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Abstract

We analyze the problem of defining well-

founded semanticsfor orderedlogic programs
within a generaframeavork basedon alternating
fixpoint theory We startby shaving that gen-
eralizationof existing answersetapproacheso

preferenceare too weakin the setting of well-

foundedsemantics We thenspecifysomeinfor-

mal yet intuitive criteria and proposea seman-
tical framework for preferencehandlingthat is

more suitablefor definingwell-foundedseman-
tics for orderedlogic programs. The suitability
of thenew approachs corvincedby thefactthat
mary attractve propertiesaresatisfiecby our se-
mantics. In particular our semanticss still cor-

rectwith respecto variousexisting answersets
semanticswhile it successfullyovercomesthe
weaknes®f their generalizatiorio well-founded
semantics. Finally, we indicate how an exist-

ing preferredvell-foundedsemanticganbecap-
turedwithin our semanticaframework.

Keywords: well-founded semantics,preference,alter
natingfixpoints, extendedogic programs.

1 Intr oduction

Preferencesonstitutea very natural and effective way
of resolving indeterminatesituations. For example, in
schedulingnot all deadlinegmay be simultaneouslsatis-
fiable, andin configurationvariousgoals may not be si-
multaneouslymet. Preferenceamongdeadlinesandgoals
may allow for an acceptablenon-optimalsolution. In le-
gal reasoningjaws may apply in differentsituations,but
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laws may also conflict with eachother Conflictsarere-

solved by appealto higherlevel principlessuchasauthor

ity or receng. Sofederallaws will have a higherpriority

thanstatelaws, andnewer laws will take priority overold.

Furtherpreferencessuchas authority holding sway over

receng, mayalsoberequired.In fact,while logical prefer

encehandlingconstitutesalreadyan indispensableneans
in legal reasoningsystemg(cf. [16, 22)), it is alsoadwanc-
ing in otherapplicationareassuchasintelligentagentsand
e-commercd18], information-siteselection[14], andthe

resolutionof grammaticabmbiguitieq11].

The increasingpracticalinterestin preferencess alsore-
flectedby thelargenumberof proposaldor preferencéan-
dling in logic programmingincluding[23, 6, 15, 31, 17, 8,
13, 28], andrelatedareassuchasdefaultlogic[3,5,12]. A
commonapproachin suchwork hasbeento employ meta-
formalismsfor characterizingpreferredansweisets”. This
hasled to a diversity of approachethatarehardly compa-
rabledueto considerablydifferentmethodf formal char
acterization.As a consequencehereis no homogeneous
accounbf preference.

In [24], we startedaddressinghis shortcomingoy propos-
ing a uniform semanticalframework for extendedlogic
programmingwith preferencesTo be precise we develop
an (alternating)fixpoint theoryfor so-calledordered logic
programs building on the basicideasin [27]. An ordered
logic programis an extendedlogic programwhoserules
aresubjectto a strict partial order In analogyto standard
logic programming sucha programis theninterpretedoy
meansf anassociatedixpoint operator Differentseman-
tics are obtainedby distinguishingdifferentsubsetof the
respectie setof alternatingfixpoints. As aresult,several
differentapproacheso defining preferredanswersets,in-
cluding[9, 10, 13|, canall be capturedwithin our frame-
work and eachof thesepreferencestratgiesis basedon
anoperatorwhich playsthe samerole asthe consequence
operatorin the settingof normallogic programs.

In this paper we shov that the preferencestrategies for



defininganswersetsturn out to be too weakin the setting
of well-foundedsemantics. For this reason,we propose
anew approacho preferencénandlingfor logic programs
thatseemso be moreappropriatdor well-foundedseman-
tics. In fact, we shaw thatfor a resultinginstanceof this

approachsomeattractive properties. We also discussthe

relation of our preferredwell-foundedsemanticgo other
approachef1, 6, 30].

2 Definitions and notation

An extendedlogic program is a finite setof rulesof the
form

Ly < Li,...,Ly,n0t Lyta,...,n0t Ly, (1)

wheren > m > 0, andeachZ; (0 < ¢ < n) is alit-
eral, ie. eitheranatom A or thenegation—A of A. Theset
of all literalsis denotedby Lit. Givenarule r asin (1),
we let head(r) denotethe head Lg, of r and body(r)
the body, {L1,...,Lm, not Lyy1,...,n0t Ly}, of r.
Further let body™ (r) = {L1,,..., Ly} andbody (r) =
{Lm+1,---,Ly}. A programis calledbasicif body ™ (r) =
¢ for all its rules;it is callednormalif it containsno classi-
cal negationsymbol—.

