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Abstract

We introduce a general, flexible, and extensible framework for quantitative and
qualitative preferences among the stable models of logic programs. Since it is
straightforward to capture propositional theories and constraint satisfaction prob-
lems with logic programs, our approach is also relevant to optimization in sat-
isfiability testing and constraint processing. We show how complex preference
relations can be specified through user-defined preference types and their argu-
ments. We describe how preference specifications are handled internally by so-
called preference programs, which are used for dominance testing. We also pro-
vide algorithms for computing one, or all, preferred stable models of a logic pro-
gram, and study the complexity of these problems. We implemented our approach
in the asprin system by means of multi-shot answer set solving technology. We
demonstrate the generality and flexibility of our methodology by showing how
easily existing preference languages can be implemented in asprin. Finally, we
empirically evaluate our contributions and contrast them with dedicated imple-
mentations.
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1. Introduction

Preferences are pervasive and often are a key factor in solving real-world ap-
plications. This was realized quite early in Answer Set Programming (ASP; [1]),
where solvers offer optimization statements representing ranked, sum-based ob-
jective functions (viz. minimize statements or weak constraints [2, 3]). Such quan-
titative ways of optimization are often insufficient for applications, in particular,
when they require more elaborate preference aggregation or even the combination
of various types of qualitative and quantitative preferences. This is all the more
remarkable, since there is a vast literature on qualitative and hybrid means of op-
timization [4, 5, 6, 7, 8]. And what makes things worse is that existing systems
lack any means for integrating customized preferences.

We bridge this gulf with our approach and the resulting asprin1 system by
providing a general, flexible, and extensible framework for implementing com-
plex combinations of quantitative and qualitative preferences among the stable
models of a logic program. Our framework is general and captures the major
existing approaches to preference. It is flexible and deals with preferences in an
elaboration tolerant way. Also, it is extensible and allows for an easy implemen-
tation of new or extended approaches to preference handling. Hence, it provides a
uniform setting for comparing and combining preferences. The resulting system
asprin builds on control capabilities for multi-shot ASP solving [9], providing suc-
cessive yet operational grounding and solving of changing logic programs. This
technology allows us to direct the search for specific preferred solutions without
modifying the ASP solver. As well, it significantly reduces redundancies found in
an iterated setting. Finally, the use of ASP technology paves the way for the high
customizability of our framework by offering an implementation of preferences
via ordinary encodings using meta-programming.

From an abstract point of view, our goal is to determine the preferred stable
models of logic programs associated with preference specifications that express
preference relations. Formally, a preference relation � is a preorder, that is, a
reflexive and transitive relation. Given two stable models X and Y of P , X � Y
means that X is at least as preferred as Y , or, in other words, that X is better or
equal to Y . The strict version of � is defined as usual, i.e., X � Y if X � Y
but Y 6� X . In words, X � Y means that X is preferred to Y , and we may also
say that X is better than Y or that X dominates Y . A stable model X of P is
preferred with respect to �, if there is no other stable model Y such that Y � X

1asprin stands for “ASASASASASASASASASASASASASASASASASP for prprprprprprprprprprprprprprprprpreference handlinininininininininininininininining”.
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— that is, whenever X is not dominated by any other stable model. Then, the
preferred (or optimal) models of a logic program with a preference specification
are the stable models of the logic program that are preferred with respect to the
preorder expressed by the preference specification. Note that our approach applies
as well to optimization in Satisfiability Testing and Constraint Processing, given
that programs capturing these paradigms are easily designed (cf. [10, 11]).

asprin allows for declaring and evaluating preference relations among the sta-
ble models of a logic program. Preferences are declared by preference statements,
composed of an identifier, a type, and an argument set, referred to as preference
elements. The identifier names the preference relation, whereas its type and ele-
ments define the relation. Here is a simple (propositional) example:

#preference(costs , less(weight)){40 : sauna, 70 : dive} (1)

This statement2 declares a preference relation named costs with type less(weight)
and argument set {40 : sauna, 70 : dive}. Informally, the resulting preference
relation prefers models whose atoms induce the minimum sum of weights. Hence,
models with neither sauna nor dive are preferred over those with only sauna.
Stable models with only dive are still less preferred, while those with both sauna
and dive are least preferred. While the arguments of preference statements are
sets, we see below that the elements contained in these sets can be more complex
than in the example. In the most general case, we even admit conditional elements,
which are used to capture conditional preferences. For instance, a preference
element ‘dive > {sauna, swim}‖hot’ may express that, whenever it is hot, diving
is preferred to saunaing and swimming. Moreover, some preference statements
may refer to other statements in their arguments, for example:

#preference(all , pareto){name(costs), name(fun), name(temps)} (2)

This defines a preference relation all which is the Pareto ordering of three prefer-
ence relations costs , fun and temps . That is, stable model X is better or equal to
Y , if it is better or equal to Y with respect to the three argument orderings.

Since we can have more than one preference statement, one of them must be
distinguished for optimization. This is done via an optimization directive of form
#optimize(s) with the name of the respective preference statement as argument.
Then, a preference specification is a set of preference statements along with an

2In ASP, meta statements are preceded by ‘#’.
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optimization directive. It expresses the preference relation given by the corre-
sponding optimized statement. Unlike existing approaches to optimization, this
separates the declaration of preference relations from optimization instructions.

Once the preference and optimize statements are given, the computation of
preferred stable models is done via preference programs. Such programs, which
need to be defined for each preference type, take two (reified) stable models and
decide whether one is preferred to the other. During optimization, they take as
input a stable model X of the original program P and produce a stable model of
P better than X , according to the optimization directive, if such a stable model
exists. An optimal stable model is computed stepwise, by repeated calls to the
ASP solver: first, an arbitrary stable model of P is generated; then this stable
model is “fed” to the preference program to produce a better one, etc. Once the
solver returns unsatisfiable, the last stable model obtained is an optimal one. To
compute many optimal solutions, the solver is extended by a modification of the
preference program that eliminates those models worse than the last optimal one.
Then, the optimization process is started again. Preferred stable models can also
be computed via a translation to disjunctive logic programs. In this case, the
preference program is used to check the optimality of the stable models of the
original logic program P .

asprin provides a library containing a number of predefined, common, pref-
erence types along with the necessary preference programs. Users happy with
what is available in the library can thus use the available types without having
to bother with preference programs at all. However, if the predefined preference
types are insufficient, users may define their own types, and so become preference
engineers. In this case, they also have to provide the preference programs asprin
needs to cope with the new preference types.

Our paper is structured as follows. We start in Section 2 by laying out the
formal preliminaries of our approach. With them, we introduce in Section 3 our
preference language and its semantic underpinnings. We then show in Section 4
how preference specifications are translated to ASP and how they can be used in
conjunction with preference programs to decide preference dominance and related
computational problems. These ideas form the basis of the algorithms presented
in Section 5. More precisely, we give algorithms for computing one and enumerat-
ing all preferred models, respectively, and show that they are sound and complete.
Additionally, we study the complexity of the different problems tackled by our al-
gorithms. In Section 6, we introduce the first-order modeling language of asprin,
in order to use it in Section 7 to incorporate existing approaches to preference
from the literature. Section 8 gives further details of the asprin system. Then,
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we report in Section 9 results obtained from series of experiments analyzing vari-
ous aspects of asprin’s computational performance. Afterwards, in Section 10 we
discuss related work, and we conclude in Section 11.

This article is based on the works presented in [12, 13]. We extend those
papers in three ways: we provide a complexity analysis of the reasoning tasks
addressed by our algorithms, we extend our previous discussion of related work,
and we include for the first time the proofs of the old and the new theoretical
results. The only technical modification with respect to those papers is that here
we define preference relations as preorders and not as strict partial orders, like we
did before. This change is not crucial, since one can easily translate a preorder into
a strict partial order, and vice versa. But we decided to apply it for two reasons.
First, because preorders fit better with our method for combining preferences,
since composite preferences, like pareto, usually require the auxiliary preferences
to provide a preorder. And second, because in this way our definition of preference
relations agrees with most of the definitions from the literature, which makes the
comparison with other approaches easier.

2. Background

A term is either a constant, a variable, a tuple or a functional term. A constant
is either a string starting with some lowercase letter, or an integer. A variable
is a string starting with some uppercase letter. A tuple of arity n has the form
(t1, . . . , tn) for some terms t1, . . . , tn and n ≥ 0. A functional term has the form
f(t1, . . . , tn) for some functor f of arity n ≥ 1 and some terms t1, . . . , tn. An
atom has the form p(t1, . . . , tn) for some predicate p of arity n ≥ 0 and some
terms t1, . . . , tn. An atom p() is likewise represented by p without parentheses.
We say that a predicate is unary if its arity is 1, and we say that a term or an atom
is ground if it contains no variables.

A logic program P over a set A of ground atoms is a set of disjunctive rules
of the form

a1 ; . . . ; am ← am+1, . . . , an,¬an+1, . . . ,¬ao (3)

and choice rules of the form

{a1} ← a2, . . . , an,¬an+1, . . . ,¬ao (4)

where each ai is a ground atom inA for 1 ≤ i ≤ o, ¬ stands for (default) negation,
and we have that m,n, o ≥ 0 in (3) and n, o ≥ 1 in (4). A rule as in (3) is called a
fact if m = o = 1, normal if m = 1, and an integrity constraint if m = 0.
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The dependency graph of a set of disjunctive rules over A has nodes A, and
for every rule of the form (3) it has an edge ai

+← aj for 1 ≤ i ≤ m and m+ 1 ≤
j ≤ n, and an edge ai

−← aj for 1 ≤ i ≤ m and n+ 1 ≤ j ≤ o. We say that a
logic program is disjunctive in general, it is normal if it consists of normal rules,
integrity constraints or choice rules, and it is stratified [14] if it consists of normal
rules or integrity constraints, and its dependency graph has no cycle involving a
negative edge ( −←). Note that, differently than usual, we allow choice rules in
disjunctive and normal programs.

