
Weak Order Equivalence for Logic Programs with

Preferences

Kathrin Konczak

Institut für Informatik, Universität Potsdam, Postfach 90 03 27, D–14439 Potsdam
konczak@cs.uni-potsdam.de

Abstract. Recently, notions of equivalence for Answer Set Programming have been stud-
ied intensively and were shown to be beneficial for modular programming and automated
optimization. In [9], the novel notion of strong equivalence for logic programs with rule
preferences (so-called ordered logic programs) has been defined and necessary and sufficient
conditions for programs being strongly equivalent have been presented. In this paper, we
extend this work and analyze a weaker notion of equivalence for ordered logic programs.
Whereas strong equivalence makes great demands on ordered logic programs, the weakened
notion enables program transformations for simplifying preference relations.

1 Introduction

During the last decade, Answer Set Programming (ASP) [10] has become an increasingly acknowl-
edged tool for knowledge representation and reasoning. A main advantage of ASP is that it is
based on solid theoretical foundations, while being able to model common-sense reasoning in an
arguably satisfactory way. The availability of efficient solvers has furthermore stimulated its use
in practical applications in recent years. This development has quite some implications on ASP
research. For example, increasingly large applications require features for modular programming.
Another requirement is the fact that, in applications, ASP code is often generated automatically
by so-called front-ends, calling for optimization methods which remove redundancies, as also found
in database query optimizers. For these purposes the recently suggested notion of strong equiva-
lence for ASP [12, 16] can be used. Indeed, if two ASP programs are strongly equivalent, they can
be used interchangeably in any context. This gives a handle on showing the equivalence of ASP
modules. If a program is strongly equivalent to a subprogram of itself, then one can always use the
subprogram instead of the original program, a technique which serves as an effective optimization
method.

On a different line of ASP research, many extensions of the basic formalism have been proposed.
One of the most intensively studied one is the modeling of preferences [4]. Strongly rooted in
the research of non-monotonic formalisms, the ability to specify preferences is acknowledged to
be particularly beneficial for ASP, since preferences constitute a very natural way of resolving
indeterminate solutions. E.g., preferences have been successfully used for timetabling, auctioning,
and configuration. A sophisticated application for information site selection is presented in [6].
The emergence of such applications thus also calls for optimization methods, as for standard ASP.

In [9], we have generalized the notion of strong equivalence to ASP with preferences. Since
a plethora of formalisms and semantics has been introduced for extending ASP by preferences,
we have limited ourselves to ordered programs, where preferences are defined among rules, which
semantically act as filters over answer sets. In [9], we have found out that strong order equivalent
programs must be strongly equivalent in the standard sense, have to coincide on their preference
relations, and have to coincide on their set of rules contributing to answer sets. Since these condi-
tions are very strict, we examine in this work a weaker notion of strong order equivalence. Whereas
for strongly order equivalent programs we require that they have the same preferred answer sets
no matter which ordered program we add, the weakened notion only stipulates that they have the
same preferred answer sets no matter which normal logic program we add.

Section 2 briefly sketches strong order equivalence. In Section 3 we define and characterize weak
order equivalence and give some relations to strong order equivalence. In Section 4 we present new

program transformations under weak order equivalence, which simplify preference relations and
the underlying logic program. In Section 5, we compare strong and weak order equivalence and
point out further research issues.

2 Background

A logic program is a finite set of rules p0 ← p1, . . . , pm,not pm+1, . . . ,not pn, where n ≥ m ≥ 0,
and each pi (0 ≤ i ≤ n) is an atom. For such a rule r, we let head(r) denote the head, p0, of
r and body(r) the body, {p1, . . . , pm, not pm+1, . . . ,not pn}, of r. Let body+(r) = {p1, . . . , pm}
be the positive and body−(r) = {pm+1, . . . , pn} be the negative part of the body of rule r. For
a set of rules Π , we write head(Π) = {head(r) | r ∈ Π}. A program is basic if body−(r) = ∅
for all its rules. The reduct, ΠX , of a program Π relative to a set X of atoms is defined by
ΠX = {head(r) ← body+(r) | r ∈ Π, body−(r) ∩ X = ∅}. A set of atoms X is closed under a
basic program Π if for any r ∈ Π , head(r) ∈ X if body+(r) ⊆ X . The smallest set of atoms being
closed under a basic program Π is denoted by Cn(Π). Then, a set X of atoms is an answer set of
a program Π if Cn(ΠX) = X . We use AS(Π) for denoting the set of all answer sets of Π . Given
a set X of atoms, we define RΠ(X) = {r ∈ Π | body+(r) ⊆ X, body−(r) ∩X = ∅} as generating
rules of X .

