
SAT-Based Local Improvement for Finding
Tree Decompositions of Small Width

Johannes K. Fichte�, Neha Lodha, and Stefan Szeider

TU Wien, Vienna, Austria
jfichte@dbai.tuwien.ac.at, {sz,neha}@ac.tuwien.ac.at

Abstract. Many hard problems can be solved efficiently for problem instances
that can be decomposed by tree decompositions of small width. In particular for
problems beyond NP, such as #P-complete counting problems, tree decomposition-
based methods are particularly attractive. However, finding an optimal tree de-
composition is itself an NP-hard problem. Existing methods for finding tree
decompositions of small width either (a) yield optimal tree decompositions but
are applicable only to small instances or (b) are based on greedy heuristics which
often yield tree decompositions that are far from optimal. In this paper, we pro-
pose a new method that combines (a) and (b), where a heuristically obtained tree
decomposition is improved locally by means of a SAT encoding. We provide an
experimental evaluation of our new method.

1 Introduction

Treewidth is arguably the most prominent graph invariant with important application in
discrete algorithms and optimization [5,8], constraint satisfaction [11,16], knowledge
representation and reasoning [19], computational biology [30], and probabilistic net-
works and inference [10,24,26]. Treewidth was introduced by Robertson and Seymour
in their Graph Minors Project and according to Google Scholar1, the term is mentioned
in over 17000 research articles.

Small treewidth of a graph indicates in a certain sense its tree-likeness and sparsity.
Many otherwise NP-hard graph problems such as Hamiltonicity and 3-colorability,
but also problems “beyond NP” such as the #P-complete problem of determining the
number of perfect matchings in a graph are solvable in polynomial time for graphs of
bounded treewidth [9]. Treewidth is based on certain decompositions of graphs, called
tree decompositions, where sets of vertices of the input graph are arranged in bags
at the nodes of a tree such that certain conditions are satisfied. The width of a tree
decomposition is the size of a largest bag minus 1. A tree decomposition is optimal for a
given graph if the graph has no tree decomposition of smaller width. The treewidth of a
graph is the width of an optimal tree decomposition.

Algorithms that exploit the small treewidth of a graph usually proceed by dynamic
programming along the tree decomposition where at each node of the tree, information

Research was supported by the Austrian Science Fund (FWF), Grants Y698, W1255-N23, and
P-26200. The first author is also affiliated with the University of Potsdam, Germany.

1 Retrieved on March 26, 2017.

is gathered in tables. The size of these tables is usually exponential or even double
exponential in the size of the bag. Thus, it is important to obtain a tree decomposition
of small width. However, since finding an optimal tree decomposition is an NP-hard
task [2], the following two main approaches have been proposed in the literature:

(a) Exact methods that compute optimal tree decompositions. Optimal tree decom-
positions are found using specialized combinatorial algorithms based on graph
separators [2], branch-and-bound algorithms [18], but also by means of SAT en-
codings [4,28]. These exact methods are limited to rather small graphs with about
hundred vertices.

(b) Heuristic methods that compute sub-optimal tree decompositions. These algorithms
are usually based on so-called elimination orderings which are found by a greedy
approach [6,20]. The heuristic methods are quite fast and scale up to large graphs
with thousands of vertices, but lead to tree decompositions that can be far from
optimal.

In fact, because of the split into these two categories of algorithmic approaches, also
the recent PACE challenge [13], where finding good tree decompositions was one of
the main tasks, featured two respective categories: one asking for the exact treewidth of
small graphs, and one asking for sub-optimal tree decompositions of large graphs.

SAT-Based Local Improvement In this paper, we propose a new approach to finding
tree decompositions, which combines exact methods with heuristics. The basic idea
is to (i) start with a tree decomposition obtained with a heuristic method (the global
solver) and (ii) subsequently select parts of the tree decomposition, trying to improve it
with another method (the local solver). It turned out that SAT-based exact methods are
particularly well-suited for providing the local solver.