Let P be a logic program over a set of ground atoms A. An interpretation
of P is a subset of A. To specify the stable model semantics [15, 16], we iden-
tify every disjunctive rule (3) of P with the formula am+1 ∧ · · · ∧ an ∧ ¬an+1 ∧
· · · ∧ ¬ao → a1 ∨ · · · ∨ am and every choice rule (4) of P with the formula
a2 ∧ · · · ∧ an ∧ ¬an+1 ∧ · · · ∧ ¬ao → a1 ∨ ¬a1, where the empty disjunction and
the empty conjunction are identified with ⊥ and >, respectively. Then, an inter-
pretation of P is a stable model of P if it is a subset-minimal model of the set of
formulas that results from replacing in P every literal not satisfied by X with ⊥.
We say that a logic program is satisfiable if it has some stable models, and it is un-
satisfiable otherwise. Every stratified logic program without integrity constraints
is satisfiable and has a unique stable model, while every stratified logic program
in general is satisfiable if and only if the unique stable model of its normal rules
is a model of its integrity constraints [14, 2].

As usual, rules with variables are viewed as shorthands for the set of their
ground instances. More formally, the Herbrand universe of a logic program with
variables P consists of all the ground terms constructible from constants and func-
tors appearing in P , and the set of ground instances of a rule r ∈ P is the set of
all ground rules obtained by replacing all variables in r by ground terms from the
Herbrand universe of P . Given this, we identify a logic program with variables P
with the set of ground instances of its rules.

We use typewriter font to express rules as source code in the input lan-
guage of the ASP system clingo3 and stick with the mathematical notation used
in (3) at the conceptual level. Also, we sometimes present examples as source
code to make them more comprehensible. To ease the use of ASP in practice,
several language extensions have been developed, including conditional literals
and cardinality constraints [2]. The former are of the form a:b1,...,bm, the
latter can be written as s{c1;...;cn}t, where a and bi are possibly default-

3This language slightly extends the ASP language standard ASP-Core-2 [17].
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negated literals and each cj is a conditional literal; s and t provide lower and
upper bounds on the number of satisfied literals in the cardinality constraint. We
refer to b1,...,bm as a condition. The practical value of both constructs be-
comes apparent when used with variables. For instance, a conditional literal
like a(X):b(X) in a rule’s antecedent expands to the conjunction of all in-
stances of a(X) for which the corresponding instance of b(X) holds. Similarly,
2{a(X):b(X)}4 is true whenever at least two and at most four instances of
a(X) (subject to b(X)) are true. Specifically, we rely in the sequel on the input
language of the ASP system clingo [18]; further language constructs are explained
on the fly.

3. Expressing Preferences

We go beyond plain ASP and deal with logic programs with preferences, that
are pairs (P, S) of logic programs P over a set of ground atoms A, and pref-
erence specifications S over A. We define below preference specifications, and
for now we just say that they define a preorder � ⊆ A×A among the inter-
pretations of P . We refer to � as a preference relation. Given two interpreta-
tions X, Y ⊆ A, the relation X � Y means that X is at least as preferred as
Y , and the corresponding strict version X � Y means that X is preferred to
Y . We say that a stable model X of P is preferred wrt � (or �-preferred) if
there is no other stable model Y such that Y � X; that is, if there is no stable
model preferred to X . Then, X is a preferred stable model of a logic program
P with a preference specification S if X is preferred wrt the preference relation
� defined by S. We also refer to the preferred stable models as optimal stable
models. In what follows, we often leave the preference specification implicit,
and refer directly to a program with the corresponding preference relation.

In the remainder of this section, we provide a generic preference language
for expressing a wide range of preference relations. The primitives of the lan-
guage are inspired by the literature to provide the best possible coverage of pref-
erence structures. To keep our framework open for extensions, we do not fix a
set of predefined preferences. Rather we give examples of how well-known pref-
erences can be expressed and implemented (see also Section 7). Many of these
are included in asprin’s preference library, which provides basic building blocks
for defining new preferences.

We introduce our framework over a given set of ground atoms A. Expres-
sions with variables are viewed as shorthands for their ground instances; they are
detailed in the context of asprin’s input language in Section 6.
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3.1. Syntax
Our language consists of the following parts: weighted formulas, prefer-

ence elements, preference statements, optimization directives, and preference
specifications.

A weighted formula is of the form4 t : ε where t is a tuple of terms and ε is
either a Boolean expression φ over A with logical connectives >, ¬, ∧, and ∨; or
a naming atom (see below). We drop the colon and simply write ε whenever t is
empty. For expressing composite preferences, we use a dedicated unary naming
predicate name that allows us to refer to auxiliary preferences. That is, a naming
atom, name(s), refers to relations associated with a preference statement s (see
below). Examples of weighted formulas include: 1, 1, 4 : cuboid(x) ∧ a, and 2 :
name(q).

A preference element is of the form5

Φ1 > · · · > Φm ‖ φ (5)

where φ is a non-weighted formula giving the context, and each Φr is a set of
weighted formulas for r = 1, . . . ,m and m ≥ 1. Intuitively, r gives the rank of
the respective set of weighted formulas. Preference elements provide a (possible)
structure to a set of weighted formulas by giving a means of conditionalization
and a symbolic way of defining preorders (in addition to using weights). For
convenience, we may drop the surrounding braces of such sets and omit “‖φ” if
φ is tautological. Also, we drop “>” if m = 1. Hence {a,¬b} > c stands for
{a,¬b} > {c} ‖ >. Similarly, 40 : sauna in (1) abbreviates {40 : sauna} ‖ >.

Preferences are declared by preference statements of the form

#preference(s, t){e1, . . . , en} (6)

where s and t are ground terms giving the preference name and its type, respec-
tively, and each ej is a preference element for j = 1, . . . , n. The identifier names
the preference relation, whereas its type and arguments define the relation, as de-
tailed in Section 3.2 below. In what follows, we sometimes abuse this notation
and simply identify a preference statement with its identifier s and refer to its type
by ts. The preference type determines its admissible sets of preference elements,
since their full generality is not always needed. Formally, the domain of a prefer-
ence type t is given by dom(t). For instance, less(weight) in (1) is restricted to

4This syntax follows aggregate elements [17, Section 2].
5This notation is inspired by [19].
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weighted literals; see Section 3.2 for more examples. A preference type may or
may not allow naming atoms, depending on whether it is composite or primitive.
For instance, the preference type pareto in (2) is composite, while less(weight)
in (1) is primitive.

To take effect, a set of preference statements is accompanied by a single opti-
mization directive of form

#optimize(s)

that tells a solver to restrict its reasoning mode to the preference relation declared
by s. The collection of preference statements in a program has to satisfy certain
requirements to be useful. We say a set of preference statements S is

• closed, if s ∈ S whenever name(s) occurs in S, and

• acyclic, if the dependency relation induced among preference statements in
S by naming atoms is acyclic.

A preference specification is a set of preference statements S along with a single
directive #optimize(s) such that s ∈ S and S is acyclic and closed. We call s the
primary preference statement in S and refer to statements in S \ {s} as auxiliary.

3.2. Semantics
A preference statement like #preference(s, t)E declares a preference relation

of preference type t and preference elements E. More formally, a preference type
t is a function mapping an admissible set of preference elements E ∈ dom(t) to a
preorder t(E) ⊆ A×A over A. For simplicity, we often denote the relation t(E)
by �s, and its strict version by �s.

As a first example of a definition of a preference type, consider a class of
simple cardinality-based relations, referred to as less(card): 6

(X, Y ) ∈ less(card)(E) iff |{` ∈ E | X |= `}| ≤ |{` ∈ E | Y |= `}|

where dom(less(card)) = P({a,¬a | a ∈ A}) and P(S) is the power set of
S. We observe that preference types are defined for specific kinds of preference
elements and come with recipes for interpreting their preference elements.

6X |= φ is the standard satisfaction relation between an interpretation X and a formula φ.
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The next preference type more(weight) is similar to the one used by maximize
statements in ASP solvers (cf. Section 7.1):

(X, Y ) ∈ more(weight)(E) iff
∑

(w:`)∈E,X|=`

w ≥
∑

(w:`)∈E,Y |=`

w

where dom(more(weight)) = P({w : a, w : ¬a | w ∈ Z, a ∈ A}).
Here is a further example from asprin’s library, going beyond existing prefer-

ences in ASP solvers:

(X, Y ) ∈ subset(E) iff {` ∈ E | X |= `} ⊆ {` ∈ E | Y |= `}

where dom(subset) = P({a,¬a | a ∈ A}).
All previous preference types are primitive because they do not refer to aux-

iliary preferences via naming atoms. More such preference types are defined
throughout this paper. See also Section 8 for a list of preferences predefined in
asprin’s library.

Composite preferences are meant to capture preference aggregation. The cor-
responding preference relations are formed inductively from auxiliary preferences
referred to via the unary naming predicate name. Given a naming atom name(s),
we let �s, �s, =s, ≺s, �s refer to relations associated with preference statement
s. That is, all of them are regrouped via the preference type and share the same
preference elements. Although the various relations can be defined in terms of
�s, their specific definition is left to the designer of the preference type. We use
N to denote the set of naming atoms.

For example, we can define preference types corresponding to the well-known
Pareto principle [20] as well as lexicographic orderings as follows:

(X, Y ) ∈ pareto(E) iff
∧

name(s)∈E

(X �s Y ) (7)

where dom(pareto) = P({n | n ∈ N}), and

(X, Y ) ∈ lexico(E) iff
∨

w:name(s)∈E

(
(X �s Y ) ∧

∧
v:name(s′)∈E

v>w

(X =s′ Y )
)
∨

∧
w:name(s)∈E

(X =s Y ) (8)

where dom(lexico) = {Z ∈ Z | if w : m ∈ Z and w : n ∈ Z then m = n} for
Z = P({w : n | w ∈ N, n ∈ N}).
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Combining several preference relations of type more(weight) via lexico
amounts to the orderings induced by maximize statements in ASP. Note, how-
ever, that those statements couple together the declaration of a preference relation
and its usage for optimization, while our framework separates them. This is made
precise in Section 7.1. An aggregation of subset relations with lexico is similar
to prioritized circumscription [21]. Pareto-based preference relations are beyond
existing preferences in ASP solvers. Other composite preference types are easily
defined. More evidence of this is given in Section 7 where we show how vari-
ous approaches from the literature can be captured in our framework. See also
Section 8 for a list of composite preferences predefined in asprin’s library.

