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Abstract
In this work we tackle the problem of checking strong equivalence of logic
programs that may contain local auxiliary atoms, to be removed from their
stable models and to be forbidden in any external context. We call this prop-
erty projective strong equivalence (PSE). It has been recently proved that
not any logic program containing auxiliary atoms can be reformulated, un-
der PSE, as another logic program or formula without them – this is known
as strongly persistent forgetting. In this paper, we introduce a conservative
extension of Equilibrium Logic and its monotonic basis, the logic of Here-and-
There, in which we deal with a new connective ‘|’ we call fork. We provide
a semantic characterisation of PSE for forks and use it to show that, in this
extension, it is always possible to forget auxiliary atoms under strong persis-
tence. We further define when the obtained fork is representable as a regular
formula.
Keywords: Answer Set Programming; Non-Monotonic Reasoning;
Equilibrium Logic; Denotational Semantics; Forgetting; Strong Equivalence

Introduction

Answer Set Programming (ASP [1]) has become an established problem-
solving paradigm for Knowledge Representation and Reasoning (KRR). The
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reasons for this success derive from the practical point of view, with the
availability of efficient solvers [2, 3] and application domains [4], but also
from its solid theoretical foundations, rooted in the stable models [5] se-
mantics for normal logic programs that was later generalised to arbitrary
propositional [6], first-order [7, 8] and infinitary [9] formulas. An important
breakthrough that supported these extensions of ASP has been its logical
characterisation in terms of Equilibrium Logic [6] and its monotonic basis,
the intermediate logic of Here-and-There (HT). Despite its expressiveness, a
recent result [10] has shown that Equilibrium Logic has limitations in cap-
turing the representational power of auxiliary atoms, which cannot always
be forgotten. To illustrate this point, take the following problem.

Example 1. Two individuals, mother and father, both carrying alleles a and
b, procreate an offspring. We want to generate all the possible ways in which
the offspring may inherit its parents’ genetic information.

According to Mendelian laws, we should obtain three possible combina-
tions that, ignoring their frequency, correspond to the sets of alleles {a}, {b}
and {a, b}. These are, in fact, the three classical models of disjunction a ∨ b.
To obtain these three solutions as stable models in ASP, the straightforward
way would be to use the three rules:

a ∨ ¬a b ∨ ¬b ⊥ ← ¬a ∧ ¬b (P1)

We assume here some familiarity with ASP: disjunctions of the form p∨¬p act
as non-deterministic choice rules (allowing the arbitrary inclusion of atom p)
and ⊥ ← ¬a∧¬b is a constraint forbidding models where a∨b does not hold.
Moreover, when we include p ∨ ¬p for all atoms, as in the example, stable
models just coincide with classical models. A drawback of this representation
is that it does not differentiate the information coming from each parent,
possibly becoming a problem of elaboration tolerance. For instance, if only
the mother’s information were available, one would expect to obtain the
stable models {a} and {b} but not {a, b}, as there is no evidence of that
combination without further information about the father. So, the mother
alone would be better represented by a regular disjunction a ∨ b. However,
we cannot represent each parent as an independent disjunction like that,
since (a ∨ b) ∧ (a ∨ b) just amounts to (a ∨ b) and the combination {a, b} is
not obtained. A simple way to represent these two disjunctions separately is
using auxiliary atoms to keep track of alleles from the mother (ma∨mb) and
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the father (fa ∨ fb). This leads to program P2:

ma ∨mb a← ma b← mb (Pm)
fa ∨ fb a← fa b← fb (Pf )

consisting of the mother’s contribution Pm and the father’s contribution Pf .
Four stable models are obtained from P2, {ma, fa, a}, {mb, fb, b}, {ma, fb, a, b}
and {mb, fa, a, b}, but if we project them on the original vocabulary V =
{a, b} (i.e. we remove auxiliary atoms), they collapse to three {a}, {b} and
{a, b} as expected. Note that, although auxiliary atoms in this example have
a meaning in the real world (they represent the effective sources of each
inherited allele) they were not part of the original alphabet V = {a, b} of
Example 1, which does not distinguish between the same effect {a, b} but
due to different sources {ma, fb, a, b} and {mb, fa, a, b}.

As we have seen, P1 and P2 are “V -equivalent” in the sense that they yield
the same stable models when projected to alphabet V = {a, b}. A natural
question is whether this also holds in any context, that is, if P1∪Q and P2∪Q
also yield the same V -projected stable models, for any context Q in the target
alphabet V (since we want to keep auxiliary atoms local or hidden). This is
obviously a kind of strong equivalence relation [11] – in fact it is one of the
possible generalisations1 of strong equivalence studied in [12]. In this paper,
we will just call it projective strong equivalence (PSE) with respect to V , or
V -strong equivalence for short. The PSE relation has also been used in the
literature for comparing a program P and some transformation tr(P ) that
either extends the vocabulary with new auxiliary atoms [13] (called there
strong faithfulness) or reduces it for forgetting atoms as in [10] (called there
strong persistence).

As we will see later, programs P1 and P2 are indeed V -strongly equiva-
lent, so they express the same combined knowledge obtained from both par-
ents. However, if we want to keep program Pm alone capturing the mother’s
contribution, there is no possible {a, b}-strongly equivalent representation in
Equilibrium Logic (the same happens with Pf ). In other words, we cannot
forget atoms ma and mb in Pm and get a program preserving PSE. This
impossibility follows from a recent result in [10] that shows that forgetting

1It corresponds to relativised strong equivalence (with respect to V ) with projection
(with respect to V ).
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atoms under strong persistence is sometimes impossible. In practice, this
means that auxiliary atoms in ASP are more than ‘just’ auxiliary, as they
allow one to represent problems that cannot be captured without them. A
natural idea is to consider an extension of ASP in which forgetting auxiliary
atoms is always possible.

In this paper, we extend logic programs to include a new construct ‘ | ’
we call fork and whose intuitive meaning is that the stable models of P | P ′
correspond to the union of stable models from P and P ′ in any context2 Q,
that is SM [(P | P ′) ∧Q] = SM [P ∧Q] ∪ SM [P ′ ∧Q]. Using this construct,
we can represent Example 1 as the conjunction of two forks (a | b) ∧ (a | b),
one per each parent. This conjunction of forks is not idempotent but will
actually amount to (a | b | (a ∧ b)). We will show that forgetting is always
possible in forks but some of them, such as (a | b), cannot be represented in
Equilibrium Logic.

The rest of the paper is organised as follows. The next section recalls basic
definitions of HT and Equilibrium Logic. Then, we introduce an alternative
characterisation of HT in terms of T -supports. In the next section, we extend
the syntax with the fork connective and generalise the semantics to sets of
T -supports (so-called T -views). After that, we characterise PSE for forks
and relate this property to forgetting. Finally, we discuss related work and
conclude the paper. Proofs of results are collected in the Appendix.

Preliminaries

We begin by recalling some basic definitions and results related to HT.
Let At be a finite set of atoms called the (propositional) signature. A (propo-
sitional) formula ϕ is defined using the grammar:

ϕ ::= ⊥
∣∣∣∣∣∣∣∣∣ p

∣∣∣∣∣∣∣∣∣ ϕ ∧ ϕ
∣∣∣∣∣∣∣∣∣ ϕ ∨ ϕ

∣∣∣∣∣∣∣∣∣ ϕ→ ϕ

where p is an atom p ∈ At. We will use Greek letters ϕ, ψ, γ and their vari-
ants to stand for formulas. We define the derived operators ¬ϕ def= (ϕ→ ⊥),
> def= ¬⊥ and ϕ↔ ψ def= (ϕ→ ψ) ∧ (ψ → ϕ). Given a formula ϕ, by At(ϕ) ⊆
At we denote the set of atoms occurring in ϕ. A literal is an atom p or its
negation ¬p. A program is a set of implications of the form α → β where
α is a conjunction of literals and β a disjunction of literals. A theory is a

2For simplicity, we understand programs as the conjunction of their rules.
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set of formulas. For simplicity, we consider finite theories understood as the
conjunction of their formulas. The extension to infinite theories is straight-
forward.

A classical interpretation T is a set of atoms T ⊆ At. We write T |= ϕ to
stand for the usual classical satisfaction of a formula ϕ. An HT-interpretation
is a pair 〈H,T 〉 (respectively called “here” and “there”) of sets of atoms H ⊆
T ⊆ At; it is said to be total when H = T . The fact that an interpretation
〈H,T 〉 satisfies a formula ϕ, written 〈H,T 〉 |= ϕ, is recursively defined as
follows:
• 〈H,T 〉 6|= ⊥

• 〈H,T 〉 |= p iff p ∈ H

• 〈H,T 〉 |= ϕ ∧ ψ iff 〈H,T 〉 |= ϕ and 〈H,T 〉 |= ψ

• 〈H,T 〉 |= ϕ ∨ ψ iff 〈H,T 〉 |= ϕ or 〈H,T 〉 |= ψ

• 〈H,T 〉 |= ϕ → ψ iff both (i) T |= ϕ → ψ and (ii) 〈H,T 〉 6|= ϕ or
〈H,T 〉 |= ψ

By abuse of notation, we use ‘|=’ both for classical and for HT-satisfaction:
the ambiguity is removed by the form of the left interpretation (a single set
T for classical and a pair 〈H,T 〉 for HT). It is not difficult to see that, for
total interpretations, 〈T, T 〉 |= ϕ amounts to classical satisfaction T |= ϕ.
A formula ϕ is an HT-tautology (or is HT-valid) iff it is satisfied by any
HT-interpretation. HT is strictly weaker than classical logic. For instance,
the excluded middle ϕ∨¬ϕ is not valid in HT, but the weak excluded middle:

¬ϕ ∨ ¬¬ϕ (1)

is an HT-tautology. On the other hand, since HT is an intermediate logic,
any intuitionistic tautology is also an HT tautology.

An HT-interpretation 〈H,T 〉 is a model of a theory Γ if 〈H,T 〉 |= ϕ for
all ϕ ∈ Γ; otherwise, 〈H,T 〉 is a countermodel of Γ. Two formulas ϕ and ψ
are HT-equivalent if they have the same models: this is the same as requiring
that ϕ↔ ψ is a tautology.

Proposition 1 (Persistence). For any HT-interpretation 〈H,T 〉 and any
formula ϕ:
〈H,T 〉 |= ϕ implies 〈T, T 〉 |= ϕ (i.e. T |= ϕ classically).
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Rather than obtaining the models of a formula, we will sometimes be
interested in the converse problem, namely, obtaining a formula from a set of
HT-models – this problem was studied in [14]. Given an HT-interpretation
〈H,T 〉 we define the formula (or clause) C〈H,T 〉 as:( ∧

a∈H
a

)
∧
( ∧
b∈At \T

¬b
)
∧
( ∧
c∈T \H

¬¬c
)
∧
( ∧
d,e∈T\H, d,e

(d→ e)
)

and, for any set of HT-interpretations S, we define the disjunction of all such
formulas as:

ΦS
def=

∨
〈H,T 〉∈S

C〈H,T 〉

Example 2. For signature At = {a, b}, take the set of HT-interpretations:

S = { 〈{p}, {p}〉, 〈{q}, {q}〉, 〈{p}, {p, q}〉, 〈{q}, {p, q}〉, 〈{p, q}, {p, q}〉}.

for signature At = {p, q}. Formula ΦS is the disjunction of clauses:

(H,T ) ∈ S C〈H,T 〉

〈{p}, {p}〉 p ∧ ¬q (2)
〈{q}, {q}〉 q ∧ ¬p (3)
〈{p}, {p, q}〉 p ∧ ¬¬q (4)
〈{q}, {p, q}〉 q ∧ ¬¬p (5)
〈{p, q}, {p, q}〉 p ∧ q (6)

In general, ΦS has as many clauses as interpretations in S but, normally,
the formula can be simplified3. In this case, if we apply distributivity on
(2) ∨ (4) we get p ∧ (¬q ∨ ¬¬q). The last conjunct is an instance of weak
excluded middle (1) and can removed leaving p. Using the same reasoning
(3) ∨ (5) ↔ q. Finally, this leaves the disjunction p ∨ q ∨ (p ∧ q) that is
intuitionistically equivalent to p ∨ q. In fact, it is easy to check that our
starting set S precisely collects the HT-models of p ∨ q. �

It should be noticed, however, that not any arbitrary set S of interpre-

3A systematic simplification method is explained in [15]: that method starts from coun-
termodels instead, and obtains a minimal-size logic program as a result.
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tations may correspond to a set of models, since persistence (Proposition 1)
must be preserved. We say that a set S of HT-interpretations is total-closed
if 〈H,T 〉 ∈ S implies 〈T, T 〉 ∈ S. It is easy to see that S in Example 2 is
total-closed.

Theorem 1 (Theorem 2 in [14]). Each total-closed set S of interpretations
is the set of HT-models of the disjunction of clauses ΦS.

An alternative way to obtain the HT-models of a formula ϕ is using
Ferraris’ reduct [16], ϕT , defined as the result of replacing by⊥ those maximal
subformulas of ϕ that are not (classically) satisfied by interpretation T . As an
example, given ϕ = (¬a→ b) we have the reducts ϕ∅ = ⊥, ϕ{a} = (⊥ → ⊥),
ϕ{b} = (¬⊥ → b) and ϕ{a,b} = (⊥ → b). The correspondence with HT-
satisfaction is given by:

Proposition 2 (Lemma 1, [16]). Given H ⊆ T : 〈H,T 〉 |= ϕ iff H |= ϕT .

A total interpretation 〈T, T 〉 is an equilibrium model of a formula ϕ iff
〈T, T 〉 |= ϕ and there is no H ⊂ T such that 〈H,T 〉 |= ϕ. If so, we say that T
is a stable model of ϕ. By Proposition 2, this means that T is a stable model
of ϕ iff it is a minimal classical model of ϕT . We write SM[ϕ] to stand for
the set of stable models of ϕ. Moreover, we represent their projection onto
some vocabulary V as SMV [ϕ] def= {T ∩ V | T ∈ SM[ϕ] }.

Definition 1 (projective strong entailment/equivalence). Let ϕ and
ψ be formulas and V ⊆ At some vocabulary (set of atoms). We say that ϕ
V -strongly entails ψ, written ϕ |∼V ψ if SMV [ϕ ∧ γ] ⊆ SMV [ψ ∧ γ] for any
formula γ such that At(γ) ⊆ V . We further say that ϕ and ψ are V -strongly
equivalent, written ϕ �V ψ, if both ϕ|∼V ψ and ψ |∼V ϕ, that is, SMV [ϕ∧γ] =
SMV [ψ ∧ γ] for any formula γ such that At(γ) ⊆ V .

When the vocabulary V ⊇ At(ϕ) ∪ At(ψ) contains the original language
of ϕ and ψ, the projection has no relevant effect and the previous definitions
amount to regular (non-projective) strong entailment and strong equivalence.
In this case, we simply drop the V subindex in the previous notations. The fol-
lowing results, respectively proved in [11] and [17], characterise non-projective
strong equivalence and entailment in terms of HT:

Proposition 3 (From [11] and [17]). Let ϕ, ψ be a pair of formulas. Then
(i) ϕ � ψ iff ϕ and ψ are HT-equivalent,
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(ii) ϕ |∼ ψ iff both ϕ classically entails ψ and, for any H, if 〈H,T 〉 |= ψ
and T |= ϕ then 〈H,T 〉 |= ϕ.

