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Abstract

We define the class of head-cycle free nested logic programs,
and its proper subclass of acyclic nested programs, general-
ising similar classes originally defined for disjunctive logic
programs. We then extend several results known for acyclic
and head-cycle free disjunctive programs under the stable
model semantics to the nested case. Most notably, we pro-
vide a propositional semantics for the program classes un-
der consideration. This generalises different extensions of
Fages’ theorem, including a recent result by Erdem and Lif-
schitz for tight logic programs. We further show that, based
on a shifting method, head-cycle free nested programs can
be rewritten into normal programs in polynomial time and
space, extending a similar technique for head-cycle free dis-
junctive programs. All this shows that head-cycle free nested
programs constitute a subclass of nested programs possessing
a lower computational complexity than arbitrary nested pro-
grams, providing the polynomial hierarchy does not collapse.

Introduction
This paper deals with generalisations and refinements of sev-
eral reducibility results for nested logic programs (NLPs)
under the stable model semantics. This class of programs
is characterised by the condition that arbitrarily nested for-
mulas, formed from atoms using negation as failure, con-
junction, and disjunction, serve as bodies and heads of
rules, extending the well-known classes of normal logic pro-
grams (nLPs), disjunctive logic programs (DLPs), and gen-
eralised disjunctive logic programs (GDLPs). Nested logic
programs under the stable model semantics (or rather under
the answer set semantics, by allowing also strong negation)
were introduced by Lifschitz, Tang, & Turner (1999), and
currently receive increasing interest in the literature, both
from a logical as well as from a computational point of view.

In complexity theory, a frontier is identified having DLPs,
GDLPs and NLPs on the one side, and nLPs and so-called
nested normal programs (NnLPs), for which only positive
literals are allowed as heads of rules (cf. Table 1 below),
on the other side. For the former program classes, the
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main reasoning tasks lie at the second level of the polyno-
mial hierarchy (Eiter & Gottlob 1995; Pearce, Tompits, &
Woltran 2001), while for the latter classes, the main reason-
ing tasks have NP complexity (Marek & Truszczyński 1991;
Bidoit & Froidevaux 1991).1 There are various translatabil-
ity results between the different syntactic subclasses of pro-
grams. Among them, there are translations between nested
programs and GDLPs (Lifschitz, Tang, & Turner 1999), and
between DLPs and nLPs (Eiter et al. 2004), both requir-
ing exponential space in the worst case. Additionally, there
exist linear-time constructible translations between NLPs
and DLPs (Pearce et al. 2002), and between GDLPs and
DLPs (Inoue & Sakama 1998; Janhunen 2001). Note that,
unless the polynomial hierarchy collapses, the above men-
tioned complexity gap does not allow for polynomial trans-
lations between, e.g., nested logic programs and normal
logic programs. However, one can seek for subclasses of
NLPs where such a translation is possible.

In this paper, we identify non-trivial subclasses of nested
programs for which we establish two forms of reductions:

1. reductions to classical propositional logic; and

2. reductions to normal logic programs.
More specifically, we introduce the classes of head-cycle
free (HCF) nested programs and its proper subclass of
acyclic nested programs. Both program classes are de-
fined as generalisations of similar kinds of programs orig-
inally introduced as syntactic subclasses of disjunctive logic
programs a decade ago by Ben-Eliyahu & Dechter (1994).
Moreover, the reductions we provide here are, on the one
hand, extensions of previous results, established for more
restricted kinds of programs, and, on the other hand, optimi-
sations of translatability results developed by Pearce, Tom-
pits, & Woltran (2001) and Pearce et al. (2002) with respect
to the specific class of programs at hand. We detail the main
aspects of our results in the following.

Concerning the reduction to classical propositional logic,
we construct mappings T [·] and T ∗[·] assigning to each pro-
gram a propositional theory such that

1. given an acyclic nested program Π, the stable models of
Π are given by the models of the classical theory T [Π];
and
1The NP-completeness for NnLPs can be derived from a trans-

lation from NnLPs to nLPs due to You, Yuan, & Zhang (2003).



2. given a head-cycle free nested program Π, the stable mod-
els of Π are given by sets of form I ∩ V , where I is a
model of the classical theory T ∗[Π] and V is the set of
atoms occurring in Π.

In both cases, the size of the assigned classical theory is
polynomial in the size of the input program. Moreover, the
translation T ∗[·] is defined using newly introduced auxiliary
variables, whereas for T [·], no new variables are required.

These results are generalisations of similar characterisa-
tions given by Ben-Eliyahu & Dechter (1994) for acyclic
and head-cycle free DLPs. Moreover, our results generalise
results relating the stable model semantics to Clark’s com-
pletion (Clark 1978). Recall that Clark’s completion was
one of the first semantics proposed for programs containing
default negation, in which a normal logic program Π is as-
sociated with a propositional theory, COMP[Π], called the
completion of Π. Although every stable model of Π is also
a model of the completion of Π, the converse does not al-
ways hold. In fact, François Fages (1994) showed that the
converse holds providing Π satisfies certain syntactic restric-
tions. Our results generalise Fages’ characterisation in the
sense that, if Π is a normal program, then both T [Π] and
T ∗[Π] coincide with COMP[Π].