A specific preference relation is obtained by applying a preference type to
an admissible set of preference elements. Here are some examples of preference
statements with specific preference elements:

#preference(1, less(card)){a,¬b, c}) declares X �1 Y as

|{` ∈ {a,¬b, c} | X |= `}| ≤ |{` ∈ {a,¬b, c} | Y |= `}|

#preference(2,more(weight)){1 : a, 2 : ¬b, 3 : c} declares X �2 Y as∑
w:`∈{1:a,2:¬b,3:c}

X|=`

w ≥
∑

w:`∈{1:a,2:¬b,3:c}
Y |=`

w

#preference(3, subset){a,¬b, c} declares X �3 Y as

{` ∈ {a,¬b, c} | X |= `} ⊆ {` ∈ {a,¬b, c} | Y |= `}

#preference(4, pareto){name(1), name(2), name(3)} declares X �4 Y as

(X �1 Y ) ∧ (X �2 Y ) ∧ (X �3 Y )

#preference(5, lexico){1 : name(1), 2 : name(2), 3 : name(3)} declares X �5 Y
as

(X �3 Y ) ∨ ((X =3 Y ) ∧ (X �2 Y ))∨
((X =3 Y ) ∧ (X =2 Y ) ∧ (X �1 Y ))∨
((X =3 Y ) ∧ (X =2 Y ) ∧ (X =1 Y ))
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We note that primitive preference relations are uniquely determined by their type
and the result of evaluating the underlying preference elements, whereas compos-
ite ones additionally depend on auxiliary preference relations that must be pro-
vided within the encompassing preference specification.

Finally, we say that a preference specification S whose primary statement is s
defines the preference relation �s. Observe that this is well defined also for spec-
ifications that contain composite preference statements, since preference specifi-
cations are closed and acyclic by definition.

4. Handling Preferences

Our approach centers on the implementation of the decision problem:
(X, Y )∈�s? That is, to decide whether one stable model is strictly preferred
to another with respect to a preference relation defined by some preference state-
ment. This dominance test is accomplished by so-called preference programs.
Such programs need to be defined for each preference type. Their combination
with facts representing preference elements implement preference relations. How-
ever, apart from deciding dominance among two fixed stable models, preference
programs also allow for computing a model dominating a given one, or to show
that none exists (not to mention the enumeration of the entire preference relation).
This is of great practical relevance since it allows us to iteratively improve stable
models until a non-dominated and hence optimal model is found (cf. Section 5).

4.1. Instance format
Preference statements are represented as a collection of facts. A weighted

formula of form w1, . . . , wl : φ occurring in some set Φr of a preference element
ej in a preference statement s as in (6) is represented as a fact of form7

preference(s,j,r,for(tφ),(w1,. . .,wl)).

where each wi represents wi for i = 1, . . . , l and tφ is a term representing φ by
using functors neg, and, and or of arity 1, 2 and 2, respectively. For simplicity,
we use indices r and j to identify the respective structural components.8 For
representing the condition of ej (cf. (5)), we set r to 0. A naming atom name(s)
is represented analogously, except that for(tφ) is replaced by name(s).

7For tangibility, we present the format in terms of ASP source as produced by asprin.
8In asprin, a pair (j,t) is used instead of j, where t is a tuple of terms reflecting the respec-

tive instantiation of variables occurring in the original preference statement.
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We let Fs,j denote the set of all facts obtained for all weighted formulas
and naming atoms contained in preference element ej belonging to preference
statement s. With this, we define the translation of a preference statement
#preference(s, t){e1, . . . , en} as

Fs = { preference(s,t).} ∪
⋃
j=1,...,n Fs,j

where s and t represent s and t, respectively.
For example, the previous preference statements are translated by asprin as

follows.

#preference(1, less(card)){a,¬b, c}) yields

preference(1,less(cardinality)).

preference(1,1,1,for(a),()).
preference(1,2,1,for(neg(b)),()).
preference(1,3,1,for(c),()).

#preference(2,more(weight)){1 : a, 2 : ¬b, 3 : c}) yields

preference(2,more(weight)).

preference(2,1,1,for(a),(1)).
preference(2,2,1,for(neg(b)),(2)).
preference(2,3,1,for(c),(3)).

#preference(3, subset){a,¬b, c}) yields

preference(3,subset).

preference(3,1,1,for(a),()).
preference(3,2,1,for(neg(b)),()).
preference(3,3,1,for(c),()).

#preference(4, pareto){name(1), name(2), name(3)}) yields

preference(4,pareto).

preference(4,1,1,name(1),()).
preference(4,2,1,name(2),()).
preference(4,3,1,name(3),()).

#preference(5, lexico){1 : name(1), 2 : name(2), 3 : name(3)} yields

13



preference(5,lexico).

preference(5,1,1,name(1),(1)).
preference(5,2,1,name(2),(2)).
preference(5,3,1,name(3),(3)).

4.2. Encoding
Although the ultimate purpose of preference programs is to decide whether

one stable model is strictly preferred to another, their definition is independent
of the notion of stable model. In fact, preference programs compare any pair of
subsets X and Y of A. But for this to be possible, they have to be able to refer
to the atoms of X and Y . This is accomplished by reifying those atoms as the
unique arguments of the unary predicates holds and holds ′. With this, preference
programs can refer to the atoms of X and Y using atoms over those predicates.
More formally, we define, for a set X of atoms, the following sets of facts:

H(X) = {holds(a)← | a ∈ X} and H ′(X) = {holds ′(a)← | a ∈ X}.

Then, the preference program implementing the preference relation induced by a
preference statement is defined as follows.

Definition 1. Let �s⊆ A×A be a preference relation and let Ps be a logic pro-
gram. Then, Ps is a preference program for �s, if for all sets X, Y ⊆ A, we
have

X �s Y iff Ps ∪H(X) ∪H ′(Y ) is satisfiable.

Observe that we say that Ps is a preference program for �s, but the condition
only refers to its strict version �s. Note also that the definition abstracts from an
underlying preference statement. In what follows, we often leave the preference
relation �s implicit, and rather refer to the preference program Ps for the pref-
erence statement s inducing �s. We also keep using Ps for denoting preference
programs. Moreover, we point out that the definition and the following formal
results apply as well if we consider that s is a preference specification. However,
to simplify the presentation, from here on we focus on a single preference state-
ment s. Observe also that preference programs refer only to atom sets and are thus
independent of any underlying programs. This changes (below) once sets H(X)
and H ′(Y ) represent actual stable models of a logic program.

Our methodology foresees that a preference program for a primary preference
statement with identifier s is composed of three parts:
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1. a set Fs of facts representing s,
2. a logic program Et accounting for the preference type t of s,
3. a logic program G comprising fixed auxiliary rules.

Whenever s is the primary preference, the fact ‘optimize(s) ←’ is added to Fs
to represent the optimization directive #optimize(s). We implement each pref-
erence type by an ASP encoding. Each such Et defines under which conditions
a stable model is strictly better than another one with respect to preference type t
and facts Fs. In Et this is expressed using a unary predicate better that takes pref-
erence s as argument. The implementation is required to yield better(s) whenever
the stable model captured byH(X) is strictly better than that comprised inH ′(Y ).
The auxiliary rules in G are common to all preference types. First, they extend
the atomic truth assignment captured by H(X) to all Boolean formulas occurring
in the preference specification at hand. For any such formula φ, the rules in G
warrant that holds(tφ) is obtained when φ is entailed by the stable model X
captured in H(X) where tφ is the term representation of φ. This is analogous for
holds’ and H ′(X). To coordinate with Fs and Et, we stipulate that those rules
only define atoms over the predicates holds and holds’. Second, G contains
the integrity constraint:

← ¬better(P ), optimize(P ) (9)

This constraint ensures that the preference program is unsatisfiable whenever no
stable model is strictly better wrt the primary statement. Finally, the union Fs ∪
Et ∪G constitutes a typical preference program in our framework.

In asprin a preference program is defined generically for the preference type,
and consecutively instantiated to the specific preference in view of its preference
elements. Let us illustrate this by the preference program for the primary prefer-
ence statement #preference(3, subset){a,¬b, c} given in Listing 1.

The set F3 representing preference statement 3 is given in lines 3-6, augmented
by the fact in Line 1 accounting for its primariness. The encoding Esubset of pref-
erence type subset consists of the single rule in lines 8 to 10. While the condition
in Line 10 stipulates that each element captured by holds also belongs to the set
represented by holds’, the literals in Line 9 make sure that there is at least one
element that belongs to the extension of holds’ but not holds. Lines 12-15
comprise the auxiliary rules in G. The constraint in Line 12 is the same as (9).
Lines 14 and 15 contain the satisfaction rules for negation.9 Altogether the three

9The ones for conjunction and disjunction are omitted since they are irrelevant in the example.
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1 optimize(3).

3 preference(3,subset).
4 preference(3,1,1,for(a),()).
5 preference(3,2,1,for(neg(b)),()).
6 preference(3,3,1,for(c),()).

8 better(P) :- preference(P,subset),
9 not holds(X), holds’(X), preference(P,_,_,for(X),_),

10 holds’(Y) : preference(P,_,_,for(Y),_), holds(Y).

12 :- not better(P), optimize(P).

14 holds(neg(A)) :- not holds(A), preference(_,_,_,for(neg(A)),_).
15 holds’(neg(A)) :- not holds’(A), preference(_,_,_,for(neg(A)),_).

Listing 1: Preference program for #preference(3, subset){a,¬b, c}.

parts constitute the preference program P3 = F3 ∪ Esubset ∪ G. With it, we may
check whether {a, b} �3 {a} holds. To this end, we reify both sets of atoms, and
test whether P3∪H({a, b})∪H ′({a}) is satisfiable. This results in a stable model
containing better(3) confirming that {a} ⊂ {a,¬b} holds.