In the case of projected strong entailment and equivalence, a semantic
characterisation was provided in [12], although limited to the case of dis-
junctive logic programs. We will provide later a characterisation of strong
entailment and equivalence for fork formulas that, for the particular case
in which the fork operator does not occur, will also constitute an extension
of [12] to arbitrary propositional formulas.

T -supports

As we saw before, for deciding whether some total interpretation 〈T, T 〉
is an equilibrium model of a formula or not, we check its H-minimality
among models of the form 〈H,T 〉. It makes sense, therefore, to organise the
HT-models grouping those H components that correspond to each fixed T .
This idea was already explored in [18] and is extended in this section so it can
actually be used as a complete alternative characterisation of HT semantics.

Definition 2 (T -support). Given a set T of atoms, a T -support H is a set
of subsets of T , that is H ⊆ 2T , satisfying T ∈ H if H , ∅. We write HT to
stand for the set of all possible T -supports.

To increase readability of examples, we will just write a support as a
sequence of interpretations between square brackets. For instance, possible
supports for T = {a, b} are [{a, b} {a}], [{a, b} {b} ∅] or the empty support [ ].

Intuitively, H will be used to capture the set of “here” components H
that support the “there” world T as a model of a given formula ϕ, that is,
the set of H’s such that 〈H,T 〉 |= ϕ. When H is empty [ ], there is no support
for T , so 〈T, T 〉 6|= ϕ and thus, T is not even a classical model. If H is not
empty, this means we have at least some model 〈H,T 〉 and, by Proposition 1,
〈T, T 〉 must be a model too; this is why we require T ∈ H in the set. When
not empty, the fewer models in H, the more supported is T , since it is closer
to being stable. Seeing “more supported” as an ordering relation, the “most
supported” H (the top element) would precisely be H = [ T ] corresponding
to a stable model. This ordering relation is formally defined below.

Definition 3. Given a set T ⊆ At of atoms and two T -supports H and H′
we write H �T H′ iff either H = [ ] or H ⊇ H′ , [ ].
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Proposition 4. The relation �T is a partial order on HT with [ ] and [ T ]
its bottom and top elements, respectively. �

We usually writeH � H′ instead ofH �T H′ when clear from the context.
As an example, the classical interpretation T = {a, b} is more supported
in H1 = [{a, b} {a}] than in H2 = [{a, b} {a} {b} ∅], that is H2 � H1,
because H2 contains additional interpretations and is further from being
stable.The next result collects several useful properties about T -supports
and their ordering relation �.

Proposition 5. Given T -supports H, H′ and H′′ we have:

(i) H ∩H′ = [ ] iff H = [ ] or H′ = [ ],

(ii) if H′ � H′′ then H ∩H′ � H ∩H′′,

(iii) if [ ] , H′ � H′′ then H ∪H′ � H ∪H′′,

(iv) if H � H′ ∪H′′ then H � H′ or H � H′′. �

Given a T -support H, we define its complementary support H as:

H def=
{

[ ] if H = 2T
[ T ] ∪ {H ⊆ T | H < H} otherwise

We also define HV as the projection of every set in H to the vocabulary V ,
i.e., HV

def= {H ∩V | H ∈ H}. The relation between T -supports and formulas
is given by the following definition.

Definition 4 (T -denotation). Let T ⊆ At. The T -denotation of a formula
ϕ, written ~ϕ �T , is a T -support recursively defined as follows:

~⊥ �T def= [ ]
~ p �T def= {H ⊆ T | p ∈ H}

~ϕ ∧ ψ �T def= ~ϕ �T ∩ ~ψ �T

~ϕ ∨ ψ �T def= ~ϕ �T ∪ ~ψ �T

~ϕ→ ψ �T def=

 [ ] if ~ϕ �T , [ ] and ~ψ �T = [ ]
~ϕ �T ∪ ~ψ �T otherwise

The following proposition follows by structural induction and shows that
T -denotations can be used as an alternative semantics for the logic HT.
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Proposition 6. For any interpretation 〈H,T 〉 and formula ϕ:
〈H,T 〉 |= ϕ iff H ∈ ~ϕ �T .

Corollary 1. For any set T of atoms and propositional formulas ϕ, ψ, the
following conditions hold:

(i) T |= ϕ iff ~ϕ �T , [ ] iff T ∈ ~ϕ �T .

(ii) T is a stable model of ϕ iff ~ϕ �T = [ T ].

(iii) Given H ⊆ T : H ∈ ~ϕ �T iff H |= ϕT .

The last item asserts that the denotation ~ϕ �T can also be seen as a
semantic counterpart of Ferraris’ reduct ϕT .

Suppose that, for each T , we are given some arbitrary support σ(T ). The
following result asserts that any such arbitrary assignment of supports σ
corresponds to (the denotation of) some formula.

Proposition 7. Let σ be a function that assigns an arbitrary support σ(T ) ∈
HT for each T ⊆ At. Then, ~ΦS �

T = σ(T ) for all T where S def= {〈H,T 〉 |
H ∈ σ(T )}.

Proof. We observe first that S is total-closed: if 〈H,T 〉 ∈ S then H ∈ σ(T )
and, by construction of support, T ∈ σ(T ), and so 〈T, T 〉 ∈ S. Then,

H ∈ ~ΦS �
T ⇔ 〈H,T 〉 |= ΦS by Proposition 6
⇔ 〈H,T 〉 ∈ S by Theorem 1 and S total-closed
⇔ H ∈ σ(T ) by definition of S �

Example 3 (Implementing a choice). To implement a choice rule for
atom p (in modern ASP syntax, written 0 {p} 1 or just {p}) a knowledge
engineer uses an auxiliary atom q. As a first option, she considers the use of
rules:

(¬p→ q) ∧ (¬q → p) (7)

However, having a disjunctive ASP solver, another possibility could be:

p ∨ q (8)

Is there any substantial difference? �
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The T -denotations of both options are shown in Figure 1. According to
Corollary 1, stable models correspond to T ’s such that ~ϕ �T = [ T ], that
is, we get the two stable models {p} and {q} in both columns. In fact, all
rows coincide except for T = {p, q} where ∅ ∈ ~ (7) �{p,q} but ∅ < ~ (8) �{p,q}.
Proposition 6 tells us that a difference in T -denotations means that the for-
mulas are not HT equivalent, and so, they are not strongly equivalent [11].
In fact, the counterexample of strong equivalence is well-known in the litera-
ture: adding (p→ q)∧ (q → p) to (7) yields no stable model, while the same
addition to (8) produces stable model {p, q}.

T ~ (7) �T ~ (8) �T
∅ [ ] [ ]
{p} [ {p} ] [ {p} ]
{q} [ {q} ] [ {q} ]
{p, q} [{p, q} {p} {q} ∅ ] [ {p, q} {p} {q} ]

Figure 1: T -denotations for (7) and (8).

Even though denotations do not coincide, we can still observe that ~ (7) �T �
~ (8) �T holds in all rows, that is, the first formula is always less supported
(further from being stable) than the second one. In fact, this has an interest-
ing consequence, as stated by the next result:

Proposition 8. For any two propositional formulas ϕ, ψ the following hold:
(i) ϕ |∼ ψ iff ~ϕ �T � ~ψ �T for every set T ⊆ At of atoms,

(ii) ϕ � ψ iff ~ϕ �T = ~ψ �T for every set T ⊆ At of atoms.

While (ii) is an immediate consequence of Proposition 6, item (i) states
that ϕ strongly entails ψ iff the former is always less supported than the
latter. Note how Proposition 8 is much more readable than Proposition 3,
especially regarding strong entailment and its relation to strong equivalence.

In our example, Proposition 8 implies that if we replace (7) by (8) in any
program, we will get the same or perhaps more stable models, i.e., (7) |∼ (8).
Moreover, it is not difficult to check4 that this happens with ¬p → q and

4The only difference we get when removing ¬q → p from (7) in Figure 1 is that the
row for T = {p} gets an additional interpretation ∅. The same happens for T = {q} when
removing ¬p→ q instead.
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¬p→ q individually, that is, both (¬p→ q) |∼ (8) and (¬q → p) |∼ (8).
The previous analysis does not seem to solve our query in Example 3 in a

satisfactory way. After all, an additional important premise we are not using
is that auxiliary atom q is not supposed to appear anywhere else in the rest
of the program. So, if our context never contains q, there is no way to form
a positive loop between p and q. According to [19], disjunction (8) would
always be head-cycle-free and could be “shifted” into (7) to obtain the same
set of stable models. This points out that we should have some way to prove
(8) �V (7) for any alphabet V not containing q. As we have seen, regular
strong equivalence does not suffice for this purpose. We will be back to the
example later on.

Forks and T -views

A fork is defined using the grammar:

F ::= ⊥
∣∣∣∣∣∣∣∣∣ p

∣∣∣∣∣∣∣∣∣ (F | F )
∣∣∣∣∣∣∣∣∣ F ∧ F

∣∣∣∣∣∣∣∣∣ ϕ ∨ ϕ
∣∣∣∣∣∣∣∣∣ ϕ→ F

where ϕ is a propositional formula and p ∈ At is an atom. Notice that the
fork operator ‘|’ cannot occur in the scope of disjunction or negation, since
¬F stands for F → ⊥ and implications do not allow forks in the antecedent.
This definition suffices for the purposes of the current paper. However, the
extension of the semantics to arbitrarily nested connectives offers multiple
alternatives and it is unclear yet which properties should be satisfied. For
this reason, we leave the arbitrary nesting of forks for future work.

As we will see, a fork F will always be reducible to the form (ϕ1| . . . |ϕn)
where each ϕi is a formula. Thus, a natural way to define its semantics is
keeping a set of supports ∆ = {H1, . . . ,Hn} for each classical interpreta-
tion T . However, this intuition needs to be refined: if we allowed a pair of
supports in ∆ such that Hi � Hj, then Hi would be useless since, according
to Proposition 8 ii), if it yields a stable model, the latter is always pro-
duced by Hj too. For this reason, we will collect sets of supports that are �-
closed, so their maximal elements become the representative ones. Formally,
given a T -support H we define the set of (non-empty) �-smaller supports
↓H = {H′ | H′ � H} \ { [ ] }. This is usually called the ideal of H. Note
that, the empty support [ ] is not included in the ideal. As a result, ↓[ ] = ∅.
We extend this notation to any set of supports ∆ so that:
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↓∆ def=
⋃
H∈∆

↓H = { H′
∣∣∣ H′ � H,H ∈ ∆ } \ { [ ] }

Definition 5 (T -view). A T -view is a set of T -supports ∆ ⊆ HT that is
�-closed, i.e., ↓∆ = ∆.

If ∆ is a T -view and the �-greatest T -support [ T ] is included in ∆, then
∆ is precisely ↓[ T ]. We proceed next to define the semantics of forks in terms
of T -views. To emphasize the duality between conjunction and disjunction,
we will be interested in dealing with a weaker version of the membership
relation, ∈̂, defined as follows. Given a T -view ∆, we write H ∈̂∆ iff H ∈ ∆
or both H = [ ] and ∆ = ∅. We are now ready to extend the concept of
T -denotation to forks.

Definition 6 (T -denotation of a fork). Let At be a propositional signature
and T ⊆ At a set of atoms. The T -denotation of a fork F , written 〈〈F 〉〉T ,
is a T -view recursively defined as follows:

〈〈⊥ 〉〉T def= ∅

〈〈 p 〉〉T def= ↓~ p �T for any atom p

〈〈F ∧G 〉〉T def= ↓{ H ∩H′
∣∣∣ H ∈ 〈〈F 〉〉T and H′ ∈ 〈〈G 〉〉T }

〈〈ϕ ∨ ψ 〉〉T def= ↓{ H ∪H′
∣∣∣ H ∈̂ 〈〈ϕ 〉〉T and H′ ∈̂ 〈〈ψ 〉〉T }

〈〈ϕ→ F 〉〉T def=
{

{ 2T } if ~ϕ �T = [ ]
↓{ ~ϕ �T ∪H

∣∣∣ H ∈ 〈〈F 〉〉T } otherwise

〈〈F | G 〉〉T def= 〈〈F 〉〉T ∪ 〈〈G 〉〉T

We will see later that the fork operator ‘|’ is commutative, associative and
idempotent and, also that conjunction and implication distribute over ‘|’. As
for the rest of operators, note that the definitions above also cover propo-
sitional formulas. The following result shows that this new T -denotation of
a propositional formula ϕ as a T -view, 〈〈ϕ 〉〉T , is precisely the ideal of its
T -denotation as a T -support ~ϕ �T .

Proposition 9. Let ϕ be a propositional formula and T ⊆ At be a set of
atoms. Then, 〈〈ϕ 〉〉T = ↓~ϕ �T .
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Corollary 2. Given a propositional formula ϕ, a set T ⊆ At of atoms is a
stable model of ϕ iff 〈〈ϕ 〉〉T = ↓[ T ].

Corollary 2 provides a natural way to define stable models of forks.

Definition 7. Given a fork F , we say that T ⊆ At is a stable model of F
iff 〈〈F 〉〉T = ↓[ T ] or, equivalently, [ T ] ∈ 〈〈F 〉〉T . SM[F ] denotes the set of
stable models of F .

The intuition behind a fork is that we can collect its stable models indepen-
dently:

Proposition 10. Given forks F and G: SM[F | G] = SM[F ] ∪ SM[G].

Once SM[F ] is defined, we can immediately extend the definition of
V -strong entailment and equivalence to forks in the obvious way, i.e., us-
ing forks instead of propositional formulas. To be precise:

Definition 8 (projective strong entailment/equivalence of forks). Let
F and G be two forks and V ⊆ At some vocabulary (set of atoms). We say
that F V -strongly entails G, written F |∼V G if SMV [F ∧ L] ⊆ SMV [G ∧ L]
for any fork L such that At(L) ⊆ V . We further say that F and G are
V -strongly equivalent, written F �V G, if both F |∼V G and G |∼V F , that is,
SMV [F ∧ L] = SMV [G ∧ L] for any fork L such that At(L) ⊆ V .

As before, when V ⊇ At(F )∪At(G) we talk about non-projective strong
entailment/equivalence and just drop the V subindex. We postpone the effect
of projecting onto some vocabulary V to the next section and focus on the
regular, non-projected versions |∼ and �. As in Proposition 8, |∼ and � have
a simple characterisation in terms of denotations:

Proposition 11. For any pair of forks F,G the following hold:
(i) F |∼G iff 〈〈F 〉〉T ⊆ 〈〈G 〉〉T for every set T ⊆ At,

(ii) F � G iff 〈〈F 〉〉T = 〈〈G 〉〉T for every set T ⊆ At.

This helps us to derive the following interesting properties:
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Proposition 12. Let F,G, L be arbitrary forks and ϕ a formula. Then:

(F | G) | L � F | (G | L) (9)
F | G � G | F (10)

(F | G) � G if F |∼G (11)
(F | G) ∧ L � (F ∧ L) | (G ∧ L) (12)
ϕ→ (F | G) � (ϕ→ F ) | (ϕ→ G) (13)
ϕ→ F ∧G � (ϕ→ F ) ∧ (ϕ→ G) (14)

ϕ→ (ψ → F ) � ϕ ∧ ψ → F (15)
> → F � F (16)

¬ϕ | ¬¬ϕ � > (17)

As we can see, (9) and (10) respectively guarantee that the fork opera-
tor ‘|’ is associative and commutative. Property (11) is a kind of “subsump-
tion”: when we have F |∼G, then fork F is subsumed by G in F | G and so,
F can be removed. As an example of subsumption, take the fork (¬p→ q) |
(p∨q). As we saw before, (¬p→ q) |∼ (p∨q) because ~¬p→ q �T � ~ p∨q �T
for all T . Then, the ideal ↓~¬p → q �T is included in ↓~ p ∨ q �T which (by
Proposition 9) is the same as saying 〈〈 ¬p → q 〉〉T ⊆ 〈〈 p ∨ q 〉〉T . But then,
〈〈 (¬p → q) | (p ∨ q) 〉〉T = 〈〈 ¬p → q 〉〉T ∪ 〈〈 p ∨ q 〉〉T = 〈〈 p ∨ q 〉〉T . In other
words, (¬p→ q) | (p ∨ q) � (p ∨ q).