We definethe reductof arule r asrt = head(r) «
body™ (r). Thereduct IIX, of a programII relativeto a
setX of literalsis definedby

¥ = {r* | r € Mandbody™(r) N X = 0}.

A setof literals X is closedundera basicprogramII iff

for ary r € TI, head(r) € X wheneer body™*(r) C X.

We saythat X is logically closediff it is eitherconsistent
(ie.it doesnotcontainbothaliteral A andits negation—.A)

or equalsLit. The smallestsetof literals which is both

logically closedandclosedundera basicprogramil is de-

notedby Cn(II). With theseformalitiesat hand,we can
defineanswersetsemanticdor extendedlogic programs:
A set X of literals is an answerset of a programII iff

On(TTX) = X.

For capturingeven moresemanticsvithin a similar frame-
work, van Gelderdefinesin [27] the operatorC;(X) as
Cn(T1%). It is importantto note that the operatorCy; is

anti-monotonicwhich impliesthatthe operatorAn (X) =

Cn(Cn(X)) is monotonic. A fixpoint of Ay is calledan
alternating fixpoint for II. Different semanticsare cap-
turedby distinguishingdifferentgroupsof fixpointsof Ar.

For instancegivena programll, the leastalternatingfixed

pointof Ag is known to amountto its well-foundedseman-
tics. Answersetsof II aresimply alternatingfixed points
of Ay thatarealsofixedpointsof Cry.

Alternative inductive characterizationdor the operators
Cn, Cr1, and Ap; canbe obtainedby appealto immediate

consequenceperators [26, 19]. Let IT beabasicprogram
andX asetof literals. Theimmediateconsequencepera-
tor Tr1 is definedasfollows:

TuX = {head(r) | r € Il andbody(r) C X}

if X is consistentandT;;. X = Lit otherwise. Iterated
applicationsof Ty are written as T, for j > 0, where
TSX = X andTiX = TuTi ' X fori > 1. Itis well-
known that Cn(Il) = {J,;s, T3;0, for ary basicprogram
I1. Also, for ary answerset X of programll, it holdsthat
X =Uixo Tiix 0.

A reductionfrom extendedto basicprogramsis avoidable
with an extendedconsequenceperator:Let IT be an ex-
tendedprogramand X andY be setsof literals. The ex-
tendedimmediateconsequencepemator Ty is defined
asfollows:

TnyX = {head(r)|r €1, body™(r) C X, (2)
andbody~ (r) NY = 0}

if X is consistentand T,y X = Lit otherwise. Iter-
atedapplicationsof Tty arewritten asthoseof 7Tr; above.
Clearly, we have Ty g X = T X for ary basicprogramil
andTi,y X = Ty X for ary extendedprogramIl. Ac-
cordingly, we have for ary answersetX of programll that
X = U;so Tii x0. Finally, for dealingwith the individ-
ual rulesin (2), we rely on the notion of activeness Let
X,Y C Lit betwo setsof literalsin aprogramlIl. A rule
r in T is active wrt the pair (X,Y), if body™(r) C X
andbody ™ (r) NY = 0. Alternatively, we thushave that
T,y X = {head(r) | r € Il isactvewrt (X,Y)}.

Lastly, anordered logic progran? is simply a pair (1T, <),
wherell is anextendedogic programand< C II x IT is
an irreflexive andtransitve relation. Given, r,r, € II,
therelationr; < rp is meantto expressthatr, hashigher
priority thanr, .3

3 Preferred (alternating) fixpoints

We startby describingthe semanticaframework givenin
[24], while concentratingon the formal detailsneededor
capturingthe approactintroducedin [28]. Theformal de-
velopmenbf theapproachin [8] and[13] is analogousand
thusomittedhere.

Although activenesss implicitly presentin standardogic
programming(cf. definition of T,y X), the term as suchwas
(to the bestof our knowledge)coinedin approachesealingwith
preferencesn default logic [3, 5]. There, however, activeness
additionallystipulatecthathead (r) ¢ X in orderto preventmul-
tiple applicationsof thesamerule.