The next proposition makes precise how preference programs capture the strict
versions of the preference relations defined by preference statements.

Proposition 1. Let s be a preference statement such that �s⊆ A ×A and Ps be
a preference program for s. Then, we have that �s is given by

{(X, Y ) | X, Y ⊆ A, Ps ∪H(X) ∪H(Y )′ is satisfiable} .

We can also capture those strict relations by single logic programs. For this,
we consider all reified subsets of a set X of atoms via the following choice rules:

C(X) = {{h} ← | h ∈ H(X)} and C ′(X) = {{h′} ← | h′ ∈ H ′(X)} .

In what follows, we stipulate that no atoms of the unary predicates holds and
holds ′ occur in the heads of the rules of preference programs. With this, we can
express our result as follows.

Proposition 2. Let s be a preference statement such that �s⊆ A ×A and Ps be
a preference program for s. Then, we have that �s is given by

{(X, Y ) |Z is a stable model of Ps ∪ C(A) ∪ C ′(A),
X = {a | holds(a) ∈ Z} and Y = {a | holds ′(a) ∈ Z}} . (10)
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As an example, let us reconsider the above preference program P3 imple-
menting #preference(3, subset){a,¬b, c}. The logic program P3∪C({a, b, c})∪
C ′({a, b, c}) results in 19 stable models capturing relation �3 over {a, b, c}.

Next, we show how preference programs can be used for deciding whether
a stable model of a logic program is preferred, and how a dominating model is
obtained. We refer to the underlying programs as base programs and assume that
they are formed over some set of ground atoms A that does not contain any atom
over the unary predicates holds and holds ′. We stipulate that base and preference
programs are formed over disjoint sets of atoms. Interactions among those pro-
grams are controlled by mapping atoms in A to H(A) and H(A)′, respectively.
To formulate our result, we need the following set of rules subject to a set X of
atoms:

R(X) = {holds(a)← a | a ∈ X}

R(X) can be regarded as the dynamic counterpart of H(X) since reified atoms
are now conditioned. With it, we obtain the following result.

Proposition 3. Let P be a logic program overA, and Ps be a preference program
for preference statement s. Then, we have

1. if X is a stable model of P , then X is �s-preferred iff
(
P ∪ Ps ∪ R(A) ∪

H(X)′
)

is unsatisfiable
2. if Y is a stable model of

(
P ∪ Ps ∪R(A) ∪H(X)′

)
for some X ⊆ A, then

Y ∩ A is a stable model of P such that (Y ∩ A) �s X .

We use (P∪Ps∪R(A)∪H(X)′) to check whether there is a model dominating
X . Note how the usage of program P ∪ RA restricts candidates to stable models
of P , unlike arbitrary subsets of A as in Proposition 2.

For illustration, consider a base program P only consisting of the cardinality
constraint ‘{ a; b; c } = 2.’ along with the above preference program P3.
Together withR({a, b, c}) andH ′(X) we may now check whether a setX is dom-
inated by some stable model of P . For instance, checking whether {a} is dom-
inated is done with H ′({a}). This yields a stable model containing holds(a)
and holds(b) and tells us that {a} is dominated by {a, b}. Now, replacing
H ′({a}) by H ′({a, b}) yields an unsatisfiable program, indicating that {a, b} is a
�3-preferred stable model of P .

In what follows, we show how selected preference types are implemented in
asprin. Each type is captured by a (non-ground) logic program.
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less(card) is implemented by
better(P) :- preference(P,less(cardinality)),

#sum{ -1,X: holds(X), preference(P,_,_,for(X),_);
1,X: holds’(X), preference(P,_,_,for(X),_) } > 0.

more(weight) is implemented by10

better(P) :- preference(P,more(weight)),
#sum{ W,X: holds(X), preference(P,_,_,for(X),(W));

-W,X: holds’(X),preference(P,_,_,for(X),(W))} > 0.

The implementation of subset is given above.
In general, the correctness of a preference program is the responsibility of the

implementer, just as with regular ASP encodings. However, for asprin’s prefer-
ence library, we can provide correctness results.

Proposition 4. Let s be an admissible preference statement of the form
#preference(s, subset)E, Esubset consist of the single rule in lines 8 to 10 of
Listing 1, and Fs and G be defined as above. Then

Esubset ∪ Fs ∪G is a preference program for s.

Proposition 5. Let s be an admissible preference statement of the form
#preference(s,more(weight))E, Emore(weight) consist of the previous rule im-
plementing more(weight), and Fs and G be defined as above. Then

Emore(weight) ∪ Fs ∪G is a preference program for s.

The difference between primitive and composite preferences reduces to an
issue of modularity when it comes to preference programs. This is because a
preference program for a primary composite preference can be obtained by simply
including all logic programs defining referenced auxiliary preferences. Hence, we
do not further elaborate on preference programs for composite preferences here
and rather concentrate on the design of preference modules in asprin for importing
auxiliary preference programs in Section 8.

Two examples of composite preference types are pareto and lexico:

10In the asprin system, the domain of more(weight) is slightly different, being closer to the
syntax of optimization statements in ASP. For this reason, the implementation in asprin is also
slightly different (see Section 7.1).
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pareto is implemented by
better(P) :- preference(P,pareto),

better(P’’), preference(P,_,_,name(P’’),_),
bettereq(P’) : preference(P,_,_,name(P’),_).

lexico is implemented by
better(P) :- preference(P,lexico);

better(P’), preference(P,_,_,name(P’), (W)),
equal(P’’): preference(P,_,_,name(P’’),(V)), V > W.

Observe that both types rely also on non-strict relations that need to be de-
fined (cf. (7) and (8)). In analogy to preference programs for preference re-
lations, our methodology foresees that they are implemented by rules defining
unary predicates such as bettereq or equal . For instance, a non-strict variant for
less(cardinality) can be implemented by replacing better and ‘>’ above by
bettereq and ‘>=’, respectively. Similarly, an equality-oriented variant is ob-
tained by using equal and ‘=’.

The final configuration of a preference program for a composite preference
depends upon the specific orderings referenced in the elements of the preference
statement. For each ordering referred to in a naming atom, a corresponding pro-
gram must be added. For instance, the preference program for preference state-
ment 4 on page 11 must not only include the above program defining better
for pareto but moreover programs defining better as well as bettereq for
less(card), more(weight), and subset .

5. Computing preferred models

In what follows, we consider two different approaches for computing one or
all preferred stable models of a (ground) logic program. The first approach uses
model-driven algorithms inspired by branch-and-bound optimization. The second
one addresses both problems by translating a program with preferences into a dis-
junctive logic program, whose models correspond to the preferred models of the
original program. The latter also extends seamlessly to query-answering, which is
more involved with the former. After presenting these algorithms, we analyze the
computational complexity of the problem landscape and relate it to the respective
methods.

Our model-driven approach relies upon successive calls to a (multi-shot) ASP
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solver. For a logic program P , we define

solve(P ) =

{
X for some stable model X of P, if P is satisfiable
⊥ if P is unsatisfiable

We also define the intersection X ∩ ⊥ for some set of atoms X to be ⊥.
The model-driven algorithms assume that their input logic program P is finite.

This implies that P has a finite number of stable models, and guarantees that the
algorithms always terminate (see also Section 8.1).

5.1. Computing one preferred model
Given a finite program P and a preference program Ps for a preference state-

ment s, Algorithm 111 computes a �s-preferred stable model of P . We put no
restrictions on the program P or on the preference program other than the finite-
ness of P ; both may even be disjunctive programs.

Algorithm 1: solveOpt(P, Ps)
Input : A finite program P over A and

a preference program Ps for preference statement s.
Output : A �s-preferred stable model of P , if P is satisfiable,

and ⊥ otherwise.

1 Y ← solve(P )
2 if Y = ⊥ then return ⊥
3 repeat
4 X ← Y
5 Y ← solve(P ∪ Ps ∪R(A) ∪H(X)′) ∩ A
6 until Y = ⊥
7 return X

The non-dominance test for candidate models is implemented as prescribed by
Proposition 3. This is done in Line 5 where we check whether there is a Y such
that Y �s X . That is, given a candidate X , we let a solver check whether X is
preferred wrt �s. If this succeeds, we obtain ⊥ in Line 5, and return X in Line 7.
Otherwise, we obtain with Y a counterexample dominating X , and we continue

11This algorithm is inspired by ideas in [4, 22], see the discussion for details.
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the loop with Y as new candidate model. Note that Algorithm 1 can easily be
turned into an anytime algorithm returning the best stable model computed so far.

For capturing this in more detail, we define a trace of Algorithm 1 as the
sequence (Y0, Y1, . . . ) of sets of atoms successively computed in Algorithm 1 as
follows:

• Y0 is the value of Y in Line 1 of Algorithm 1 and

• Yi is the value of Y in Line 5 in the ith iteration of the loop for i > 0.

Proposition 6. Let (Y0, Y1, . . . ) be a trace of Algorithm 1 for a finite program P
and a preference program Ps for preference statement s. Then, the trace is finite,
has the form (Y0, . . . , Yn) for some integer n ≥ 0, and

1. n > 0 if and only if P is satisfiable
2. Yi is a stable model of P for 0 ≤ i < n

3. Yi �s Yi−1 for 0 < i < n

4. Yn = ⊥
5. Yn−1 is a �s-preferred stable model of P , if n > 0

6. Algorithm 1 returns Y0 if n = 0, and Yn−1 if n > 0

Theorem 1. Given a finite program P and a preference program Ps for prefer-
ence statement s, Algorithm 1 computes a �s-preferred stable model of P if P is
satisfiable, and ⊥ otherwise.

5.2. Computing all preferred models
Next, we address the problem of enumerating preferred models. While base

programs remain unrestricted, we first limit ourselves to preferences for which
we can decide whether X � Y holds for sets X, Y in polynomial time.12 In
view of this, we assume without loss of generality that preference programs are
stratified, since each problem decidable in polynomial time can be represented as
a stratified logic program (cf. [3]). Recall from Section 2 that a stratified logic
program is satisfiable if and only if the unique stable model of its normal rules
satisfies its integrity constraints.