Properties (12) and (13) directly imply that we can reformulate any fork
in a normal form where ‘|’ is applied on a sequence of formulas:

Corollary 3. For any fork F , there is a strongly equivalent fork G � F of
the form G = (ϕ1 | . . . | ϕn) where each ϕi is a propositional formula. �

Note that, in general, the reduction of F into normal form may lead to a
final result G exponentially larger than F , due to the application of distribu-
tivity (12). Another important consequence of conjunction-distributivity (12)
is that, although ∧ is idempotent on propositional formulas, it ceases to be
so when connecting forks. In other words, (F | F ) � F in the general case.
As an illustration:

Example 4 (Counterexample of idempotence). Take, for instance, the
formalisation of Example 1 using the expression (a | b) ∧ (a | b). If we apply
distributivity and reduce to a normal form:
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(a | b) ∧ (a | b) � (a ∧ (a | b)) | (b ∧ (a | b)) distributivity (12)
� (a ∧ a) | (a ∧ b) | (b ∧ a) | (b ∧ b) distributivity (12)

and assoc. of |
� a | (a ∧ b) | (b ∧ a) | b ∧-idempotence
� a | (a ∧ b) | b commut. of ∧ and

‘|’-idempotence

but then, from the last expression, we must get stable model {a, b} from a∧b
(Proposition 10) whereas {a, b} is not among the stable models of (a | b). �

Projective strong equivalence/entailment

In this section, we provide a semantic characterisation of projective strong
entailment |∼V and equivalence �V for some vocabulary V ⊆ At. We say
that a T -support H is V -unfeasible5 iff there is some H ⊂ T in H satisfying
H ∩ V = T ∩ V ; we call it V -feasible otherwise. The reason for the name
“unfeasible” is that, if we take a formula ϕ with denotation ~ϕ �T = H, then
T will never become stable if we are only allowed to use vocabulary V when
adding a context γ. To do so, we would need ~ϕ ∧ γ �T = [ T ] but H ⊂ T
should also belong to the support since H and T are indistinguishable for
any γ over V .
Definition 9. Let V ⊆ At be a vocabulary and T ⊆ V be a set of atoms.
Then, the V -T -denotation of a fork F is a T -view defined as follows:

〈〈F 〉〉TV
def= ↓{ HV

∣∣∣ H ∈ 〈〈F 〉〉T ′ s.t. T ′ ∩ V = T and H is V -feasible }

In other words, we collect all the feasible supports H that belong to any
T ′-denotation 〈〈F 〉〉T ′ such that T ′ coincides with T for atoms in V , and
then we project the supports taking HV . In doing so, we can just consider
maximal H’s in 〈〈F 〉〉T ′ . As might be expected, projecting the T -denotation
of a fork F on a superset V ⊇ At(F ) of its atoms produces no effect:
Proposition 13. For any vocabulary V ⊆ At, fork F with At(F ) ⊆ V and
set T ⊆ V of atoms, 〈〈F 〉〉TV = 〈〈F 〉〉T .

5This notion is analogous to condition ii) in the definition of V -SE-models that char-
acterises relativised strong equivalence [20].
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More interestingly, the V -T -denotation of F can be used to precisely
characterise its projected stable models.

Proposition 14. For any vocabulary V ⊆ At, fork F and set T ⊆ V of
atoms, it holds that T ∈ SMV [F ] iff 〈〈F 〉〉TV = ↓[ T ].

We naturally extend the definitions of projective strong entailment/equivalence
of Definition 1 for propositional formulas to the case of forks. As a main re-
sult, we also extend Proposition 11 to the projective case.

Theorem 2. For any vocabulary V ⊆ At, forks F,G, the following hold:
(i) F |∼V G iff 〈〈F 〉〉TV ⊆ 〈〈G 〉〉TV for every set T ⊆ V of atoms, and

(ii) F �V G iff 〈〈F 〉〉TV = 〈〈G 〉〉TV for every set T ⊆ V of atoms.

Moreover, the following result shows that we can just use a formula as a
context instead of an arbitrary fork.

Proposition 15. For any vocabulary V ⊆ At, forks F,G, the following hold:
(i) F |∼V G iff SMV [F∧γ] ⊆ SMV [G∧γ] for any formula γ with At(γ) ⊆ V ,

(ii) F �V G iff SMV [F∧γ] = SMV [G∧γ] for any formula γ with At(γ) ⊆ V .

As an immediate consequence we can extend the characterisation of PSE
from disjunctive logic programs in [12] to arbitrary propositional formulas.

Corollary 4. For any vocabulary V ⊆ At, formulas ϕ, ψ, the following hold:
(i) ϕ |∼V ψ iff 〈〈ϕ 〉〉TV ⊆ 〈〈ψ 〉〉TV for every set T ⊆ V of atoms, and

(ii) ϕ �V ψ iff 〈〈ϕ 〉〉TV = 〈〈ψ 〉〉TV for every set T ⊆ V of atoms.

The next result guarantees that, for studying F |∼V G (and so, F �V G
too), atoms not occurring in those forks become irrelevant.

Theorem 3 (Free atom invariance). Let F and G be two forks and let At
be a signature such that At ⊃ At(F ) ∪At(G) and a ∈ At \ (At(F ) ∪At(G)),
for some atom a. For any V ⊆ At we have: F |∼V G for signature At iff
F |∼V ′ G for signature At′ = At \ {a} and V ′ = V \ {a}.

As a corollary, we can analyse F |∼V G with At ⊇ At(F )∪At(G) and projec-
tions V ⊆ At by just exclusively focusing on signature At′ = At(F ) ∪At(G)
and projecting on V ′ = V ∩ At′.
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Corollary 5 (Signature independence). Let F and G be two forks for a
signature At that may include additional atoms, that is, At(F )∪At(G) ⊆ At.
Given V ⊆ At, then F |∼V G for signature At is equivalent to F |∼V ′ G for
V ′ = V ∩ At′ under any signature At′ with At(F ) ∪ At(G) ⊆ At′ ⊆ At.

Example 5 (Example 3 continued). Back to Example 3, we can now
check the PSE of (7) = (¬p→ q)∧ (¬q → p) and (8) = (p∨ q). To do so, we
have to test if 〈〈 (7) 〉〉TV = 〈〈 (8) 〉〉TV for every T ⊆ V and any vocabulary V
not containing q. According to the corollary above (signature independence),
we can just restrict the study to At = {p, q} and V = {p}. Take 〈〈 (7) 〉〉TV
first. Definition 9 starts from (non-projective) denotations 〈〈 (7) 〉〉T ′ for T ′
in the original signature At = {p, q}. Since (7) is a propositional formula
(it contains no forks), by Proposition 9 we have 〈〈 (7) 〉〉T ′ = ↓~ (7) �T ′ , that
is, the maximal supports are just the T -denotations we already obtained in
Figure 1. Now, for vocabulary V = {p} we may only have T = {p} and
T = ∅. For the first case, the potential candidates T ′ such that T ′ ∩ V = {p}
are the rows T ′ = {p} and T ′ = {p, q} from Figure 1. However, the support
we have for latter is V -unfeasible because it contains H = {p} such that
H ⊂ {p, q} = T ′ but they coincide in the truth of V = {p}. Thus, for
T = {p} we only have the feasible (maximum) support [{p}] from T ′ = {p}
which yields 〈〈 (7) 〉〉{p}V = ↓ [ {p} ]. For T = ∅ the only non-empty case is
T ′ = {q} and, after removing atom q, we obtain [∅] as maximum support,
i.e., 〈〈 (7) 〉〉∅V = ↓[ ∅ ]. It is easy to see that (8) yields the same result: the
only difference we had was in the last row of Figure 1, for T ′ = {p, q}, but
this support is V -unfeasible again, as it also contains H = {p}.

To sum up 〈〈 (7) 〉〉{p}V = 〈〈 (8) 〉〉{p}V = ↓[ {p} ] and 〈〈 (7) 〉〉∅V = 〈〈 (8) 〉〉∅V =
↓[ ∅ ] so both formulas satisfy PSE, (7) �V (8). In other words, they have
the same behaviour in any context, assuming that q < V is an auxiliary
atom. It is not difficult to see that, as the auxiliary atom is wiped out in the
process, its name can be always changed by a fresh atom. In other words, to
put an example, we also have (7) �V (p ∨ q′) for any alphabet V such that
{q, q′} ∩ V = ∅. �

One important remark regarding projective strong equivalence ϕ �V ψ is
that replacements of ϕ by ψ are not guaranteed to be safe at any subformula
level, as happened with regular strong equivalence ϕ � ψ. Indeed, since
the latter corresponds to HT-equivalence [11] and HT satisfies the law of
substitution of equivalents, we know that, for instance, ϕ � ψ also implies
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ϕ ∨ γ � ψ ∨ γ or ϕ → γ � ψ → γ to put a pair of examples. Unfortunately,
this property is lost when we consider �V instead, which is only safe for
replacements in conjunctions or replacements of complete formulas inside a
theory. As a counterexample, take ϕ = q and ψ = ¬q and assume we study
their projective strong equivalence q �V ¬q with respect to a vocabulary V
that does not contain q. Thanks to signature independence (Corollary 5) we
can just focus on denotations with respect to signature At′ = {q}, i.e., the
only atom occurring in these formulas:

T ′ ~ q �T
′
~¬q �T ′

∅ [ ] [ ∅ ]
{q} [ {q} ] [ ]

Note that all supports are empty or singletons, so they are feasible. Now,
for the projection on V , due to Corollary 5 again, we can take V ′ = V ∩
At′ = ∅ since q < V . The only possible classical interpretation for an empty
vocabulary V ′ = ∅ is T = ∅ (all atoms false). To compute 〈〈 q 〉〉∅∅, the only
possibility is using T ′ = {q} since its support [ {q} ] is non-empty and
feasible. After removing atom q we get 〈〈 q 〉〉∅∅ = ↓[ ∅ ]. Similarly, for 〈〈 ¬q 〉〉∅∅
the only possibility is T ′ = ∅ and we get 〈〈 ¬q 〉〉∅∅ = ↓[ ∅ ] which, as we can
see, coincides with 〈〈 ¬q 〉〉, and so q �V ¬q. Moreover, in an empty signature,
the denotation we have obtained ↓[ ∅ ] corresponds to a tautology >. This
result is not surprising since atom q is going to be ignored in the “rest of
the theory” and formulas ϕ = q and ψ = ¬q only affect to the truth of q
but not to the rest of the signature. Thus q ∧ γ �V ¬q ∧ γ for any formula
γ in an alphabet V not containing q. Moreover, since q and ¬q behave as >
with respect to the rest of the theory, we even have the stronger condition
q ∧ γ �V ¬q ∧ γ �V γ.

Now, if we try to extrapolate this result to occurrences of q or ¬q as
subformulas in other expressions, PSE is not a guarantee any more. To see
why, take now the formulas q ∨ p and ¬q ∨ p. If we just consider projective
equivalence, we can immediately see that q ∨ p has stable model {p} while
¬q ∨ p has the unique stable model ∅ and they do not coincide for atom p
(which is not auxiliary). So, they cannot satisfy PSE since they do not even
satisfy projective equivalence. As expected from Corollary 4, it is not difficult
to check that their V -T -denotations differ. Note that q ∨ p is equivalent to
(8) and we had already obtained 〈〈 (8) 〉〉{p}V = ↓[ {p} ] and 〈〈 (8) 〉〉∅V = ↓[ ∅ ]
Without entering into further details, it can be checked that the (non-empty)
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V -T -denotations for ¬q ∨ p correspond to 〈〈 ¬q ∨ p 〉〉{p}V = ↓ [ {p} ∅ ] and
〈〈 ¬q ∨ p 〉〉∅V = ↓[ ∅ ].

Forgetting

As we mentioned in the introduction, PSE is closely related to forgetting.
Let At be a signature and V ⊆ At. Given an expression ϕ over At, a forgetting
operator is a partial function f(ϕ, V ) = ψ that assigns a new expression ψ
over6 V . Operator f is said to be strongly persistent iff ϕ �V f(ϕ, V ) for every
formula ϕ and set V ⊆ At of atoms for which it is defined. Now, imagine we
wish to apply forgetting on a fork F over At keeping atoms V ⊆ At. In light
of Corollary 4, we can start by obtaining the projected denotations 〈〈F 〉〉TV
for all T ⊆ V . This corresponds to a set of T -views that can be precisely
captured by another fork over V , as stated by the following result.

Proposition 16. Let V be a vocabulary V ⊆ At, and σ a mapping that
assigns some arbitrary T -view σ(T ) to each T ⊆ V . Let us define the set of
sets of HT-interpretations:

Σ def= { {〈H,T 〉 | H ∈ H} | T ⊆ V, H maximal T -view in σ(T )}

and enumerate them as Σ = {S1, . . . , Sn}. Then, fork Gσ
def= (ΦS1 | · · · | ΦSn)

captures σ, that is, 〈〈Gσ 〉〉T = σ(T ) for all T ⊆ V . �

Example 6. Suppose we have the mapping σ:

T maximal supports in σ(T )
{a} [ {a} ]

{b} [ {b} ]

{a, b} [ {a, b} {b} ]
[ {a, b} {a} ]

Applying Proposition 16 the set Σ will contain four sets of interpretations,

6Note that we are defining the forgetting operator with respect to the projected signa-
ture instead of the forgotten atoms At \ V , which is the usual definition in the literature.
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corresponding to the four maximal supports in σ(T ). They yield the formulas:

i Si ΦSi

1 {〈{a}, {a}〉} a ∧ ¬b
2 {〈{b}, {b}〉} b ∧ ¬a
3 {〈{b}, {a, b}〉, 〈{a, b}, {a, b}〉} (b ∧ ¬¬a) ∨ (a ∧ b)
4 {〈{a}, {a, b}〉, 〈{a, b}, {a, b}〉} (a ∧ ¬¬b) ∨ (a ∧ b)

In HT, the formula (a ∧ b) is stronger than the formulas (b ∧ ¬¬a) and
(a ∧ ¬¬b). Thus, we can remove (a ∧ b) in the last two disjunctions. This
leaves us the fork Gσ = (a ∧ ¬b) | (b ∧ ¬a) | (a ∧ ¬¬b) | (b ∧ ¬¬a). Applying
distributivity, we get (a ∧ (¬b | ¬¬b)) | (b ∧ (¬a | ¬¬a)). Finally, given (17)
this amounts to the final fork Gσ�(a | b). �

Definition 10 (Forgetting operator). We define the operator fk(F, V ) def=
Gσ where Gσ is obtained as in Proposition 16 above taking the mapping
σ(T ) = 〈〈F 〉〉TV . �

Theorem 4. Operator fk is a total, strongly persistent forgetting operator
over forks. In other words, for every fork F and set V ⊆ At of atoms,
At(fk(F, V )) ⊆ V and F �V fk(F, V ). �

Recall from [10] that such a total operator has been shown not to exist
for HT. However, since every propositional formula is also a fork, forgetting
in HT is now possible if we allow the target language to be extended with
the fork ‘ | ’ operator – “we can always forget as a fork.” Furthermore, the
following relation between the T -denotation of forks and of formulas sheds
light to the reason why it is not possible to forget inside HT.