Fages’ theorem was subsequently generalised in several
directions. Recently, Erdem & Lifschitz (2001; 2003) ex-
tended it for NnLPs, providing the given programs are tight.
We extend the notion of tightness to arbitrary nested pro-
grams and refine our transformation results by showing that

if a nested program Π is HCF and tight on an interpre-
tation I , then I is a stable model of Π iff I is a model
of T [Π].

Other generalisations of Fages’ theorem drop the syntac-
tic proviso but add instead additional so-called loop formu-
las guaranteeing equivalence between the stable models of
the given program and the classical models of the resultant
theory. This idea was pursued by Lin & Zhao (2003) for
normal programs and subsequently extended by Lee & Lif-
schitz (2003) for disjunctive programs with nested formulas
in rule bodies. In contrast to Clark’s completion for nor-
mal programs, the size of the resultant theories in these ap-
proaches is in the worst case exponential in the size of the
input programs, however. We further note that, for the sort
of programs dealt with by Lee & Lifschitz (2003), the notion
of completion defined there coincides with our transforma-
tion T [·].

The reductions to classical propositional logic allow us
also to draw immediate complexity results for acyclic and
HCF nested programs. As noted above, the main reason-
ing tasks associated with arbitrary nested programs lie at
the second level of the polynomial hierarchy (Pearce, Tom-
pits, & Woltran 2001), whereas our current results imply that
analogous tasks for acyclic and HCF nested programs have
NP or co-NP complexity (depending on the specific reason-
ing task). Thus, providing the polynomial hierarchy does
not collapse, acyclic and HCF programs are computation-
ally simpler than arbitrary nested programs.

Let us now turn to our results concerning the reductions
to normal logic programs.

As was shown by Ben-Eliyahu & Dechter (1994), HCF
disjunctive programs can be transformed into equivalent
nLPs by shifting head atoms into the body.2 For instance,
a rule of form p ∨ q ← r is replaced by this method by
the two rules p ← r,¬q and q ← r,¬p (where “¬” de-
notes the negation-as-failure operator). We generalise this
method for HCF nested programs, obtaining a polynomial
reduction from HCF nested programs (and thus, in particu-
lar, also from acyclic nested programs) into nLPs. Note that
applying such a shifting technique for programs which are
not HCF does in general not retain the stable models.

Previous to our work, Inoue & Sakama (1998) already
defined the notions of acyclicity and head-cycle freeness for
generalised disjunctive programs, extending the respective
notions introduced by Ben-Eliyahu & Dechter (1994). They
showed that GDLPs satisfying either of these extended no-
tions can likewise be transformed to nLPs by shifting head
atoms to the bodies of rules and thus have the same worst-
case complexity as normal programs. However, their notions
of acyclicity and head-cycle freeness are more strict than
ours, with respect to GDLPs, and hence our results hold for
a larger class of programs.

Finally, although existing results imply that NLPs can
in principle be reduced to normal programs or to classical
logic, our results provide a direct method for achieving such
reductions for the program classes under consideration. In
particular, existing methods yield translations which either
have exponential worst-case complexity, even for acyclic
and HCF programs, or involve steps which do not preserve
acyclicity and head-cycle freeness. The latter occurs, e.g.,
for the polynomial translation from NLPs to DLPs due to
Pearce et al. (2002). The current translations, however, are
constructible in polynomial time and preserve acyclicity and
head-cycle freeness.

The paper is organised as follows. The next section sup-
plies some background on logic programs and the stable
model semantics. Then, we introduce acyclic and head-
cycle free nested programs and show some invariance the-
orems. Afterwards, we discuss the reductions to classical
propositional logic and the generalised shifting technique
for reducing HCF programs into nLPs. The final sections
are devoted to tight nested programs and some concluding
remarks.

Preliminaries
We deal with propositional languages and use the logical
symbols >, ⊥, ¬, ∨, ∧, → and ↔ to construct formulas
over propositional variables (or atoms) in the standard way.
A formula whose sentential connectives comprise only ∧ ,
∨ , or ¬ is called an expression. As usual, literals are for-
mulas of form v or ¬v, where v is some variable or one of
>,⊥. We refer to a literal of form v (where v is as before) as
a positive literal and to a literal of form ¬v as a negative lit-
eral. Disjunctions of form

∨

i∈I φi are assumed to stand for
the logical constant ⊥ whenever I = ∅, and, likewise, con-
junctions of form

∧

i∈I φi with I = ∅ stand for >. The set

2Other results concerning similar shifting techniques are given,
e.g., by Dix, Gottlob, & Marek (1996) and Gelfond et al. (1991).



Table 1: Classes of programs.

Class Heads Bodies
NLP expression expression

GDLP disjunction of literals conjunction of literals
DLP disjunction of atoms conjunction of literals

NnLP positive literal expression
nLP positive literal conjunction of literals

of all atoms occurring in a formula φ is denoted by Atm(φ).
By an interpretation, I , we understand a set of variables.

Informally, a variable v is true under I iff v ∈ I . Interpre-
tations induce truth values (in the sense of classical propo-
sitional logic) of arbitrary formulas in the usual way. The
set of models of a formula φ is denoted by Mod(φ). Two
formulas, φ and ψ, are (logically) equivalent, iff Mod(φ) =
Mod(ψ). For a set V and a family of sets S, by S|V we
denote the family {I ∩ V | I ∈ S}.