2Also calledprioritized logic programby someauthors aseg.
in [31, 8].

3Someauthorsgg. [8], attributerelation< the inversemean-
ing.



Theoverallideabehindthe obtainedsemanticdor ordered
logic programis to distinguishthe “preferred” answersof

aprogram(Il, <) by meansof fixpoint equations Thatis,

a setof literals X constitutesa collectionof preferredan-
swersfrom (I1, <), if it satisfiegsheequatiorC;, ) (X) =

X for someoperatorC yy <. In view of the classicalogic

programmingapproachdescribedn Section2, this makes
usinvestigatesemanticshatinterpretpreferenceasinduc-
ing selectiorfunctionson thesetof standardanswersetsof

theunderlyingnon-orderegrogramil.

Standardanswersetsare definedvia a reductionof ex-

tendedogic programgo basicprograms.Suchareduction
is inappropriatewhen resolving conflictsamongrules by

meansof preferencesinceall suchconflictsare simulta-
neouslyresohedwhenturningIl into ITX . Ratherconflict
resolutiormustbeaddressedmongtheoriginalrulesin or-

derto accounffor blockagebetweerrules.In fact,oncethe
negativebodybody ~ (r) is eliminatedthereis nowayto de-
tectwhetherhead(r') € body™ (r) holdsin caseof r < r'.

Our ideais thereforeto characterizgpreferredanswersets
by aninductive developmenthatagreeswith the givenor-

deringratherthana simultaneouseduction.In termsof a
standardanswerset X, this meanghatwe favor its formal

characterizatioms X = J;, Tf; x ¥ over X = COn(ITX).

This leadsusto thefollowing definition.*

Definition 1 Let(II, <) bean orderedlogic programand
let X andY besetsof literals.

We definethe setof immediateconsequencesf X with re-
spectto (I1, <) andY” as

I. ractivewrt (X,Y);
II. therisnoruler’
with r < 7'such that
(a) v’ activewrt (Y, X)
(b) head(r') ¢ X

Tar,<),y X = { head(r)

if X is consistentand 7y, <),y X = Lit otherwise

Notethat 7, <),y is arefinementf its classicalcounter
partT.y. To seethis, obsene that Conditionl embodies
the standardapplicationconditionfor rulesgivenin (2)

Theactualrefinementakesplacein Conditionll. Theidea
is to apply a rule r only if the “questionof applicability”
hasbeensettledfor all higherrankedrulesr’. Let usil-
lustratethis in termsof iteratedapplicationsof 7, <),y
In thesecases X containsthe setof conclusionghathave
beenderived sofar, while Y providesthe putatve answer
set(or: Lit \ Y providesa setof literals that canbe falsi-

“Fixpoint operatordor the approachein [8] and[13] areob-
tainedby appropriatemodificationsto Conditionl andlIl in Defi-
nition 1; cf. [24].

fied). Then,the“questionof applicability” is consideredo
besettledfor a higherrankedrule '

e if the prerequisite®f 7' will never be derivable,viz.
bodyt(r') Y, or

o if 7' is defeatedby whathasbeenderivedsofar, viz.
body~"(r)NX #0, or

e if 7' or anothermule with the sameheadhave already
applied,viz. head(r') € X.

Thefirst two conditionsshov why activenesf ' is stipu-
latedwrt (Y, X), asopposedo (X,Y") in Conditionl. The
last conditionsenessomehav two purposes:First, it de-
tectswhetherthehigherrankedruler’ hasappliedand,sec-
ond,it suspendthepreference < r' whenevertheheadof
thehigherrankedhasalreadybeenderivedby anotherrule.
This suspensiomf preferenceconstitutesa distinguishing
featureof the approachat hand;this is discussedn detall
in [24] in connectionwith otherapproacheso preference
handling.

As with Ty andTmy, iteratedapplicationsof 711 <,y are
written as 77 forj > 0, Where7'(%<) vX =X
and 7§ oy yX = Ti,<), yT yX fori > 1. This
allows usto deflnethe counterparbf fixpoint operatorCr
for orderedprograms:

H<)Y

Definition 2 Let (II, <) bean orderedlogic programand
let X bea setof literals.