Proposition 17. Given sets T ⊆ V ⊆ At of atoms, then:
(i) any formula ϕ with At(ϕ) ⊆ V satisfies 〈〈ϕ 〉〉TV = ↓~ϕ �T and, thus,
〈〈ϕ 〉〉TV has a �-maximum element;

(ii) for every T -view ∆ with a �-maximum element, there is a propositional
formula ϕ with At(ϕ) ⊆ V that satisfies 〈〈ϕ 〉〉TV = ∆ and 〈〈ϕ 〉〉T ′

V = ∅
for every T ′ ⊆ V with T ′ , T .

That is, there is a one-to-one correspondence between each assignment of
T -views with some �-maximum (i.e. unique maximal) element and a formula
modulo strong equivalence in the vocabulary V . On the other hand, there are
T -views that have more than one �-maximal element and, thus, they cannot
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be represented as formulas. That is, there are more theories modulo �V than
theories over V modulo �.
Example 7 (Examples 3 and 5 continued). To illustrate Proposition 17,
let us return to our Example 3. To forget the auxiliary atom q in (7)=(¬p→
q) ∧ (¬q → p) we can use its {p}-T -denotation we had already computed.
As we saw, both 〈〈 (7) 〉〉{p}V = ↓[ {p} ] and 〈〈 (7) 〉〉∅V = ↓[ ∅ ] have a unique,
maximum support in their respective views. This means that the obtained
projection can be represented as a formula ϕ such that ~ϕ �{p} = [{p}] and
~ϕ �∅ = [∅] or, if preferred, whose HT models are 〈{p}, {p}〉 and 〈∅, ∅〉. It is
easy to see that such a formula is precisely p∨¬p (or, equivalently, ¬¬p→ p)
which is also a well-known representation of a choice that does not require
auxiliary atoms. To conclude Example 3, we remind that (8)=(p ∨ q) and
notice that we have just proved in this way that (7) �V (8) �V p∨¬p so the
three representations are strongly equivalent modulo auxiliary atoms. �

Example 8. To see an example of forgetting that is not reducible to a propo-
sitional formula, consider program Pm from the introduction interpreted as
the conjunction of its rules, and assume we want to forget ma and mb. Let
us take all subsets T ′ ⊆ {a, b,ma,mb}. Since Pm is a formula, all its T ′-views
will have a �-maximum element, ~Pm �T

′ , shown in the left table of Figure 2
where, for brevity, we only show cases of non-empty supports (i.e., when T ′

is a classical model).

maximal supports in
T ′ 〈〈Pm 〉〉T

′

{ma, a} [ {ma, a} ]

{mb, b} [ {mb, b} ]

{ma, a, b} [ {ma, a, b} {ma, a} ]

{mb, a, b} [ {mb, a, b} {mb, b} ]

{ma,mb, a, b} [ {ma,mb, a, b}
{mb, a, b} {mb, b}
{ma, a, b} {ma, a} ]

maximal supports in
T 〈〈Pm 〉〉TV
{a} [ {a} ]

{b} [ {b} ]

{a, b} [ {a, b} {b} ]
[ {a, b} {a} ]

Figure 2: Forgetting ma and mb in Pm.

Now, according to the definition of 〈〈Pm 〉〉TV , for each T ⊆ V = {a, b}
we must find those T ′ such that T ′ ∩ {a, b} = T . For T = {a} the only
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possibility is T ′ = {ma, a} that, after removing ma, yields a maximum sup-
port [{a}]. The case for T = {b} is completely symmetric, yielding maximum
support [{b}]. But for T = {a, b} we get three candidate interpretations,
T ′1 = {ma, a, b}, T ′2 = {mb, a, b} and T ′3 = {ma,mb, a, b}. A first observa-
tion is that the support for T ′3 = {ma,mb, a, b} is {a, b}-unfeasible, since
it contains {ma, a, b} and {mb, a, b} that coincide with T ′3 for atoms {a, b}.
After removing ma,mb in the supports of the feasible candidates, T ′1 and
T ′2, the respective results are [ {a, b} {a} ] and [ {a, b} {b} ] that are not
�-comparable. Therefore, they become the two �-maximal supports in the
T -view 〈〈Pm 〉〉{a,b}V . Proposition 17 tells us that this is not representable as
a propositional formula, although Proposition 16 always guarantees a repre-
sentation as a fork. In particular, the denotations we obtained coincide with
the mapping σ from Example 6, where we used Proposition 16 to obtain the
fork Gσ�(a | b), that is the result we were expecting from the introduction.
Analogously, forgetting fa, fb in Pf yields a second fork (a | b). As for the
whole program P2 = Pm ∧ Pf , its (non-empty) V -T -denotations are:

T maximal supports in 〈〈P2 〉〉TV
{a} [ {a} ]

{b} [ {b} ]

{a, b} [ {a, b} ]

that, as we can see, have one �-maximum T -support per each T -view. This
implies that P2 is representable as a propositional formula over V . In fact,
the denotations 〈〈P2 〉〉TV coincide with 〈〈P1 〉〉T for every T , so P1 is the result
of forgetting ma and mb in P2. Moreover, if we represent Example 1 using a
fork per each parent, (a | b)∧ (a | b) we get again the same denotations, that
is, P1 � (a | b) ∧ (a | b) � (a | b | (a ∧ b)) (as we saw in Example 2). �

Our running example has illustrated that constructions like (a | b) cannot
be represented as propositional formulas or logic programs, showing the richer
expressiveness of forks under the assumption of a fixed vocabulary. However,
if auxiliary atoms are allowed, we have seen that (a | b) can be represented as
program Pm using the hidden atoms ma and mb. In fact, the rules we used
in Pm to encode (a | b) can be extrapolated so that any fork in normal form
can be represented as a formula with additional fresh atoms, as stated in the
following result:
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Proposition 18. Let F = (ϕ1 | · · · | ϕn) be a fork in normal form,
V = At(F ) and let

γ(F ) = (a1 ∨ · · · ∨ an) ∧ (a1 → ϕ1) ∧ · · · ∧ (an → ϕn)

be a formula with ai < V for all 1 ≤ i ≤ n. Then, F �V γ(F ).

Note that the encoding γ(F ) has linear size with respect to F and that γ(F ) is
always a formula. Therefore, the complexity of brave and cautious reasoning
for forks in normal form amounts to ΣP

2 and ΠP
2 -complete, as happens for

formulas in equilibrium logic [21]. If we jump to arbitrary forks, we can always
transform them into normal form and apply Proposition 18 to conclude:

Corollary 6. Any fork F can be rewritten as an At(F )-equivalent proposi-
tional formula ϕ that may contain auxiliary atoms.

However, as we explained before, the straightforward reduction into normal
form may cause an exponential blow up due to distributivity (13). A polyno-
mial reduction to normal form that introduces auxiliary atoms is still under
study.

Related work

In this section, we study relations to the two main topics in the paper:
fogetting and (variants of) strong equivalence.

Relation to forgetting
The introduction of forks in logic programs has allowed us to define a for-

getting operator fk(F, V ) that is total and modular, that is: fk(fk(F, V ), V ′) �
fk(F, V ′) for any V ′ ⊆ V . This means that there is no difference between
simultaneously forgetting a group of atoms7 or forgetting them one by one
in any order. Previous approaches in the literature were obviously focused
on programs without the (here introduced) forks. Therefore, for comparison
purposes, in the rest of this section, we consider the restriction of fk(ϕ, V )
to propositional formulas, that is, we consider the cases where fk(ϕ, V ) is
some formula ψ. Notice that, under this restriction, operator fk is not al-
ways defined: this is a consequence of the impossibility of arbitrary forgetting

7Remember that, in this paper, f(F, V ) means forgetting atoms At \ V .
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proved in [10]. As we saw, this is the case because some applications of fk
on formulas produce a fork that is not representable as a formula. For in-
stance, we saw in Example 8 that fk(Pm, {a, b}) = (a | b) and this fork has
no representation as a formula. Still, when fk produces a formula, Theorem 4
guarantees that strong persistence is preserved.

The approach in [10] not only detected that strongly persistent operators
are partial, but further established a condition that precisely captures when
these operators are defined (i.e., when it is possible to forget). We prove next
that there is a one-to-one correspondence between that condition and the
cases in which fk(ϕ, V ) can be represented as a formula (Proposition 17).
We begin recalling some definitions from [10].

Definition 11 (Forgetting instance, Definition 1 from [10]). Let C be
a class of programs over a signature At. A (forgetting) instance (over C) is
a pair 〈P,U〉 such that P ∈ C and U ⊆ At.

Definition 12 (Strong Persistence for Forgetting Instance, Defi-
nition 2 from [10]). A forgetting operator f over C satisfies SP〈P,U〉 if
SM[f(P, V ) ∪ R] = SMV [P ∪ R] for all programs R with At(R) ⊆ V , where
V = (At \ U). Also, f satisfies SPU if f satisfies SP〈P,U〉 for all P ∈ C.

Clearly, a forgetting operator f over C satisfies SP〈P,U〉 iff f(P, V ) �V P .

Definition 13 (Criterion Ω, Definition 3 from [10]). An instance 〈P,U〉
satisfies criterion Ω if there exists Y ⊆ V with V = (At \ U) such that the
set of sets:

RY
〈P,U〉 = { RY,A

〈P,U〉

∣∣∣ A ∈ RelY〈P,U〉 }
is non-empty and has no least element, where

RY,A
〈P,U〉 = { X ∩ V

∣∣∣ 〈X, Y ∪ A〉 |= P }

RelY〈P,U〉 = { A ⊆ U
∣∣∣ Y ∪ A ∈ ~P �Y ∪A and ∀A′ ⊂ A, Y ∪ A′ < ~P �Y ∪A }

Proposition 19. Given V = (At\U), the following conditions are equivalent:

• 〈P,U〉 does not satisfy Ω

• for any Y ⊆ V , 〈〈P 〉〉YV has only one maximal support
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Proof. Notice that, for any Y ⊆ V and A ⊆ U , we have (Y ∪ A) ∩ V = Y .
Moreover, the set of supports ~P �S with S ⊆ At such that S ∩ V = Y and
~P �S is V -feasible is the same as the set of supports ~P �Y ∪A with A ⊆ U
and such that for all A′ ⊂ A, Y ∪ A′ < ~P �Y ∪A. Besides, we have:

RY,A
〈P,U〉 = ~P �Y ∪AV .

Consequently, the setRY
〈P,U〉 represents the Y -view consisting of all Y -supports

of the form ~P �SV where S ⊆ At is such that S ∩ V = Y and ~P �S is V -
feasible, so the minimal elements (considering ⊆) of RY

〈P,U〉 are just the max-
imal elements (considering �) of 〈〈P 〉〉YV . Therefore, we can conclude that
〈P,U〉 does not satisfy criterion Ω iff for any Y ⊆ V , the Y -view 〈〈P 〉〉YV has
only one maximal support.

�

The proof of the previous proposition shows that the Ω criterion coin-
cides with the condition in Proposition 17, that is, that each T -view in the
denotation contains a unique maximal support. Consequently:

Theorem 5 (Theorem 2 and Corollary 1 from [10]). There is a forget-
ting operator f that satisfies SP〈P,U〉 iff 〈P,U〉 does not satisfy Ω.

Proof. In view of Proposition 17 and Proposition 19, the fork f(P, V ) can be
represented as a formula iff 〈P,U〉 does not satisfy Ω. �

Our main goal when defining the operator fk was to remove auxiliary
atoms: this operation must preserve the program behaviour for the rest of
atoms in any context. For this reason, the central property under considera-
tion was strong persistence. Other forgetting operators in the literature were
defined for different purposes. A recent and exhaustive classification of fam-
ilies of operators in terms of the properties they satisfy can be found in [22].
Our operator fk yields a propositional formula that is HT-equivalent to the
result obtained by Strong-AS forgetting fsas in [23]. Therefore, when both
are defined, fk satisfies the same main properties as those for fsas classified
by [22]. The main difference is that fsas is only defined for a strict syntac-
tic subclass whereas fk(ϕ, V ) is precisely defined (as a formula) when it is
possible to forget atoms At \ V in ϕ.

26



Relation to variants of strong equivalence
Regarding strong equivalence, the most relevant related work is surely [12],

which contains a characterisation of different types of equivalence of disjunc-
tive logic programs, including the case of (what we have called) PSE. In [12],
PSE is characterised in terms of semantic structures called certificates which,
as expected, have a strong relation to our denotations, as we will see next.

We start by reproducing the definitions of interpretation and model from [12].

Definition 14 (V -SE-interpretation/model). Let V ⊆ At be a set of
atoms. A V -SE-interpretation is a pair 〈H,T 〉 of sets of atoms such that
T ⊆ At and either H = T or H ⊂ T ∩ V . A V -SE-interpretation 〈H,T 〉 is
a V -SE-model of a formula ϕ if it satisfies:

i) T |= ϕ,

ii) for all H ′ ⊂ T with H ′ ∩ V = T ∩ V , H ′ 6|= ϕT , and

iii) if H ⊂ T , there exists H ′ ⊆ T with H ′ ∩ V = H such that H ′ |= ϕT .
The set of all V -SE-models of a formula ϕ is denoted by SEV[ϕ]. �

where |= above stands for classical implication and ϕT denotes Ferraris’
reduct8. Since a V -SE-interpretation 〈H,T 〉 satisfies H ⊆ T , it can be seen as
a particular case of an HT-interpretation. Due to the strong relation between
Ferraris’ reduct and the logic of HT (Proposition 2), we can easily rephrase
the conditions in Definition 14 in terms of HT-satisfaction as follows:

Proposition 20. Given a set of atoms V ⊆ At, a V -SE-interpretation
〈H,T 〉 is a V -SE-model of a formula ϕ iff

i) 〈T, T 〉 |= ϕ,

ii) for all H ′ ⊂ T with H ′ ∩ V = T ∩ V , 〈H ′, T 〉 6|= ϕ, and

iii) if H ⊂ T , there exists H ′ ⊆ T with H ′ ∩ V = H s.t. 〈H ′, T 〉 |= ϕ. �

And now, we can rephrase this again in terms of T -supports as follows:

Proposition 21. Given a set of atoms V ⊆ At, a V -SE-interpretation
〈H,T 〉 is a V -SE-model of a formula ϕ iff one of the following hold:

8The original definition in [12] uses the traditional Gelfond and Lifschitz’ reduct [5]
instead. Although both reducts are not generally equivalent, we can replace one by the
other in the current context due to T |= ϕ, H ⊆ T and Corollary 1 in [16].
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i) H = T and ~ϕ �T , ∅ (T |= ϕ),

ii) H ⊂ T , ∅ , ~ϕ �T is V -feasible and H ∈ ~ϕ �TV . �

Certificates from [12] were defined in the following way.