The fundamental objects of our investigation are nested
logic programs (NLPs), introduced by Lifschitz, Tang, &
Turner (1999), which are characterised by the condition that
the bodies and heads of rules are given by arbitrary expres-
sions as defined above. For reasons of simplicity, we deal
here only with languages containing one kind of negation,
corresponding to default negation. Therefore, ¬ refers to
default negation, whenever used in logic programs.

In more formal terms, a rule, r, is a pair of form

H(r)← B(r),

where B(r) and H(r) are expressions. B(r) is called the
body of r and H(r) is the head of r. If B(r) = >, then r
is a fact, and if H(r) = ⊥, then r is a constraint. A nested
logic program, or simply a program, is a finite set of rules.

We associate to every program Π a corresponding set
c(Π) of propositional formulas, given by

c(Π) = {B(r) → H(r) | r ∈ Π}.

Furthermore, Atm(Π) denotes the set of all atoms occurring
in program Π.

Let Π be a program and I an interpretation. Then, the
reduct, ΠI , of Π with respect to I is obtained from Π by
replacing every occurrence of an expression ¬ψ in Π which
is not in the scope of any other negation by ⊥ if ψ is true
under I , and by > otherwise. I is an answer set (or stable
model) of Π iff it is a minimal model (with respect to set
inclusion) of c(ΠI). The collection of all answer sets of Π
is denoted by AS (Π). Two logic programs, Π1 and Π2, are
equivalent iff AS(Π1) = AS(Π2).

By restricting the syntactic form of bodies and heads of
rules, different classes of programs are identified. Besides
NLPs, for our purposes, the following classes are of inter-
est: generalised disjunctive logic programs (GDLPs), dis-
junctive logic programs (DLPs), nested normal logic pro-
grams (NnLPs), and normal logic programs (nLPs). Table 1
summarises the defining attributes of these classes.

Following Lloyd & Topor (1984) (cf. also Erdem & Lifs-
chitz (2003)), we define the completion of an NnLP Π as the

propositional formula

COMP[Π] =
∧

p∈A

(

p↔
∨

r∈Π,H(r)=p

B(r)
)

,

where A = Atm(Π) ∪ {⊥}.
Finally, we recall some graph-theoretical notations. A (di-

rected) graph,G, is a pair (V,E) such that V is a finite set of
nodes and E ⊆ V × V is a set of edges. A path from v to v′

in G is a sequence Pv,v′ = (v1, . . . , vn) of nodes such that
v = v1, v′ = vn, and (vi, vi+1) ∈ E, for each 1 ≤ i < n. A
graph G = (V,E) is acyclic iff, for each node v ∈ V , there
is no path from v to itself. A strongly connected component
(component, for short) of a graph G is a maximal set S of
nodes such that, for any two nodes p and q in S, there is a
path from p to q in G. Strongly connected components can
be identified in linear time (Tarjan 1972). The size of a com-
ponent is the length (i.e., number of edges) of the longest
acyclic path in it.

Acyclic and Head-Cycle Free Nested Programs
We start our formal elaboration by introducing the notion
of a dependency graph for nested logic programs. Based
on this, we define acyclic and head-cycle free nested pro-
grams, and show that these notions are invariant with respect
to rewritings into DLPs.

We commence with the following auxiliary notions.

Definition 1 Let p be an atom and ϕ an expression. Then,
the polarity of a specific occurrence of p in ϕ is positive iff it
is not in the scope of a negation, and negative otherwise. The
set of atoms having a positive occurrence in ϕ is denoted
by Atm+(ϕ). For a program Π, we define Atm+(Π) =
⋃

r∈Π(Atm+(H(r)) ∪Atm+(B(r))).

With this notation at hand, we define dependency graphs
for NLPs as follows:

Definition 2 The (positive) dependency graph of a pro-
gram Π is given by GΠ = (Atm(Π), EΠ), where EΠ ⊆
Atm(Π)×Atm(Π) is defined by the condition that (p, q) ∈
EΠ iff there exists some r ∈ Π such that p ∈ Atm+(B(r))
and q ∈ Atm+(H(r)).

Our first category of programs is then introduced thus:

Definition 3 A nested logic program Π is acyclic iff its de-
pendency graph GΠ is acyclic.

It is a straightforward matter to check that this definition
generalises acyclic DLPs as introduced by Ben-Eliyahu &
Dechter (1994), i.e., a DLP Π is acyclic in the sense of
Definition 3 iff it is acyclic in the sense of Ben-Eliyahu &
Dechter (1994).

Example 1 Consider the following two programs:

Π1 = {p ∨ q ←; p← q; q ← p};

Π2 = {p ∨ q ←; p← ¬¬q; q ← ¬¬p}.

Programs Π1 and Π2 have dependency graphs GΠ1
=

({p, q}, {(p, q), (q, p)}) and GΠ2
= ({p, q}, ∅), respec-

tively. Thus, Π1 is not acyclic, whereas Π2 is. One may ver-
ify that both programs have the same stable models, namely
AS(Π1) = AS(Π2) = {{p, q}}.