V\edefineC(n,<)(X) = Uizo 7‘(Zﬁ,<),X®'

In analogyto 7(i1,<),y and7i,y, operatorCy, <) is are-
finementof its classicalcounterparCt;. The major differ-
enceof our definitionfrom van Geldersis thatwe directly
obtainthe consequencesom II (andY’). Unlike this, the
usualapproach(without preferencesjirst obtainsa basic
programiI¥ from IT andthentheconsequencesrederived
from this basicprogramiIY .

A preferredanswersetis definedasa fixpoint of Cyy ).

In analogyto van Gelder[27], we may definethe alternat-
ing transformatiorfor anorderedogic program(Il, <) as
.A(n’<)(X) = C(H’<)(C(1—[’<) (X)). A fixpoint of .A(H’<) is
calledanalternatingfixpointof (II, <). GiventhatC, «)is
anti-monotonid24], we getthat A, <) (X) is monotonic.
Accordingto resultstracing backto Tarski[25], this im-
pliesthat A1, <) possessea leastanda greatesfixpoint,
denoteddy Ifp A1, <) andgfp. A, <), respectiely.

Differentsemantic®f orderedogic programsareobtained
by distinguishingdifferentsubsetf the respectie setof
alternatingfixpoints. In fact, the preferredanswersetse-
manticsconstituteinstanceof the overall framewvork. To



seethis, obsene that eachfixpoint of Cr < is alsoa fix-
pointof A, <.

4 Preferring leastalternating fixpoints?

Let us now investigatethe least alternating fixpoint of
A(m,<yand with it the comportmentof the previous fix-
pointoperatoiin the settingof well-foundedsemanticsAs
opposedo answersetssemanticsthis semanticselieson
3-valuedmodels(or, partial models). Sucha modelcon-
sistsof threeparts: the setof true literals, the setof false
literals, and the set of unknawn literals. Given that the
union of thesethreesetsis Lit, it is sufficient to specify
two of the threesetsfor determininga 3-valuedinterpre-
tation. Accordingly, a 3-valuedinterpretation/ is a pair
(X,Y) whereX andY aresetsof literalswith X NY = §.
Thatis, L € X meansthat L istruein I, while L € Y
meanghatL is falsein I. Otherwise,L is consideredo be
unknawvnin I.

Well-foundedsemanticsonstitutesanothermajor seman-
tics for logic programs.In contrasto answerssetsseman-
tics, it aims at characterizingskeptical conclusionscom-
prisedin a singleso-calledwell-foundedmodelof the un-

derlying program.This modelcanbe characterizedvithin

the alternatingfixpoint theory in terms of the least fix-

point of operatorAr. That s, the well-foundedmodel
of a programII is given by the 3-valued interpretation
(YfpAm, Lit \ CulfpAn). Hence,it is sufficient to con-
sider the leastalternatingfixpoint of a program,sinceit

determinests well-foundedmodel. We thereforereferto

the leastalternatingfixpoint of II asthe well-foundedset
of I. ThesetLit \ CrlfpAn is usuallyreferredto asthe

unfoundedsetof II.

After extending these conceptsto preferencehandling,
thatis, substitutingthe classicaloperatorsAy; and Cr; by
A(n,<) andCn, <), respectiely, onecanshaw that(i) each
orderedogic programhasauniquepreferredwell-founded
model; (ii) the preferredwell-foundedsetis containedin
ary preferredanswerset(while the unfoundedoneis not);
and (iii) whenever we obtain a two-valuedwell-founded
model, its underlyingwell-foundedsetis the unique an-
swersetof the program®

One often criticized deficieny of the standardwell-
foundedmodelis thatit is too skeptical. Unfortunatelythis
is not remediedby alternatingthe fixpoint operatorsf the
previous sections,no matterwhich stratgy we consider
To seethis, considerthe orderedogic program(Ils, <):

a ¢+ mnotb
b <« nota

rn =
re =

ro <71 (3)

>No matterwhetherwe considerthe fixpoint operatordor the
approachn [28], [8], or [13], respectiely.