Definition 15 (certificate, Definition 4 from [12]). Let T ⊆ V ⊆ At
be sets of atoms and S be a set of V -SE-interpretations. A pair 〈X , T 〉 with
X ⊆ 2At, is a V -projection of S iff there exists T ′ ⊆ At such that

i) 〈T ′, T ′〉 ∈ S,

ii) T = T ′ ∩ V , and

iii) X = { H
∣∣∣ 〈H,T ′〉 ∈ S, H ⊂ T ′ }.

If V,W ⊆ At are two sets of atoms, a (V,W )-certificate of a formula ϕ is a
(V ∪W )-projection of SEV[ϕ]. �

The next result shows the correspondence between (V, V )-certificates and
our V -feasible T -supports.

Proposition 22. Given sets of atoms T ⊆ V ⊆ At and a set of sets of
atoms X ⊆ 2At, the pair 〈X , T 〉 is a (V, V )-certificate of a formula ϕ iff there
exists some T ′ ⊆ At such that T = T ′ ∩ V , ∅ , ~ϕ �T

′ is V -feasible and
~ϕ �T

′
V \{T} = X .

Definition 16. A (V,W )-certificate 〈X , T 〉 of a formula ϕ is said to be
minimal iff, Y ⊆ X implies Y = X for any (V,W )-certificate 〈Y , T 〉.

Proposition 23. Given sets of atoms T ⊆ V ⊆ At and a set X ⊆ 2At,
the pair 〈X , T 〉 is a minimal (V, V )-certificate of a formula ϕ iff there exists
some H maximal in 〈〈ϕ 〉〉TV such that H\{T} = X .

Using this result, our Corollary 4 extends Theorem 4 in [12] (for disjunc-
tive logic programs) so that:

Corollary 7. V -T -denotations characterise projective strong entailment and
equivalence of arbitrary propositional formulas, not only disjunctive logic pro-
grams. Moreover, this extended characterisation is also satisfied by certifi-
cates. �

Regarding complexity, the connection with [12] plus the results from [13]
can be used to prove the following result:
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Proposition 24. Given a set of atoms V ⊆ At and two propositional for-
mulas ϕ and ψ, deciding whether ϕ |∼V ψ is ΠP

4 -complete.

Proof. Hardness follows directly from the results in [12]. Regarding member-
ship, we can use the translation in [13] that obtains, for any formula ϕ, a
disjunctive logic program π(ϕ) whose size is linear with respect to ϕ. This
program is strongly faithful, that is, it satisfies ϕ �At(ϕ) π(ϕ). It is easy to
check that the computation of π(ϕ) in [13] runs in polynomial time. Hence,
ϕ |∼V ψ can be reduced to π(ϕ) |∼V π(ψ) in polynomial time. �

Since Proposition 18 provides a polynomial translation from forks in nor-
mal form into formulas, we can extrapolate Proposition 24 as follows:

Theorem 6. Checking V -strong entailment and V -strong equivalence of two
forks F and G in normal form is a ΠP

4 -complete problem.

Although we conjecture a similar complexity result for arbitrary forks, this
problem is still under study9. To sum up, we can see that certificates corre-
spond to our non-empty T -supports which, in practice, are the ones relevant
for checking projective strong entailment and equivalence. Our use of empty
T -supports (and their extension to T -views as ideals) is related with our need
of providing an algebraic semantics for forks, something that obviously was
not among the goals of [12].

Conclusions

We have extended the syntax and semantics of Here-and-There (HT)
to deal with a new type of construct ‘|’ called fork. We have studied the
property of projective strong equivalence (PSE) for forks: two forks satisfy
PSE for a vocabulary V iff they yield the same stable models projected on V
for any context over V . We also provided a semantic characterisation of PSE
that allowed us to prove that it is always possible to forget (under strong
persistence) an auxiliary atom in a fork, something recently proved to be
false in standard HT [10].

For future work, we plan to extend these results to other characterisations
of equivalence [24] and, in particular, study the case of Projective Uniform

9As said before, we are considering a possible polynomial reduction into normal form
that includes new auxiliary atoms.
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Equivalence, that is, PSE for vocabulary V where the context theories are
sets of atoms from V . The generalisation of forks to allow arbitrary nesting
of connectives is still ongoing work: several alternatives are under considera-
tion, but the properties they should satisfy are unclear yet. Another natural
extension of forks is to consider the addition of probabilities. In that way, for
instance, our example about Mendelian laws could reflect the proportion of
each possible combination, 1/4 for {a} and {b} and 1/2 for {a, b}. Doing so,
we conjecture a strong formal connection to CP-logic [25], where the use of
disjunction behaves as our fork connective. Note that, although forks do not
deal with probabilities, they allow a more general syntax than CP-logic pro-
grams, which additionally require the well-founded model to be defined on
all atoms. Similarly, we also plan a formal comparison with non-deterministic
causal laws [26].
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Appendix A. Proofs of results

Proof of Proposition 4. Since H ⊆ H for any H from HT , � is clearly
reflexive. Take H,H′ ∈ HT such that H � H′ and H′ � H. It could be that
H = H′ = [ ] or H ⊆ H′ and H′ ⊆ H which implies H = H′. Finally, to show
that � is transitive, take H � H′ and H′ � H′′. If H = [ ], then H � H′′.
Otherwise, the three T -supports are non empty and the fact that H′′ ⊆ H′
and H′ ⊆ H implies that H � H′′.

For the bottom and top elements, since any T -support H is either empty
or T ∈ H, it is clear that [ ] � H and H � [ T ] for any H ∈ HT . �

Proof of Proposition 5. We prove each property independently as follows:

(i) The “if” direction is trivial. For the “only if” direction, note that H ∩
H′ = [ ] implies T < H or T < H′ which, by definition of T -support,
implies that H = [ ] or H′ = [ ] hold.

(ii) If H ∩ H′ = [ ] the result is trivial. Hence, we assume without loss of
generality that H ∩ H′ , [ ]. Consequently, it holds that H , [ ] and
H′ , [ ]. Since H′ � H′′, then H′′ , [ ] and H′ ⊇ H′′. This implies that
H ∩H′ ⊇ H ∩H′′ and H ∩H′′ , [ ], so H ∩H′ � H ∩H′′.

(iii) Since H′ , [ ], it follows that H′ � H′′ implies that H′ ⊇ H′′, H′′ , [ ]
and also H∪H′ ⊇ H∪H′′. Furthermore, H′′ , [ ] implies H∪H′′ , [ ]
and, thus, it follows that H ∪H′ � H ∪H′′.

(iv) If H = [ ], the result holds by definition. Otherwise, H � H′ ∪ H′′
implies H ⊇ H′ ∪ H′′ and H′ ∪ H′′ , [ ]. In its turn, this implies that
H ⊇ H′ and H ⊇ H′′ and that either H′ , [ ] or H′′ , [ ] hold. Hence,
H � H′ or H � H′′ hold.

�

Proof of Proposition 8. In view of Proposition 3 and Proposition 6, we
know that ϕ |∼ ψ iff for any T ⊆ At, T |= ϕ implies both T |= ψ and
also H ∈ ~ϕ �T for any H ∈ ~ψ �T . Equivalently, for any T ⊆ At, it holds
that ~ϕ �T = [ ] or ~ψ �T , [ ] and ~ψ �T ⊆ ~ϕ �T which means that
~ϕ �T � ~ψ �T . �
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Now, in order to prove Proposition 9, we introduce first a group of four
lemmas on properties of sets of T -supports.

Lemma 1. Let ∆ be a set of T -supports and H be a T -support. Then,

↓{ H′ ∩H′′
∣∣∣ H′ ∈ ∆ and H′′ ∈↓H } = ↓{ H′ ∩H

∣∣∣ H′ ∈ ∆ }

Proof. First, it is clear that the ⊇ direction holds because H ∈↓H. For the
⊆ direction, notice that if H′ ∈ ∆ and H′′ � H, then H′ ∩H′′ � H′ ∩H, by
applying Proposition 5 (ii). �

Lemma 2. Let H and H′ be two T -supports. Then,

↓{ H′′ ∩H′
∣∣∣ H′′ ∈↓H } = ↓{H′ ∩H}

Proof. First, it is clear that the ⊇ direction holds because H ∈↓H. For the
⊆ direction, notice that if H′ ∈ ∆ and H′′ � H, then H′ ∩H′′ � H′ ∩H, by
applying Proposition 5 (ii). �

Lemma 3. Let ∆ be a set of T -supports and H a T -support. Then,

↓{ H′ ∪H′′
∣∣∣ H′ ∈̂∆ and H′′∈̂ ↓H } = ↓{ H′ ∪H

∣∣∣ H′ ∈̂∆ }

Proof. First, it is clear that the ⊇ direction holds because H∈̂ ↓H. For the
⊆ direction, we have two cases: if H = [ ], then ↓H = ∅ and H′′ = [ ].
Hence, H′ ∪ H = H′ and the statment holds. Otherwise, H , [ ] and, thus,
[ ] , H′′ � H implies H′ ∪H′′ � H′ ∪H, by applying Proposition 5 (iii). �

Lemma 4. Let H and H′ be two T -supports. Then,

↓{ H′′ ∪H′
∣∣∣ H′′∈̂ ↓H } = ↓{H′ ∪H}

Proof. First, it is clear that the ⊇ direction holds because H∈̂ ↓H. For the
⊆ direction, we have two cases: if H = [ ], then H′′ = [ ] and the result is
trivial. Otherwise, H , [ ] and, thus, [ ] , H′′ � H implies H′∪H′′ � H′∪H,
by applying Proposition 5 (iii). �

Proof of Proposition 9. In case that ϕ = ⊥ or ϕ = p ∈ At, the statement
follows by definition. Otherwise, assume as induction hypothesis that the
statement holds for every subformula of ϕ.
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In case that ϕ = ϕ1 ∧ ϕ2, we can apply induction hypothesis and Lemma 1
and Lemma 2, to deduce that

〈〈ϕ 〉〉T = ↓{ H ∩H′
∣∣∣ H ∈ 〈〈ϕ1 〉〉T and H′ ∈ 〈〈ϕ2 〉〉T }

= ↓{ H ∩H′
∣∣∣ H ∈↓~ϕ1 �

T and H′ ∈↓~ϕ2 �
T }

= ↓{~ϕ1 �
T ∩ ~ϕ2 �

T}
= ↓{~ϕ1 ∧ ϕ2 �

T}
= ↓~ϕ1 ∧ ϕ2 �

T

Similarly, in case that ϕ = ϕ1 ∨ ϕ2, we can apply induction hypothesis and
Lemma 3 and Lemma 4, to deduce that

〈〈ϕ 〉〉T = ↓{ H ∪H′
∣∣∣ H ∈̂ 〈〈ϕ1 〉〉T and H′ ∈̂ 〈〈ϕ2 〉〉T }

= ↓{ H ∪H′
∣∣∣ H∈̂ ↓~ϕ1 �

T and H′∈̂ ↓~ϕ2 �
T }

= ↓{~ϕ1 �
T ∪ ~ϕ2 �

T}
= ↓{~ϕ1 ∨ ϕ2 �

T}
= ↓~ϕ1 ∨ ϕ2 �

T

In case that ϕ = ϕ1 → ϕ2. Take T such that ~ϕ1 �
T = [ ], then T |= ϕ1 → ϕ2

and:

↓~ϕ1 → ϕ2 �
T = ↓(~ϕ1 �T ∪ ~ϕ2 �

T )
= ↓(2T ∪ ~ϕ2 �

T )
= {2T}
= 〈〈ϕ1 → ϕ2 〉〉T

Now, suppose that ~ϕ1 �
T , [ ] and ~ϕ2 �

T = [ ]. By induction hypothesis,
this implies that 〈〈ϕ2 〉〉T = ∅. Then, since T |= ϕ1, we have that

〈〈ϕ1 → ϕ2 〉〉T = ↓{ ~ϕ1 �T ∪H
∣∣∣ H ∈ 〈〈ϕ2 〉〉T } = ∅

= ∅

On the other hand, we also have ↓~ϕ1 → ϕ2 �
T = ↓[ ] = ∅, so the result holds.
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Finally take T such that T |= ϕ1 and T |= ϕ2. This implies T |= ϕ1 → ϕ2
and that any T -support H verifies that H ∈ 〈〈ϕ2 〉〉T = ↓~ϕ2 �

T iff [ ] , H �
~ϕ2 �

T . By applying Proposition 5 (iii), [ ] , H � ~ϕ2 �
T implies:

~ϕ1 �T ∪H � ~ϕ1 �T ∪ ~ϕ2 �
T = ~ϕ1 → ϕ2 �

T

This proves that 〈〈ϕ1 → ϕ2 〉〉T = ↓~ϕ1 → ϕ2 �
T . �

Corollary 8. Given a set of atoms T ⊆ At, a fork F and a propositional
formula ϕ, we have:

〈〈F ∧ ϕ 〉〉T = ↓{ H ∩ ~ϕ �T
∣∣∣ H ∈ 〈〈F 〉〉T }

Proof. It is a consequence of Lemma 1 and Proposition 9. �

Proof of Proposition 10. It follows directly from Definition 6 and Defini-
tion 7. �

The following result can be proved by structural induction.

Lemma 5. Let V, S ⊆ At be sets of atoms and take ϕ a propositional formula
such that At(ϕ) ⊆ V . Then, for any H ⊆ S, it holds that:

〈H,S〉 |= ϕ is equivalent to 〈H ∩ V, S ∩ V 〉 |= ϕ

Definition 17. Let T, V ⊆ At be two sets of atoms. We say that a T -support
H is V -respectful, if for any H,H ′ ⊆ T such that H ∩ V = H ′ ∩ V , we have
that H ∈ H iff H ′ ∈ H.

Corollary 9. Let V, S ⊆ At be sets of atoms and take ϕ a propositional
formula such that At(ϕ) ⊆ V . Then ~ϕ �S is V -respectful.

Proof. This result is a consequence of Lemma 5 and Proposition 6. �

Lemma 6. Let V, S ⊆ At be sets of atoms and take L a fork such that
At(L) ⊆ V . Then any H maximal in 〈〈L 〉〉S is V -respectful.

Proof. If L = ϕ with ϕ a propositional formula andH is maximal in 〈〈ϕ 〉〉S =
↓~ϕ �S then H = ~ϕ �S and the result is just Corollary 9.
If L = L1 ∧ L2 and H is maximal in 〈〈L 〉〉S, then we can suppose that
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H = H1 ∩ H2 with Hi maximal in 〈〈Li 〉〉S. Since, by induction each Hi is
V -respectful, we know that H is also V -respectful.
Let L = ϕ → L1 with ϕ a propositional formula and L1 a fork such that
At(ϕ), At(L1) ⊆ V . If H is maximal in 〈〈L 〉〉S, we can assume, without loss
of generality, that H = ~ϕ �S ∪ H′ with H′ maximal in 〈〈L1 〉〉S. Suppose
that H,H ′ ⊆ S satisfy that H ∩ V = H ′ ∩ V and H ∈ H. Then H ∈ ~ϕ �S
or H ∈ H′. By applying Corollary 9 and induction, we deduce that H ′ ∈
~ϕ �S ∪H′ = H.
Finally suppose that L = (L1 | L2) and H is maximal in 〈〈L 〉〉S = 〈〈L1 〉〉S ∪
〈〈L2 〉〉S. Again, applying induction, we can deduce thatH is V -respectful. �

Lemma 7. For any set of atoms T ⊆ V ⊆ At and any T -support H,
there is a propositional formula ϕ with At(ϕ) ⊆ V such that ~ϕ �T = H
and ~ϕ �Y = [ ] for every set of atoms Y ⊆ V with Y , T .

