More on noMoRe

Thomas Linke

Christian Anger

Universitdt Potsdam, Institut fiir Informatik
August-Bebel-Strasse 89, D- 14482 Potsdam
{linke,canger,konczak } @cs.uni-potsdam.de

Kathrin Konczak

Abstract

We focus on the efficient computation of an-
swer sets for normal logic programs. We con-
centrate on a recently proposed rule-based
method (implemented in the noMoRe system)
for computing answer sets. We show how
noMoRe and its underlying method can be im-
proved tremendously by improving its deter-
ministic consequences. With these improve-
ments noMoRe is able to deal with problem
classes it could not handle so far.

1 Introduction

Answer set programming (ASP) is a programming
paradigm, which allows for solving problems in a com-
pact and highly declarative way. The basic idea is to
specify a given problem in a declarative language, e.g.
normal logic programs®, such that the different answer
sets given by answer sets semantics [8] correspond to
the different solutions of the initial problem [10]. As an
example, consider the independent set problem, which
is to determine if there exists a maximal (wrt set inclu-
sion) independent subsets of nodes for a given graph.
A subset SCV of nodes of a graph G=(V, E) is called
independent if there are no edges between nodes in S.
Let

n <+ not in

(a) d), not in(b)
in(b) «+ not in
(c)

), not in(c)
D) mot in(d) (1)
¢),not in(a)

P= . .
mn <+ not in

in(d) «+ not in

—~ N N~

be a logic program and let us call the rules r,,
ry, 1. and rg, respectively. Then program (1) en-
codes the independent set problem for graph G =

!The language of normal logic programs is not the only

one suitable for ASP. Others are disjunctive logic programs,
propositional logic or DATALOG with constraints [4].

({a,b,¢,d},{(a,b), (b,), (c,d), (d, a)}). Program (1)
has two answer sets X; = {in(a),in(c)} and X5 =
{in(b),in(d)} corresponding to the two independent
sets of graph G.

Currently there are reasonably efficient implementa-
tions (e.g. smodels [15] and dlv [5]) available as well
as interesting applications of answer set programming.
(e.g. [3, 13, 14]). Since computation of answer sets
is NP-complete for normal logic programs (and -
complete for disjunctive logic programs), most algo-
rithms rely on methods similar to the Davis-Putnam
algorithm for SAT. That is, they contain a non-
deterministic part (making choices) and a part com-
puting deterministic consequences for these choices.
Whereas in [7] different heuristics are investigated in
order to make the “right” choices, in this paper we
improve the deterministic consequences of the recently
proposed rule-based noMoRe system [1]. For all ASP
systems relying on Davis-Putnam-like algorithms (that
is, for all systems mentioned so far), non-deterministic
choices and deterministic consequences determine the
behavior of the resulting algorithm. In particular, we
redefine propagation of so-called a-colorings as intro-
duced in [11] such that we are able to include backward
propagation. Furthermore, we introduce a technique
called jumping to ensure complete backward propaga-
tion and give experimental results showing the influ-
ence of the presented techniques.

2 Background

We deal with normal logic programs which contain
the symbol not used for negation as failure. A nor-
mal logic program is a set of rules of the form p +
1y--->qn,not 81,...,not s, where p, ¢; (0 < i < n)
and s; (0 < j < k) are propositional atoms. A ruleisa
fact if n=k=0, it is called basic if k=0 and quasi-fact
if n=0. For a rule r like above we define head(r) =p
and body(r) = {q1,-..,4qn,n0t $1,...,n0t sp}. Fur-

thermore, let body™* (r)={q1,...,q,} denote the set of
positive body atoms and body™ (r) = {s1,..., sk} the
set of negative body atoms. We denote the set of all
facts of a program P by Facts(P) and the set of all
atoms of P by Atoms(P).

Let r be a rule. 7+ then denotes the rule head(r) <
body™ (r), obtained from r by deleting all negative
body atoms in the body of r. For a logic program
Plet Pt = {rt | r € P}. A set of atoms X is
closed under a basic program P iff for any r € P,
head(r) € X whenever body(r) C X. The smallest
set of atoms which is closed under a basic program
P is denoted by Cn(P). The reduct, PX, of a pro-
gram P relative to a set X of atoms is defined by
PX ={rt | r € Pand body (r) N X = 0}. We say
that a set X of atoms is an answer set of a program
P iff Cn(PX)=X.

A set of rules P is grounded iff there exists an enu-
meration (r;);er of P such that for all i € I we have
that body™ (r;) C head({ri,...,7;_1}). Observe that
there exists a unique maximal grounded set P' C P
for each program P.2 TFor a set of rules P and a
set of atoms X we define the set of generating rules
of P wrt X as GR(P,X) = {r € P | body™(r) C
X,body™ (r) N X = (}. Then X is an answer set of
P iff we have X =Cn(GR(P, X)*). This characterizes
answer sets in terms of generating rules. Observe, that
in general GR(P, X)* # PX (take P = {a «,b « c}
and X ={a}).