Thewell-foundedmodelof 115 is givenby (@, #). Thesame
modelis obtainedoy alternatingoperatoiCy,, «). Obsere
thatCr,,<)(0) = {a,b} andC(m, <) ({a,b}) = 0. Conse-
quently @ is the leastalternatingfixpoint of (II3, <).

Thequestioris now why theseoperatorsrestill too skepti-
calin definingwell-foundedsemanticgalthoughthey work
nicely in the settingof answersetsandregularsemantics).
In fact,the greatadvantageof a settinglik e thatof answer
setssemanticss thatwe dealwith directfixpoint equations,
like C(mr,«)(X) = X, wherethe context X representshe
putatve answerset. This is differentin the settingof well-
foundedsemanticswherewe usuallystartby applyingan
operatorto a rathersmall context, eg. initially the empty
set;this usuallyresultsin a largerset,sometimesven Lit,
thatconstituteshenthecontext of thesecondapplicationof
theoperator Now, lookingattheunderlyingdefinitions,we
seethatthe actualpreferencénandlingcondition,eg. Con-
dition Il in Definition 1 takesadvantageof X for deciding
applicability. Thealternatingcharactein thewell-founded
settingdoesnot supportthis sortof analysissinceit cannot
provide the (putative) final resultof the computation.

5 Towards a preferred well-founded
semantics

In view of thefailureof theabovefixpoint operator(s)n the
settingof well-foundedsemanticsthe obvious questionis
now whetheran appropriatealternatingfixpoint operation
is definablethat yields a reasonablevell-foundedseman-
tics for orderedlogic programs. As informal guidelines,
wewouldlik ethattheresultingsemanticgi) allowsfor de-
riving moreconclusionghanthestandardvell-foundedse-
manticsby appeako givenpreferencesfii) coincideswith
standardwvell-foundedsemanticsn the absencef prefer
encesandfinally (iii) approximateshe previouspreferred
answersetssemantics.

The standardwell-foundedmodelis definedby meansof
theleastfixpoint of the operatordg = CpCp. As above,
we aim at integrating preferencedy elaboratinguponthe
underlyingimmediateconsequenceperatorli,y X given
in (2). As well, thebasicideais to modify this operatorso
that more conclusionscanbe derived by employing pref-
erencesHowever, asdiscussedt the endof the previous
section,the alternatingiterationsof Cny facetwo comple-
mentarysituations:thosewith smallercontets andthose
with largerones.Sincepreferencegxploit thesecontexts,
it seemgeasonabléo distinguishalternatingapplications
or, atleast,to concentrat®n onesuchsituationwhile deal-
ing with the otheronein the standardvay.® For strength-
eningAn = CnChn, we thushave two options: eitherwe
malke theouteroperatoderive moreliteralsor we make the

6Suchanapproachs alsopursuedn [6].



inneroperatorderive lessliterals.

In whatfollows, we adoptthe former optionandelaborate
uponthe outeroperator The generalideais thento reduce
the context consideredn the secondapplicationof Cr by

appealto preferencesn orderto make morerules appli-

cable. For this purposewe remove thoseliterals that are
derivedby meansof lesspreferreddefeatedules.

Definition 3 Let (II, <) bean orderedlogic programand
let X andY besetsof literals.

We definethe setof immediateconsequencesf X with re-
spectto (II, <) andY” as

T,<),yX = {head(r) | r € is activewrt (X,Y\D)}

whee
for all rulesr’ € 11,
if L = head(r') and
DY =<L body™ (r') C Cr (),
thenr’ <r and

(head(r) U X) N body (r') #0

if X is consistentand 7 q; _ X' = Lit otherwise

We say that r defeatsr’ wrt X if (head(r) U X) N

body~(r') # 0. The setof removed literals D% consists
thusof thoserule headsall of whosecorrespondingules
arelesspreferredthanr anddefeatedoy r or X, viz. the
literalsderivedsofar. In fact,this conditiononly removes
aliteral suchas head(r') from Y, if all of its applicable
generatingulesliker’ aredefeatedy thepreferredruler.

Notethat D% is normally differentfor differentrulesr.

For illustration considertherulesin II;. For X = () and
Y = {a,b}, wegetDy' = {b} and D> = §. In sucha
situation,activenesf r; is checledwrt (§, {a, b} \ {b})
while thatof r5 is checledwrt (0, {a, b}). Whenapplying
r1, theremoval of D' = {b} from context {a, b} allows
us to discardthe conclusionof the less preferredrule ro
thatis defeatedby the preferredrule r;. This exampleis
continuedbelow.