Proof. If H is a T -support, we can define an assignment σH by σH(T ) = H
and σH(Y ) = [ ] for any Y ⊆ V with Y , T . Taking into account Propo-
sition 7 with signature V , we know that the propositional formula ΦS with
S = { 〈H,T 〉

∣∣∣ H ∈ H } satisfies the required properties.
�

Lemma 8. For any set of atoms T ⊆ V ⊆ At and any non-empty T -support
H , [ ], there is a propositional formula ϕ that satisfies At(ϕ) ⊆ V and:

i) H ∩ ~ϕ �T = [ T ],

ii) H′ ∩ ~ϕ �T , [ T ] for any T -support H′ such that H � H′.

Proof. Since H is a T -support, from Lemma 7, there is a propositional for-
mula ϕ such that ~ϕ �T = H and At(ϕ) ⊆ V . Furthermore, it follows that
H ∩ ~ϕ �T = H ∩H = [ T ]. On the other hand, suppose that there is some
T -support H′ s.t. H � H′ and

H′ ∩ ~ϕ �T = H′ ∩H = [ T ]

Without loss of generality, we can assume that H′ , [ ]. Then, H � H′ and
H , [ ] implies H′ * H and, thus, there is H ∈ H′\H. Since H < H and
T ∈ H, it follows that H , T and H ∈ H. This implies H ∈ H′ ∩H and,
thus, it follows that H ∈ H′ ∩ ~ϕ �T which contradicts the assumption that
H′ ∩ ~ϕ �T = [ T ]. �
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Proof of Proposition 11. Suppose that F |∼ G and take H ∈ 〈〈F 〉〉T . If
we apply Lemma 8, we know we can find ϕ such that H ∩ ~ϕ �T = [ T ]
and H′ ∩ ~ϕ �T , [ T ] for any H′ such that H � H′. Taking into account
Corollary 8, it is clear that [ T ] ∈ 〈〈F ∧ϕ 〉〉T , so T ∈ SM[F ∧ϕ] ⊆ SM[G∧ϕ]
which implies that [ T ] ∈ 〈〈G ∧ ϕ 〉〉T . This means by applying Corollary 8
that there exists H′ ∈ 〈〈G 〉〉T such that [ T ] = H′ ∩ ~ϕ �T . Finally, we
necessarily have that H � H′ and H ∈ 〈〈G 〉〉T .
For the other direction, take L a fork with T ∈ SM[F ∧ L]. Since [ T ] ∈
〈〈F ∧L 〉〉T , we know, by definition that [ T ] = H∩H′ with H ∈ 〈〈F 〉〉T and
H′ ∈ 〈〈L 〉〉T . By hypothesis, H ∈ 〈〈G 〉〉T , so we have that [ T ] ∈ 〈〈G∧L 〉〉T
or equivalently T ∈ SM[G ∧ L]. �

Proof of Proposition 12. The proof of (9), (10) and (16) is straightfor-
ward. Taking into account Proposition 11 and the fact that 〈〈F | G 〉〉T =
〈〈F 〉〉T ∪ 〈〈G 〉〉T , we obtain (11).
For the proof of (12), notice that:

〈〈 (F | G) ∧ L 〉〉T = ↓{ H ∩H′
∣∣∣ H ∈ 〈〈F | G 〉〉T and H′ ∈ 〈〈L 〉〉T }

= ↓{ H ∩H′
∣∣∣ H ∈ 〈〈F 〉〉T ∪ 〈〈G 〉〉T and H′ ∈ 〈〈L 〉〉T }

= ↓({ H ∩H′
∣∣∣ H ∈ 〈〈F 〉〉T and H′ ∈ 〈〈L 〉〉T }

∪ { H ∩H′
∣∣∣ H ∈ 〈〈G 〉〉T and H′ ∈ 〈〈L 〉〉T })

= ↓{ H ∩H′
∣∣∣ H ∈ 〈〈F 〉〉T and H′ ∈ 〈〈L 〉〉T }

∪ ↓{ H ∩H′
∣∣∣ H ∈ 〈〈G 〉〉T and H′ ∈ 〈〈L 〉〉T }

= 〈〈F ∧ L 〉〉T ∪ 〈〈G ∧ L 〉〉T

= 〈〈 (F ∧ L) | (G ∧ L) 〉〉T

In order to prove (13), assume first that T 6|= ϕ. Then, it follows that 〈〈ϕ→
(F | G) 〉〉T = 〈〈ϕ → F 〉〉T = 〈〈ϕ → G 〉〉T = {2T}. Since 〈〈 (ϕ → F ) | (ϕ →
G) 〉〉T = 〈〈ϕ→ F 〉〉T ∪ 〈〈ϕ→ G 〉〉T , we finally conclude

〈〈ϕ→ (F | G) 〉〉T = 2T = 〈〈 (ϕ→ F ) | (ϕ→ G) 〉〉T
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Otherwise,

〈〈ϕ→ (F | G) 〉〉T = ↓{ ~ϕ �T ∪H
∣∣∣ H ∈ 〈〈F 〉〉T ∪ 〈〈G 〉〉T }

= ↓({ ~ϕ �T ∪H
∣∣∣ H ∈ 〈〈F 〉〉T }

∪ { ~ϕ �T ∪H
∣∣∣ H ∈ 〈〈G 〉〉T })

= ↓{ ~ϕ �T ∪H
∣∣∣ H ∈ 〈〈F 〉〉T }

∪ ↓{ ~ϕ �T ∪H
∣∣∣ H ∈ 〈〈G 〉〉T }

= 〈〈 (ϕ→ F ) | (ϕ→ G) 〉〉T

Now we are going to prove (14). First suppose that T 6|= ϕ. In this case,

〈〈ϕ→ (F ∧G) 〉〉T = 〈〈ϕ→ F 〉〉T = 〈〈ϕ→ G 〉〉T = {2T}

so 〈〈ϕ → (F ∧ G) 〉〉T = 〈〈 (ϕ → F ) | (ϕ → G) 〉〉T = {2T}. Otherwise, it
follows that:

〈〈ϕ→ (F ∧G) 〉〉T = ↓{ ~ϕ �T ∪H
∣∣∣ H ∈ 〈〈F ∧G 〉〉T }

= ↓({ ~ϕ �T ∪ (H1 ∩H2)
∣∣∣ H1 ∈ 〈〈F 〉〉T , H2 ∈ 〈〈G 〉〉T }

= ↓{ (~ϕ �T ∪H1) ∩ (~ϕ �T ∪H2)
∣∣∣ H1 ∈ 〈〈F 〉〉T , H2 ∈ 〈〈G 〉〉T }

= 〈〈 (ϕ→ F ) ∧ (ϕ→ G) 〉〉T

Take ϕ and ψ two formulas and F a fork. In order to show (15), let us
start suppossing that T 6|= ϕ or T 6|= ψ. Then, it holds that:

〈〈ϕ→ (ψ → F ) 〉〉T = 〈〈ϕ ∧ ψ → F 〉〉T = {2T}

This implies that we can take T such that T |= ϕ ∧ ψ and:

〈〈ϕ→ (ψ → F ) 〉〉T = ↓{ ~ϕ �T ∪H
∣∣∣ H ∈ 〈〈ψ → F 〉〉T }

= ↓{ ~ϕ �T ∪ (~ψ �T ∪H′)
∣∣∣ H′ ∈ 〈〈F 〉〉T }

= ↓{ ~ϕ ∧ ψ �T ∪H′
∣∣∣ H′ ∈ 〈〈F 〉〉T }

= 〈〈ϕ ∧ ψ → F 〉〉T

Finally, to check (17), notice that 〈〈 ¬ϕ | ¬¬ϕ 〉〉T = 〈〈 ¬ϕ 〉〉T ∪ 〈〈¬¬ϕ 〉〉T for
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any T ⊆ At. Besides, if T |= ϕ, then 〈〈 ¬ϕ 〉〉T = ∅ and 〈〈 ¬¬ϕ 〉〉T = {2T} and,
if T 6|= ϕ, then 〈〈 ¬ϕ 〉〉T = {2T} and 〈〈 ¬¬ϕ 〉〉T = ∅. �

Lemma 9. Given set of atoms T ⊆ V ⊆ At and a T -support H, then H is
V -feasible and H = HV .

Proof. Notice that, for any H ⊆ T ⊆ V , then H = H ∩ V . �

Lemma 10. Given sets of atoms V, T ⊆ At, a pair of T -supports H,H′ such
that [ ] , H � H′ and H is V -feasible, then H′ is V -feasible too.

Proof. First, note that [ ] , H � H′ implies H ⊇ H′. Suppose, for the sake
of contradiction, that H is V -unfeasible. Hence, there is H ∈ H′ such that
H ⊂ T and H ∩ V = T ∩ V . Since H ⊇ H′, this implies that H ∈ H which
is a contradiction with the assumption that H is V -feasible. �

Lemma 11. Let T, V ⊆ At be two sets of atoms and H,H′ be a pair of
T -supports such that H � H′. Then, HV � H′V .

Proof. If H = [ ], then HV = [ ] � H′V . Hence, we assume without loss of
generality that H , [ ] and, thus, H � H′ implies H ⊇ H′ and H′ , [ ]. Then,
by definition, it follows that

HV = { H ∩ V
∣∣∣ H ∈ H } ⊇ { H ∩ V ∣∣∣ H ∈ H′ } = H′V

Furthermore, H′ , [ ] implies H′V , [ ] and, thus, HV � H′V holds. �

Lemma 12. Given sets of atoms V, T ⊆ At, a pair of T -supports H,H′ such
that H∩H′ is V -feasible, H′ , [ ] and H′ is V -respectful, then H is V -feasible.

Proof. Suppose, for the sake of contradiction, that H is V -unfeasible. Hence,
there is H ∈ H such that H ⊂ T and H ∩ V = T ∩ V . Furthermore, since
H′ , [ ], it follows that T ∈ H′ and, since H′ is V -respectful, the above
implies that H ∈ H′. Then, H ∈ H ∩ H′ which is a contradiction with the
assumption that H ∩H′ is V -feasible. �

Lemma 13. Let T, V ⊆ At be two sets of atoms and H,H′ be a pair of
T -supports. Then:

i) (H ∩H′)V ⊆ HV ∩H′V ,
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ii) In addition, if H is V -respectful, then

(H ∩H′)V = HV ∩H′V .

Proof. By definition, it follows that

(H ∩H′)V = { H ′
∣∣∣ ∃H s.t. H ′ = H ∩ V and H ∈ H ∩H′ }

= { H ′
∣∣∣ ∃H s.t. H ′ = H ∩ V and H ∈ H and H ∈ H′ }

⊆ HV ∩H′V

Notice that, in general, the equality does not hold. Take At = T = {p, q},
V = {q}, H = [∅, T ] and H′ = [{p}, T ]. Then (H ∩H′)V = [T ]V = [{q}] and
HV ∩H′V = [∅, {q}] ∩ [∅, {q}] = [∅, {q}].
Now, suppose that H is V -respectful. If H ∈ HV ∩ H′V , then there exist
H1 ∈ H and H2 ∈ H′ such that H = H1 ∩ V = H2 ∩ V . But then, H2 ∈ H
and finally H ∈ (H ∩H′)V . �

Lemma 14. Let T, V ⊆ At be two sets of atoms and H,H′ be a pair of
T -supports. Then, (H ∪H′)V = HV ∪H′V .

Proof. By definition, it follows that

(H ∪H′)V = { H ′
∣∣∣ ∃H s.t. H ′ = H ∩ V and H ∈ H ∪H′ }

= { H ′
∣∣∣ ∃H s.t. H ′ = H ∩ V and either H ∈ H or H ∈ H′) }

= { H ′
∣∣∣ ∃H s.t. H ′ = H ∩ V and either H ′ ∈ HV or H ′ ∈ H′V ) }

= HV ∪H′V

�

Lemma 15. Let S, V ⊆ At be two sets of atoms and H be some S-support.
Then, we have (H)V ⊇ HV . Moreover, when H is V -respectful, then (H)V =
HV .

Proof. Let T def= S ∩ V . In case that H = 2S, it follows that

(H)V = [ ]V = [ ] = 2T = HV

42



Otherwise,

(H)V = ([ S ] ∪ {H ⊆ S | H < H})V
= ([ S ∩ V ] ∪ {H ∩ V | H ⊆ S and H < H})
= [ T ] ∪ {H ∩ V | H ⊆ S and H < H}

Furthermore, we have that H ∈ H implies H ∩ V ∈ HV or equivalently that
H ∩ V < HV implies H < H. Hence, we get

{H ∩ V | H ⊆ S and H < H} ⊇ {H ∩ V | H ⊆ S and H ∩ V < HV }
⊇ {H ′ = H ∩ V ⊆ T | H ⊆ S and H ′ < HV }
= HV

Note that, equality does not hold: Let S = At = {a, b}, V = {a} and
H = [{a, b}, {b}, ∅]. Then, H = [{a, b}, {a}] and HV = [{a}]. On the other
hand, we have HV = [{a}, ∅] and HV = [ ]. Clearly, [{a}] = [ ]. Furthermore,
we also have [{a}] � [ ].
When H is V -respectful, and H = H ′ ∩ V ∈ (H)V with H ′ ∈ H, we have
that H ′ ∩ V ∈ HV . Otherwise H ′ ∩ V = H ′′ ∩ V with H ′′ ∈ H which would
imply that H ′ ∈ H. This completes the proof. �

The following group of auxiliary results will be used to prove properties
about projective strong entailment and equivalence.

Lemma 16. Given sets of atoms T ⊆ V ⊆ At and a fork F , we have 〈〈F 〉〉T ⊆
〈〈F 〉〉TV .

Proof. Since T = T ∩ V and applying Lemma 9, it follows that any H ∈
〈〈F 〉〉T is V -feasible and H = HV . So H ∈ 〈〈F 〉〉TV . �

Corollary 10. Given sets of atoms T ⊆ V ⊆ At and S ⊆ At with T = S∩V
and given a propositional formula ϕ such that At(ϕ) ⊆ V , it holds:

1. ~ϕ �T = (~ϕ �S)V ,

2. ~ϕ �T = (~ϕ �S)V = (~ϕ �S)V .

Proof. It is a consequence of Lemma 5, Lemma 15 and Corollary 9. �
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Proof of Proposition 13. First of all, if we take into account Lemma 16,
we only have to prove that 〈〈F 〉〉TV ⊆ 〈〈F 〉〉T . We proceed by structural
induction.

• F = ϕ is a propositional formula. Take H ∈ 〈〈ϕ 〉〉TV , then there exist
S ⊆ At and H′ ∈ 〈〈ϕ 〉〉S = ↓~ϕ �S with S ∩ V = T and H � H′V .
This implies H � H′V � (~ϕ �S)V = ~ϕ �T by applying Lemma 11 and
Corollary 10. Finally H ∈↓~ϕ �T = 〈〈ϕ 〉〉T by Proposition 9.

• F = F1 ∧ F2
Take H ∈ 〈〈F 〉〉TV , then there exist S ⊆ At and H′ ∈ 〈〈F 〉〉S with
S ∩ V = T and H � H′V . By definition, we can find Hi maximal in
〈〈Fi 〉〉S for i = 1, 2 such thatH′ � H1∩H2. So, we have thatH � H′V �
(H1)V ∩ (H2)V by applying Lemma 11, Lemma 13 and Lemma 6. Now,
we can apply induction hypothesis to show that (Hi)V ∈ 〈〈Fi 〉〉TV =
〈〈Fi 〉〉T for i = 1, 2 and finally H ∈ 〈〈F1 ∧ F2 〉〉T = 〈〈F 〉〉T .