We need some graph theoretical terminology . A
directed graph (or digraph) G is a pair G = (V, A)
such that V is a finite, non-empty set (vertices) and
ACV x Visaset (arcs). For a digraph G=(V, A) and
a vertex v €V, we define the set of all predecessors of v
as Pred(v)={u | (u,v) € A}. Analogously, the set of all
successors of v is defined as Succ(v) ={u | (v,u) € A}.
A path from v to v' in G = (V,A) is a finite subset
P,y CV such that Py ={v1,...,00}, v=01, v =v,
and (v;,v;11) €A foreach 1 < i < n. Let G=(V, A)
and G'=(V', A") be digraphs. Then G’ is a subgraph
of Gif V!CV and A'CA. G is an induced subgraph
of G if G' is a subgraph of G s.t. for each v,v' €V’ we
have that (v,v')€ A’ iff (v,v") € A.

In order to represent more information in a di-
rected graph, we need a special kind of arc label-
ing. G = (V,A° U A!) is a directed graph whose
arcs A° U A! are labeled zero (A4°) and one (A!).
We call arcs in A° and A' 0-arcs and 1-arcs, re-
spectively. For G we distinguish 0-predecessors (0-
successors) from 1-predecessors (1-successors) denoted

2Here we mean sets P’ which are maximal wrt set in-
clusion and grounded.

by PredO(v) (SuccO(v)) and Predl(v) (Succl(v)) for
v €V, respectively. A path P,, in G is called 0-path
if Arcs(P,,)C A°.

Block Graphs for Normal Logic Programs

Next we summarize the central definitions of block
graphs for logic programs and a-colorings of block
graphs (cf. [11, 12]).

Definition 1 Let P be a logic program and let P' be
the maximal grounded subset of P. The block graph
Tp=(Vp,Ab U AL) of P is a directed graph with ver-
tices Vp=P and two different kinds of arcs defined as
follows

AY={(r",r) | ',r€P" and head(r') € body™ (r)}
AL={(r",r) | r',r€P" and head(r') € body~ (r)}.

This definition captures the conditions under which a
rule r' blocks another rule r (ie. (r',r) € Al). We
introduce an l-arc (r',r) in Ip if 7' = (¢ « ...)
and r = (... « ...,not q,...). We also gather all
groundedness information in I'p, because we only in-
troduce a O-arc (r',r) (between rules r' = (g « ...)
and r=(... « g,...)) if r and r' are in the maximal
grounded subset of P.3 Figure 1 shows the block graph
of program (1). Observe, that operations head(r),
body™ (r) and body~(r) (for r € P) are operations on
the block graph, since the nodes of I'p are the rules of
logic program P.

In order to define so-called application colorings or a-
colorings for block graphs we need the following def-
inition.

Definition 2 Let P be a logic program and let T'p =
(Vp, A% U AL) the corresponding block graph. Fur-
thermore, let x € Atoms(P) and let G, =(V, A;) be a
subgraph of Tp. Then G, is a grounded 0-graph for z
in T'p iff the following conditions hold:

1. G, is an acyclic subgraph of Tp s.t. A, CAY

2. G contains a target node ry s.t. t=head(ry) and
from every other node there exists a 0-path to the
target node

8. for each node r €V, we have body™ (r) =0 or for
each q' € body™ (r) there exists a node r' €V, s.t.
q¢'=head(r") and (r',r) € A,.

30Observe, that for program P = {p ¢+ ¢,q + p} the
maximal grounded subset of rules is empty and therefore
I'p contains no 0-arcs.

Observe, that the nodes of a grounded 0-graph are
grounded according to definition (see Section 2). Fur-
thermore, the different grounded 0-graphs for atom =z
in I'p correspond to the different classical “proofs” for
x in PT, ignoring the default negations of all rules.

Definition 3 Let P be a logic program, let C : P —
{©,®} be a total mapping*. We call r grounded
wrt Tp and C iff for each q € body™ (r) there ex-
ist a grounded 0-graph G,=(V,, A,)) for ¢ in Tp s.t.
c(v)=e.

A rule r is called blocked wrt T'p and C if there exists
some r' € Pred1(r) s.t. C(r')=®°.

Now we are ready to define a-colorings.

Definition 4 Let P be a logic program, let T'p be the
corresponding block graph and let C : P — {©,®} be a
total mapping. Then C is an a-coloring of I'p iff the
following condition hold for each r€ P

AP C(r) =@ iff r is grounded and r is not blocked
wrt I'p and C.