Notably, the choiceof D% is one amongmary options.
Unfortunatelyit leadsbeyondthescopeof this paperto in-
vestigateheoverallresultingspectrumsothatwe concen-
trateon the above definition anddiscusssomealternatves
at the endof this section. From a generalperspeciie, the
above definition offers thus a parameterizabléramewvork

for definingwell-foundedsemanticsncludingpreferences.

In analogyto the previous sectionswe candefinea conse-
guenceoperatorasfollows.

Definition 4 Let (II, <) bean orderedlogic programand
let X bea setof literals.

We defineCfy; ) (X) = UZ.ZO(T(‘I’IK)’X)"@.

Of particularinterestin view of analternatingfixpoint the-
oryis thatC(°H 9 enjoys anti-monotonicity

Theorem1 Let (I, <) be an ordered logic program and
X1, X, setsof literals.

If X, - X, thenCE’HK) (Xz) - C(OH,<)(X1).

Giventhis,we maydefineanew alternatingransformation
of (I, <) as

A((JH’<) = CE)H,<)CH'
Sinceboth CE’ andCp are anti-monotonic,AgHK) is

. (IL<)
monotonic.

Definition 5 Let (II, <) be an orderedlogic programand
let X bea setof literals.

We defineX asa preferred well-foundedsetof (1, <) iff
lprE’H, o =X.

By Tarski's Theorem[25], we getthat eachorderedliogic
programhasa uniquepreferredwell-foundedset.

Theorem?2 Let(II, <) bean orderedlogic program.

Thenthereis a uniquepreferredwell-foundedsetof (I, <

).

Giventhe notion of the preferredwell-foundedset,we de-
fine the preferredwell-foundedmodel of an orderedpro-
gramasfollows.

Definition 6 Let(II, <) bean orderedlogic programand
let X bethewell-foundedsetof (11, <).

W& definethe preferred well-foundedmodelof (I, <) as
(X, Lit \ Cu(X)).

It is well-known that the standardwell-founded seman-
tics for extended logic programshas time compleity

O(n?) [29, 4. The compleity of the preferredwell-

foundedsemanticss still in polynomialtime but it is in

O(n?). Thereasoris thatwe have to additionallycompute
D7, for eachr € II.

We first obtainthefollowing corollaryto Theorem2.

Corollary 3 Every ordered logic program has a unique
preferredwell-foundednodel.

This resultshows that our preferredwell-foundedseman-
ticsis asrobustasthe standardvell-foundedsemantics.

Therelationshipbetweerthe standardvell-foundedmodel
andthe preferredwell-foundedmodelcanbe statedasfol-
lows.

Theorem4 Let (X,Y) be the preferred well-founded
model of (II, <) and let (X',Y”’) be the well-founded
modelof II.



Then,wehave

1. X’ C X andY' CY and
2. (X)) =(X"Y"),if<=0.

Letusreconside(Il3, <). While (@, 9) is thewell-founded
modelof II3, its orderedcounterpar{Ils, <) hasthe pre-
ferredwell-foundedmodel({a}, {b}). To seethis, obsene
thatCr, 0 = {a,b} andCyy, )({a,b}) = {a}. Clearly
{a} is afixpoint of Cy, andCfy;, ). Thus,{a} is anal-
ternatingfixpoint of (II3, <). Also, we seethat is not
an alternatingfixpoint. This impliesthat {a} is the least
alternatingfixpoint of (Il3, <).

This example along with the last result shav that pref-
erencesallow us to strengthenthe conclusionsobtained
by the standardwell-foundedsemantics. That is, when-
ever certainconclusionsarenot sanctionedn the standard
frameawvork one may add appropriatepreferencesn order
to obtaintheseconclusionswithin the overall frameavork
of well-foundedsemantics.

For a complement,considerthe following variation of
(T3, <), alsodiscussedh [6].

a <« mnotb
b « notc

rn =
T2

ro <71 (4)

Obsere thatIl, haswell-foundedmodel ({b}, {a,c}). In
contrastto (IT3, <), the preferredwell-foundedmodel of
(T4, <) isalso({b}, {a, c}). Asdiscussedh [6] thismakes
sensesincepreferenceshouldonly enrichbut not “over-
ride” anunderlyingwell-foundedmodel.