Consider a given graph G and a tree decomposition T of G, obtained by the global
solver. We select a small part S of T , which is a tree decomposition of the subgraph GS
of G, induced by all the vertices that appear in bags at nodes in S . Once the local solver
finds a better tree decomposition of GS , we would like to replace S in T with the new
tree decomposition found by the local solver. This, however, does not work in general, as
the new tree decomposition might not fit into the remaining parts of T . Fortunately we
can make this approach work by using the following trick. We add to GS certain cliques,
which we call marker cliques, and which tell us how to replace the original local tree
decomposition S with the new one. Due to a general property of tree decompositions,
there is always a bag that contains all vertices of a clique. Hence, in particular, the new
local decomposition will contain for each marker clique a bag that contains it, and this
bag will be an anchor point for connecting the new decomposition to the parts of the old
one. Details of this construction are explained in Section 3.

Related Work A SAT-based local improvement approach was first proposed, imple-
mented and evaluated by Lodha et al. [25] for finding branch decompositions of small
width of graphs and hypergraphs. As the definitions of a branch decompositions and
tree decompositions differ significantly, the methods for finding and replacing local
decompositions are quite different. Also the SAT encoding of branchwidth and treewidth
are different, as the former focuses on edges, while the latter focuses on vertices.

There are several approaches for improving treewidth heuristics based on elimi-
nation orderings. For instance, Kask et al. [21] use randomization to recompute the
last few steps of the ordering computed so far, picking the best of the runs, whereas
Gaspers et al. [17] use a different approach: as soon as a given width bound is exceeded
during the computation of the ordering, the last c vertices of the ordering are recomputed
with an exact method, trying to stay within the width bound.

2 Preliminaries

In this section we introduce some relevant graph theoretic notions.
All considered graphs are finite, simple, and undirected. Let G be a graph. V (G)

and E(G) denote the vertex set and the edge set of G, respectively. We denote an edge
between vertices u and v by uv (or equivalently by vu). The subgraph of G induced by
a set S ⊆ V (G) has as vertex set S and as edge set {uv ∈ E(G) | u, v ∈ S }.

A tree decomposition of a graph G is a pair T = (T, χ) where T is a tree and χ is
a mapping that assigns to each node t ∈ V (T) a set χ(t) ⊆ V (G), called a bag, such
that the following conditions hold (we refer to the vertices of T as nodes to make the
distinction between T and G clearer).

1. V (G) =
⋃

t∈V (T) χ(t) and E(G) ⊆
⋃

t∈V (T){uv | u, v ∈ χ(t) }.
2. The sets χ(t1)\χ(t) and χ(t2)\χ(t) are disjoint for any three nodes t, t1, t2 ∈ V (T)

such that t lies on a path from t1 to t2 in T .

The width of T , denoted w(T), is maxt∈V (T) |χ(t)| − 1. The treewidth tw(G) of G is
the minimum w(T) over all tree decompositions T of G.

We will make use of the following well-known fact.

Fact 1 ([23]) Let (T, χ) be a tree decomposition of a graph G and K a clique in G.
Then there exists at least one node t ∈ V (T) such that V (K) ⊆ χ(t).

3 Local Improvement of Tree Decompositions

3.1 Local Tree Decompositions

Let G be a graph and T = (T, χ) a tree decomposition
For the following considerations we fix a graph G and a tree decomposition T =

(T, χ) of G. We consider a subtree S of T .
We call S = (S, χS) a local tree decomposition of T (induced by S), where χS is

the restriction of χ to the nodes of S. Let GS denote the subgraph of G induced by all
the vertices of G that appear in a bag of S. The following observation is an immediate
consequence of the definitions.

Observation 1 S is a tree decomposition of GS of width ≤ w(T).

Our goal is to replace S with an improved tree decomposition S ′ of GS , i.e., one of
smaller width, and to insert S ′ back into T so that we obtain a new tree decomposition T ′
of G of possibly smaller width. In order to make this work, we need to modify GS such
that any tree decomposition of the modified graph can be added back into T .

Let us first introduce some auxiliary notions. For an edge st of T we define λT (st) =
χ(s) ∩ χ(t) to the cut set associated with st. We call an edge st of T to be a boundary
edge (w.r.t. S) if s ∈ V (S) and t /∈ V (S).