An ordered (logic) program is a pair (Π, <), where Π is a logic program and < ⊆ Π ×Π is a
strict partial order. Given, r1, r2 ∈ Π , the relation r1 < r2 expresses that r2 has higher priority
than r1. This informal interpretation can be made precise in different ways. In what follows, we
consider three such interpretations: D– [3], B– [2], and W– preference [18]. Given (Π, <), all of
them use < for selecting preferred answer sets among the standard answer sets of Π . We write
(Π, ∅) whenever no preferences are specified. Due to space restrictions, we give below a formal
definition of D–preference, and explain more informally B– and W– preferences [2, 18].

Definition 1. Let (Π, <) be an ordered logic program and X be an answer set of Π. Then, X is
<D–preferred, if an enumeration 〈ri〉i∈I of Π exists s.t. for every i, j ∈ I we have

1. if ri < rj , then j < i, and
2. if ri ∈ RΠ(X) then body+(ri) ⊆ {head(rj) | rj ∈ RΠ(X), j < i}, and
3. if ri ∈ Π \RΠ(X) then
(a) body+(ri) 6⊆ X or
(b) body−(ri) ∩ {head(rj) | rj ∈ RΠ(X), j < i} 6= ∅.

Condition 1 stipulates that the enumeration of Π is compatible with <. Condition 2 makes the
property of supportedness explicit. Although any answer set is generated by a supported sequence
of rules, in D–preferences, rules cannot be supported by lower-ranked ones. Condition 3a separates
the handling of unsupported rules from preference handling. Condition 3b ensures that rules
can never be blocked by lower-ranked ones. For W–preference, the previous concept of order
preservation is weakened in Condition 2 and 3 for suspending both conditions, whenever the head
of a preferred rule is derivable in an alternative way. Roughly speaking, B–preference additionally
drops Condition 2; thus decoupling preference handling from the order induced by consecutive
rule applications. For σ ∈ {D, W, B}, we define ASσ((Π, <)) as the set of all <σ-preferred answer
sets of the ordered program (Π, <). Note that these preference semantics do not always guarantee
the existence of a preferred answer set. For example, the program

(Π, <) =

r1 : a←
r2 : b← not a

r1 < r2

has in all three semantics no preferred answer set, since rule r2 is blocked by the lower ranked rule
r1.

Strong Order Equivalence has been defined and analyzed for the first time in [9]. Let σ ∈
{D, W, B} be denoting the underlying preference semantics. Two ordered programs (Π1, <1) and

(Π2, <2) are <σ-equivalent, denoted (Π1, <1) ≡σ (Π2, <2), iff they have the same <σ-preferred
answer sets. Regarding strong equivalence for ordered programs, one has to consider all extensions
by ordered programs. Since the union of two ordered programs is not necessarily an ordered
program, we have to restrict strong equivalence to admissible extensions of ordered programs [9].
An ordered program (Π ′, <′) is an admissible extension of (Π, <) if (Π ∪ Π ′, < ∪ <′) is an
ordered program. 1 (Π1, <1) and (Π2, <2) are strongly <σ-equivalent, denoted by ≡σ

s , iff for all
admissible extensions (Π ′, <′) of (Π1, <1) and (Π2, <2) it holds that (Π1 ∪ Π ′, <1 ∪ <′) and
(Π2∪Π ′, <2 ∪ <′) are <σ- equivalent. We say that a rule r ∈ Π contributes to an answer set X , if
there exists a program Π∗ such that X ∈ AS(Π ∪Π∗) and r ∈ RΠ∪Π∗(X). We define Cont(Π) as
the set of all rules of Π contributing to any answer set of extensions of Π . In [9] we have presented
the following characterizations for strong order equivalence.

Theorem 1. [9] Let (Π1, <1) and (Π2, <2) be ordered programs.
Then, (Π1, <1) ≡B

s (Π2, <2) iff Π1 ≡s Π2,
2 <1=<2, and Cont(Π1) = Cont(Π2).

Theorem 2. [9] Let (Π1, <1) and (Π2, <2) be ordered programs and σ ∈ {D, W}.
Then, (Π1, <1) ≡σ

s (Π2, <2), iff Π1 ≡s Π2, <1=<2, and Cont(Π1) \ {r ∈ Π1 | head(r) ∈
body+(r)} = Cont(Π2) \ {r ∈ Π2 | head(r) ∈ body+(r)}.

For two ordered programs, we have (i) strong <B-equivalence implies strong <W -equivalence and
(ii) strong <W -equivalence holds iff strong <D-equivalence holds [9]. Moreover, in [9] program
simplifications are given, where only rules not involved in preference relations and not contribut-
ing to answer sets can be removed under strong order equivalence. In what follows, we denote
PR((Π, <)) as the set of all rules involved in the preference relation <, i.e. PR((Π, <)) = {r ∈
Π | ∃r′ ∈ Π : r < r′ or r′ < r}.