Given a finite program P and a stratified preference program Ps for preference
statement s, Algorithm 2 computes all �s-preferred stable models of P . The idea

12This restriction is lifted in Section 5.2.1.
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Algorithm 2: solveOptAll(P, Ps)
Input : A finite program P over A and

a stratified preference program Ps for preference statement s.
Output : The set of �s-preferred stable models of P .

1 X ← ∅
2 loop
3 Y ← solve

(
P ∪

⋃
Xi∈X

(
NXi
∪ (Ps ∪H(Xi))

i ∪R′(A)i
))
∩ A

4 if Y = ⊥ then return X
5 repeat
6 X ← Y

7 Y ← solve
(
P ∪ Ps ∪R(A) ∪H(X)′

)
∩ A

8 until Y = ⊥
9 X ← X ∪ {X|X |+1}

is to collect preferred models computed in analogy to Algorithm 1. To see this,
observe that Lines 3-8 correspond to Lines 1-6 in Algorithm 1. That is, starting
from an initial model Y in Line 3, a preferred modelX is obtained after the repeat
loop via successive non-dominance tests. Preferred models are accumulated in the
indexed set X of form {Xi | i ∈ I} and use the indices in I to refer to different
preferred models. The index set I grows with each addition to X in Line 9, where
we add X indexed with |X |+ 1 to X , viz. X|X |+1.

The most intricate part of Algorithm 2 is Line 3. The goal is to compute a
stable model of P that is neither dominated by nor equal to any preferred model
in X . Line 3 checks whether there is a stable model Y of P such that Xi 6= Y
and Xi �s Y for all i ∈ I . We already have Y �s Xi since each Xi ∈ X is
�s-preferred.

For each i ∈ I , Condition Xi 6= Y is guaranteed by the integrity constraint
NXi

of form

NX = {← X ∪ {¬a | a ∈ A \X}} . (11)

Although such solution recording is exponential in space, it has the advantage of
being non-intrusive to the solver.

For addressing condition Xi �s Y , preference programs are not directly ap-
plicable since they result in an unsatisfiability problem according to Definition 1.
Instead, we need to encode the condition as a satisfiability problem in order to
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obtain a stable model as a starting point for the subsequent search. Due to our re-
striction to stratified preference programs, this is accomplished as follows. Given
a program P , define P as the program

(P \ {r ∈ P | head(r) = ∅}) ∪ (12)
{u← body(r) | r ∈ P, head(r) = ∅} ∪ { ← ¬u} ,

where u is a new atom. Then, we observe the following property.

Proposition 7. If program P is stratified, P is satisfiable iff P is unsatisfiable.

The next proposition shows how non-dominance is encoded as a satisfiability
problem.

Proposition 8. Let Ps be a stratified preference program for preference statement
s. Then, for all sets X, Y ⊆ A, we have

X �s Y iff Ps ∪H(X) ∪H(Y )′ is satisfiable.

The next result captures the essence of the non-dominance test in Line 3 of Algo-
rithm 2.

Proposition 9. Let P be a program over A and Ps be a stratified preference pro-
gram for preference statement s. If Y is a stable model of(

P ∪ Ps ∪H(X) ∪R′(A)
)

for some X ⊆ A, then Y ∩ A is a stable model of P such that X �s (Y ∩ A).

Note that we also have (Y ∩ A) �s X whenever X is preferred wrt �s.
Given that X contains several preferred models, we need to test each model

in X for the condition in Proposition 9. To do so, we let P i denote the program
obtained from P by replacing each atom a occurring in P by ai. Moreover, we
generalize the definition of R(X) to R′i(X) = {holds ′(a)i ← a | a ∈ X}. With
this, the next proposition captures the functioning of Line 3 of Algorithm 2.

Proposition 10. Let {Xi | i ∈ I} be the value of X in Line 2 of Algorithm 2 and
let Y be the value returned in Line 3 of Algorithm 2. Then,

1. either Y is a stable model of P such that Y 6= Xi, and Xi �s Y for all
i ∈ I ,

2. or no such stable model exists, and Y is ⊥.
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In analogy to Section 5.1, we detail the execution of Algorithm 2 by means of
traces. A trace of Algorithm 2 is a (possibly empty) sequence (Xi)i∈I of sets Xi

added to X in Line 9 at different iterations of the outermost loop.

Proposition 11. Let (Xi)i∈I be a trace of Algorithm 2 for a finite program P and
a stratified preference program Ps for preference statement s. Then, the trace is
finite, and

1. for each i ∈ I , Xi is a �s-preferred stable model of P
2. for each�s-preferred stable model Y of P , there is a unique i ∈ I such that
Y = Xi

3. Xi 6= ⊥ for all i ∈ I
4. there is no �s-preferred stable model of P , if X = ∅ (or I = ∅)

For each iteration i of the outermost loop of Algorithm 2, starting at i=1, we define
an i-trace as the sequence (Yi0 , Yi1 , . . . ) of sets of atoms successively computed
as follows:

• Yi0 is the value of Y in Line 3 and

• Yij is the value of Y in Line 7 at the jth iteration of the repeat loop for j > 0.

Note that there is one i-trace for every i ∈ I , and there is one additional i-trace
for the last iteration of the algorithm. To state the properties of i-traces, we let Xi
denote the set {Xj | j ∈ I, j ≤ i} for each iteration i.

Proposition 12. Every i-trace of the algorithm is finite, has the form
(Yi0 , . . . , Yin) for some integer n ≥ 0, and

1. n > 0 iff Xi−1 does not contain all �s-preferred stable models of P
2. Yij is a stable model of P for 0 ≤ j < n

3. Yij �s Yij−1
for 0 < j < n

4. Yin = ⊥
5. Yin−1 is a �s-preferred stable model of P , if n > 0

6. Xi is undefined if n = 0, and is Yin−1 if n > 0

7. Yij is such that Xk 6= Yij and Xk �s Yij for 0 ≤ j < n and all Xk ∈ Xi−1

Note the similarity with Proposition 6. Basically, every i-trace amounts to a trace
of Algorithm 1 where the stable models satisfy the property of item 7, and the
preferred stable models computed are not directly returned, but they are added to
the set X as Xi’s (see item 6).

Based on this, we can prove soundness and completeness.
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Theorem 2. Given a finite program P and a stratified preference program Ps
for preference statement s, Algorithm 2 computes exactly the set of �s-preferred
stable models of P .

5.2.1. Computing all preferred models for complex preferences
We now drop the restriction of polynomially decidable preference relations,

and consider preferences decidable in NP. Without loss of generality, we thus
allow for preference programs being normal because each problem decidable in
NP can be represented as a normal logic program.

As above, the crucial point is to express the non-dominance test in Line 3 of
Algorithm 2 as a satisfiability problem. For addressing this in the case of normal
programs, Eiter and Gottlob invented in [23] the saturation technique. The idea
is to re-express the problem as a positive disjunctive logic program, containing
a special-purpose atom, say bot . Whenever bot is obtained, saturation derives
all atoms (belonging to a “guessed” model). Intuitively, this is a way to mate-
rialize unsatisfiability. For automatizing this process, we build upon the meta-
interpretation-based approach described in [24, 25]. The idea is to map a program
P onto a set R(P ) of facts via reification.13 The facts in R(P ) are then com-
bined with a meta-encodingM implementing saturation.14 Then, P has a stable
model iff R(P ) ∪M has a corresponding one excluding bot , and P is unsatisfi-
able iffR(P ) ∪M has a unique saturated stable model containing bot . Note that
R(P ) ∪M is always satisfiable since it is a positive program.

In our case, we consider for a preference statement s the positive disjunctive
logic program

R
(
Ps ∪ C(A) ∪ C ′(A)

)
∪M . (13)

In analogy to Proposition 2, this reified program has a stable model (excluding
bot) for each pair X, Y ⊆ A satisfying X �s Y , and it has a saturated stable
model (including bot) if there is no such pair. Note that X and Y are merely
subsets of A, not necessarily stable models.

Given a reified program Qs as in (13), it is sufficient to replace the program
passed to solve in Line 3 of Algorithm 2 by the following disjunctive program(

P ∪
⋃
X∈X NX

)
∪Qs ∪N (X ) ∪R′(A) ∪ {← ¬bot} (14)

13For instance, programs can be reified with clingo via option --output=reify.
14Specific meta-encodings for saturation come with the respective distributions of clingo, and

are bundled at https://github.com/potassco/clingo/tree/master/examples/reify.
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As in Algorithm 2,
(
P ∪

⋃
X∈X NX

)
generates stable model candidates different

from those in X .15 Programs N (X ) and R′(A) restrict the choices of C(A) and
C ′(A) in (13), respectively.

N (X ) = {bot ←
⋃
Xi∈X{ui}} ∪

⋃
Xi∈X{ui ← R

−(holds(a)) | a ∈ Xi}
∪
⋃
Xi∈X{ui ← R

+(holds(a)) | a ∈ A \Xi}
R′(A) = {R+(holds ′(a))← a | a ∈ A} ∪ {R−(holds ′(a))← ¬a | a ∈ A}

Just like bot ,R+(a) andR−(a) belong to the signature of the used saturation en-
codingM; they encode reified positive and negative atoms, respectively.16 Unlike
this, ui is a new atom for each Xi ∈ X (similar to atom u in (12)). While N (X )
eliminates all non-preferred models (outside of X ) from the candidate sets gener-
ated by C(A) via saturation, programR′(A) maps all candidate models generated
by (P ∪

⋃
X∈X NX) to the signature ofM, more specifically toR(H(A)′).

Interestingly, all above properties of Algorithm 2 carry over to the more com-
plex case. To see this, observe that reified preference programs decide preference
relations just as regular ones. However, saturation leads to a subproblem of ele-
vated complexity. If the original preference program is normal, and its decision
problem is thus NP complete, the resulting saturated program leads to an NPNP

problem. Hence, Algorithm 2 cannot be used to enumerate preferred models for
preferences whose decision problem is beyond NP , since then saturation is inap-
plicable. A general view of this limitation is presented in Section 5.4.