Now we define the augmented local graph G∗S by setting V (G∗S) to be the set of
all vertices of G that appear in a bag of S, and E(G∗S) to be the set of edges uv with
u, v ∈ V ∗ such that uv ∈ E(G) or u, v ∈ λT (e) for a boundary edge e of T . In other
words, the augmented local graph G∗S is obtained from GS by forming cliques over cut
sets associated with boundary edges. We will use these cliques as “markers” in order to
connect a new tree decomposition of G∗S to the parts of the tree decomposition T that
we keep. Therefore we call these cliques marker cliques.

Observation 2 S is a tree decomposition of G∗S of width ≤ w(T).

Proof. In view of Observation 2 it remains to check that for each edge uv ∈ E(G∗S) \
E(GS) there is a node s of S such that u, v ∈ χ(s). For such an edge uv there is a
boundary edge e of T such that u, v ∈ λT (e). By definition of a boundary edge, exactly
one end of e, say s, belongs to V (S). Now u, v ∈ λT (e) ⊆ χ(s). ut

Let S∗ = (S∗, χ∗) be another tree decomposition of G∗S with w(S∗) ≤ w(S).
W.l.o.g., we assume that S∗ and T do not share any vertices (if not, we can simply use a
tree that is isomorphic to S∗). We define a new tree decomposition T ′ = (T ′, χ′) of G
as follows.

Let T1, . . . , Tr be the connected components of T − S (each Ti is a tree). Each Ti
gives raise to a local tree decomposition Ti = (Ti, χi) where χi is the restriction of χ to
the nodes of Ti.

For each Ti let ti be the leaf of Ti that was incident with a boundary edge ei = tisi
in T . The boundary edge ei is responsible for a marker clique K(ei) on the vertices in
λT (ei). By Fact 1, we can choose a node s′i ∈ V (S∗) such that V (K(ei)) = λT (ei) ⊆
χ∗(s′i).

We define a new tree decomposition T ′ = (T ′, χ′) where T ′ is the tree defined
by V (T ′) = V (S∗) ∪

⋃r
i=1 V (Ti) = V (S∗) ∪ V (T) \ V (S) and E(T ′) = E(S∗) ∪⋃r

i=1E(Ti) ∪ {t1s′1, . . . , trs′r}. It remains to define the bags of the tree decomposition
T ′. For t ∈ V (Ti) we define χ′(t) = χ(t) and for s ∈ V (S∗) we define χ′(s) = χ∗(s).

We denote T ′ as T
(S
S′
)

and say that T ′ is obtained from T by replacing S with S ′.

Observation 3 T
(S
S′
)

is a tree decomposition of G of width

max(w(T1), . . . ,w(Tr),w(S∗))≤ max(w(T),w(S∗))≤ max(w(T),w(S))≤ w(T).

Proof. Let T
(S
S′
)
= T ′ = (T ′χ′). First we observe that T ′ is indeed a tree, as each

tree Ti is connected to the central tree S∗ with exactly one edge. Clearly T ′ satisfies
the first of the two conditions in the definition of a tree decomposition. To see that it
also satisfies the second condition, we observe that if a vertex v of G appears in bags
at two different local tree decompositions Ti and Tj then v must also appear in the

sets λT (ei) and λT (ej). Consequently, it appears in the bags of s′i and s′j (we use the
notation from above). As S∗ satisfies the second condition of a tree decomposition, v
is contained in all the bags on the path between s′i and s′j in S∗. This shows that T ′ is
indeed a tree decomposition of G. The claimed bound on its width follows directly from
the construction. ut

3.2 SAT Encodings for Tree Decompositions

A SAT encoding for tree decompositions was first proposed by Samer and Veith [28].
Given a graphG and an integer k, a CNF formulaΦ(G, k) is produced which is satisfiable
if and only if G has a tree decomposition of width ≤ k. For the construction of Φ(G, k),
an alternative characterization of tree decompositions in terms of elimination orderings
is used. Here a linear ordering of the given graph G is guessed, and based on the ordering
certain “fill-in edges” are added to the graph, providing a “triangulation” of G. The
ordering is represented by Boolean variables, one for every pair of vertices, whose truth
value indicates the relative ordering of the two vertices. Transitivity of the ordering is
ensured by suitable clauses. Then, for each vertex v of G it is checked whether it has at
most k neighbors that appear in the ordering right to v. This is checked via cardinality
constraints [29]. The exact treewidth is then found by systematically calling a SAT solver
for a heuristically computed upper bound u with Φ(G, k) for k = u, u− 1, u− 2, . . .
and until Φ(G, k) is found unsatisfiable. From a satisfying assignment of Φ(G, k) one
can obtain a tree decomposition of G of width k efficiently by a decoding procedure.