Another attractve property of this instanceof preferred
well-foundedsemanticss thatit providesan approxima-
tion of preferredanswersetssemantics.

Theorem5 Let (X,Y) be the preferred well-founded
modelof (I, <) and let Z be a preferred answerset of
(I, <).

ThenwehaveX C Z andY C Lit\ Z.

Notably, thiscanbeshowvn for all aforementionegreferred
answersetssemanticsno matterwhetherwe considerthe
approacthin [28], [8], or [13], respectiely.

Finally, let us briefly discusssomealternatve choicesfor
D% . In fact, whenever we expressthe samepreferences
among (negative) rules having the sameheadthe previ-
ous definition of D% is equialentto {head(r') | 7' <
r and(head (r)UX)Nbody ™ (r') # @}. However, thiscon-
ceptually simpler definition is inadequatevhenit comes
to attributing differentpreferenceso ruleswith the same
headsasin thefollowing example.

Considerthe orderedprogram(Ils, <).

TN = a r3<ry<ry (5)
r9 = b « mnota
r3 = a <+ notb

The preferredwell-founded semanticsof (15, <) gives
({a}, {b}), while the conceptually simpler one yields
({a, b}, 0), aclearlywrongresult! In the simplistic setting
Dy? would containtheheadof thethird rule, discardinghe
factthatr; alreadydefeats;.

Anotheralternatie choicefor D% is indicatedby the dif-
ferencebetweenthe stratgiesemployedin [28] and[13].
In fact, the latter implicitly distinguishesbetweensame
literals stemmingfrom differentrules. This amountsto
distinguishingdifferent occurrence®f literals. For this,
we may rely on the aforementionedimplistic definition
of D% andsupposehat head(r) providesus with occur
rencesof literals, like b™ insteadof b. Without entering
details,let usillustratethis ideaby appeatto (II5, <). An
approachdistinguishingoccurrencesf literalswould yield
Cr0 = {a™,b,a™} and Cyy, . ({a™,b™2,a™}) =
{a™,a™}. Whenconsidering-,, we checkactvenesswrt
(@,{a™,b™,a"}\ {a"}), viz. (0, {a™,b™}). Unlikejust
above, a™ remainsin the reducedcontext andr; is inap-
plicable.An elaboratiorof this avenueis beyondthe scope
of this paperin particular sinceit involvesanoccurrence-
baseddevelopmenbf well-foundedsemantics.

6 Relationships

In contrastto answersetsemanticsthe extensionof well-
founded semanticsto orderedlogic program has been
rarely studiedbefore. In this sectionwe will discussthe
relationof our approacho [6, 21, 30].

6.1 Relationto Brewka's Approach

Brewkadefinesn [6] awell-foundedsemanticdor ordered
logic programs.Notably, this approachs basedon a para-
consistenextensionof well-foundedsemanticghattoler-

atesinconsistencieamongtheresultof the inneroperator
without trivializing the overall result. Despitethis devia-

tion from standardvell-foundedsemanticsthequestiorre-

mainswhetherBrewka’s semanticanbe capturedwithin

our semanticaframework.

In fact, both approachesrebasedon quite differentintu-
itions. While the underlyingidea of Brewka’s approach
is to definea criterion for selectingthe intendedrules by
employing preference we integrate preferencesnto the
immediateconsequenceperaomy individually restricting
the context of applicationfor eachrule.

Nonethelessit turns out that Brewka’s semanticscan be



capturedthroughan alternatingfixpoint construction. As
we show below, Brewka'’s modificationboils down to us-
ing analternatefixpoint operatorof the form “C{H, <)Cﬁ".
To this end, let usfirst considerthe differenceamongthe
underlying operatorsC}; and Cr;. Define CI(IT) asthe
smallestsetof literals which is closedundera basicpro-
gramlIl. Then,givenasetX of literals, C}(X) is defined
as CI(ITX). Droppingthe requiremenif logical closure
resultsin a paraconsisteninferenceoperation. For exam-
ple,givenll = {a <, —a +,b <}, weget Cn(Il) = Lit,
while CI(II) = {a,—a,b}. Although the corresponding
adaptionsare more involved, the surprisingresultis now
that Brewka’s semanticscan also be capturedwithin our
overall framework, if we usethe closureoperatorCl in-
steadof Cn.