3 Weak order equivalence

Strong order equivalence considers all admissible extensions of ordered programs by other ordered
programs. For considering a weaker notion of order equivalence, we define weak order equivalence,
where we consider extensions of ordered logic programs by normal logic programs. Since the union
of an ordered program and a normal logic program always represents an ordered program, we
don’t have to check admissibility as for strong order equivalence.

Definition 2. (Weak order equivalence) Let (Π1, <1) and (Π2, <2) be ordered logic programs and
σ ∈ {D, B, W}.

Then, (Π1, <1) and (Π2, <2) are weakly <σ-equivalent, denoted by ≡σ
w, iff for all normal

programs Π it holds that (Π1 ∪Π, <1) and (Π2 ∪Π, <2) are <σ- equivalent.

In the following, we show some simple relationships between strong and weak order equivalence.
Whenever the preference relation is empty, weak order equivalence corresponds exactly to strong
equivalence of the underlying logic programs.

Lemma 1. Let Π1 and Π2 be logic programs and σ ∈ {D, W, B}.
Then, (Π1, ∅) and (Π2, ∅) are weakly <σ-equivalent iff Π1 and Π2 are strongly equivalent.

Also, strong order equivalence implies weak order equivalence.

Lemma 2. Let (Π1, <1) and (Π2, <2) be ordered logic programs and σ ∈ {D, W, B}.
If (Π1, <1) and (Π2, <2) are strongly <σ-equivalent, then (Π1, <1) and (Π2, <2) are weakly

<σ-equivalent.

As for strong order equivalence, weak order equivalence requires strong equivalence of the under-
lying logic programs [9].

1 The union of two ordered programs is formally defined in [9].
2

Π1 ≡s Π2 denotes strong equivalence of Π1 and Π2.

Theorem 3. Let (Π1, <1) and (Π2, <2) be ordered logic programs.
If (Π1, <1) and (Π2, <2) are weakly <σ-equivalent, for σ ∈ {D, W, B}, then Π1 ≡s Π2.

In [9] we have shown that strong order equivalence requires that the programs must coincide
on their preference relations (cf. Theorem 1 and 2). Interestingly, this is not required for weak
order equivalence. That is, weak order equivalent programs can differ on their preference relations.
To see this, consider the following example:

(Π, <) =

r1 : a←
r2 : b← a

r2 < r1

We obtain (Π, <) ≡σ
w (Π, ∅) for σ ∈ {D, W, B}, since the preference r2 < r1 never selects answer

sets as non-preferred, no matter which extension by normal programs is considered. Regarding
strong order equivalence, we take

(Π ′, <′) =

r3 : y ← not x

r1 : a← r1 <′ r3

r2 : b← a r4 <′ r2

r4 : x←
r5 : a← z

r6 : z ←

and obtain ASσ((Π ∪Π ′, <′)) = {{a, b, x, z}} but ASσ((Π ∪Π ′, < ∪ <′)) = ∅ since the additional
preference r2 < r1 discards the answer set {a, b, x, z} as non-preferred. Hence, under weak order
equivalence preference relations can be removed, which is not allowed under strong order equiva-
lence. In Section 4 we will have a closer look on program transformations simplifying preference
relations.

In contrast to strong order equivalence, weak order equivalent programs can also differ on their
sets of generating rules and hence, on their sets of rules contributing to answer sets. For example,
consider the following ordered programs:

(Π1, <1) =

r1 : a←
r2 : b←
r2 <1 r1

and (Π2, <2) =

r1 : a←
r2 : b←
r3 : a← b

r2 <2 r1

We obtain (Π1, <1) ≡σ
w (Π2, <2) for σ ∈ {D, W, B}. By taking

(Π ′, <′) =

r4 : y ← not a

r1 : a←
r5 : b← x

r6 : x←
r1 < r4

we obtain ASσ((Π1∪Π ′, <1 ∪ <′)) = ∅ but ASσ((Π2∪Π ′, <2 ∪ <′)) = {{a, b, x}} since r3 is used
to block rule r4 in an order preserving way. Hence, (Π1, <1) 6≡σ

s (Π2, <2) for all σ ∈ {D, W, B}. In
Section 4, we will reconsider program simplifications known from (standard) strong equivalence
and analyze them under weak order equivalence.

Whenever two ordered programs are weakly order equivalent, we have to impose further con-
ditions for achieving strong order equivalence.

Lemma 3. Let (Π1, <1) and (Π2, <2) be ordered programs such that (Π1, <1) ≡B
w (Π2, <2).

If <1=<2 and Cont(Π1) = Cont(Π2), then (Π1, <1) ≡B
s (Π2, <2).

Lemma 4. Let (Π1, <1) and (Π2, <2) be ordered programs such that (Π1, <1) ≡σ
w (Π2, <2) and

σ ∈ {D, W}.
If <1=<2 and Cont(Π1) \ {r ∈ Π1 | head(r) ∈ body+(r)} = Cont(Π2) \ {r ∈ Π2 | head(r) ∈

body+(r)}, then (Π1, <1) ≡σ
s (Π2, <2).