Next, we generalise the concept of a head-cycle free DLP
to the class of NLPs. To this end, we need the following
definition.

Definition 4 Two distinct atoms, p and q, are joint-positive
in an expression φ iff there exists a subformula φ1 ∨ φ2 of
φ with p ∈ Atm+(φ1) and q ∈ Atm+(φ2), or vice versa.
Moreover, p and q are called head-sharing in a program Π
iff p and q are joint-positive in H(r), for some r ∈ Π.

From this, the class of head-cycle NLPs is characterised
in the following way:

Definition 5 A nested program Π is head-cycle free (HCF)
iff its dependency graph GΠ does not contain a directed cy-
cle going through two head-sharing atoms in Π.

Again, it can be shown that a DLP Π is HCF in the
above sense iff it is HCF in the sense of Ben-Eliyahu &
Dechter (1994). Thus, the class of HCF NLPs is a proper
generalisation of the class of HCF DLPs. Furthermore, it is
easy to see that every acyclic NLP is HCF.

Example 2 Consider the programs Π1 and Π2 from Exam-
ple 1. Observe that p and q are head-sharing in both Π1 and
Π2. Hence, Π1 is not HCF, since there is a cycle in GΠ1

in-
volving p and q. On the other hand, Π2 is HCF, and, as we
already know from the above, acyclic.

In what follows, we review the translations introduced
by Lifschitz, Tang, & Turner (1999) and Janhunen (2001),
which, jointly applied, allow for translating any nested pro-
gram Π into a DLP via the substitutions (L1)–(L12) and (J)
from Table 2. Observe that the resultant program may be
exponential in the size of Π. Our goal is to show that the no-
tions of acyclicity and head-cycle freeness are invariant with
respect to the applications of these substitutions.

Any substitution σ from Table 2 is applied as follows: We
say that a program Π′ is obtained from Π via σ by replac-
ing3 an occurrence of an expression, or a single rule α, by β,
which itself is an expression, a rule, or a set of rules. More-
over, θ[p/x] denotes the replacement of all positive occur-
rences of an atom p in θ by expression x; and, accordingly,
for a set of atoms S, θ[S/x] denotes the replacement of all
positive occurrences of p ∈ S in θ by expression x. Thus,
θ[S/x] = θ whenever S ∩ Atm+(θ) is empty. We some-
times use a substitution σ in the reverse way, i.e., replacing
β by α. This is made explicit by writing σ←. We note that in
this section we require only a part of the translations given
Table 2; the remaining ones are needed later on.

We start with a translation from NLPs to GDLPs due to
Lifschitz, Tang, & Turner (1999). This translation is based
on substitutions (L1)–(L12) from Table 2.

Proposition 1 (Lifschitz, Tang, & Turner 1999) Let Π be
a program. Then, for any program Π′ obtained from Π via
any substitution from (L1)–(L12), it holds that AS (Π) =
AS (Π′).

3For (L11), (L12), (J), (Y1), and (Y2), we allow the component
ψ in α to be “empty”; in this case, for β, ψ is set to > in (L11) and
to ⊥ in (L12).

Moreover, there is a DLP Π′′ resulting from a sequence of
substitutions from (L1)–(L12) such that Π′′ is a GDLP and
AS (Π) = AS (Π′′).

Next, we close the gap between GDLPs and DLPs. To this
end, we require the substitution rule (J) of Table 2, which is
a generalised stepwise variant of a labeling technique dis-
cussed in detail by Janhunen (2001), introducing a globally
new atom Lp, for any atom p. Observe that acyclicity and
head-cycle freeness are invariant with respect to applications
of substitutions (L1)–(L12) and (J). More precisely, (L1)–
(L12) preserve both the dependency graph and the pairs of
head-sharing atoms. An application of Substitution (J), how-
ever, changes the dependency graph GΠ = (Atm(Π), EΠ),
for a given program Π, to

(Atm(Π) ∪ {Lp}, EΠ ∪ {(q, Lp) | q ∈ Atm+(φ)})

and yields additional pairs q and Lp of head-sharing atoms,
for any q ∈ Atm+(ψ) (cf. Table 2), but no critical cycles are
introduced. This gives us the desired result.

Theorem 1 Let Π be a nested program and let Π′ be ob-
tained from Π by applying any sequence of substitutions
from (L1)–(L12) and (J).

Then, the following properties hold:

1. I ∈ AS (Π) iff I ∈ AS(Π′)|Atm(Π);

2. Π is acyclic iff Π′ is acyclic; and
3. Π is HCF iff Π′ is HCF.

This theorem states that the properties of being acyclic and
of being HCF are invariant with respect to any sequence
of substitutions from (L1)–(L12) and (J). The next theorem
demonstrates that substitutions (L1)–(L12) and (J) are suffi-
cient to transform a given NLP into a corresponding DLP.

Theorem 2 Let Π be a nested program.
Then, there is a sequence of substitutions from (L1)–(L12)

and (J) obeying the conditions from Theorem 1 and such that
the resultant program Π′ is a DLP.

Example 3 For Π2 from Example 1, we derive the following
DLP:

Π′ = {p ∨ q ←; p ∨ Lq ←; q ∨ Lp ←} ∪

{⊥ ← v ∧ Lv; v ← ¬Lv | v ∈ {p, q}}.

