ASP(R), but abolishing one problem dimension by disusing explicit step
counters is.

 1000

 10000

 100000

 1e+06

2x2x2
1 2 3 4 5

3x2x2
1 2 3 4 5

3x3x2
1 2 3 4 5

4x3x2
1 2 3 4 5

3x3x3
1 2 3 4 5

C
o
n
st

ra
in

ts

Instance

Size Comparison

ASP(R)
ASP(S)

 0.01

 0.1

 1

 10

 100

 1000

2x2x2
1 2 3 4 5

3x2x2
1 2 3 4 5

3x3x2
1 2 3 4 5

4x3x2
1 2 3 4 5

3x3x3
1 2 3 4 5

R
u
n
ti

m
e
 i
n
 s

e
co

n
d

s

Instance

Runtime Comparison

ASP(R)
ASP(S)

Figure 5: Average numbers of constraints and runtimes in seconds for 3D NoC of varying sizes and task
numbers.

6. Experiments

For evaluating our approach, we conducted systematic experiments contrasting our two ASP en-
codings, ASP(S) and ASP(R), in terms of problem representation size and solving time. To this
end, we consider a series of crafted three dimensional mesh network system models of varying
sizes. Each instance is generated with a number of CPUs (x ∗ y ∗ z) connected in a mesh network
structure and a fixed ratios (r) between the number of processing tasks and available CPUs. Each
task consumes between 50

x∗y∗z∗r and 100
x∗y∗z∗r percent processing power of one CPU and sends one

message to one other, randomly chosen, task. The ASP grounder gringo (version 3.0.3) combines
these instances with either of our encodings, ASP(S) and ASP(R), generating standardized text
formats, processable by the ASP solver clasp (version 2.0.3; [GKK+11]).
After instance generation, accomplished offline, we measured (sequential) runtimes of clasp on a
Linux machine equipped with 3.4GHz Intel Xeon CPUs and 32GB RAM total. The search strate-
gies of clasp were configured via command-line switches --heuristic=vsids and
--save-progress, which in preliminary experiments turned out to be helpful for solving ASP(S)
as well as ASP(R) instances. In order to compensate for randomness in problem generation, we
report averages over 16 distinct instances per mesh size and task number. Also note that all gener-
ated instances are satisfiable. We restricted single runs of clasp on a ASP(S), or ASP(R) instance
to 3600 seconds time and 1GB RAM. Noise effects are excluded by taking the mean runtime over
three (reproducible) runs of clasp per instance.
Figure 5 displays average numbers of of constraints, as reported by clasp, and average runtimes
of clasp, with timeouts taken as 3600 seconds, over mesh networks of varying sizes (2 × 2 × 2,
3 × 2 × 2, ...) and increasing task numbers (1, 2, ... per CPU), both given along the x-axes;
standard deviations are shown as vertial bars through measurements. The average numbers of
constraints reported in the left chart provide an indication of problem representation size incurred
by ASP(S) and ASP(R). We observe regular scalings here, and ASP(S) is not only the more space-
consuming approach, but also scales less as the network size becomes larger. In fact, the ASP(S)
approach is not able solve networks with 4 × 3 × 2 (3 × 3 × 3) CPUs and more than 2 (1) tasks

 10000

 100000

 1e+06

4x4x2
1 2 3 4 5

4x3x3
1 2 3 4 5

4x4x3
1 2 3 4 5

C
o
n
st

ra
in

ts

Instance

Size Comparison ASP(R)

Constraints

 0.01

 0.1

 1

 10

 100

 1000

4x4x2
1 2 3 4 5

4x3x3
1 2 3 4 5

4x4x3
1 2 3 4 5

 0

 2

 4

 6

 8

 10

 12

 14

R
u
n
ti

m
e
 i
n
 s

e
co

n
d
s

Ti
m

e
o
u
ts

Instance

Runtime Comparison ASP(R)

Runtime
Timeouts

Figure 6: Average numbers of constraints and runtimes in seconds for 3D NoC of varying sizes and task
numbers for scaling the ASP(R) approach.

per CPU with 1GB RAM. The corresponding average runtimes in the lower chart tightly correlate
to representation sizes. While ASP(S) can still cope with small instances, it is more than one order
of magnitude slower than ASP(R) for larger instances.
For investigating the further scaling behavior, we applied ASP(R) to larger 3D NoCs as shown
in Figure 6. While the problem representation size scales as expected form the previous runs,
the average runtime rises drasticly, even encountering timeouts. Since the problem representation
size (cf. numbers of constraints) is linear in the input for ASP(R), the timeouts on large instances
are explained by increasing variance of solving performance in view of randomness in problem
generation. Interestingly, instances with fewer tasks per CPU are more prone to timeouts than
those with larger numbers. This correlates with the workload assignment, limiting the placement
options for instances with fewer tasks per CPU.