Let C be an a-coloring of some block graph I'p. Rules
are then intuitively applied wrt some answer set of P
if and only if they are colored @, that is, condition AP
captures the intuition of applying a rule wrt to some
answer set. Similarly, the negation of condition AP (r
is not grounded or r is blocked) captures the intuition
when a rule is not applicable wrt to some answer set.

Observe, that there are programs for which the cor-
responding block graph has no a-coloring and thus no
answer set. Let r, be rule p < not p. Then program
P={rp} has block graph (P,0,{(rp,7p)}), that is, I'p
consists of a single 1-loop. By Definition 4 there is
no a-coloring of I'p. If we color r, with © we get a
direct contradiction to AP, since then 7, is blocked.
On the other hand, if we color r, with © then r, is
trivially grounded and not blocked. Therefore r, has
to be colored @& which again is a contradiction.

The main result in [11] states that Program P has an
answer set X iff I'p has an a-coloring C s.t.

GR(P,X)={reP|C(r)=a}.

This result constitutes a rule-based method to com-
pute answer sets by computing a-colorings. In Figure 1

4A mapping C : P — C is called total iff for each node
r € P there exists some C(r) € C. Oppositely, mapping C
is called partial if there are some r € P for which C(r) is
undefined.

®We say a rule is grounded or blocked (omitting C) if it
is clear from the context with respect to which mapping C
the rule is grounded or blocked, respectively.

we have depicted the two a-colorings of the block graph
of program (1) left and right from ’/’, respectively.

®/o @ o/®
1 j 1
o/ ! @ ®/6

Figure 1: Block graph and a-colorings of program (1).

3 Propagation

In the nonmonotonic reasoning system noMoRe [1] the
approach described in the last section is implemented.
Let us assume that each program is grounded. In or-
der to describe the deterministic part of the imple-
mentation and its improvements, we need some cen-
tral properties of nodes. All those properties are de-
fined wrt partial a-colorings. We call a partial map-
ping C : P — {©,®} a partial a-coloring if C is an
a~coloring of the induced subgraph of I'p with nodes
Dom(C)S.

Definition 5 Let P be a logic program and let C be a
partial a-coloring of U'p. For each node r € P we define
the following properties wrt I'p and C:

1. p-grounded(r) iff Vg€ body™(r) :
3Ar' € Pred0(r) : g=head(r') and C(r') =

2. p-notgrounded(r) iff Iq€body™ (r) :
Vr' € Pred0(r) : q# head(r') or C(r')=6

3. p-blocked(r) iff Ir' € Predi(r) :C(r')=a
4. p-notblocked(r) iff Vr'€ Predi(r):C(r')=6.

Notice the difference between total and partial a-
colorings. For example, if p-notgrounded(r) holds for
r wrt some total a-coloring C then p-grounded(r) is
the negation of p-notgrounded(r). This does not hold
for partial a-coloring C, since there may be nodes for
which C is undefined. For this reason, we have to de-
fine both p-grounded (p-blocked) and p-notgrounded
(p-notblocked), respectively, because they cannot be
defined through each other wrt partial a-colorings.
However, we have the following result for total a-
colorings:

Theorem 1 Let P be a logic program and let C be a
total a-coloring of Tp. Then for each node r € P we
have r is grounded wrt Tp and C iff p-grounded(r) wrt

5Dom(C) denotes the domain of mapping C.

I'p and C. Furthermore, we have r is blocked wrt T'p
and C iff p-blocked(r) wrt Tp and C.

Clearly, to be grounded (wrt I'p and C for node r)
is a global concept wrt I'p whereas p-grounded(r) is
defined locally wrt I'p. Furthermore, observe the dif-
ference between r is blocked and p-blocked(r) wrt T'p
and C. Even if the definitions of both concepts are
the same (cf Definition 3), the former is defined wrt
to total a-colorings, whereas the later one is defined
wrt partial a-colorings. In a situation like in Fig-

° (DO
Figure 2: Some block graph with partial a-coloring.

ure 2 we do not have p-blocked(r') and we do not have
p-notblocked(r') wrt the depicted partial a-coloring.
But we always have either that r is blocked or not
blocked wrt total a-colorings.

Definition 6 Let C be a partial a-coloring of T'p and
let U be the set of uncolored nodes wrt C. Then each
node r € U can be colored @& by propagation of C iff we
have p-grounded(r) and p-notblocked(r) wrt C. Node r
can be colored © by propagation of C iff we have
p-notgrounded(r) or p-blocked(r) wrt C.

Notice, that propagation of partial a-colorings to un-
colored nodes is global wrt I'p, since in order to propa-
gate C as much as possible we have to check all nodes in
U which in general are distributed over I'p. According
to Definitions 5 and 6 nodes colored by propagation al-
ways have colored predecessors. Therefore we obtain a
more procedural way to propagate partial a-colorings
by localized propagation conditions.