The dependency graph of this program is ({p, q, Lp, Lq}, ∅),
and thus it is still HCF and acyclic. The only stable model
of Π′ is {p, q}, as well.

Reductions to Classical Propositional Logic
We now proceed with assigning a propositional semantics
to acyclic and head-cycle free nested programs, in the sense
that a program Π is transformed into a propositional formula
φ such that the answer sets of Π are given by the models of φ.
Observing that these encodings yield propositional formulas
which are polynomial in the size of the input programs, we
also draw some immediate complexity results.

We have the following building blocks. Let Π be a nested
program. For any p ∈ Atm+(Π) occurring in a strongly
connected component of size l > 1 in GΠ, we introduce



Table 2: Replacements in logic programs. Assume that φ, ψ, and ϕ are expressions, A is a set of atoms, p is an atom, L and Lp

are new atoms, and ◦ ∈ {∧,∨}.

Name Occurrence α Replaced by β
(L1) φ ◦ ψ ψ ◦ φ
(L2) (φ ◦ ψ) ◦ ϕ φ ◦ (ψ ◦ ϕ)
(L3) φ ◦ φ φ
(L4) (φ ∧ ψ) ∨ ϕ (φ ∨ ϕ) ∧ (ψ ∨ ϕ)
(L5) (φ ∨ ψ) ∧ ϕ (φ ∧ ϕ) ∨ (ψ ∧ ϕ)
(L6) ¬(φ ∨ ψ) (¬φ ∧ ¬ψ)
(L7) ¬(φ ∧ ψ) (¬φ ∨ ¬ψ)
(L8) ¬¬¬φ ¬φ
(L9) φ← ψ ∨ ϕ φ← ψ; φ← ϕ
(L10) φ ∧ ψ ← ϕ φ← ϕ; ψ ← ϕ
(L11) φ← ψ ∧ ¬¬ϕ φ ∨ ¬ϕ← ψ
(L12) ¬¬φ ∨ ψ ← ϕ ψ ← ϕ ∧ ¬φ
(J) ¬p ∨ ψ ← φ Lp ∨ ψ ← φ; ⊥ ← p ∧ Lp; Lp ← ¬p
(S)1 φ ∨ ψ ← ϕ φ← ϕ ∧ ¬ψ; ψ ← ϕ ∧ ¬φ
(T∗)2 φ← ψ {φ[(A \ {p})/>]←ψ[p/⊥]; φ[p/>]← ψ[(A \ {p})/⊥] | p ∈ A}
(D) φ ∨ ψ ← ϕ φ ∨ L← ϕ; ψ ← L
(Y1) p← ψ ∧ (φ ∨ ϕ) p← ψ ∧ L; L← φ ∨ ϕ
(Y2) p← ψ ∧ ¬¬q; p← ψ ∧ ¬L; L← ¬q
(C) φ ∧ ψ ← ϕ L← ϕ; φ← L; ψ ← L
1 applicable only if Atm+(φ) ∩Atm+(ψ) = ∅.
2 applicable only for A ⊆ Atm+(φ) ∩Atm+(ψ).

globally new variables p1, . . . , pk, where k = dlog2(l − 1)e.
For two atoms p, q occurring in the same component of size
l > 1 of the dependency graph, we define

precΠ[q, p] =

k
∧

i=1

(qi →
k

∨

j=i

pj) ∧ ¬
k

∧

i=1

(pi → qi).

Informally, precΠ[·, ·] assigns a strict partial order to the
atoms in Π, based on a binary encoding technique.

Now we are ready to define our two main transformations,
T [·] and T ∗[·], from nested logic programs into formulas of
propositional logic.

Definition 6 Let Π be a nested program, and let Πp be the
program resulting from Π by taking those rules r ∈ Π where
p ∈ Atm+(H(r)) and replacing each positive occurrence
of p in a head by ⊥. Furthermore, let Π∗p be the program
resulting from Πp by replacing each positive occurrence of
an atom q 6= p in a body by the formula q ∧ precΠ[q, p],
providing q is in the same component as p in GΠ.

Then, define

T [Π] = c(Π) ∧
∧

p∈Atm(Π)

(

p → ¬c(Πp)
)

; and

T ∗[Π] = c(Π) ∧
∧

p∈Atm(Π)

(

p → ¬c(Π∗p)
)

.

Note that the sizes of T [Π] and of T ∗[Π] are polynomial
in the size of Π. Furthermore, if Π is an NnLP, then T [Π]
is equivalent to the completion COMP[Π], and if Π is an
acyclic NLP, we have that T ∗[Π] = T [Π]. Moreover, it can

be shown that, for any DLP Π, the theories T [Π] and T ∗[Π]
are equivalent to the encodings given by Ben-Eliyahu &
Dechter (1994) for acyclic and HCF DLPs, respectively. The
main characterisations of Ben-Eliyahu & Dechter (1994) can
thus be paraphrased as follows:

Proposition 2 (Ben-Eliyahu & Dechter 1994) Let Π be a
DLP. Then, we have the following two properties:

1. If Π is acyclic, then I ∈ AS(Π) iff I ∈ Mod(T [Π]), for
all I ⊆ Atm(Π).

2. If Π is HCF, then AS(Π) = Mod(T ∗[Π])|Atm(Π).

The restriction in the second result is used to “hide” the
newly introduced variables in formulas precΠ[·, ·].