3.3 The Local Improvement Loop

We describe the overall algorithm. Let G be an input graph. First we obtain a tree
decomposition T = (T, χ) of G using a standard heuristic method, which we refer to as
the global solver.

The local improvement loop operates with the following parameters which are
positive integers: the local budget lb, the local timeout lt, the global timeout gt, and the
number of no-improvement rounds ni.

We select a node t from T with largest bag size, i.e., |χ(t)| = w(T).
In T we perform a modified breadth-first-search (BFS) starting at t. We use an

auxiliary set variable L which, at the beginning of the BFS is set to χ(t). For each
node t′ visited by the BFS, we add the new elements of χ(t′) to L. If a node t′ was
visited via an edge e, a neighbor t′′ of t′ is only visited if λT (t′t′′) < λT (e). The BFS
terminates as soon as visiting another node would increase the size of L beyond the
local budget lb. Now the visited nodes induce a subtree S of T , and in turn, this yields a
local tree decomposition S = (S, χS) of T , as defined above. The set L contains the
vertices of the local graph GS (or equivalently, of the augmented local graph G∗S) which
by construction can be at most lb many vertices.

Next we run the local solver, that is, we check satisfiability of the formula obtained
by the SAT encoding, trying to get a tree decomposition S∗ of G∗S whose width is as
small as possible. We start the SAT encoding with k = w(S) − 1 and upon success
decrease k step by step. Each SAT-call has a timeout of lt seconds, and we stop if
either we get an unsatisfiable instance or we hit the timeout. With the reached value of

k, the treewidth of G∗S is at most k + 1. Since the SAT encoding with value k + 1 is
satisfiable, we can extract with a decoding procedure from the satisfying assignment a
tree decomposition S∗ of G∗S . Now we replace S in T by S∗, and we repeat the local
improvement loop with T

(S
S∗
)
. We note that a local replacement is done even if there

was no local width improvement, i.e., if w(S∗) = w(S), as there is the possibility that
the change triggers improvements in subsequent rounds of the local improvement loop.

We repeat the local improvement loop until either the global timeout gt is reached,
or if the loop has been iterated ni times without any local width improvements.

4 Experimental Results

Solvers As the global solver we used the greedy ordering heuristics-based algorithm
from Abseher et al. [1, rev. 075019f] which we refer to as heur. It computes upper
bounds for treewidth and outputs a certificate decomposition. The solver scored third
in the heuristic track of of the PACE 2016 challenge [13]. It is very space efficient and
reports initial useful tree decompositions extremely fast compared to other solvers. It
leaves almost the full time resource for the local improvement. We used the following
three local solvers:

1. sat: a solver based on an improved version of Samer and Veith’s [28] SAT encoding
by Bannach et al. [3, rev. 25d6a98]. The solver employs Glucose as a SAT solver,
PBLib for cardinality encodings, and progresses downwards from an upper bound.
The solver scored third in the exact track of the PACE 2016 treewidth challenge and
was there the best SAT-based solver.

2. comb: an implementation of Arnborg et al.’s combinatorial algorithm [2] by Tamaki
[31, rev. d5ba92a], This solver won the exact track of the PACE 2016 treewidth
challenge. It incrementally checks for the exact treewidth, it progresses upwards
from 1.

3. heur: the same solver that we also use as global solver.

Our implementation is publicly available on GitHub [15]. Our experiments mainly
focus on two questions: (i) can we improve with local improvement over traditional
greedy heuristics and (ii) which solvers are favorable as local solver.

Instances We considered an initial selection of overall 3168 graphs from various publicly
available graph sets. Our sets consisted of the TreewidthLIB [7], networks from the UAI
competition [12], publicly available transit graphs from GTFS-transit feeds [14], and
graphs from the PACE 2016 treewidth challenge [13]. Since we aimed for larger graphs
where exact methods cannot be used, we restricted ourselves to graphs that contain more
than 100 vertices, resulting in 1946 graphs in total.