Definition 7 Let P be a logic program, let I'p be the
corresponding block graph and let C be a partial a-
coloring of Tp. We define an extented mapping C¢of
C s.t. for each r € Dom(C) we have C¢(r) =C(r) and
for each r,7' € P the following conditions hold wrt T'p
and C°:

(A) if reSuccl(r') and C(r') = then C*(r)=0

B) if r € Succl(r') and C¢(r') = © and
p-notblocked(r) and p-grounded(r) then C¢(r)=&

(C) if r € SuccO(r') and C°(r') = @ and
p-notblocked(r) and p-grounded(r) then C¢(r)=&

D) if r € SuccO(r') and Ce(r') =
p-notgrounded(r) then C¢(r)=0.

e and

We have the following result:

Theorem 2 Let P be a logic program and let C and
C¢: P {©,®} be partial mappings. Then we have if
C is a partial a-coloring of T'p and C¢ is an extension
of C as in Definition 7 then Co CC§, Ce CCE and CCis
a partial a-coloring of T'p.

This theorem gives the conditions for four different
propagation cases in arc direction: if a node r is col-
ored ¢ (c€{©,®}) then this color can be propagated
over 1- and over 0-arcs to the neighbors of r, according
to localized propagation conditions (A), (B), (C) and

(D).

Now let P be some logic program. Let C : P — {&,®}
be a partial a-coloring. C is represented by a pair of
(disjoint) sets (Co,Cq) s.t. Co ={r e P | C(r) = o}
and Cg = {r € P | C(r) = ®}. Since C is not to-
tal we do not necessarily have P = Cg U Cg. We
refer to mapping C with the pair (Cg,Cq) and vice
versa. Assume that I'p is a global parameter of each
of the presented procedure. Let U and N be sets of
nodes s.t. U contains the currently uncolored nodes
U=P\(CcUCgq) and N contains colored nodes whose
color has to be propagated. Figures 3, 4 and 5 show
the main procedures of noMoRe in pseudo code. No-

function colorp(U, N :list; C:partial mapping)
var r:node
if propagatep(N,C) then
U := U\(CGUC@)
if choosep(U,C,r) then
U:=U\{r}
if COlOI‘p(U, {T}a (CGJCEB U {T})) then
return true

else
return colorp(U,{r}, (Co U{r},Cg))
else
return propagatep (U, (Co UU,Cg))

else
return false

Figure 3: Basic noMoRe procedure.

tice that procedures colorp and propagatep return
some extended partial mapping through parameter C
or fail. Procedure choosep either returns some uncol-
ored node r s.t. we have p-grounded(r) wrt the cur-
rent partial a-coloring or fails. Clearly, choosep im-
plements the non-deterministic part of colorp. Op-
positely, propagatep implements the deterministic
consequences of noMoRe. Let Li(P) = {r € P |
r € Predl(r)} denote the set of all 1-loops in I'p.
When calling colorp the first time, we start with

function propagatep(N :list,C:partial mapping)
var 7' :node t: boolean
t := true
while (N #0 and t = true) do
select ' from N
if ('€Co) then
(A) t := (propAp(r',C) and

(C) propCp(r',())
else
(B) t := (propBp(r',C) and
(D) propDp(r',C))
return t

Figure 4: Procedure propagatep.

C = (L1(P), Facts(P)), U = P\ (Facts(P) U L1(P))
and N =Facts(P)U L{(P). That is, we start with all
facts colored & and all 1-loops colored ©. Basically,
colorp takes both a partial mapping C and a set of
uncolored nodes U and aims at coloring these nodes.
That is, colorp computes an extended partial map-
ping or if this is impossible it fails. This is done by
choosing some uncolored node r (r € U) with choosep
and by trying to color it @ first. If this does not give a
solution colorp tries to color node r with &. If both
possibilities fail colorp fails. Therefore, we say that
node r is used as a choice. To be a choice is not a
property of a node, because choices are dynamic wrt
each solution. Therefore a node may be a choice in one
run of colorp but not in every run, e.g. because there
may be heuristics that uses different nodes as choices
depending on the actual implementation of choosep.
Observe, that all different a-colorings are obtained via
backtracking over choices in colorp.