With the next results, we generalise Proposition 2 to HCF
and acyclic nested programs. To begin with, we have the
following theorem.

Theorem 3 Let Π be a HCF nested logic program.
Then, AS(Π) = Mod(T ∗[Π])|Atm(Π).

This theorem is proved by showing that models of T ∗[·]
are invariant (modulo the introduction of new atoms) under
substitution rules (L1)–(L12) and (J).

As an immediate consequence, we obtain the following
corollary for acyclic nested programs.

Corollary 1 Let Π be an acyclic nested logic program and
let I ⊆ Atm(Π).

Then, I ∈ AS(Π) iff I ∈ Mod(T [Π]).

Let us briefly mention that our encodings easily extend to
typical reasoning tasks associated to logic programs. Fol-
lowing Ben-Eliyahu & Dechter (1994), we define the fol-



lowing inference operators. Let Π be a logic program and S
a finite set of atoms.

1. Brave consequence: Π `b S iff S is contained in some
answer set of Π.

2. Skeptical consequence: Π `s S iff S is contained in all
answer sets of Π.

3. Disjunctive entailment: Π `d S iff, for each answer set I
of Π, there is some p ∈ S such that p ∈ I .

We then obtain the following straightforward encodings:

Theorem 4 Let S be a finite set of atoms.

1. For any acyclic NLP Π, we have that
(a) Π `b S iff T [Π] ∧

∧

p∈S p is satisfiable;

(b) Π `s S iff T [Π] →
∧

p∈S p is valid; and

(c) Π `d S iff T [Π] →
∨

p∈S p is valid.

2. For any HCF NLP Π, we have that
(a) Π `b S iff T ∗[Π] ∧

∧

p∈S p is satisfiable;

(b) Π `s S iff T ∗[Π] →
∧

p∈S p is valid; and

(c) Π `d S iff T ∗[Π] →
∨

p∈S p is valid.

Observing that the above encodings are clearly con-
structible in polynomial time, we derive the following im-
mediate complexity results:

Theorem 5 Given an acyclic or a HCF NLP Π and a fi-
nite set S of atoms, checking whether Π `b S holds is NP-
complete. Furthermore, given Π and S as before, check-
ing whether Π `s S or whether Π `d S holds is co-NP-
complete.

Note that the upper complexity bound follow from the
complexity of classical propositional logic, and the lower
complexity bounds are inherited from the complexity of nor-
mal logic programs.

A Generalised Shifting Approach
The result that HCF nested programs have NP or co-NP
complexity motivates to seek a polynomial translation from
HCF programs to NnLPs and furthermore to nLPs. We
do this by introducing a generalised variant of the well-
known shifting technique (Ben-Eliyahu & Dechter 1994;
Dix, Gottlob, & Marek 1996). Recall that shifting for
DLPs is defined as follows: Let r ∈ Π be a disjunctive
rule in a HCF DLP Π. Then, following Ben-Eliyahu &
Dechter (1994), Π is equivalent to the program resulting
from Π by replacing r by the following set of rules:4

{p← B(r) ∧ ¬(Atm(H(r)) \ {p}) | p ∈ Hr}. (1)

For generalising this shifting technique to nested pro-
grams, we introduce the substitution rule (S), depicted in
Table 2, which allows the replacement of φ ∨ ψ ← ϕ by the
two rules φ← ϕ ∧ ¬ψ and ψ ← ϕ ∧ ¬φ, where φ and ψ are
arbitrary expressions, providing Atm+(φ)∩Atm+(ψ) = ∅.
Observe that (S) preserves head-cycle freeness. As well,
models of T ∗[·] are preserved under application of (S).

4For a finite set S of atoms, ¬S denotes
∧

s∈S
¬s.

In view of its proviso, (S) is not always applicable, even if
a given program is HCF. But this problem is already appar-
ent in the case of DLPs. Indeed, in (1), we have used the set
Atm(H(r)) rather than the disjunction H(r) explicitly, oth-
erwise we run into problems: For instance, the disjunctive
rule p ∨ p ← is clearly not equivalent to {p ← ¬p}. This
is reflected in the forthcoming discussion, where we show
the adequacy of (S) via Theorem 3. Indeed, following from
Theorem 3, we can establish the following property:

Lemma 1 Let Π be a HCF program and let Π′ be obtained
from Π via (S).

Then, AS (Π) = AS (Π′).

Theorem 6 Let Π be a nested program.
Then, there exists a finite number of substitutions from

(L1)–(L4), (L6)–(L8), (L10), (L11)←, (L12), and (S), such
that the resultant program Sexp [Π] satisfies the following
properties:

1. Sexp [Π] is an NnLP; and

2. if Π is HCF, then AS (Π) = AS (Sexp [Π]).

The “strategy” to obtain Sexp [Π] from Π is as follows:
First, we translate Π into a program where all heads are a
disjunction of atoms. Then, via (L1), (L2), and (L3), we
can easily eliminate double occurrences of an atom p in a
head. Finally, we then apply (S) to replace each (proper)
disjunctive rule into a set of nested normal rules.