5.3. Computing preferred models via a translation to disjunctive logic programs
The axiomatic way of computing preferred models translates a normal pro-

gram with preferences into a disjunctive logic program without preferences, so
that the stable models of the translated program correspond to the preferred stable
models of the original program. This reduces the problem of computing optimal
stable models of normal programs with preferences to the problem of comput-
ing stable models of disjunctive logic programs. Then, in practice, we can use a
disjunctive ASP solver to compute stable models of the translated program, and
in virtue of the translation, those stable models are also preferred models of the
original program. In ASP, this kind of translation is commonly formulated using

15The definition of NX is given in (11).
16For instance, in the meta encoding in [24] literals a and ¬a are represented as true(atom(a))

and fail(atom(a)), respectively.
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saturation techniques (cf. [26, 24]) because one has to combine the generation of
model candidates with the failure to generate dominating counter-models.

This approach is easily accomplished by means of the above building blocks.
In analogy to the basic approach in Section 4.2, we consider for a base program P
and a preference program Ps for a preference statement s the positive disjunctive
program

R
(
Ps ∪ (P ∪R(A)) ∪ C ′(A)

)
∪M . (15)

However, instead of generating arbitrary sets of atoms via C(A) as in (13), we
only generate stable models of P . Hence, the program in (15) has a stable model
(excluding bot) for each pair X, Y ⊆ A such that X is a stable model of P and
X �s Y , and it has a saturated stable model (including bot) if there is no such
pair.

This leads us to the following disjunctive logic program, EP,s, extending P .

P ∪
(
R
(
Ps ∪ P ∪R(A) ∪ C ′(A)

)
∪M

)
∪R′(A) ∪ {← ¬bot} (16)

The stable models Y of P are mapped to the signature ofM byR′(A), while the
rest of the rules check that there is no stable model X of P such that X �s Y .

For computing one or all �s-preferred models of P , respectively, it is suffi-
cient to pass EP,s to a disjunctive ASP solver along with the appropriate option.
Similarly, checking whether a query a is true in some �s-preferred model of P
can be done by passing the program EP,s ∪ {← ¬a} to the solver. To do the same
with Algorithm 2, one had to enumerate preferred models until one comprising a
is found. See [27] for other alternatives to this.

The major difference between the algorithmic and axiomatic approach is that
the former relies on a sequence of similar problems successively passed to a
solver, while the latter encapsulates all into solving a single problem specification.
Hence, in ASP, the axiomatic approach is restricted to problems at the second level
of the polynomial hierarchy, while the model-driven approach can go beyond this
because only each solver invocation is restricted to such problems. Also, as we
will see in the complexity analysis, the complete problem captured by EP,s is of-
ten harder than the successive problems considered in Algorithm 1 and 2. This
is reflected in the type of programs used by each approach. For instance, when
considering a normal base program along with a stratified preference program,
Algorithm 1 considers a suite of normal programs, while EP,s is a disjunctive pro-
gram. The other side of this is that the axiomatic approach requires a single call
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to a disjunctive solver, while Algorithm 1 may require an exponential number of
calls to the underlying solver.17

On the more pragmatic side, note that today’s disjunctive ASP solvers rely on
the interaction of two internal solvers, so that one external call is usually dealt with
by several internal interactions. Also, the successive programs in Algorithm 1
and 2 are rather similar, so that multi-shot solving can be used for reducing redun-
dancies among successive solver invocations. A major drawback of Algorithm 2
is that it faces an exponential space consumption in the worst case. Again, this
is also a common problem when enumerating models in today’s solvers, although
here polynomial space enumeration can be used as well.18 However, all these
aspects can only be evaluated empirically, as done in Section 9.

5.4. Computational complexity
As mentioned in the introductory section, we face the manifold combinations

of optimization problems, base programs, and preference programs, which results
in a whole spectrum of distinct computational complexities.

We start by introducing shortly the complexity classes that show up in our
analysis. See [29] for an introduction to complexity theory. By PC (NPC) we
denote the class of decision problems that are solvable in polynomial time by a
deterministic (nondeterministic, respectively) Turing machine that has access to
an oracle for any problem in the class C. Then, the classes Σp

k, Πp
k and ∆p

k are
defined as follows:

∆p
0 = Σp

0 = Πp
0 = P and for all k ≥ 1,∆p

k = PΣp
k−1 ,Σp

k = NPΣp
k−1 ,Πp

k = co-Σp
k.

In particular, NP = Σp
1 and co-NP = Πp

1. We also consider the classes FΣp
k, FΠp

k

and F∆p
k of function problems that correspond to the previous decision problems,

where the task is not to decide whether a solution exists, but to actually compute
such a solution.

We continue by enumerating the problems that we consider. Their input al-
ways contains a base program P over a set of ground atoms A, and a preference
program Ps for some preference statement s. We assume all those elements to

17In our experiments of Section 9 we have not observed that exponential number of solving
calls, but certainly in some cases the number of calls is large. As we see in that section, this issue
can be alleviated using domain specific heuristics.

18For instance, clasp offers both types of enumeration because “solution recording” is some-
times more effective [28].

28



be finite. Also, note that neither the preference statement s nor the preference
relation �s are part of the input.

• Model Finding: Find some �s-preferred stable model of P .

• Query: Given some atom a ∈ A, decide whether there exists some �s-
preferred stable model X of P such that a ∈ X .

• Optimality: Given a stable model X of P , decide whether X is a �s-
preferred stable model or P .

• Non Dominance: Given a set X of �s-preferred stable models of P , decide
whether there exists some stable model Y of P such that X 6= Y and X 6�
Y for all X ∈ X .

Model Finding is a function problem, while the others are decision problems.
The former is solved by Algorithm 1, and by the axiomatic approach presented
in Section 5.2.1. We are also interested in the Query problem, that can either be
solved by the axiomatic approach, or by some extension of Algorithm 2 (see Sec-
tion 5.2.1). We have also presented methods for computing all preferred models,
but we do not study the complexity of that task. The problems Optimality and Non
Dominance are solved at different stages of Algorithms 1 and 2. Namely, Line 5
of Algorithm 1 and Line 7 of Algorithm 2 solve the complement of the Optimality
problem; while Line 3 of Algorithm 2 solves the Non Dominance problem, using
program (14) if the preference program is normal.

We analyze the complexity of these problems for different types of base and
preference programs. More specifically, we consider the combinations where the
base program is either normal or disjunctive; and the preference program is either
stratified, normal or disjunctive. We do not delve into the case where the base
program is stratified because in this case it is clear that all problems become poly-
nomial. The preference programs shown in this paper are all stratified. In [30],
we have used a normal preference program to represent CP-nets [31]. And so far,
we have never used a disjunctive preference program. Recall that the problem of
deciding if a program P has some stable model is Σp

0-complete if P is stratified,
is Σp

1-complete if P is normal, and is Σp
2-complete if P is disjunctive (cf. [3]).19

19The complexity results from [3], unlike ours, consider normal and disjunctive logic programs
without choice rules. However, it is well known how to translate choice rules to normal rules,
using additional atoms, in polynomial time. Therefore, we can apply these results to our setting.
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Accordingly, we say that stratified, normal and disjunctive logic programs are of
class 0, 1 and 2, respectively.

Theorem 3. The following complexity results are parametrized by the class i ∈
{1, 2} of the base program and the class j ∈ {0, 1, 2} of the preference program:

• The problem Model Finding is F∆p
i+1-hard and belongs to FΣp

max({i,j})+1.

• The problem Query is Σp
max({i,j})+1-complete.

• The problem Optimality is Πp
max({i,j})-complete.

• The problem Non Dominance is Σp
max({i,j+1})-complete.

The full proofs of these results can be found in Appendix A.4. Here, we only
describe their basic structure.

The membership proofs for Model Finding, Query, and Non Dominance are
similar. The first one introduces a nondeterministic Turing machine that guesses
possible stable models of the base program, checks their stability with a Σp

i−1 ora-
cle, and their optimality with a Σp

max({i,j}) oracle. For the Query problem, guesses
are restricted to those that contain the query atom, while for Non Dominance, the
last optimality check is replaced by a check of the condition on the sets in X us-
ing a Σp

j oracle. The membership proof for Optimality is based on Proposition 3,
that shows how to solve the complement of the problem using programs of class
max ({i , j}).

The hardness proof for the Model Finding problem is done by a reduction
from the problem of computing an optimal stable model of a logic program with
optimization statements. The hardness proof for the Query problem is done by
reductions from problems of abduction in logic programming [32]. The hardness
proof for the Optimality problem is done by reductions from the problem of de-
ciding the satisfiability of a logic program. Finally, the hardness proof for the
Non Dominance problem is done by reductions from problems of abduction and
of satisfiability of logic programs.

Model Finding is the only problem for which we do not provide a complete-
ness result. It is an open question to us what complexity class could be complete
for this problem. To simplify matters, let us focus on the case where i = 1 and
j = 0. In this situation, a reasonable option would be the class F∆p

2. In fact, for
all preference types that we have studied that are decidable in polynomial time, the
Model Finding problem is in F∆p

2 (when i = 1). For example, for more(weight),

30



that falls into this case, it is possible to perform a binary search over the possible
total weights of the solutions, bounding the number of calls to an NP oracle by
a polynomial (cf. [2]). But in asprin in general there is no apparent structure that
can be exploited to perform that kind of search, given that the preference relation
is simply represented by a logic program. Actually, Algorithm 1 may need an ex-
ponential number of solving calls, and it is hard for us to imagine how to improve
that bound in this general setting. The other obvious option is the class FΣp

2. But
if the problem was hard for that class, then the complexity would be like the one
for the Query problem, which is certainly possible, but unexpected to us. In that
case, one would be able to compute stable models of disjunctive logic programs
by computing preferred models of normal logic programs, and it is also hard for
us to imagine how that could be possible.

We can now discuss our implementations in view of these complexity results.
For Model Finding, the hardness result suggests that the problem cannot be

solved by a single solving call to a solver for the base program. This justifies
the usage of either an iterative method as in Algorithm 1, or a disjunctive logic
program like (16) when both the base and the preference programs are not dis-
junctive.