The preference semantics yield an increasing number of preferred answer sets, i.e. ASD((Π, <)) ⊆
ASW ((Π, <)) ⊆ ASB((Π, <)) ⊆ AS(Π) for any ordered program (Π, <). In [9] we have shown
that strong <B-equivalence of two ordered programs implies strong <W -equivalence and that
strong <W -equivalence holds if and only if strong <D-equivalence holds. Hence, the differences
between the D- and W -semantics disappear under strong order equivalence. Furthermore, the
differences between the B-semantics and the D- and W -semantics are strengthens under strong
oder equivalence, since the B-semantics decouples preference handling from rule application. Under
weak order equivalence, we observe that any relationship between these three semantics disappears.

Theorem 4. For any σ, σ′ ∈ {D, W, B} with σ 6= σ′, there exist ordered logic programs (Π1, <1)
and (Π2, <2) such that (Π1, <1) ≡σ

w (Π2, <2) but (Π1, <1) 6≡σ′

w (Π2, <2).

This can be seen by considering the following examples:

(Π1, <) =

r1 : a←
r2 : a← a

r1 < r2

(1)

We have (Π1, <) ≡B
w (Π1, ∅) but (Π1, <) 6≡σ

w (Π1, ∅) for σ ∈ {D, W}, since ASσ((Π1, <)) = ∅ and
{a} ∈ ASσ((Π1, ∅)). Hence, ≡B

w 6⇒≡
σ
w for σ ∈ {D, W}. For the ordered program

(Π2, <) =

r1 : a←
r2 : b← a

r3 : b←
r1 < r2

(2)

we obtain (Π2, <) ≡W
w (Π2, ∅) but (Π2, <) 6≡D

w (Π2, ∅), since ASD((Π2, ∅)) = {{a, b}} and (Π2, <)
has no <D-preferred answer set. Hence, ≡W

w 6⇒≡
D
w .

For ≡W
w 6⇒≡

B
w , let us consider

(Π3a, <) =

r1 : a←
r2 : a← a

r3 : y ← not a

r1 < r3

and (Π3b, <) =

r1 : a←
r3 : y ← not a

r1 < r3

(3)

We have (Π3a, <) ≡W
w (Π3b, <), but (Π3a, <) 6≡B

w (Π3b, <) since ASB((Π3b, <)) = ∅ and {a} ∈
ASB((Π3a, <)) To see ≡D

w 6⇒≡
σ
w, for σ ∈ {W, B}, let us consider

(Π4a, <) =

r1 : a←
r2 : b←
r3 : a← not b

r2 < r3

and (Π4b, <
′) =

r1 : a←
r2 : b←
r4 : c← not b

r2 <′ r4

(4)

We observe (Π4a, <) ≡D
w (Π4b, <

′), but ASσ((Π4b, <
′)) = ∅ and ASσ((Π4a, <)) = {{a, b}} for

σ ∈ {W, B}.

4 Transformations

In this section we provide some simplifications of ordered programs under weak order equivalence.
Program simplifications that can be applied under strong order equivalence are also allowed under
weak order equivalence. That is, (Π, <) ≡σ

w (Π\{r}, <) holds for rules r, where (i) r 6∈ PR((Π, <)),
head(r) ∈ body+(r) and σ ∈ {D, W}, or (ii) r 6∈ PR((Π, <)), r 6∈ Cont(Π), and σ ∈ {D, W, B} [9].
Note that preference relations cannot be simplified under strong order equivalence (cf. Theorems 1
and 2).

4.1 Simplifications of preference relations

In contrast to strong order equivalence, we consider now program transformations under weak
order equivalence simplifying preference relations. Whenever we remove a preference relation
r < r′, all other preference relationships are maintained, e.g. we have r∗ < r < r′ and remove
r < r′, we keep the relations r∗ < r and r∗ < r′.

Preference relations reflecting the order of rule application in enumerations (cf. Definition 1)
are redundant under weak order equivalence and can be removed.

Theorem 5. Let (Π, <) be an ordered logic program and r1, r2 ∈ Π such that body(r1) = ∅,
head(r1) ∈ body(r2) and r2 < r1.

Then, (Π, <) ≡σ
w (Π, <′) for <′=< \{r2 < r1} and σ ∈ {D, W, B}.