Experimental Setup The experiments ran on a Scientific Linux cluster of 24 nodes (2x
Xeon E5520 each) and overall 224 physical cores [22]. Due to the large number of
instances, we started only from one initial decomposition (with random seed) and did
not repeat the runs. In order to have reproducible results we used a benchmark cluster

Table 1. Summary of treewidth improvements.

#improved improvements (sum) improvement (max) solver configuration

647 2015 13 sat-100-1800(900)
584 1984 16 sat-125-1800(900)
630 1805 15 comb-100-1800
493 1676 20 sat-150-1800(900)
631 1548 12 comb-075-1800
609 1460 12 comb-075-1800
447 1077 19 comb-125-1800
368 822 14 comb-150-1800
325 538 9 heur-150-1800
258 421 8 heur-100-1800

run generator and analysis tool2. All solvers have been compiled with gcc version 4.9.1,
ran on Python 2.7.5, and Java 1.8.0 122 HotSpot 64-bit server VM, respectively. We
executed solvers in single core mode. We limited available memory (RAM) to 8GB,
wall clock time of the global solver to 15 seconds, wall clock time of the overall search
to 7800 seconds, and wall clock time of the local solver to 1800 seconds. For the SAT
solver we imposed an additional restriction that the individual SAT call runs at most 900
seconds (st). Resource limits where enforced by runsolver [27].

For our experiments, we systematically tested the parameters lb ∈ {75, 100,125,
150}, lt ∈ {90, 900, 1800}, gt = 7200, and ni = 10. For the parameter ni we also
tried values 40 and 100 on a selected set of instances, but obtained no improvements.
Individual results are publicly available [15].

Results Table 1 summarizes the improvements we obtained with our experiments.
Configurations in the legend are given in the form solver-lb-lt(st). The best
results in each column are highlighted in bold font. Table 2 shows some of the best
and notable improvements we obtained with local improvements. The value “hash”
provides the first four digits of sha-1 hash sum for the instance in DIMACS graph format.
Column “htw” has the heuristically obtained treewidth, and “itw” has the treewidth
after local improvement. The configuration with which we got these improvements
are in the column “local solver.” The best improvement we obtained is 20, for the
instance or chain 224.fg, from the graph set networks. Among further entries in the table
are instance graph13pp with a width over 100, and instance Promedus 38 where we
could reduce the width from 23 to 16, which makes this instance feasible for dynamic
programming.

Discussion For our instance set, we can see that even a heuristic solver as local solver
(lb = 150) improved the upper bounds. Both in terms of number of improved instances
and when considering the cumulative sum of improvements, the SAT-based solver

2 The run and analysis tool is available online at https://github.com/daajoe/benchmark-tool. The
file benchmark-tool/runscripts/treewidth/localimprovement.xml contains all solver flags to
reproduce our benchmark runs.

https://github.com/daajoe/benchmark-tool
benchmark-tool/runscripts/treewidth/localimprovement.xml

Table 2. Some of the best and notable improvements

instance (hash) |V | |E| graphs itw htw local solver

or chain 224.fg (a4cb) 1638 3255 networks 75 95 sat-150-1800-10
or chain 54.fg (a6fc) 1404 2757 networks 65 84 comb-125-1800-10
or chain 187.fg (826a) 1668 3197 networks 79 97 sat-150-1800-10
1bkr graph (003a) 107 1340 twlib 44 56 comb-075-1800-10
dimacs fpsol2.i.1-pp (69aa) 191 4418 pace2016 61 72 sat-150-1800-10
graph13pp (eb9d) 456 1874 twlib 115 125 comb-150-1800-10
Cell120 (b625) 600 1200 pace2016 94 104 comb-150-1800-10
bkv-zrt 20120422 0314 (fbca) 907 2209 transit 74 83 sat-150-1800-10
Promedus 38 (02d7) 668 1235 networks 16 23 sat-150-1800-10

performed best. For both the combinatorial solver and the SAT-based solver, a local
budget lb = 100 resulted in more solved instances. However, in terms of overall
improvement the difference between the two local solvers is small. A local budget lb =
125 allowed us to increase the cumulative sum of improvements relatively early.