Observe that the subscript “exp” in Sexp [·] indicates that
the size of Sexp [Π] may be exponential in the size of Π in the
worst case. The reason is the use of substitution rule (L4).
We can circumvent the application of (L4), and thus the ex-
ponential blow-up, if we could use (S) more directly. To
this end, we introduce the two substitution rules (D) and
(T∗), as given in Table 2. Observe that (T∗) is a generali-
sation of an optimisation rule called (TAUT) due to Brass &
Dix (1999). In fact, we want to apply (D) instead of (S), but
(D) may introduce new head cycles according to its defini-
tion. In particular, this situation occurs whenever an atom
occurs positively in both the body and head of the consid-
ered rule. Hence the strategy is now as follows: If (S) is not
applicable, we first use (T∗) to eliminate all atoms which
occur positively in both the body and head of the considered
rule. After applying (D), we are clearly allowed to apply (S)
to the resulting rules of form φ ∨ L ← ϕ, since L is a new
atom not occurring in φ. In order to apply (S) after (D) and
(T∗), it is required that acyclicity and head-cycle freeness are
invariant under application of (D) and (T∗), which indeed is
the case. Given that both substitutions can be shown to be
answer-set preserving for HCF programs as well, we obtain
the following theorem.

Theorem 7 Let Π be a nested program.
Then, there exists a polynomial number of substitutions

from (L1)–(L3), (L6)–(L8), (L10), (L11)←, (L12), (S), (T∗),
and (D) such that the resultant program Spoly [Π] satisfies
the following conditions:

1. Spoly [Π] is an NnLP; and

2. if Π is HCF, then AS (Π) = AS (Spoly [Π])|Atm(Π).



Note that Spoly [Π] is polynomial in the size of Π, since the
distributivity rule (L4) is not included. Indeed, new atoms
are only introduced by (D).

So far, we showed how to translate HCF nested programs
into NnLPs in polynomial time. In order to obtain a reduc-
tion to nLPs, we consider two additional rules, (Y1) and
(Y2), depicted in Table 2. The following result holds:

Proposition 3 (You, Yuan, & Zhang 2003) For any NnLP
Π and any program Π′ obtained from Π via (Y1) or (Y2), it
holds that AS (Π) = AS (Π′)|Atm(Π).

Putting the previous results together, the following prop-
erty can be shown:

Theorem 8 Let Π be a nested program.
Then, there exists a polynomial sequence of substitutions

from (L1)–(L3), (L6)–(L9), (L10), (L11)←, (L12), (S), (T∗),
(D), (Y1), and (Y2), such that the resultant program S[Π]
satisfies the following conditions:

1. S[Π] is normal; and
2. if Π is HCF, then AS (Π) = AS (S[Π])|Atm(Π).

Example 4 Observe that program Π2 from Example 1 can
be translated into the normal program

S[Π] = {p← ¬q; q ← ¬p; p← ¬L1; L1 ← ¬q;

q ← ¬L2; L2 ← ¬p}.

Tight Nested Logic Programs
It is well known that every stable model of an NnLP is a
model of COMP[Π] (cf., e.g., (Erdem & Lifschitz 2003)).
However, the converse holds only providing certain syntac-
tic restrictions are enforced. Such conditions were first given
by Fages (1994) for nLPs, and subsequently extended by Er-
dem & Lifschitz (2003) for NnLPs. In the latter work, the
notion of tight nested normal logic programs is introduced.
In this section, we extend tightness to general nested logic
programs and show that head-cycle free nested programs
which satisfy tightness can be reduced to theories of clas-
sical propositional logic by means of translation T [·]. That
is, the resultant theories are equivalent to COMP[Π] in case
of an NnLP Π.

Following Erdem & Lifschitz (2003), we define the pos-
itive conjunctive components of an expression φ, denoted
cc(φ), as follows: First, every expression φ can be written
in the form φ1 ∧ · · · ∧ φn (n ≥ 1), where each φi is not
a conjunction. The formulas φ1, . . . , φn are called the con-
junctive components of φ. Then, cc(φ) is the conjunction of
all those conjunctive components of φ such that at least one
atom occurs positively in it. Note that, e.g., cc(¬p) = >,
where p is some atom.

Definition 7 A nested program Π is tight on an interpreta-
tion I iff there exists a function λ from Atm(Π) to ordinals
such that, for each rule r ∈ Π, if I ∈ Mod(H(r) ∧ B(r)),
then λ(p) < λ(q), for each p ∈ Atm(cc(B(r))) and each
q ∈ Atm+(H(r)).

Obviously, this definition generalises the one given by Er-
dem & Lifschitz (2003). Using our translation T [·], we can
reformulate the main theorem of Erdem & Lifschitz (2003)
as follows:

Proposition 4 (Erdem & Lifschitz 2003) Given an NnLP
Π and an interpretation I ⊆ Atm(Π) such that Π is tight
on I , it holds that I ∈ AS(Π) iff I ∈ Mod(T [Π]).

We generalise this proposition by showing that T [Π] is
applicable to tight HCF nested programs as well. To this
end, we make partly use of the results discussed in the pre-
vious section showing how nested programs can be reduced
to NnLPs. Note that, whenever such a translation simulta-
neously retains tightness and models of T [·], we directly get
the desired generalisation, according to Proposition 4.