• F = ϕ→ G
Take H ∈ 〈〈F 〉〉TV , then there exist S ⊆ At and H′ ∈ 〈〈F 〉〉S with
S ∩ V = T and H � H′V . We can assume that S |= ϕ (so T |= ϕ) and
〈〈G 〉〉S , ∅. Otherwise, 〈〈F 〉〉S = ∅.
Let H′′ ∈ 〈〈G 〉〉S such that H′ � ~ϕ �S ∪ H′′. Then by applying
Lemma 11, Lemma 14 and Corollary 10, it follows that H � H′V �
~ϕ �T ∪ H′′V with H′′V ∈ 〈〈G 〉〉TV ⊆ 〈〈G 〉〉T and finally H ∈ 〈〈ϕ →
G 〉〉T = 〈〈F 〉〉T .

• F = (G | L)
In this case, if H ∈ 〈〈F 〉〉TV , then there exist S ⊆ At and H′ ∈ 〈〈G 〉〉S ∪
〈〈L 〉〉S with S ∩ V = T and H � H′V . Then, by induction hypothesis,
we have that H′V ∈ 〈〈G 〉〉T ∪ 〈〈L 〉〉T and H ∈ 〈〈F 〉〉T .

�

Proof of Proposition 14. First of all, if T ∈ SMV [F ], there exists S ⊆ At
such that T = S∩V and [ S ] ∈ 〈〈F 〉〉S. This implies [ T ] = [ S ]V ∈ 〈〈F 〉〉TV .
Conversely, if [ T ] ∈ 〈〈F 〉〉TV , we know that [ T ] � HV for some H ∈ 〈〈F 〉〉T ′

that is V -feasible with T = T ′ ∩ V . So, HV = [ T ] and H = [ T ′ ] ∈ 〈〈F 〉〉T ′

which means that T ′ ∈ SM(F ) and finally T ∈ SMV [F ]. �
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Lemma 17. Let V, S ⊆ At be sets of atoms and take F a fork such that
At(F ) ⊆ V . Then, for any �-maximal S-support H ∈ 〈〈F 〉〉S, it holds that
HV ∈ 〈〈F 〉〉T with T = S ∩ V .

Proof. In case that F is a propositional formula, we have that 〈〈F 〉〉S = ↓~F �S
and, thus, we have that H = ~F �S. Hence, HV = (~F �S)V = ~F �T by ap-
plying Corollary 10. Otherwise, we assume as induction hypothesis that the
lemma statement holds for every subfork of F .

In case that F = F1 ∧ F2. Then, [ ] , H = H1 ∩ H2 with H1 ∈ 〈〈F1 〉〉S
and H2 ∈ 〈〈F2 〉〉S. Furthermore, let us assume without loss of generality that
each Hi is �-maximal in 〈〈Fi 〉〉S. Notice that each Hi is V -respectful in view
of Lemma 6. Then, HV = (H1 ∩ H2)V = (H1)V ∩ (H2)V by Lemma 13. By
induction hypothesis, we have that (Hi)V ∈ 〈〈Fi 〉〉T and HV ∈ 〈〈F 〉〉T .

In case that F = ϕ → G. First of all, notice that S |= ϕ iff T |= ϕ by
Lemma 5. In case that S 6|= ϕ, H = 2S and HV = 2T ∈ 〈〈F 〉〉T . Otherwise
〈〈F 〉〉S = ↓{ ~ϕ �S ∪ H′

∣∣∣ H′ ∈ 〈〈G 〉〉S }. That is, H = ~ϕ �S ∪ H′ for some
H′ ∈ 〈〈G 〉〉S. Assume that H′ is �-maximal in 〈〈G 〉〉S, hence by Lemma 14
and Corollary 10.

HV = (~ϕ �S ∪H′)V
= (~ϕ �S)V ∪H′V
= ~ϕ �T ∪H′V

Since, by induction hypothesis, we have that H′V ∈ 〈〈G 〉〉T , we conclude that
HV ∈ 〈〈F 〉〉T .

In case that F = (F1 | F2). Then, H ∈ 〈〈F1 〉〉S or H ∈ 〈〈F2 〉〉S and, thus, the
result follows directly by induction hypothesis. �

Lemma 18. Let V, S, S ′ ⊆ At be sets of atoms such that S ∩ V = S ′ ∩ V
and take F a fork such that At(F ) ⊆ V . Then, for any �-maximal S-support
H ∈ 〈〈F 〉〉S, there exists H′ ∈ 〈〈F 〉〉S′ such that HV � H′V .

Proof. In case that F is a propositional formula, we have that 〈〈F 〉〉S =↓~F �S
and, thus, H = ~F �S. Hence, HV = (~F �S)V = ~F �T = (~F �S′)V by ap-
plying Corollary 10. Otherwise, we assume as induction hypothesis that the

45



lemma statement holds for every subfork of F .

In case that F = F1 ∧ F2. Then, [ ] , H = H1 ∩ H2 with H1 ∈ 〈〈F1 〉〉S
and H2 ∈ 〈〈F2 〉〉S. Furthermore, let us assume without loss of generality that
each Hi is �-maximal in 〈〈Fi 〉〉S. Notice that each Hi is V -respectful in view
of Lemma 6. Then, HV = (H1 ∩ H2)V = (H1)V ∩ (H2)V by Lemma 13. By
induction hypothesis, we have that (Hi)V � (H′i)V with H′i ∈ 〈〈Fi 〉〉S

′ and
HV � H′V with H′ = (H′1 ∩H′2) ∈ 〈〈F 〉〉S′ .

In case that F = ϕ→ G. First of all, notice that S |= ϕ iff T |= ϕ iff S ′ |= ϕ.
In case that S 6|= ϕ, H = 2S and HV = 2T = (2S′)V with 2S′ ∈ 〈〈F 〉〉S′ . Oth-
erwise 〈〈F 〉〉S = ↓{ ~ϕ �S ∪ H′

∣∣∣ H′ ∈ 〈〈G 〉〉S }. That is, H = ~ϕ �S ∪ H′ for
some H′ ∈ 〈〈G 〉〉S. Let also assume that H′ is �-maximal in 〈〈G 〉〉S. Hence,
we know that there exists H′′ ∈ 〈〈G 〉〉S′ such that H′V � H′′V and it follows
that:

HV = (~ϕ �S ∪H′)V
= (~ϕ �S)V ∪H′V
= (~ϕ �S′)V ∪H′V
� (~ϕ �S′)V ∪H′′V
= (~ϕ �S′ ∪H′′)V

and ~ϕ �S′ ∪H′′ ∈ 〈〈F 〉〉S′
.

In case that F = (F1 | F2). Then, H ∈ 〈〈F1 〉〉S or H ∈ 〈〈F2 〉〉S and, thus, the
result follows directly by induction hypothesis. �

Lemma 19. Given sets of atoms T ⊆ V ⊆ At and forks F,L such that
At(L) ⊆ V , we have:

〈〈F ∧ L 〉〉TV = ↓{ H ∩H′
∣∣∣ H ∈ 〈〈F 〉〉TV and H′ ∈ 〈〈L 〉〉T }

Proof. “ ⊆” H ∈ 〈〈F ∧ L 〉〉TV
implies there are S ⊆ At and H′ ∈ 〈〈F ∧ L 〉〉S s.t. T = S ∩ V , H � H′V
and H′ is V -feasible,

implies there are S ⊆ At and H′,H1,H2 s.t. T = S ∩ V , H1 ∈ 〈〈F 〉〉S, H2
maximal in 〈〈L 〉〉S, H � H′V , H′ � H1 ∩H2 and H′ is V -feasible,
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implies there are S ⊆ At and H′,H1,H2 s.t. T = S ∩ V , H1 ∈ 〈〈F 〉〉S,
H2 maximal in 〈〈L 〉〉S, H � H′V , H′ � H1 ∩ H2, H1 ∩ H2 is V -feasible
(Lemma 10) and H2 is V -respectful (Lemma 6),

implies there are S ⊆ At and H′,H1,H2 s.t. T = S ∩ V , H1 ∈ 〈〈F 〉〉S, H2
maximal in 〈〈L 〉〉S, H � H′V , H′ � H1∩H2, H1 is V -feasible (Lemma 12)
and H2 is V -respectful,

implies there are S ⊆ At and H′,H1,H2 s.t. T = S ∩ V , H1 ∈ 〈〈F 〉〉S, H2
maximal in 〈〈L 〉〉S, H � H′V � (H1∩H2)V (Lemma 11), (H1)V ∈ 〈〈F 〉〉TV
and H2 is V -respectful,

implies there are S ⊆ At and H1,H2 s.t. T = S ∩ V , H1 ∈ 〈〈F 〉〉S, H2
maximal in 〈〈L 〉〉S, H � (H1 ∩ H2)V � (H1)V ∩ (H2)V (Lemma 13) and
(H1)V ∈ 〈〈F 〉〉TV ,

implies there are S ⊆ At and H1,H2 s.t. T = S ∩ V , H2 ∈ 〈〈L 〉〉S,
H � (H1)V ∩ (H2)V and (H1)V ∈ 〈〈F 〉〉TV ,

implies there are S ⊆ At and H1,H2 s.t. T = S ∩ V , (H2)V ∈ 〈〈L 〉〉T
(Lemma 17), H � (H1)V ∩ (H2)V and (H1)V ∈ 〈〈F 〉〉TV ,

implies H � H′1 ∩ H′2 with H′1 ∈ 〈〈F 〉〉TV and H′2 ∈ 〈〈L 〉〉T (with H′i =
(Hi)V ).

“⊇” H ∩H′ with H ∈ 〈〈F 〉〉TV and H′ ∈ 〈〈L 〉〉T
implies there are S ⊆ At, H1 ∈ 〈〈F 〉〉S, H2 ∈ 〈〈L 〉〉S s.t. T = S ∩ V ,
H � (H1)V and H′ = H′V � (H2)V (Lemma 9 and Lemma 18),

implies H∩H′ � (H1)V ∩ (H2)V � (H1 ∩H2)V with H1 ∩H2 ∈ 〈〈F ∧L 〉〉S
(Proposition 5 (ii) and Lemma 13),

implies H ∩H′ ∈ 〈〈F ∧ L 〉〉TV .
�

Corollary 11. Given sets of atoms T ⊆ V ⊆ At, a fork F and a proposi-
tional formula ϕ such that At(ϕ) ⊆ V , we have:

〈〈F ∧ ϕ 〉〉TV = ↓{ H ∩ ~ϕ �T
∣∣∣ H ∈ 〈〈F 〉〉TV }

Proof. It is a consequence of Lemma 19 and Lemma 1. �
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Proof of Theorem 2. Suppose that F |∼V G and take H ∈ 〈〈F 〉〉TV . If we
apply Lemma 8, we know we can find ϕ with At(ϕ) ⊆ V and such that
H∩~ϕ �T = [ T ] and H′∩~ϕ �T , [ T ] for any H′ such that H � H′. Taking
into account Corollary 11 and Proposition 14, it is clear that [ T ] ∈ 〈〈F∧ϕ 〉〉TV
and T ∈ SMV [F ∧ϕ] ⊆ SMV [G∧ϕ] which implies that T ∈ 〈〈G∧ϕ 〉〉TV . This
implies that there exists H′ ∈ 〈〈G 〉〉TV such that [ T ] = H′ ∩ ~ϕ �T . Finally,
H � H′ and H ∈ 〈〈G 〉〉TV .
For the other direction, take L a fork with At(L) ⊆ V and T ∈ SMV [F ∧L].
By applying Proposition 14 and Lemma 19, we have that [ T ] = H ∩ H′
with H ∈ 〈〈F 〉〉TV and H′ ∈ 〈〈L 〉〉T . Since, by hypothesis, H ∈ 〈〈G 〉〉TV , we
have that [ T ] ∈ 〈〈G ∧ L 〉〉TV and finally T ∈ SMV [G ∧ L]. �

Proof of Proposition 15. One implication is obvious. For the other one,
it is enough to show that 〈〈F 〉〉TV ⊆ 〈〈G 〉〉TV for any T ⊆ V . Take H ∈
〈〈F 〉〉TV , then, by applying Lemma 8, we can find γ verifying that At(γ) ⊆ V ,
H ∩ ~ γ �T = [ T ] and H′ ∩ ~ γ �T , [ T ] for every T -support H′ such that
H � H′. This means that [ T ] ∈ 〈〈F ∧ γ 〉〉TV or equivalently T ∈ SMV [F ∧ γ].
Our hypothesis implies that T ∈ SMV [G ∧ γ] or [ T ] ∈ 〈〈G ∧ γ 〉〉TV , so, by
Corollary 11, there exists H′′ ∈ 〈〈G 〉〉TV such that [ T ] = H′′ ∩ ~ γ �T . Then,
mandatorily H � H′′ and, finally, we get that H ∈ 〈〈G 〉〉TV . �

From now on, take At′, V ⊆ At and V ′ def= V ∩ At′. Notice that, for any
X ⊆ At, if X ∩ V ⊆ At′, then X ∩ V = X ∩ V ′. In particular, if X ⊆ At′, it
holds that X ∩ V = X ∩ V ′.

Lemma 20. Take F a fork such that At(F ) ⊆ At′ and S ⊆ At. Then, if H
is an S-support, it holds that

H ∈ 〈〈F 〉〉S is equivalent to HAt′ ∈ 〈〈F 〉〉S∩At
′

Proof. We only prove one of the directions. The proof of the other one is
similar. We proceed by structural induction on F .
If F = ϕ, the result is consequence of Lemma 11 and Lemma 5.
If F = F1 ∧ F2 and H ∈ 〈〈F 〉〉S, then H � H1 ∩ H2 with Hi ∈ 〈〈Fi 〉〉S
(i = 1, 2). We can take Hi maximal in 〈〈Fi 〉〉S so Hi is At′-respectful by
Lemma 6 and HAt′ � (H1)At′ ∩ (H2)At′ by Lemma 13. Since, by induction
each (Hi)At′ ∈ 〈〈Fi 〉〉S∩At

′ , we conclude that HAt′ ∈ 〈〈F 〉〉S∩At
′ .