7. Conclussion

We proposed a novel approach to combined mapping and routing using ASP. The succinct ASP
formulation of reachability, as required in multi-hop routing, outperforms the step-based approach
when applied to densely connected 3D NoC, providing vast routing options. Such performance
gains are made possible by considerably smaller design space representations and accordingly re-
duced search efforts. Given that ASP solvers like clasp also support optimization, the presented
ASP approach could be extended to linear and, with some adaptions, even be utilized for non-
linear optimization, as previously performed in design space exploration via evolutionary algo-
rithms [Luk08]. At user level, the declarative first-order modeling language of ASP facilitates
prototyping as well as adjustment of ASP solutions for new or varied application scenarios, mak-
ing it a worthwhile alternative to purely propositional formalisms.

References

[Bar03] Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, 2003.

[BHvW09] Biere, A., M. Heule, H. van Maaren, and T. Walsh (editors): Handbook of Satisfia-
bility, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press,
2009.

[Bor07] Borkar, S.: Thousand core chips: a technology perspective. In Proc. of DAC ’07, pages
746–749, 2007.

[BTT98] Blickle, T., J. Teich, and L. Thiele: System-level synthesis using Evolutionary Algo-
rithms. J. Design Automation for Embedded Systems, 3(1):23–58, 1998.

[FP09] Feero, B. and P. Pande: Networks-on-chip in a three-dimensional environment: A per-
formance evaluation. IEEE Trans. Computers, 58(1):32–45, 2009.

[GKK+11] Gebser, M., R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and M. Schnei-
der: Potassco: The Potsdam answer set solving collection. AI Communications,
24(2):105–124, 2011.

[HTFM03] Haubelt, Christian, Jürgen Teich, Rainer Feldmann, and Burkard Monien: SAT-Based
Techniques in System Design. In Proc. of DATE ’03, pages 1168–1169, 2003.

[IMB+09] Ishebabi, H., P. Mahr, C. Bobda, M. Gebser, and T. Schaub: Answer set vs integer
linear programming for automatic synthesis of multiprocessor systems from real-time
parallel programs. Journal of Reconfigurable Computing, 2009. Article ID 863630.

[KJS+02] Kumar, S., A. Jantsch, J. P. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrja,
and A. Hemani: A Network on Chip Architecture and Design Methodology. pages
105–112, 2002.

[KPSD11] Kamali, M., L. Petre, K. Sere, and M. Daneshtalab: Formal modeling of multicast
communication in 3d nocs. In Proceedings of the 2011 14th Euromicro Conference
on Digital System Design, DSD ’11, pages 634–642. IEEE Computer Society, 2011,
ISBN 978-0-7695-4494-6.

[KS92] Kautz, H. and B. Selman: Planning as satisfiability. In Neumann, B. (editor): Pro-
ceedings of the Tenth European Conference on Artificial Intelligence (ECAI’92), pages
359–363. John Wiley & sons, 1992.

[Lif02] Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence,
138(1-2):39–54, 2002.

[LR06] Lifschitz, V. and A. Razborov: Why are there so many loop formulas? ACM Transac-
tions on Computational Logic, 7(2):261–268, 2006.

[Luk08] Lukasiewycz et al., Martin: Efficient symbolic multi-objective design space explo-
ration. In Proc. of ASP-DAC ’08, pages 691–696, 2008.

[Luk09] Lukasiewycz et al., Martin: Combined System Synthesis and Communication Architec-
ture Exploration for MPSoCs. In Proc. of DATE ’09, pages 472–477. IEEE Computer
Society, 2009.

[Nee01] Neema, Sandeep: System Level Synthesis of Adaptive Computing Systems. PhD thesis,
Vanderbilt University, Nashville, Tennessee, May 2001.

[NM97] Niemann, Ralf and Peter Marwedel: An Algorithm for Hardware/Software Partition-
ing Using Mixed Integer Linear Programming. Design Automation for Embedded
Systems, 2(2):165–193, 1997.

[PF06] Pavlidis, V. and E. Friedman: 3-d topologies for networks-on-chip. In SoCC, pages
285–288. IEEE, 2006.

[RL09] Ramanujam, R. and B. Lin: A layer-multiplexed 3d on-chip network architecture. Em-
bedded Systems Letters, 1(2):50–55, 2009.

[YL08] Yan, S. and B. Lin: Design of application-specific 3d networks-on-chip architectures.
In ICCD, pages 142–149. IEEE, 2008.