Notice, that procedure propagatep works locally ac-
cording to conditions (A) to (D) of Definition 7. The
color of a node is propagated immediately after get-
ting colored, because the test whether the node was
colored correctly is done during propagation. Ob-
serve that Theorem 4.1 in [12] implies that partial a-
coloring C can not be extented to some total a-coloring
if propagatep fails. Therefore, colorp fails only
during propagation. Procedures propA p, propBp,
propCp, and propDp are the implementations of
(A), (B), (C) and (D), respectively. The purpose of
propagatep is to apply the corresponding propaga-
tion cases, e.g. if C(r') = @ then cases (A) and (C)
have to be applied”. Accoring to Figure 3, partial a-
colorings are propagated only in arc direction. That
is, if some node is colored then we try to propagate

"The missing three procedures also used in propagate »
can be easily implemented analogously to propB .

the color of this node to its successors (if possible).

function propBp(r':node; C:partial mapping)
var r:node S :set of nodes t: boolean
S := {r€Succl(r') | condition (B) holds for r}
t 1= true
while (S#0 and t = true) do
select r from S
if r€Cs then
return false
else
if r¢Cq then
t = propagatep(r, (Cea CGB U {’I‘}))
else
return false
return ¢t

Figure 5: Procedure propBp.

4 Backward Propagation

In [11, 1] it is stated that the number of choices can be
reduced by introducing backward propagation, that is,
partial a-colorings can also be propagated in opposite
arc direction. Clearly, as for propagation in arc direc-
tion, we have four backward propagation cases. How-
ever, there is a problem with defining localized con-
ditions for backward propagation (as in Definition 7).
Assume that Figure 6 depicts a part of some block

oy

>R

Figure 6: Part of some block graph with partial a-
coloring.

graph together with some partial a-coloring. On the
one hand, we know that ' has to be colored & (pro-
vided that there are no other predecessores of r), be-
causes this is the only way to block r and if r is not
blocked there is no answer set. On the other hand,
we cannot color ' with @, because we do not have
p-grounded(r’) (see Definition 6). Therefore we need
so-called transitory a-colorings .

Definition 8 Let P be some logic program. We call
a partial mapping C : P — {©,®,+} a transitory a-
coloring of T'p iff C is an a-coloring of the induced
subgraph of T p with nodes Cg U Cg.

That is, a transitory a-coloring is a partial a-coloring
where some nodes may be uncolored or colored with
+. Color + is used instead of ® to color node 7'
in situations like in Figure 6, where we do not have
p-grounded(r') wrt the current partial a-coloring, but
r' can still possibly be grounded. In order to trans-
form some transitory a-coloring (during the execution
of colorp) to a total a~coloring color + is replaced by
color @, if possible. This is achieved by propagation.
Whenever a node is colored, this color is propagated
to all its neighbors immediately, no matter whether
these already have been colored or not. In case a node
already colored + (@) has to be colored © via propa-
gation, propagation fails due to contradiction. When a
node already colored + has to be colored & via propa-
gation, color + is simply replaced by @. That is, either
every color + will become @, or colorp fails. We need
the following properties wrt transitory a-colorings:

Definition 9 Let P be a logic program, let C be
a transitory a-coloring of I'p and let + € P be
some node. Then r is groundable(r) wrt I'p and
C iff Vg € body™(r) Ir' € Pred0(r) withq =
head(r') s.t. C(r')=@® or r' is uncolored.

Here groundable(r) means that either r is grounded or
that there is some uncolored 0-predecessor, which can
possibly be colored & while extending C. For r € P
and g€ body™ (r) we define S, CPred0(r) as S, = {r' |
r" € Pred0(r) and ¢ = head(r')}. Furthermore, for a
set of rules S C P we define p-grounded(S) wrt I'p
and transitory a-coloring C iff there is some r € S s.t.
C(r)=@®. Now we are ready to define the four localized
backward propagation cases.

Definition 10 Let P be a logic program, let T'p be the
corresponding block graph and let C be a transitory a-
coloring of T'p. We define an extented mapping C¢ :
P {6,®,+} of C s.t. for each r€ Dom(C) we have
Ce¢(r)=C(r) and conditions (A) to (D) of Definition 7
and the following conditions hold for oll r,v' € P wrt
I'p and C¢:

(bA)

(bB) if C¢(r') = © and p-grounded(r') and r €
Predi(r') s.t. and ¥r" € Pred1(r') : (C¢(r") = ©
iff r" #r) then Cé(r)=+

(bC) if C¢(r') = @ and there is some q € body™ (r')
s.t. g=head(r) for some r €S, and groundable(r)
and for each r'" €S, : (C¢(r")=0 iff r'" #7r) then
Ce(r)y=+

(bD) if Ce(r') =6 and p-notblocked(r') and there is
some q € body™ (') with q= head(r) for some r €

if C¢(r"Y=@® and r € Pred1(r') then C¢(r)=©

S, s.t. for each ¢' € body™ (r'): (p-grounded(Sy)
iff Sy #S,) then C¢(r)=0o.