For the Query problem, the complexity result tells us that, if neither the base
nor the preference program are disjunctive, then the problem is in Σp

2 and can be
solved by a disjunctive logic program, just like we do in Section 5.2.1, while this
is in principle not possible if any of those programs is disjunctive. As mentioned
in Section 5.2.1, in this situation we could still solve the problem iterating over
all preferred solutions with Algorithm 2, but this could require an exponential
amount of space.

For the Optimality problem, as expected, the complexity is aligned with the
type of logic programs used in Lines 5 of Algorithm 1 and Line 7 of Algorithm 2.
For stratified and normal preference programs, membership in Πp

i suggests that
the subproblems tackled by those lines are easier than the overall optimization
problem, tackled by the axiomatic approach at once, which is F∆p

i+1-hard. We
conjecture that this also happens when preference programs are disjunctive, but
our current results do not allow us to support that claim.

For the Non Dominance problem, the complexity result justifies Line 3 of
Algorithm 2 and the alternative version using program (14). If the preference pro-
gram is stratified, then the problem is in Σp

i and can be represented by a program
of the same type as the base program, as in Line 3 of Algorithm 2. If the prefer-
ence program is normal, then the problem is Σp

2-hard and demands the additional
expressive power of disjunctive logic programs, as in (14). In the remaining case,
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if the preference program is disjunctive, then the problem is Σp
3-hard and therefore

out of the scope of our algorithms, under the usual assumptions.

6. asprin’s input language

We present the first-order modeling language of asprin, that we use below to
express existing approaches to preferences.

A logic program with preferences in asprin consists of a logic program in the
language of the ASP system clingo [18] together with a preference specification.
The preferred stable models of such a logic program with preferences are the
stable models of the logic program that are preferred wrt the preference relation
defined by the ground instantiation of the preference specification.

We present preference specifications and their ground instantiations following
the steps of Section 3.1. The expressions that we introduce here can be simplified
like we did in that section. Further details can be found in [33].

A weighted formula is of the form ‘t :: ε’ where t is a term tuple of the form
t1, . . . , tn for some terms t1, . . . , tn and n ≥ 0, and ε is either a Boolean formula or
a naming atom. Both t and ε may contain variables. Boolean formulas are formed
from atoms using connectives not, &, and |. If they have the form φ1 & . . .&φn,
then they can also we written using the body notation φ1,. . .,φn. Naming atoms
of form ‘**s’ refer to the preference associated with term s. We use ‘**s’ rather
than name(s) to free the usage of the latter predicate. If t1 :: ε1, . . . , tn :: εn
are weighted formulas, then ‘{t1 :: ε1;. . .;tn :: εn}’ is a set of weighted for-
mulas.

A preference element is of the form ‘Φ1 >>. . .>> Φn || φ : B’ where each
Φi is a set of weighted formulas, φ is a weighted formula, and B is a rule body.
Preference elements are required to be safe, that is, all their variables must occur
either in some positive body literal or in the body of the encompassing preference
statement.

A preference statement is of the form

#preference(s,t){e1 ;. . .; en} : B.

where s and t are terms denoting the preference name and its type, and each ej is
a preference element. The body B of a preference statement is used to instantiate
the variables of s, t and each ei. For safety, all variables appearing in s, t and B
must appear in a positive literal in B.

An optimization directive is of the form ‘#optimize(s) : B.’ where s
is a term and B a body. Like before, all variables appearing in s and B must
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appear in a positive literal in B.
A preference specification consists of at least one preference statement, and

at least one optimization directive. Its ground instantiation, that we specify be-
low, must comply with the conditions stated in Section 3.1: the set of its ground
preference statements must be closed and acyclic, it must contain a unique ground
optimization directive, and the argument of that directive must be the name of
some ground preference statement.

The ground instantiation of a preference specification is determined by the
logic program encompassing the specification, together with the rule bodies B
that may occur after the colon ‘:’ in preference elements, preference statements
and optimization directives. Those bodies must consist only of atoms over domain
and built-in predicates, cf. [33]. This is important, because the truth value of those
atoms is unique for all stable models of the encompassing logic program. Accord-
ingly, we can letD be the set of those atoms that is true. Then, to define the ground
instantiation of a preference specification, first we take all the ground instances of
the preference elements, preference statements and optimization directives whose
ground bodies are satisfied byD, and then we just remove the ground bodies from
them. For example, given this logic program with preferences:

1 dom(1..2).
2 { a(X,Y) : dom(X), dom(Y)}.

4 #preference(p(X),subset){ a(X,Y) : dom(Y) } : dom(X).
5 #optimize(p(X)) : dom(X), not dom(X+1).

the set D is {dom(1),dom(2)}, and the ground instantiation of the preference
specification is as follows:

#preference(p(1),subset){ a(1,1) ; a(1,2) }.
#preference(p(2),subset){ a(2,1) ; a(2,2) }.
#optimize(p(2)).

In the implementation, the restriction about the type of atoms occurring in rule
bodies B, together with the safety conditions mentioned above, guarantee that a
preference specification is translated into a set of rules that is grounded into facts,
that are the same for all stable models.

We conclude this section with a variant of our introductory preference specifi-
cation about leisure activities, without base program, where all predicates except
do and hot are domain predicates:
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1 #preference(costs,less(weight)){
2 C,A :: do(A) : cost(A,C)
3 }.
4 #preference(fun,superset){
5 do(A) : like(A);
6 not do(A) : dislike(A)
7 }.
8 #preference(temps,aso){
9 do(A) >> do(B) || hot : outdoor(A), indoor(B);

10 do(A) >> do(B) || not hot : indoor(A), outdoor(B)
11 }.
12 #preference(all,pareto){ **costs; **fun; **temps }.
13
14 #optimize(all).

The preference relations costs, fun, and temps are combined in Line 12
via pareto and the resulting relation is declared to be subject to optimization in
Line 14. The syntax mixes that of regular ASP with preference-oriented con-
structs. The latter are characterized by doublings such as ::, >>, ||, and **.
More examples are given in the next section. Also, preference types less(weight)
and aso are described in Sections 7.1 and 7.2, respectively.

7. Integrating approaches to preferences

To further illustrate the generality of our approach as well as the usage of
actual preference programs in asprin, we show below how well-known approaches
to preferences can be implemented.

7.1. Optimization statements
First of all, let us see how common optimization statements are expressed in

asprin.20 A #minimize directive is of the form

#minimize{w1@k1,~t1 : ~̀1, . . . , wn@kn,~tn : ~̀n}

where each wi and ki is an integer, and ~ti = ti1 , . . . , tim and ~̀i = `i1 , . . . , `ik are
tuples of terms and literals, respectively. For a set X of atoms and an integer k, let
ΣX
k denote the sum of weights wi over all occurrences of elements (wi@ki,~ti : ~̀i)

in M such that X |= ~̀
i. Then, for sets X, Y of atoms and minimize statement M

20The decomposition of weak constraints is analogous, and is omitted for brevity.
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as above, we have that X �M Y if there is some integer k such that ΣX
k < ΣY

k

and ΣX
k′ = ΣY

k′ for all k′ > k; and X �M Y if either X �M Y or ΣX
k = ΣY

k for
all integers k.

In asprin, a minimize statement M as above can be represented by the follow-
ing preference specification.

#preference(sM,lexico){ k :: **sk | (w@k,~t : ~̀) ∈M }.

#preference(sk,less(weight)){ w,(~t) :: ~̀ | (w@k,~t : ~̀) ∈M }.

#optimize(sM).

The preference type less(weight) is implemented as follows.
better(P) :- preference(P,less(weight)),
#sum { -W,T,F : holds(F), preference(P,_,_,for(F),(W,T)) ;

W,T,F : holds’(F), preference(P,_,_,for(F),(W,T)) } > 0.

Note that by wrapping tuples ~t into (~t), we only deal with pairs w,(~t) rather
than tuples of varying length. For the aggregation by lexico, the implementation
includes also a rule definining an equally-oriented variant, replacing better and
> by equal and =, respectively.

asprin’s separation of preference declarations from optimization directives not
only illustrates how standard optimization statements conflate both concepts but
it also explicates the interaction of preference types lexico and less(weight).

To see the correctness of the approach, consider a minimize statement M , and
let Elexico be the preference program for lexico from Section 4.2, Eless(weight) be
the previous rules for less(weight), FM be the set of facts for the corresponding
preference specification, and G be the auxiliary rules from Section 4.2. Then, it
can be shown that Elexico ∪Eless(weight)∪FM ∪G is a preference program for�M .

7.2. Answer set optimization
For capturing answer set optimization (ASO; [4]), we consider ASO rules of

form
φ1 > · · · > φm ← B (17)

where each φi is a propositional formula for 1 ≤ i ≤ m and B is a rule body.
The semantics of ASO is based on satisfaction degrees for rules as in (17).

The satisfaction degree of such a rule r in a set of atoms X , written vX(r), is 1 if
X 6|= b for some b ∈ B, or if X |= b for some ¬b ∈ B, or if X 6|= φi for every
1 ≤ i ≤ m, and it is min{k | X |= φk, 1 ≤ k ≤ m} otherwise. Then, for sets
X, Y of atoms and a set O of rules of form (17), X �O Y if for all rules r ∈ O,
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vX(r) ≤ vY (r), and it follows that X �O Y if X �O Y and there is some rule
r ∈ O such that vX(r) < vY (r).

In asprin, we can represent an ASO rule r as in (17) as a preference statement
of the form

#preference(sr,aso){ φ1 >> . . .>>φm ||B }.

A set {r1, . . . , rn} of ASO rules is represented by corresponding preference state-
ments sr1 to srn along with an aggregating pareto preference subject to optimiza-
tion.

#preference(paraso,pareto){ **sr1, . . .,**srn }.
#optimize(paraso).

Note that other composite preferences instead of pareto could be used just as well.
The core implementation of preference type aso is given in Lines 1-23 below.

Predicate one is true whenever an ASO rule has satisfaction degree 1 wrt the
stable model captured by H(X). The same applies to one’ but wrt H ′(X).