Proof 5 Assume (Π, <) 6≡σ
w (Π, <′) holds for <′=< \{r2 < r1}. Then, there exists an Π ′ such

that (Π∪Π ′, <) 6≡σ (Π∪Π ′, <′). Since <′⊆<, we have ASσ((Π∪Π ′, <)) ⊆ ASσ((Π∪Π ′, <′)) [15].
That is, there exists an X ∈ ASσ((Π ∪ Π ′, <′)) such that X 6∈ ASσ((Π ∪ Π ′, <)). Since
X ∈ ASσ((Π ∪Π ′, <′)), there exists an <σ-preserving enumeration E of Π ∪Π ′ wrt X . When-
ever r1 precedes r2 in this enumeration, E is also an <σ-preserving enumeration for (Π ∪Π ′, <),
which is a contradiction to X 6∈ ASσ((Π ∪Π ′, <)). Hence, for all <σ-preserving enumeration E

wrt (Π ∪ Π ′, <′) and X we have that r2 precedes r1. All rules that are higher preferred than
r1 are higher preferred than r2, since < is transitive. Hence, all rules higher preferred than r1

must precede r2 in an order preserving enumeration. Thus, r1 could precede r2 , which leads to a
contradiction to the assumption. �

Since B- preferences decouple preference handling from rule application, we can delete all
preferences between rules r1 and r2 that are applicable wrt any answer set and any extension by a
logic program and where head(r1) ∈ body+(r2). For this, we define similarly to the TΠ operator [13]
the following:

A0(Π) = {head(r) | r ∈ Π, body(r) = ∅}
Ai+1(Π) = {head(r) | r ∈ Π, body−(r) = ∅, body+(r) ⊆ Ai(Π)}
A(Π) =

⋃

0≤i Ai(Π)

The set A(Π) covers atoms that are true in every answer set. We say that r ∈ Appl(Π) whenever
body−(r) = ∅ and body+(r) ⊆ A(Π). That is, r is a generating rule in all program extensions Π ′

of Π and for all answer sets X of Π ∪Π ′.
The following theorem states that we can remove a preference relation between rules in Appl(Π)

under the B-semantics.

Theorem 6. Let (Π, <) be an ordered logic program and r1, r2 ∈ Appl(Π) such that head(r1) ∈
body+(r2). Then, (Π, <) ≡B

w (Π, <′) for <′=< \{r2 < r1, r1 < r2}.

Proof 6 Assume, (Π, <) 6≡B
w (Π, <′) holds for <′=< \{r2 < r1, r1 < r2}. Then, there exists an

X ∈ ASB((Π ∪Π ′, <′)) such that X 6∈ ASB((Π ∪Π ′, <)).
Let be <′=< \{r2 < r1}. Since r1 ∈ Appl(Π) and all rules higher preferred than r1 are also

higher preferred than r2, there always exists an <B- preserving enumeration where r1 is enumer-
ated before r2. Hence, there exists a <B- preserving enumeration of (Π ∪Π ′, <) that is also order
preserving for (Π ∪Π ′, <′) wrt X . Hence, X ∈ ASB((Π ∪Π ′, <)). The case <′=< \{r1 < r2} is
analogous. �

The B-semantics allows to block a rule r by a lower ranked one r′ as long as head(r) is in
the answer set [2]. By stipulating head(r) ∈ A(Π), we make sure that head(r) is in any resulting
answer set and hence, we can remove the corresponding preference relation.

Theorem 7. Let (Π, <) be an ordered logic program and r1, r2 ∈ Π such that r1 ∈ Appl(Π),
head(r1) ∈ body−(r2) and head(r2) ∈ A(Π).

Then, (Π, <) ≡B
w (Π, <′) for <′=< \{r1 < r2}.

Proof 7 Assume (Π, <) 6≡B
w (Π, <′) holds for <′=< \{r1 < r2}. Then, there exists an

X ∈ ASB((Π ∪ Π ′, <′)) such that X 6∈ ASB((Π ∪ Π ′, <)). Let E be an <B-preserving enu-
meration wrt (Π ∪ Π ′, <′) and X . We observe that r2 is blocked by r1 and head(r2) ∈ A(Π).
Hence, head(r2) ∈ X since A(Π) ⊆ X . Thus, r2 can be enumerated directly before r1 . For this
reason X ∈ ASB((Π ∪Π ′, <)). �

E.g., for the program (Π, <) = {r1 : a ←, r2 : b ← not a, r3 : b ←, r1 < r2} we obtain
(Π, <) ≡B

w (Π, ∅). For the W -semantics, this simplifications is not directly conferrable. There,
rules can be applied and blocked by lower ranked ones, whenever the head of such a rule is derived
earlier in an order preserving enumeration. But this can only be guaranteed by considering possible
enumerations of rules from Π .

Within all three semantics, the preference relation < is redundant whenever all standard answer
sets are also preferred ones and all rules involved in < are either in Appl(Π) or blocked wrt A(Π).

Theorem 8. Let (Π, <) be an ordered logic program such that PR(Π) ⊆ {r ∈ Appl(Π)} ∪ {r ∈
Π | body−(r) ∩A(Π) 6= ∅}, and ASσ((Π, <)) = AS(Π) for some σ ∈ {D, W, B}.