Intuitively, these cases ensure that an already -
colored node is grounded (bC) and not blocked (bA)
while an already ©-colored node is blocked (bB) or
not grounded (bD). So in a sense, the purpose of these
cases is to justify the color of a node. Observe, that
cases (bB) and (bC) use color + instead of & (see
Defintion 8). We have the following result correspond-
ing to Theorem 2:

Theorem 3 Let P be a logic program and let C and
C¢: Pw {©,®,+} be a partial mappings. Then we
have if C is a transitory a-coloring of I'p and C° is
an extension of C as in Definition 10 then Co C C§,
Ce CCq and C°is a transitory a-coloring of I'p.

Let us show how colorp computes the a-colorings of
the block graph of program (1) (see Figure 1). At
the beginning we cannot propagate anything, because
there is no fact and no 1-loop. We take r, as a
choice. First, we try to color r, with @ by calling
colorp(U,N,C) with U=P\ {r,}, N={r,} and C=
(@,{re}). Now, propagatep(N,C) is executed. By
propagating C(r,) =® with case (A) we get C(r5) =6
and C(rqg) = 6. Recursively, through case (B) C(r.)=@®
is propagated. This gives C=({ry,74}, {ra,7c}). Since
U becomes the empty set, choosep fails and C is the
first output. So far we did not need backward propa-
gation.

Now, we «color 7, with © through calling
colorp(U,N,C) with U and N as above and
C = (0,{r,}). Since no (backward) propagation is
possible we have to compute the next choice. For
choosep all three uncolored nodes are possible choices
s.t. CP holds. Assume C(rp,) = @ as next choice.
Through propagation case (A) we get C(r.) = ©.
This color of r. has to be propagated by executing
propagatep({r.}, ({ra,rc}, {rc})). By using prop-
agation case (B) we obtain C(rg) = ®. Recursively,
propagation of @ for ry gives no contradiction and
C = ({ra,rc}, {ry,rq}) is the second a-coloring. By
assuming C(rp) = 6, that is, C = ({re,m},0), 7¢ is
colored with @ through backward propagation case
(bB). By propagation of this color with case (A) node
rq is colored with ©. By applying case (B) to the
color of r4 we obtain that r, has to be colored with @,
because it is not blocked, but this is a contradiction
to C(p,) = ©. Thus, there is no further solution and
we have found the two solutions with two choices.
Observe that the usage of (bB) saves one additional
choice, since without backward propagation the
partial coloring C = ({rq,7s},®) could not have been

extended any more and another choice would have
been necessary.

5 Jumping

procedure propagatep(N :list,C:part. mapping)
var r':node;
while N #0 do

select ' from N;

if (r'€Cy) then
) if propAp(r',C) fails then fail;
) if propCp(r',C) fails then fail;
bA) if backpropAp(r',C) fails then fail;
bC) if backpropCp(r',C) fails then fail;
'.C) fails then fail;

if jumpCp(r
else
) if propBp(r',C) fails then fail;
) if propDp(r',C) fails then fail;
bB) if backpropBp(r',C) fails then fail;
bD) if backpropDp(r',C) fails then fail;
if jumpB(r',C) fails then fail;
if jumpDyp(r',C) fails then fail;

procedure jumpBp(r':node;C:partial mapping,)
var S :set of nodes;
S := Succl(r')
while S#0 do
select ' from S;
if C(r')=6 then backpropBp(r',C);

Figure 7: Extended propagation procedures including
backward propagation and jumping.

A further improvement for the rule-based algorithm is
so-called jumping. Backward propagation according
o (bB), (bC) and (bD) requires certain conditions to
be fulfilled, which may not be known when a node
is colored. For (bA) this is not the case, because in
(bA) there is no further condition. Take the following
program P and its corresponding block graph I'p (see
Figure 8):

a + not a,not b,not d

P={ b+notc d<+ note (2)
c+notb e+ notd
I 1@
) AN AN O

Figure 8: Block graph of program (2)

We know that C({r,}) =6, otherwise there would not
be an answer set at all. Since r, is trivially grounded,

it has to be blocked. This can be achieved by two
rules, r, and rg, though one is sufficient. But we do
not know yet, which one should be colored &. Later
on, when e.g. 7, has been used as a choice and is
colored © this is achieved via jumping, that is, case
(bB) is used again for node r, and r4 is colored @.
Finally, with (A) node r. is colored ©. In this way
jumping helps to avoid unnecessary choices, because
without jumping we would need another choice to color
nodes rg and r.. Backward propagation would not be
complete without jumping. In general, whenever a © is
propagated along a 1-arc to an already ©-colored node,
we check backward propagation case (bB) for this node
again. Similarly, we check (bC) and (bD) again for &-
colored and &-colored 0-successors of already colored
and propagated nodes, respectively.

As an example, Figure 7 shows the implementation
of procedure jumpBp, which jumps to an already
colored node in order to check backward propagation
(bB) again. By replacing procedure propagatep in
Figure 3 with propagatep in Figure 7 we obtain an
algorithm for computing a-colorings including back-
ward propagation and jumping. The four procedures
for the backward propagation cases are implemented
similarly to procedure propBp in Figure3, with the
exception that we aim at coloring predecessors instead
of successors now.