In consequence, we obtained the best results by using a SAT-based solver as local
solver. Using a SAT-based solver, we can hope that an improved SAT encoding or new
techniques in solvers immediately yield better upper bounds for treewidth using local
improvement. We also computed the virtually best solver, which improved 200 instances
more than the best SAT-based configuration. This indicates that we can very likely
improve a much higher number of instances when applying a portfolio based solving
approach.

5 Concluding Remarks

We have presented a new SAT-based approach to finding tree decompositions of small
width based on a cross-over between standard heuristic methods and exact methods. Our
work offers several directions for further research.

For instance, one could possibly improve the current setup by (a) upgrading the
method for selecting the local tree decomposition, which is currently based on a relatively
simple breadth-first-search, and (b) tuning and optimizing the SAT-based local solver
specially to handle the type of instances that arise within the local improvement loop.

Another promising direction involves adding additional constraints to the SAT encod-
ing, which yield local tree decompositions with special properties. For instance, when
the local solver cannot improve the width of the current local tree decomposition, it
could still replace it with one that increases the likelihood of success for further rounds
of local improvements (for instance, by minimizing the number of large bags). Another
application would be the computation of “customized tree decompositions” [1] which
are designed to speed-up dynamic programming algorithms. Such additional constraints
are relatively easy to build into a SAT-based local solver, but seem difficult to build into
a local solver based on combinatorial methods.

Finally, due to the modularity of our approach (local solver, budget, time out, invoked
SAT solver), it could benefit from automated algorithm configuration and parameter
tuning, and it could provide the elements of a portfolio approach.

References

1. Abseher, M., Musliu, N., Woltran, S.: htd – a free, open-source framework for (customized)
tree decompositions and beyond. In: Salvagnin, D., Lombardi, M. (eds.) Proceedings of
the 14th International Conference on Integration of Artificial Intelligence and Operations
Research Techniques in Constraint Programming (CPAIOR’17) (2017)

2. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree.
SIAM J. Algebraic Discrete Methods 8(2), 277–284 (1987)

3. Bannach, M., Berndt, S., Ehlers, T.: Jdrasil: A modular library for computing tree decomposi-
tions. Tech. rep., Lübeck University, Germany (2016)

4. Berg, J., Järvisalo, M.: SAT-based approaches to treewidth computation: An evaluation. In:
Proceedings of the 26th IEEE International Conference on Tools with Artificial Intelligence,
ICTAI’14. pp. 328–335. IEEE Computer Soc., Limassol, Cyprus (Nov 2014)

5. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of bounded
treewidth. Comput. J. 51(3), 255–269 (2008)

6. Bodlaender, H.L., Koster, A.M.C.A.: Treewidth computations. I. Upper bounds. Information
and Computation 208(3), 259–275 (2010)

7. van den Broek, J.W., Bodlaender, H.: TreewidthLIB – a benchmark for algorithms for
treewidth and related graph problems. Tech. rep., Faculty of Science, Utrecht University
(2010), http://www.staff.science.uu.nl/∼bodla101/treewidthlib/

8. Chimani, M., Mutzel, P., Zey, B.: Improved Steiner tree algorithms for bounded treewidth. J.
Discrete Algorithms 16, 67–78 (2012)

9. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph
enumeration problems definable in monadic second-order logic. Discr. Appl. Math. 108(1-2),
23–52 (2001)

10. Darwiche, A.: A differential approach to inference in Bayesian networks. J. ACM 50(3),
280–305 (2003)

11. Dechter, R.: Tractable structures for constraint satisfaction problems. In: Rossi, F., van Beek,
P., Walsh, T. (eds.) Handbook of Constraint Programming, vol. I, chap. 7, pp. 209–244.
Elsevier (2006)

12. Dechter, R.: Graphical model algorithms at UC Irvine. Tech. rep., UC Irvine (2013), http://
graphmod.ics.uci.edu/group. The network instances consist of Bayesian and Markov networks
used in UAI competition and protein folding/side-chain prediction problems.