Let F = ϕ → F1 with ϕ a propositional formula and F1 a fork such that
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At(ϕ), At(F1) ⊆ At′. First notice that S 6|= ϕ iff S ∩ At′ 6|= ϕ and (2S)At′ =
2S∩At′ . If S |= ϕ and H ∈ 〈〈F 〉〉S, there exists H1 ∈ 〈〈F1 〉〉S such that
H � ~ϕ �S ∪H1. Then

HAt′ � (~ϕ �S∪H1)At′ = (~ϕ �S)At′∪(H1)At′ = ~ϕ �S∩At′∪(H1)At′ ∈ 〈〈F 〉〉S∩At
′

since we can apply Lemma 14, Corollary 10 and induction.
Finally, suppose that F = (F1 | F2) and H is maximal in 〈〈F 〉〉S = 〈〈F1 〉〉S ∪
〈〈F2 〉〉S. Again, applying induction, we can deduce the result. �

Lemma 21. Take S ⊆ At such that S∩V ⊆ At′. Then, if H is an S-support
and H is V -feasible, then HAt′ is V ′-feasible and HV = (HAt′)V ′

Proof. Notice that, if H ∈ H, then H ∩ V ⊆ S ∩ V ⊆ At′ and H ∩ V =
H ∩ V ′ = H ∩ At′ ∩ V ′. �

Lemma 22. Take S ′ ⊆ At′. Then, if H is an S ′-support and H is V ′-feasible,
then H is V -feasible and HV = HV ′

Proof. Notice that, if H ∈ H, then H ⊆ S ′ ⊆ At′, so H ∩ V = H ∩ V ′. �

Lemma 23. Take T ⊆ V ′ and F a fork such that At(F ) ⊆ At′. Then:

〈〈F 〉〉TV = 〈〈F 〉〉TV ′

Proof. “⊆” Take HV with H ∈ 〈〈F 〉〉S, V -feasible and S ⊆ At such that S ∩
V = T . Then HAt′ ∈ 〈〈F 〉〉S∩At

′ is V ′-feasible by Lemma 20 and Lemma 21.
Since S∩At′∩V ′ = S∩V ′∩At′ = S∩V = T , we have that HV = (HAt′)V ′ ∈
〈〈F 〉〉TV ′

“⊇” Take HV ′ with H ∈ 〈〈F 〉〉S′ , V ′-feasible and S ′ ⊆ At′ such that S ′ ∩
V ′ = T . Then H is V -feasible by Lemma 22 and HV ′ = HV ∈ 〈〈F 〉〉TV since
S ′ ∩ V = S ′ ∩ V ′ = T . �

Lemma 24. Suppose that At = At′ ∪{a} with a < At′. Take S, V ⊆ At such
that a ∈ S ∩ V . It holds that:

1. If H is an At′-respectful, V -feasible S-support, then the support HAt′ is
V ′-feasible,

2. If F is a fork with At(F ) ⊆ At′ and H is an S-support maximal in
〈〈F 〉〉S and V -feasible, then HAt′ is V ′-feasible.
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Proof. 1. Take H ′ ∈ HAt′ verifying that H ′∩V ′ = S∩At′∩V ′ = S∩V ′. We
know thatH ′ = H∩At′ for someH ∈ H. Since (H ′∪{a})∩At′ = H∩At′
and H is At′-respectful, then H ′ ∪ {a} ∈ H. Moreover:

(H ′∪{a})∩V = (H ′∩V )∪{a} = (H ′∩V ′)∪{a} = (S∩V ′)∪{a} = S∩V

which implies that H ′ ∪ {a} = S and H ′ = S ∩ At′.

2. If H is maximal in 〈〈F 〉〉S, then H is At′-respectful by Lemma 6, so by
the previous item HAt′ is V ′-feasible if H is V -feasible.

�

Lemma 25. Suppose that At = At′∪{a} with a < At′, S ′ ⊆ At′ and V ⊆ At
such that a ∈ V . If H is an S ′-support, we can define the S-support, where
S = S ′ ∪ {a}:

H(a) := { H ⊆ S ′ ∪ {a}
∣∣∣ H \ {a} = H ∩ At′ ∈ H }

It holds that:

1. If H is V ′-feasible, then H(a) is V -feasible,

2. H(a)At′ = H, and

3. H(a)V = { H ∪ {a}
∣∣∣ H ∈ HV ′ } ∪ { H

∣∣∣ H ∈ HV ′ }.

Proof. 1. Suppose that H ⊆ S ′∪{a} verifies that H ∩V = (S ′∪{a})∩V .
Then a ∈ H and H ∩ At′ ∩ V ′ = H ∩ V ′ = S ′ ∩ V ′ so H ∩ At′ = S ′

because H is V ′-feasible and H = (H ∩ At′) ∪ {a} = S ′ ∪ {a}.

2. H ′ ∈ H(a)At′ iff H ′ = H∩At′ for some H ∈ H(a) iff H ′ = H∩At′ ∈ H.

3. “⊆” Take H ∩ V ∈ H(a)V with H ∈ H(a). If we suppose that a ∈ H,
then:

H∩V = ((H \ {a}) ∪ {a})∩V = ((H\{a})∩V )∪{a} = ((H\{a})∩V ′)∪{a}

and H \ {a} ∈ H. If a < H, then H = H \ {a} ∈ H and

H ∩ V = (H \ {a}) ∩ V = (H \ {a}) ∩ V ′
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“⊇” Take H ∈ HV ′ . Then H = H̃ ∩ V ′ with H̃ ∈ H. On the one hand:

H = H̃ ∩ V ′ = H̃ ∩ V

and H̃ = H̃ ∩ At′ ∈ H(a). On the other hand:

H ∪ {a} = (H̃ ∩ V ′) ∪ {a} = (H̃ ∩ V ) ∪ {a} = (H̃ ∪ {a}) ∩ V

and H̃ ∪ {a} ∈ H(a).
�

Lemma 26. Suppose that At = At′ ∪ {a} with a < At′. Take S ⊆ At such
that a ∈ S. If H is an At′-respectful S-support, then HAt′(a) = H.

Proof. Take H ⊆ S. Then, H ∈ HAt′(a) iff H ∩ At′ ∈ HAt′ iff H ∩ At′ =
H1 ∩ At′ for some H1 ∈ H. This is equivalent to H ∈ H since H is At′-
respectful. �

Proof of Theorem 3. We will prove that the two conditions:

(i) For all T ⊆ V , 〈〈F 〉〉TV ⊆ 〈〈G 〉〉TV under signature At

(ii) For all T ⊆ V ′, 〈〈F 〉〉TV ′ ⊆ 〈〈G 〉〉TV ′ under signature At′

are equivalent. To prove (i)⇒(ii), take T ⊆ V ′. Then, by Lemma 23

〈〈F 〉〉TV ′ = 〈〈F 〉〉TV ⊆ 〈〈G 〉〉TV = 〈〈G 〉〉TV ′ .

To prove (ii)⇒(i), take T ⊆ V . If T ⊆ At′, by Lemma 23, we have that

〈〈F 〉〉TV = 〈〈F 〉〉TV ′ ⊆ 〈〈G 〉〉TV ′ = 〈〈G 〉〉TV .

If T ⊆ V but T * At′, we know that T = (T ∩At′)∪ (T ∩{a}) = T ′∪{a}
with T ′ = T ∩ At′. Take H̃ ∈ 〈〈F 〉〉TV . We know that there exists S ⊆ At
with S ∩ V = T and H ∈ 〈〈F 〉〉S V -feasible such that H̃ = HV . First of all,
notice that, without loss of generality, we can suppose that H is maximal in
〈〈F 〉〉S and then At′-respectful because of Lemma 6. If we apply Lemma 24
and Lemma 20, we can say that HAt′ is V ′-feasible and HAt′ ∈ 〈〈F 〉〉S∩At

′ ,
so (HAt′)V ′ ∈ 〈〈F 〉〉T ′

V ′ ⊆ 〈〈G 〉〉T ′
V ′ . Now, take S̃ ⊆ At′ and H1 ∈ 〈〈G 〉〉S̃
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V ′-feasible such that S̃ ∩ V ′ = T ′ and (HAt′)V ′ � (H1)V ′ or, equivalently
(H1)V ′ ⊆ (HAt′)V ′ . By Lemma 25, the support

H1(a) := { H ⊆ S̃ ∪ {a}
∣∣∣ H \ {a} = H ∩ At′ ∈ H1 }

is V -feasible and:

H1(a)V = { H ∪ {a}
∣∣∣ H ∈ (H1)V ′ } ∪ { H

∣∣∣ H ∈ (H1)V ′ }

Since (H1)V ′ ⊆ (HAt′)V ′ , we can deduce that

H1(a)V ⊆ (HAt′(a))V = HV

by applying Lemma 26. Finally, notice that H̃ = HV � H1(a)V ∈ 〈〈G 〉〉TV
taking account that (S̃ ∪ {a}) ∩ V = (S̃ ∩ V ) ∪ {a} = T and by applying
Lemma 20 and Lemma 25. �

Proof of Corollary 5. We proceed by induction on n = |At \ At′|. When
n = 1, we apply Theorem 3.
Now, suppose that At = At′ ∪ {a1, . . . , an} = At′′ ∪ {an} with At′′ = At′ ∪
{a1, . . . , an−1}. Take V ⊆ At and denote by V ′ = V ∩At′ and V ′′ = V ∩At′′.
It holds that F |∼V G under signature At is equivalent to F |∼V ′′ G under
signature At′′ since At(F ) ∪ At(G) ⊆ At′′ ⊆ At = At′′ ∪ {an} by applying
Theorem 3. Finally, by induction hypothesis we have that F |∼V ′′ G under
signature At′′ is equivalent to F |∼V ′ G under signature At′ since At(F ) ∪
At(G) ⊆ At′ ⊆ At′′ = At′ ∪ {a1, . . . , an−1} and V ′ = V ′′ ∩ At′. �

Proof of Proposition 16. If T ⊆ V and H is maximal in σ(T ), we know
by applying Lemma 7 that the set Si = { 〈H,T 〉

∣∣∣ H ∈ H } defines a
propositional formula ΦSi

which satisfies that ~ΦSi
�T = H and ~ΦSi

�Y = [ ]
for any Y ⊆ V such that Y , T .
If G = (ΦS1 | · · · | ΦSn) and T ⊆ V , it follows that:

〈〈G 〉〉T =
n⋃
i=1
↓~ΦSi

�T = ↓{ H
∣∣∣ H is maximal in σ(T ) } = σ(T )

�
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Proof of Theorem 4. Any fork F defines an assignment σF so that σF (T ) :=
〈〈F 〉〉TV for each T ⊆ V . We know by Proposition 16, that there exists a fork
G with At(G) ⊆ V and such that 〈〈G 〉〉T = σF (T ). Finally, we have that:

〈〈G 〉〉TV = 〈〈G 〉〉T = σF (T ) = 〈〈F 〉〉TV

And, by Proposition 13 and Theorem 2, if follows that G �V F . �

Proof of Proposition 17. Take ∆ a T -view with a �-maximum element
H. Then, by Lemma 7, we know that there is a propositional formula ϕ with
At(ϕ) ⊆ V that satisfies ~ϕ �T = H and ~ϕ �T

′ = [ ] for every T ′ ⊆ V with
T ′ , T . Finally ∆ = ↓H = ↓~ϕ �T = 〈〈ϕ 〉〉T = 〈〈ϕ 〉〉TV and, for every T ′ ⊆ V
with T ′ , T , we have that 〈〈ϕ 〉〉T ′

V = 〈〈ϕ 〉〉T ′ = ↓~ϕ �T ′ = ↓[ ] = ∅. �

Proof of Proposition 18. Take T ⊆ At(F ). First note that, from Propo-
sition 13, it follows that

〈〈F 〉〉TAt(F ) = 〈〈F 〉〉T = ↓{ ~ϕ1 �
T , . . . , ~ϕn �

T }

Note that, for any T ⊆ At(F ), we have that ~ a1∨ · · · ∨ an �T = [ ] and, thus,
〈〈 γ(F ) 〉〉T = ∅ also holds. Furthermore, for any ai and Ti = T ∪{ai}, we have
that ~ a1 ∨ · · · ∨ an �Ti = { H ⊆ Ti

∣∣∣ ai ∈ H }. Hence,

~ (a1 ∨ · · · ∨ an) ∧ (ai → ϕi) �Ti = { H ∪ {ai}
∣∣∣ H ∈ ~ϕi �T }

~ (aj → ϕj) �Ti = 2Ti

for all i , j. This implies that ~ γ(F ) �Ti = { H ∪ {ai}
∣∣∣ H ∈ ~ϕi �T } and,

thus, we get
〈〈 γ(F ) 〉〉TAt(F ) ⊇ ↓{ ~ϕ1 �

T , . . . , ~ϕn �
T }

Let us take now T ′ ⊃ T ∪ {ai} for any 1 ≤ i ≤ n. If ~ aj → ϕj �
T ′ = [ ]

for some 1 ≤ j ≤ n, we have that ~ γ(F ) �T ′ = [ ] and that T ′ does not
contribute to 〈〈 γ(F ) 〉〉TAt(F ). Hence, we may assume without loss of generality
that ~ aj → ϕj �

T ′
, [ ] for all 1 ≤ j ≤ n. Note also that H = T ∪{ai} belongs

to ~ a1 ∨ · · · ∨ an �T
′ and that H ∩ At(F ) = T ′ ∩ At(F ). Then, to show that

~ γ(F ) �T ′ is At(F )-unfeasible we just need to show that H ∈ ~ aj → ϕj �
T ′
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for all 1 ≤ j ≤ n. Note that ~ aj → ϕj �
T ′
, [ ] implies T ′ ∈ ~ϕj �T

′ and

~ aj → ϕj �
T ′ = ~ aj �T

′ ∪ ~ϕj �T
′

Furthermore, from Lemma 5 and the facts H ∩ At(F ) = T ′ ∩ At(F ) and
At(ϕj) ⊆ At(F ), we have that T ′ ∈ ~ϕj �T

′ implies H ∈ ~ϕj �T
′ and, thus,

also H ∈ ~ aj → ϕj �
T ′ . Consequently, ~ γ(F ) �T ′ is At(F )-unfeasible for any

T ′ ⊃ T ∪ {ai} and

〈〈 γ(F ) 〉〉TAt(F ) = ↓{ ~ϕ1 �
T , . . . , ~ϕn �

T } = 〈〈F 〉〉TAt(F )

follow. �

Proof of Proposition 23. For the only if direction. Let 〈X , T 〉 be a mini-
mal (V, V )-certificate. From Proposition 22, it follows that there exists some
S ⊆ At such that T = S ∩ V , ∅ , ~ϕ �S is V -feasible and ~ϕ �SV \{T} = X .
Take H = ~ϕ �SV .
Suppose that there exists S ′ ⊆ At such that S ′ ∩ V = T , ∅ , ~ϕ �S

′

is V -feasible and ~ϕ �SV � ~ϕ �S
′

V or ~ϕ �S′
V ⊆ ~ϕ �S

′
V . Then 〈Y , T 〉 with

Y = ~ϕ �S
′

V \{T} is a (V, V ) certificate of ϕ and Y ⊆ X . This implies that
Y = X or ~ϕ �SV = ~ϕ �S

′
V .

The other way around. Let H maximal in 〈〈ϕ 〉〉TV such that H\{T} = X . We
know that H = ~ϕ �SV for some S ⊆ At such that T = S ∩ V and ∅ , ~ϕ �S
V -feasible. It is clear that, if X = ~ϕ �SV \{T}, the tuple 〈X , T 〉 is a (V, V )-
certificate of ϕ. Moreover, if 〈Y , T 〉 is another (V, V )-certificate of ϕ with
Y ⊆ X , then Y = ~ϕ �S

′
V \{T} for some S ′ ⊆ At such that S ′ ∩ V = T and

satisfying that ∅ , ~ϕ �S′ is V -feasible. Since H � ~ϕ �S
′

V , by maximality of
H, it follows that H = ~ϕ �S

′
V or, equivalently, X = Y . �

Proof of Theorem 6. Any fork in normal form F = (ϕ1 | · · · | ϕn) can be
transformed into the (log-space constructible) V -strongly equivalent propo-
sitional formula

γ(F ) = (a1 ∨ · · · ∨ an) ∧ (a1 → ϕ1) ∧ · · · ∧ (an → ϕn)

where each aj for j = 1, . . . , n is a new fresh atom not included in V (Propo-
sition 18). Applying the same transformation γ(G) to G we have reduced the
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problem to projective strong entailment/equivalence of propositional formu-
las, and then Proposition 24 applies. �

55