6 Results

For a transitory mapping C : P — {&, ®, +} we define
the set of corresponding answer sets Ac as

Ac = {X | X is answer set of P
and Cg CGR(P, X) and Co N GR(P, X)=0}.

If C is undefined for all nodes then A¢ contains all
answer sets of P. If C is a total mapping s.t. no node
is colored with + then A¢ contains exactly one answer
set of P (if C is an a-coloring). With this notation we
formulate the following result:

Theorem 4 Let P be a logic program, let C and C' :
P {6,®,+} be transitory mappings. Then for each
r € (Co UCg UC4) we have if propagatep({r},C)
succeeds and C' is the transitory mapping after its ex-
ecution then Ac=Ac:.

This theorem states that propagatep neither discards
nor introduces answer sets corresponding to some tran-
sitory mapping C. Hence, only nodes used as choices
lead to different answer sets.

Finally, let C'p be the set of all solutions of colorp.
We obtain correctness and completeness of colorp.

Theorem 5 Let P be a logic program, let T'p be its
block graph, let C : P — {©,®} be a mapping and let
Cp the set of all solutions of colorp for program P.
Then C is an a-coloring of U'p iff C€Cp.

7 Experiments

As benchmarks, we have used some instances of NP-
complete problems proposed in [2], namely, the inde-
pendent set problem for circle graphs®, the problem of
finding Hamiltonian cycles in complete graphs and the
problem of finding classical graph colorings. Further-
more we have tested some planning problems taken
from [6] and the n-queens problem. In Table 1 we have
counted the number of choices instead of measuring
time, since the number of choices indicates how good
an algorithm deals with a non-deterministic problem.
For smodels results with and without lookahead (re-
sults in parenthesis) are shown®.

noMoRe smodels

backprop | no yes yes

jumping | no no yes
ham k7 | 14335 14335 2945 4814 (34077)
ham k.8 | 82200 82200 24240 688595 (86364)
ind_cir20 | 539 317 276 276 (276)
ind_cir_30 | 9266 5264 4609 4609 (4609)
plstepd | - 464 176 7 (69)
p2_step6 | - 13654 3779 75 (3700)
coldx4 27680 27680 7811 7811 (102226)
col5xb - - 580985 | 580985 (2.3 Mil)
queensd | 84 84 5 1 (11)
queensb | 326 326 13 9 (34)

Table 1: Number of choices (all solutions) for different
problems.

The influence of backward propagation and jumping
on the number of choices is clearly visible. There are
also some problems where we did not obtain a solution
after more than 12 hours without backward propaga-
tion. Table 1 impressively shows that noMoRe with
backward propagation and jumping is now compara-
ble with smodels on several problem classes; especially
if we disable the lookahead of smodels. The difference
between smodels and noMoRe for planning examples
and the n-queens problems seems to come from differ-
ent heuristics for making choices. We have just started

8 A so-called circle graph Cir, has n nodes {v1,---,vn}
and arcs A={(vi,vi+1) | 1 < i< n}U{(vn, 1)}

9Since we feel that dlv does not give sufficient infor-
mation on choices there are no results for dlv in Table 1.
Whereas smodels and noMoRe make exactely one choice at
each (choice) point in the search space, dlv makes several
choices at the same point of the search space.

to investigate the influence of more elaborated heuris-
tics for making choices.

8 Conclusion

We have shown that by introducing backward prop-
agation together with jumping the rule-based algo-
rithm implemented in noMoRe can be greatly improved.
A related method of backward propagation wrt an-
swer set semantics for normal logic programs was pro-
posed in [9]. However, a lot of the obtained improve-
ment is due to the concept of a third color +. There
seems to be a close relation between noMoRe’s color
+ and d1v’s must-be-true truth value [6], though this
has to be studied more thoroughly, because noMoRe
is rule-based and dlv (and smodels) is literal-based.
Through the conducted experiments the impact of the
improvements is shown. NoMoRe is now compareable
to smodels on many different problem classes measur-
ing the number of choices. This improvement was ob-
tained by improving the deterministic consequences of
noMoRe. However, there are still some interesting open
questions. The main one is whether rule-based com-
putation of answer sets is different from atom-based
(literal-based) or not. During our experiments we
have detected programs (with a large rule atom ratio)
for which atom-based computations are more suitable
and other programs (with a small rule atom ratio) for
which rule-based computation performs better. Cur-
rently, we have no general answer to this question and
a general comparison between atom-based and rules-
based methods for logic programs will be necessary.