13. Dell, H., Rosamond, F.: The parameterized algorithms and computational experiments chal-
lenge. https://pacechallenge.wordpress.com/ (2016)

14. Fichte, J.K.: daajoe/gtfs2graphs – a GTFS transit feed to graph format converter. https:
//github.com/daajoe/gtfs2graphs (2016)

15. Fichte, J.K., Lodha, N., Szeider, S.: trellis: Treewidth local improvement solver. https://github.
com/daajoe/trellis (2017)

16. Freuder, E.C.: A sufficient condition for backtrack-bounded search. J. ACM 32(4), 755–761
(1985)

17. Gaspers, S., Gudmundsson, J., Jones, M., Mestre, J., Rümmele, S.: Turbocharging Treewidth
Heuristics. In: Guo, J., Hermelin, D. (eds.) 11th International Symposium on Parameter-
ized and Exact Computation (IPEC 2016). Leibniz International Proceedings in Informat-
ics (LIPIcs), vol. 63, pp. 13:1–13:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany (2017)

http://www.staff.science.uu.nl/~bodla101/treewidthlib/
http://graphmod.ics.uci.edu/group
http://graphmod.ics.uci.edu/group
https://pacechallenge.wordpress.com/
https://github.com/daajoe/gtfs2graphs
https://github.com/daajoe/gtfs2graphs
https://github.com/daajoe/trellis
https://github.com/daajoe/trellis

18. Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. In: Proceedings of the
Proceedings of the Twentieth Conference Annual Conference on Uncertainty in Artificial
Intelligence (UAI-04). pp. 201–208. AUAI Press, Arlington, Virginia (2004)

19. Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of knowledge
representation and reasoning. Artificial Intelligence 174(1), 105–132 (2010)

20. Hammerl, T., Musliu, N., Schafhauser, W.: Metaheuristic algorithms and tree decomposition.
In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp.
1255–1270. Springer Verlag, Berlin, Heidelberg (2015)

21. Kask, K., Gelfand, A., Otten, L., Dechter, R.: Pushing the power of stochastic greedy ordering
schemes for inference in graphical models. In: Burgard, W., Roth, D. (eds.) Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011. AAAI Press (2011)

22. Kittan, K.: Zuse cluster. http://www.cs.uni-potsdam.de/bs/research/labsZuse.html (2017)
23. Kloks, T.: Treewidth: Computations and Approximations. Springer Verlag, Berlin (1994)
24. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical

structures and their application to expert systems. J. Roy. Statist. Soc. Ser. B 50(2), 157–224
(1988)

25. Lodha, N., Ordyniak, S., Szeider, S.: A SAT approach to branchwidth. In: Creignou, N., Berre,
D.L. (eds.) Proceedings of the 19th International Conference on Theory and Applications of
Satisfiability Testing, SAT 2016. Lecture Notes in Computer Science, vol. 9710, pp. 179–195.
Springer Verlag (2016)

26. Ordyniak, S., Szeider, S.: Parameterized complexity results for exact Bayesian network
structure learning. J. Artif. Intell. Res. 46, 263–302 (2013)

27. Roussel, O.: Controlling a solver execution with the runsolver tool. J on Satisfiability, Boolean
Modeling and Computation 7, 139–144 (2011)

28. Samer, M., Veith, H.: Encoding treewidth into SAT. In: Proceedings of the 12th International
Conference on Theory and Applications of Satisfiability Testing, SAT 2009. Lecture Notes in
Computer Science, vol. 5584, pp. 45–50. Springer Verlag (2009)

29. Sinz, C.: Towards an optimal cnf encoding of boolean cardinality constraints. In: van Beek, P.
(ed.) Proceedings of the 11th International Conference Principles and Practice of Constraint
Programming, CP 2005. Lecture Notes in Computer Science, vol. 3709, pp. 827–831. Springer
Verlag (2005)

30. Song, Y., Liu, C., Malmberg, R.L., Pan, F., Cai, L.: Tree decomposition based fast search of
RNA structures including pseudoknots in genomes. In: Proceedings of the 4th International
IEEE Computer Society Computational Systems Bioinformatics Conference, CSB 2005. pp.
223–234. IEEE Computer Society (2005)

31. Tamaki, H.: Tcs-meiji. https://github.com/TCS-Meiji/treewidth-exact (2016)

http://www.cs.uni-potsdam.de/bs/research/labsZuse.html
https://github.com/TCS-Meiji/treewidth-exact

	SAT-Based Local Improvement for Finding Tree Decompositions of Small Width