Then, (Π, <) ≡σ
w (Π, ∅).

Proof 8 Assume (Π, <) 6≡σ
w (Π, ∅). Then, there exists an Π ′ and X ∈ ASσ((Π ∪ Π ′, ∅)) such

that X 6∈ ASσ((Π ∪ Π ′, <)). Since all rules involved in < are in Appl(Π), there exists an or-
der preserving enumeration of Appl(Π). Furthermore, rules cannot be blocked by lower ranked
ones, since < discards no answer set as non-preferred and all non-applicable rules involved in < are
blocked from A(Π). Hence, there exists an order preserving enumeration of Π∪Π ′ wrt X and <. �

4.2 Transformations from standard strong equivalence

In [1, 17, 8, 14], transformations on logic programs are reported, which can be used for simplifying
programs. For those modular transformations, programs are strongly equivalent to the transformed
one. Such program simplifications were considered for strong order equivalence in [9]. Moreover,
under strong order equivalence we can remove rules r 6∈ PR((Π, <)) and where either head(r) ∈
body+(r) or r 6∈ Cont(Π) holds.

In what follows we reconsider program simplification from [1, 17, 8, 14] under the notion of weak
order equivalence. Since we have presented simplifications for preference relations in the previous
section, we will now assume that removable, hence redundant, rules are not involved in preference
relations. That is, we separate preference simplifications from simplifications of the underlying
logic programs.

The transformation TAUT, stating that Π ≡s Π \{r} for all r ∈ Π where head(r) ∈ body+(r),
is allowed under strong order equivalence for the D- and W -semantics, but not for the B-semantics.
The same applies for weak order equivalence. Regarding B-semantics, let us consider

(Π, <) =

r1 : a← a

r2 : a←
r3 : y ← not a

r2 < r3

We observe ASB((Π, <)) = {a}, but ASB(({r2, r3}, <)) = ∅. Hence, rules where head(r) ∈
body+(r) can not removed under weak <B-equivalence.

The simplifications RED− and CONTRA [8] are allowed under strong order equivalence as
long as the redundant rules are not involved in the preference relation. Hence, we can apply them
analogously under weak order equivalence.

Let be r1, r2 ∈ Π , head(r1) = head(r2), and body(r2) ⊆ body(r1), then the transformation
NONMIN states Π ≡s Π \ {r1}. Let us consider the following example

(Π, <) =

r2 : a←
r1 : a← b

r3 : b←
r4 : y ← not a

r2 < r4

6≡σ
w (Π \ {r1}, <).

Here, we can not remove r1 since r2 is involved in < and r1 is used to derive head(r1) = head(r2)
in an alternative way. Hence, we suppose that this transformation can be applied under weak order
equivalence whenever r1, r2 6∈ PR((Π, <)).

Lemma 5. Let (Π, <) be an ordered logic program and σ ∈ {D, W, B}. Furthermore, let be r1, r2 ∈
Π such that head(r1) = head(r2), body(r2) ⊆ body(r1), and r1, r2 6∈ PR((Π, <)).

Then, (Π, <) ≡σ
w (Π \ {r1}, <).

Proof 5 Assume (Π, <) 6≡σ
w (Π \ {r1}, <). Then, there exists an Π ′, r1 6∈ Π ′, such that

(Π ∪Π ′, <) 6≡σ (Π ∪Π ′ \ {r1}, <). Abbreviatory, we write Π∗ for Π ∪Π ′. There are 2 cases. Case
1: There exists an X ∈ ASσ((Π∗, <)) such that X 6∈ ASσ((Π∗ \ {r1}, <)); Case 2: There exists
an X ∈ ASσ((Π∗ \ {r1}, <)) such that X 6∈ ASσ((Π∗, <)). In Case 1, we have an <σ- preserving
enumeration of Π∗ wrt X , but not for Π∗ \ {r1}. That is, r1 is used to derive rules or to block
rules in an order preserving way, which can not be done by r2. That is, r1 precedes r2 in any
order-preserving enumeration (otherwise r2 can be used to derive rules or to block rules). But this
is a contradiction to body(r2) ⊆ body(r1) and r1, r2 6∈ PR((Π, <)). In Case 2, r1 can always be
inserted at the end of the enumeration E and we get an <σ- preserving enumeration of Π∗ wrt
X , which is a contradiction to the assumption. Thus, (Π, <) ≡σ

w (Π \ {r1}, <). �

Let be r, r′ ∈ Π such that there exists an A ⊆ body−(r′) such that head(r) ∈ head(r′) ∪
A, body−(r) ⊆ body−(r′) \ A and body+(r) ⊆ body+(r′), then the transformation S-IMP states
that Π ≡s Π \ {r′}. Since this transformation has been developed for programs with disjunction
in the head of rules, we have to adapt the condition head(r) ∈ head(r′) ∪ A to normal logic pro-
grams. Whenever head(r) = head(r′), we have exactly the transformation NONMIN. Whenever
head(r) ∈ A we obtain that r′ never contributes to an answer set. Hence, this transformation,
where head(r) ∈ A, can be applied under strong and under weak order equivalence.