Lemma 2 Let Π be a nested program, let I be an interpre-
tation, and let Π′ be obtained from Π via any substitution
from (L1)–(L8), (L12), (L11)←, or (S).

Then, Π′ is tight on I whenever Π is tight on I .

Lemma 3 Let Π be a nested program, and let Π′ be ob-
tained from Π via any substitution from (L1)–(L12), (L11)←,
or (S).

Then, Mod(T [Π]) = Mod(T [Π′]).

Observe that not all substitution rules from Table 2 used
in Theorem 6 to obtain NnLPs are included in Lemma 2. In
fact, there is some problem with (L10). Consider the pro-
gram Π = {a ← b; b ∧ c ← a}, which is tight on interpre-
tation I = {a, b}, since only for the first rule r = a← b the
condition I ∈ Mod(H(r) ∧ B(r)) from Definition 7 holds.
Applying (L10), we obtain Π′ = {a ← b; b ← a; c ← a}
which is not tight on {a, b} anymore, because now, both
I ∈ Mod(H(r) ∧ B(r)) and I ∈ Mod(H(r′) ∧ B(r′))
holds, for r = a← b and r′ = b← a. We therefore replace
(L10) by the new rule (C) from Table 2, which can be shown
to retain tightness, models of T [·] (modulo newly introduced
atoms), and head-cycle freeness.

By these invariance results, we get the main result of this
section.

Theorem 9 Let Π be a HCF nested program, and let I ⊆
Atm(Π) be an interpretation such that Π is tight on I .

Then, I ∈ AS(Π) iff I ∈ Mod(T [Π]).

Conclusion
In this paper, we introduced the classes of acyclic and
head-cycle free nested programs as generalisations of sim-
ilar classes originally introduced for disjunctive logic pro-
grams. We furthermore extended several results related to
Clark’s completion to these classes of programs, by intro-
ducing the polynomial reductions T [·] and T ∗[·] to classi-
cal propositional logic. We furthermore extended the notion
of tightness to nested programs, and constructed a polyno-
mial translation of HCF nested programs into normal pro-
grams by applying a generalised shifting technique. We also
derived immediate complexity results, showing that acyclic
and HCF nested programs have a lower complexity than ar-
bitrary NLPs, providing the polynomial hierarchy does not
collapse.

Transformations T [·] and T ∗[·] can also be viewed as op-
timisations of a translation studied by Pearce, Tompits, &
Woltran (2001), in which (arbitrary) nested programs are
efficiently mapped to quantified Boolean formulas (QBFs)
such that the stable models of the former are given by the



models of the latter. Hence, the present results show that, in
case of acyclic and HCF programs, a reduction to classical
formulas suffices instead of a reduction to the more expres-
sive class of quantified Boolean formulas.

The translation to nLPs, on the other hand, optimises for
the program classes under consideration a polynomial trans-
lation presented by Pearce et al. (2002) from arbitrary nested
programs into disjunctive logic programs, in the sense that
the current method (i) introduces fewer additional variables
in general and (ii) translates a subclass of NLPs into a (pre-
sumably) less complex subclass of DLPs.

Furthermore, our translation extends and optimises also a
recent result due to Eiter et al. (2004) which discusses a gen-
eral method to eliminate disjunctions from a given DLP un-
der different notions of equivalence. To wit, under ordinary
equivalence (i.e., preservance of stable models), the method
of Eiter et al. (2004) allows to transform a given DLP into an
nLP by applying the usual shifting technique (Ben-Eliyahu
& Dechter 1994) and by adding suitable rules in order to
retain equivalence between the programs. However, in gen-
eral, the size of the resultant programs is exponential in the
size of the input programs. Hence, for HCF programs, we
obtain not only a generalisation of this general result to the
nested case but also a polynomial method to achieve a trans-
formation to nLPs.

Following the remarks pointed out by You, Yuan, &
Zhang (2003), our polynomial transformations from HCF
nested programs into normal programs can be used to utilise
known answers set solvers, like DLV (Eiter et al. 2000),
Smodels (Simons, Niemelä, & Soininen 2002), or AS-
SAT (Lin & Zhao 2003), for computing answer sets of
HCF nested programs. Furthermore, the present results in-
dicate how to compute answer sets of HCF NLPs directly
by generalising graph based methods as described by Brig-
noli et al. (1999), Linke (2001), and Konczak, Linke, &
Schaub (2004). More precisely, we may define Atm−(ϕ) as
the set of atoms having negative occurrences in ϕ, which en-
ables us to express positive as well as negative dependencies
between atoms in expressions. Therefore, also graphs and
graph coloring techniques as described by Konczak, Linke,
& Schaub (2004) and Linke (2003), and used as basis of
the noMoRe system (Linke, Anger, & Konczak 2002), may
be generalised to head-cycle free nested logic programs.
Hence, our approach offers different ways for answer set
computation of nested programs.

Although our current results are established for programs
containing only one kind of negation, viz. default negation,
they can be extended to programs allowing strong negation
as well. Furthermore, another issue is the lifting of the no-
tions of acyclic and head-cycle free nested programs to the
first-order case, which can be done along the lines of Inoue
& Sakama (1998).
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