Moreover, we needthefollowing. Let (I, <) beanordered
logic programand X bea setof literals. We definell’ as
the setof rulesdefeatedy » wrt X and< as

Iy = {r' eI | r' <r, rdefeats’ wrt X}.

NoticethatIl’ is asetof ruleswhile D% is asetof literals.
IT% is alsodifferentfrom Brewka’s Dom (setof doninated
rules)in thatIT% is definedwrt a set X of literals rather
thanasetof rules.

Write (I )+ = {(+")* | ' € I% }. Let Ty, . betheop-
eratorobtainedfrom T((I)L<) (in Definition 3) by replacing
Y \ D% with CI(TTIY \ (IT%)*). This resultsin a fixpoint
operatoiC; .

As we shaw in the full versionof this paper Brewka's
well-foundedset correspondso the leastfixpoint of the
alternatingoperatorC{HK)Cﬁ. This meansBrewka’s well-
foundedsemanticslsoenjoys analternatingfixpoint char
acterization.

6.2 Relationto Other Approaches

In [30], it is mentionedhata well-foundedsemanticsvith
preferenceanbedefinedin termsof their operatorbut de-
faultnegationis notallowedin their syntax.However, even
for orderedlogic programswithout default negation, our
basicsemantiapproacthis differentfrom thewell-founded
semanticdn priority logic [30]. The main reasonis that
they interpretthe priority relationr < ' in a quite differ-
entway: r is blockedwheneverr’ is applicable While we
attributeto the program

r = ro < T3 (6)
T2

p <«
q <

a preferredwell-foundedmodel, containingboth p andg,
thewell-foundedmodelof Ilg in priority logicis {p}. That
is, ¢ cannotbeinferred.

Another skeptical semanticsfor preferenceis defeasible
logic, whichwasoriginally introducedby D. Nute[21] and
receved extensie studiesin recentyears|[1, 2, 20]. De-
feasiblelogic distinguisheghe strict rulesfrom defeasible
rules. This alreadymalkesits semanticglifferentfrom our
preferredwell-foundedsemantics.

Consideranexamplefrom [7]. Thefollowing is atheoryin
defeasibldogic:

p Ty < T3 (7
P q

TR

-q

In defeasibldogic, +dq is notderivable,i. e., ¢ cannotbe
defeasiblyderived. As pointedout by Brewka, this means
a defeasiblerule having higher priority candefeata strict
rule.

Theaboretheorycanbedirectly translatednto anordered
logic program(II, <) asfollows:

T = p <« mnot-p ro<rzg (8)
TR = ¢ < P
rs = —qg <+ notgq

It canbeverifiedthatthe preferredwell-foundedmodel(in
our sense)s {p, q}. Therefore,q is derivable underour
preferredwell-foundedsemantics.

7 Conclusion

We have looked into the issueof how van Gelders alter
natingfixpoint theory[27] for normallogic programscan
be suitablyextendedto definethe well-foundedsemantics
for orderedlogic programgextendedogic programswith
preference)Thekey of thealternatingfixpoint approachs
how to specifya suitableconsequenceelationfor ordered
logic programs We arguethatthe preferencestratgiesfor
defininganswersetsarenot suitablefor definingpreferred
well-foundedsemanticandthensomeinformal criteriafor
preferredwell-foundedsemanticsare proposed.Basedon
this analysis,we have defineda well-foundedsemantics
for orderedlogic programs. This semanticsallows an el-
egantdefinitionandsatisfiessomeattractive propertiesi(1)
Eachorderedlogic programhasa unique preferredwell-
foundedmodel; (2) The preferredwell-foundedreasoning
is no lessskepticalthanthe standardvell-foundedreason-
ing; (3) Any conclusionunderthe preferredwell-founded
semanticss alsoderivableundersomemajor preferredan-
swersetssemanticsOur semanticss differentfrom defea-
siblelogic andtheskepticalpriority logic. An importantre-
sultis the equivalenceof Brewka's preferredwell-founded
semanticandour semanticsntroducedn Sectionb.
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