Another question for future work is whether rule-based
approaches like implemented in noMoRe can lead to a
system which is able to compete (considering time)
against state of the art systems like smodels and
dlv. Clearly, this question cannot be answered with-
out having a system for the rule-based approach that
is as elaborated implemented as smodels and d1lv are.
Right now for noMoRe this is not the case, because
its development is in a state where smodels and dlv
were some years ago, for example the heuristics of
noMoRe still does not have a lookahead. In fact, the
only very simple heuristic we use so far in noMoRe is
to make choices for the color of a node r only if we
have p-grounded(r). However, we think that our ex-
periments show that there is a chance for rule-based
methods to be able to compete against atom-based in
the future. Therefore further work will also include
the study of heuristics and different implementation
techniques.

9

Acknowledgements

Acknowledgements

I would like to thank T. Schaub, Ph. Besnard, K.
Wang, K. Konczak, Ch. Anger and S.M. Model for
commenting on previous versions of this paper.

This work was partially supported by the German Sci-
ence Foundation (DFG) within Project “Nichtmono-
tone Inferenzsysteme zur Verarbeitung konfligierender
Regeln”.

References

[1]

[2]

[4]

[6]

C. Anger, K. Konczak, and T. Linke. NoMoRe:
A system for non-monotonic reasoning with logic
programs under answer set semantics. In R. Goré,
A. Leitsch, and T. Nipkow, editors, Automated
Reasoning, volume 2083 of Lecture Notes in Com-
puter Science, pages 325-330. Springer, 2001.
First International Joint Conference on Auto-
mated Reasoning.

P. Cholewiriski, V. Marek, A. Mikitiuk, and
M. Truszczynski. Experimenting with nonmono-
tonic reasoning. In Proceedings of the Interna-

tional Conference on Logic Programming, pages
267-281. MIT Press, 1995.

Y. Dimopoulos, B. Nebel, and J. Koehler. En-
coding planning problems in non-monotonic logic
programs. Proc. of the 4th European Conference
on Planing, pages 169-181, Toulouse, France,
1997. Springer Verlag.

D. East and M. Truszczyniski. des: An implemen-
tation of datalog with constraints. In Proceedings
of the National Conference on Artificial Intelli-
gence. MIT Press, 2000.

T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and
F. Scarcello. A deductive system for nonmono-
tonic reasoning. In J. Dix, U. Furbach, and
A. Nerode, editors, Proceedings of the Fourth
International Conference on Logic Programming
and Non-Monotonic Reasoning, volume 1265 of
Lecture Notes in Artificial Intelligence, pages
363-374. Springer Verlag, 1997.

W. Faber, N. Leone, and G. Pfeifer. Pushing
goal derivation in dlp computations. In M. Gel-
fond, N. Leone, and G. Pfeifer, editors, Proceed-
ings of the 5th International Conference on Logic

Programming and Nonmonotonic Reasoning (LP-
NMR’99), volume 1730 of Lecture Notes in Arti-

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

ficial Intelligence, pages 177-191, El Paso, Texas,
USA, 1999. Springer Verlag.

W. Faber, N. Leone, and G. Pfeifer. Experi-
menting with heuristics for answer set program-
ming. In B. Nebel, editor, Proceedings of the In-
ternational Joint Conference on Artificial Intel-
ligence, pages 635-640. Morgan Kaufmann Pub-
lishers, 2001.

M. Gelfond and V. Lifschitz. Classical negation
in logic programs and deductive databases. New
Generation Computing, 9:365-385, 1991.

N. Iwayama and K. Satoh. Computing abduction
by using tms with top-down expectation. Journal
of Logic Programming, 44:179-206, 2000.

V. Lifschitz. Answer set planning. In Proceedings
of the 1999 International Conference on Logic
Programming, pages 23—-37. MIT Press, 1999.

T. Linke. Graph theoretical characterization and
computation of answer sets. In B. Nebel, editor,
Proceedings of the International Joint Conference
on Artificial Intelligence, pages 641-645. Morgan
Kaufmann Publishers, 2001.

T. Linke. Rule-based computation of answer sets.
2002. submitted.

X. Liu, C. Ramakrishnan, and S.A. Smolka. Fully
local and efficient evaluation of alternating fixed
points. Proc. of the 4th Int. Conf. on Tools
and Algorithms for the Construction Analysis
of Systems, pages 5-19, Lisbon, Portugal, 1998.
Springer Verlag.

I. Niemeld. Logic programming with stable model
semantics as a constraint programming paradigm.
Annals of Mathematics and Artificial Intelligence,
25(3,4):241-273, 1999.

I. Niemeld and P. Simons. Smodels: An imple-
mentation of the stable model and well-founded
semantics for normal logic programs. In J. Dix,
U. Furbach, and A. Nerode, editors, Proc. of the
Fourth International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning, pages
420-429. Springer, 1997.