The following transformation creates new rules to make other transformations applicable. Let
be r1 ∈ Π , where a ∈ body+(r1), Ga = {r2 ∈ Π | head(r2) = a}, and Ga 6= ∅. Then, transfor-
mation WGPPE states that Π ≡s Π ∪ G′

a holds where G′
a = {head(r1) ← (body+(r1) \ {a}) ∪

not body−(r1) ∪ body(r2) | r2 ∈ Ga}. Let us consider the following example:

(Π, <) =

r2 : a←
r1 : b← a

r3 : y ← not b

r1 < r3

and (Π ∪ {rGa}, <) =

r2 : a←
r1 : b← a

rGa : b←
r3 : y ← not b

r1 < r3

for σ ∈ {D, W, B}. We observe (Π, <) 6≡σ
w (Π ∪ {rGa}, <). Analogously to Lemma 5, we observe

that r1 cannot be involved in < if this transformation should be possible under ≡σ
w, since rules

from G′
a are alternatives to derive rules in an order preserving way.

Lemma 6. Let (Π, <) be an ordered logic program and σ ∈ {D, W, B}. Furthermore, let be r1 ∈
Π, r1 6∈ PR((Π, <)) a ∈ body+(r1), Ga = {r2 ∈ Π | head(r2) = a} and Ga 6= ∅. Then, (Π, <) ≡σ

s

(Π ∪G′
a, <) for G′

a = {head(r1)← (body+(r1) \ {a}) ∪ not body−(r1) ∪ body(r2) | r2 ∈ Ga}.

5 Conclusions and Further work

We have presented the notion of weak order equivalence for logic programs with rule preferences,
so called ordered programs. We have considered three semantics for handling preferences and have
characterized weak order equivalence under these semantics. Furthermore, we have provided several
program transformations for simplifying preference relations and the underlying logic programs.

The three considered preference semantics have successfully been used for information-site
selection [7]. There, a prototypical environment of a movie domain has been developed, which
comprises (i) basic domain knowledge, (ii) XML sources containing movie data wrapped from
the Internet Movie Database [11] and other movie related data sources, and (iii) suitable site
descriptions. Queries are formulated in XML-QL [5], and can be executed after site selection on
the respective source. Rule-based preferences are then used to select sites such that the utility of
the answer, in terms of quality of the result and other criteria is as large as possible for the user.
Hence, notions of equivalence for ordered programs can be used to optimize databases.

In [9], strong order equivalence for ordered programs has been defined and characterized for the
considered preference semantics. Strong order equivalence imposes rigorous conditions on ordered
programs being strongly order equivalent (cf. Theorem 1 and 2), e.g. programs have to coincide
on their preference relations and on rules contributing to answer sets. Hence, we have considered
in this work a weaker notion of order equivalence. We have pointed out that this weaker notion
imposes softer conditions on ordered programs being weakly order equivalent. More precisely,
only strong equivalence of the underlying logic program is required, whereas the identicalness of
preference relations and rules contributing to answer sets is not supposed.

The considered preference semantics yield an increasing number of preferred answer sets, i.e.
ASD((Π, <)) ⊆ ASW ((Π, <)) ⊆ ASB((Π, <)) ⊆ AS(Π) for any ordered program (Π, <). In [9],
we have found out that under strong equivalence this relationship is changed. More precisely, if
two ordered programs are strongly <B- equivalent, then they are strongly <W - equivalent, and
they are strongly <W -equivalent if and only if they are strongly <D-equivalent. Interestingly,
Theorem 4 shows us that under weak order equivalence no relationship between the semantics
exists.

In Section 4, we have considered several program transformations on ordered programs under
weak order equivalence wrt the underlying preference semantics. We have concentrated on two
types of program transformations: (1) simplifications of preference relations and (2) simplifications
of the underlying logic programs. This is reasonable since rules and preferences interact with each
other. Theorem 5- 7 describe simplifications of preference relations. Theorem 8 shows one condition
when the given preference relation is totally redundant. In further studies we want to characterize
preference relations that have no influence on determing preferred answer sets.

Regarding simplifications of the underlying logic programs, we have reconsidered the transfor-
mations in [1, 17, 8, 14] wrt strong equivalence. All are considered under the aspect that removable
rules are not involved in preference relations. The transformation TAUT is possible under weak
and strong order equivalence only for the D- and W -semantics. Reductions RED− and CONTRA
are possible under weak and strong order equivalence wrt all preference semantics. Transformation
NONMIN and WGPPE are not possible under strong order equivalence, but they become ap-
plicable under weak order equivalence as long as one makes further restrictions to the preference
relations. The simplification S-IMP restricted to normal logic programs falls in one case back to
NONMIN and in the other case, the redundant rules becomes never applicable. Hence, in the
last case, the transformation is possible under strong and weak order equivalence.

As with strong order equivalence, a definition of weak order equivalence in terms of SE-
models [16] seems to be inappropriate since SE-models are atom-based and the considered prefer-
ence semantics are rule-based.

In an extended version of this paper, we want to define other simplifications on ordered pro-
grams under weak order equivalence, where a difference between the preference semantics is ap-
pearing. In this paper, we have made a first step into this direction with Theorems 6 and 7 for the
B-semantics. Also, we have studied only transformations, where one rule or preference relations
are removed separately. In future work, we want to analyze program transformations, which (i)

remove several rules in one step and (ii) remove rules and preference relations together. Beyond
this, we want to investigate complexity issues.

Acknowledgements

The author was supported by the German Science Foundation (DFG) under grant SCHA 550/6-
4, TP C and by the EC under project IST-2001-37004 WASP.

References

1. S. Brass and J. Dix. Semantics of (disjunctive) logic programs based on partial evaluation. Journal
of Logic Programming, 40(1):1–46, 1999.

2. G. Brewka and T. Eiter. Preferred answer sets for extended logic programs. Artificial Intelligence,
109(1-2):297–356, 1999.

3. J. Delgrande, T. Schaub, and H. Tompits. A framework for compiling preferences in logic programs.
Theory and Practice of Logic Programming, 3(2):129–187, March 2003.

4. J. Delgrande, T. Schaub, H. Tompits, and K. Wang. A classification and survey of preference handling
approaches in nonmonotonic reasoning. Computational Intelligence, 20(2):308–334, 2004.

5. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A query language for xml. Computer
Networks, 31(11-16):1155–1169, 1999.

6. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. A Generic Approach for Knowledge-Based In-
formation Site Selection. In D. Fensel, F. Giunchiglia, D. McGuiness, and M.-A. Williams, editors,
Proceedings Eighth International Conference on Principles of Knowledge Representation and Reason-
ing (KR-02), April 22-25, Toulouse, France, pages 459–469. Morgan Kaufmann, 2002. Extended
version Technical Report INFSYS RR-1843-02-09, TU Wien, 2002.

7. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. A generic approach for knowledge-based information-
site selection. In D. Fensel, F. Giunchiglia, D. McGuiness, and M. Williams, editors, Proceedings of
the Eighth International Conference on the Principles of Knowledge Representation and Reasoning,
pages 459–469. Morgan Kaufmann Publishers, 2002.

8. T. Eiter, M. Fink, H. Tompits, and S. Woltran. Simplifying logic programs under uniform and strong
equivalence. In V. Lifschitz and I. Niemelä, editors, Proceedings of the Seventh International Con-
ference on Logic Programming and Nonmonotonic Reasoning (LPNMR’04), volume 2923 of Lecture
Notes in Computer Science, pages 87–99. Springer-Verlag Heidelberg, 2004.

9. W. Faber and K. Konczak. Strong equivalence for logic programs with preferences. In L. Kaelbling
and A. Saffiotti, editors, Proceedings of the Nineteenth International Joint Conference on Artificial
Intelligence (IJCAI-05), pages 430–435, 2005.

10. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proceedings of
the International Conference on Logic Programming, pages 1070–1080. The MIT Press, 1988.

11. The internet movie database. http://imdb.com/.
12. V. Lifschitz, D. Pearce, and A. Valverde. Strongly Equivalent Logic Programs. ACM Transactions on

Computational Logic, 2(4):526–541, 2001.
13. J. Lloyd. Foundations of Logic Programming. Symbolic Computation. Springer-Verlag, 2nd edition,

1987.
14. M. Osorio, J.A. Navarro, and J. Arrazola. Equivalence in answer set programming. In Logic Based

Program Synthesis and Transformation, 11th International Workshop (LOPSTR 2001), volume 2372
of Lecture Notes in Computer Science, pages 57–75. Springer, 2001.

15. T. Schaub and K. Wang. A semantic framework for preference handling in answer set programming.
Theory and Practice of Logic Programming, 3(4-5):569–607, 2003.

16. H. Turner. Strong equivalence made easy: nested expressions and weight constraints. Theory and
Practice of Logic Programming, 3(4-5):609–622, 2003.

17. K. Wang and L. Zhou. Comparisons and computation of well-founded semantics for disjunctive logic
programs. ACM Transactions on Computational Logic, 6(2):295–327, 2005.

18. K. Wang, L. Zhou, and F. Lin. Alternating fixpoint theory for logic programs with priority. In
Proceedings of the First International Conference on Computational Logic, volume 1861 of Lecture
Notes in Computer Science, pages 164–178. Springer-Verlag, 2000.