1 one(P) :- preference(P,aso),
2 not holds(F) : preference(P,_,R,for(F),_), R>1.
3 one(P) :- preference(P,aso),
4 holds(F), preference(P,_,1,for(F),_).
5 one(P) :- preference(P,aso),
6 not holds(F), preference(P,_,0,for(F),_).

8 one’(P) :- preference(P,aso),
9 not holds’(F) : preference(P,_,R,for(F),_), R>1.

10 one’(P) :- preference(P,aso),
11 holds’(F), preference(P,_,1,for(F),_).
12 one’(P) :- preference(P,aso),
13 not holds’(F), preference(P,_,0,for(F),_).

With these rules, we derive better(sr) in Line 15 whenever some ASO
rule r has satisfaction degree 1 in X and one greater than 1 in Y . Otherwise,
better(sr) is derivable in Line 16 whenever r has satisfaction degree R in X
but none of the formulas φ1 to φR are true in Y . This is analogous for bettereq
in lines 20-23.

15 better(P) :- preference(P,aso), one(P), not one’(P).
16 better(P) :- preference(P,aso),
17 preference(P,_,R,for(F),_), holds(F), R > 1, not one’(P),
18 not holds’(G) : preference(P,_,R’,for(G),_), 1 < R’,R’ <= R.

20 bettereq(P) :- preference(P,aso), one(P).
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21 bettereq(P) :- preference(P,aso),
22 preference(P,_,R,for(F),_), holds(F), R > 1, not one’(P),
23 not holds’(G) : preference(P,_,R’,for(G),_), 1 < R’,R’ < R.

The remaining rules consist of the program implementing the composite prefer-
ence type pareto, as given in Section 4.2 on Page 19.

Altogether, these rules capture the semantics of ASO. To see this, consider a
set O of ASO rules, and let Epareto be the preference program for pareto, Easo

be the previous rules for aso, and FO be the set of facts for the corresponding
preference specification. Then, it can be shown that Epareto ∪ Easo ∪ FO ∪G is a
preference program for �O.

7.3. Posets
In [8], qualitative preferences are modeled by a strict partially ordered set

(Φ, <) of literals, also called a poset. The literals in Φ represent propositions
that are preferably satisfied and the strict partial order < on Φ gives their relative
importance. We adapt this to sets of Boolean formulas. Then, for sets X, Y
of atoms and a strict partially ordered set (Φ, <), X �(Φ,<) Y if there exists a
formula φ ∈ Φ such that X |= φ and Y 6|= φ, and for every formula φ ∈ Φ
such that Y |= φ and X 6|= φ, there is a formula φ′ ∈ Φ such that φ′ < φ and
X |= φ′ but Y 6|= φ′. For our purposes, we additionally define the preorder �(Φ,<)

as follows: X �(Φ,<) Y if eitherX �(Φ,<) Y , or for all φ ∈ Φ it holds thatX |= φ
if and only if Y |= φ.

We represent a partially ordered set (Φ, <) by a preference statement s(Φ,<) of
form:

#preference(s(Φ,<),poset)Φ∪{φ′ >>φ | φ′ < φ}.

The preference type poset captures the preference relations �(Φ,<) for all strict
partially ordered sets (Φ, <).

The core implementation of preference type poset is given in Lines 1-13 below.
In fact, Line 1 to 4 are only given for convenience to project the components of
(Φ, <).

1 poset(P,F) :- preference(P,poset),
2 preference(P,_,_,for(F),_).
3 poset(P,F,G) :- preference(P,poset),
4 preference(P,I,1,for(F),_), preference(P,I,2,for(G),_).

6 better(P,F) :- preference(P,poset),
7 poset(P,F), holds(F), not holds’(F).
8 notbetter(P) :- preference(P,poset),
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9 poset(P,F), not holds(F), holds’(F),
10 not better(P,G) : poset(P,G,F).

12 better(P) :- preference(P,poset),
13 better(P,_), not notbetter(P).

Given the reification of two sets X, Y in terms of holds and holds’, we derive
an instance of better(P,F) whenever X |= φF but Y 6|= φF (and F is the
representation of φF). Additionally, we derive notbetter(P) whenever there
is a formula φF such that Y |= φF, X 6|= φF, and better(P,G) fails to hold
for all φG preferred to φF by the strict partial order <. Then, these two auxiliary
predicates are combined in Line 12 and 13 to define the preference type poset .

Finally, we sketch how these rules capture the intended semantics. For this,
given a strict partially ordered set (Φ, <), we let Eposet consist of the previous
rules in Lines 1-13, and F(Φ,<) stand for the facts of the corresponding preference
specification. Then, it can be shown that Eposet ∪ F(Φ,<) ∪ G is a preference
program for �(Φ,<).

7.4. Basic desires
Son and Pontelli [7] propose a language for specifying preferences in plan-

ning that distinguishes three types of preferences: basic, atomic, and general pref-
erences. A basic preference is originally expressed by a propositional formula
using Boolean as well as temporal connectives. Given that our focus does not lie
on planning, we restrict basic preferences to Boolean formulas. Then, for sets
X, Y of atoms and a formula φ, [7] defines X �φ Y by Y |= φ implies X |= φ,
from which it follows that X �φ Y if X |= φ and Y 6|= φ.

In asprin, such a basic preference is declared by a preference statement sφ of
form

#preference(sφ,basic){ φ }.

The preference type basic is implemented by the following rule.
better(P) :- preference(P,basic), preference(P,_,_,for(F),_),

holds(F), not holds’(F).

Interestingly, atomic and general preferences can be captured by composite
preferences pre-defined in asprin’s library. That is, the language constructs !, &,
|, and / directly correspond to asprin’s preference types neg, and, pareto, and
lexico. For brevity, we refrain from further details and refer the reader to [7] for
formal definitions.
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8. The asprin system

8.1. Overview
asprin is implemented in Python using clingo’s API [18]. This interface pro-

vides clingo objects maintaining a logic program and supporting methods for
adding, deleting and grounding rules, as well as for solving the current logic pro-
gram. This allows for continuously changing the logic program at hand without
any need for re-grounding rules. Also, it benefits from information learned in
earlier solving steps.

The model-driven approach creates a clingo object, grounds the input logic
program and runs Algorithm 1 or 2, that interact continuously with the running
clingo object. Due to the usage of functional terms, it can happen that ground-
ing does not terminate and asprin runs indefinitely, just as it can happen with
clingo (cf. [34]). Otherwise, the solving algorithms receive a finite and ground
program, in accordance with the specification of Section 5.

On the other hand, the implementation of the axiomatic approach combines
Python with the meta-programming techniques of clingo (cf. footnote 13) to cre-
ate the logic program (16) and solve it once with a clingo object.

The system asprin is publicly available at https://potassco.org/asprin.

8.2. Library
The current asprin library includes the preferences that we have seen in the

previous sections: more and less as regards cardinality and weight, respectively,
subset and superset, aso [4], poset [22], lexico, pareto, and and neg [7]. The
library also includes the preference types cp, maxmin, and minmax. The first one
represents CP-nets [30] and was introduced in [31]. The other two were included
in [27] as part of an approach to compute diverse optimal solutions. While maxmin
aims at maximizing the minimum value among a set of sums, minmax aims at
minimizing the maximum value of such a set. See Section 10 for more details
about these extensions.

8.3. Input
The input of asprin consists of a set of ASP files structured by means of

clingo’s #program directives into base and preference programs. Base pro-
grams consist typically of a regular logic program along with a preference specifi-
cation (just as with #minimize statements).21 Preference programs can be im-

21If no preference specification is given, asprin computes stable models of the base program.
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ported from asprin’s library, and/or from the input files provided by the user.
Rules common to all types of preference programs are grouped under program
blocks headed by ‘#program preference.’, while type-specific ones use
‘#program preference(t).’ where t is the preference type. Among all
these type-specific programs, asprin only loads those for the preference types ap-
pearing in the preference specification of the base program. On the other hand,
for every preference type t of the preference specification, asprin requires a cor-
responding preference program ‘preference(t)’. asprin’s implementation
relies on the correctness of preference specifications. In other words, if the pref-
erence programs implement correctly the corresponding preference types, then
asprin also functions correctly.

8.4. Usage
asprin can be configured by several command line options. As with standard

ASP solvers, a natural number n tells asprin how many optimal models should be
computed (where 0 initiates the computation of all optimal models). By default,
asprin computes optimal models using Algorithms 1 and 2. Option --project
allows for projecting the optimal models on the atoms occurring in the preference
specification. Options for modifying the underlying clingo solver can be directly
issued from the command line. More options and details are obtained with as-
prin’s --help option.

8.5. Heuristic support
Optimization problems are clearly more difficult than decision problems, since

they involve the identification of optimal solutions among all feasible ones. To this
end, it seems advantageous to direct the solving process towards putative optimal
solutions by supplying heuristic information. Although this runs the risk of search
degradation [35], it has already provided very promising prospects by improving
regular optimization in ASP [36] as well as with poset preferences [8]. While the
latter had to be realized by modifying solver implementations, in asprin we draw
upon the integration with clingo’s declarative heuristic framework [36] . Heuristic
support is added to logic programs via directives of form22

#heuristic a : l1,. . .,ln. [k,m]

22This syntax is analogous to the one of weak constraints [17].
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where a is an atom and l1, . . . , ln are literals. The integer value for k along with
init, factor, level, sign, true, or false for m determine a heuristic
modification to a provided that l1, . . . , ln hold [36].

Different types of heuristic information can be controlled with clingo’s
domain heuristic along with the basic modifiers sign, level, init, and
factor. In brief, sign allows for controlling the truth value assigned to vari-
ables subject to a decision within the solver, while level establishes a ranking
among atoms such that unassigned atoms of highest rank are chosen first. With
init, a value is added to the initial heuristic score of an atom. The whole search
is biased with factor by multiplying heuristic scores by a given value. Further-
more, modifiers true and false are defined as the combination of a positive
sign and a level, and a negative sign and a level, respectively. See [36]
for details.

This framework seamlessly integrates into asprin by means of the command
line option --domain-heuristic=<m>[,<v>], that applies heuristic mod-
ifier m with value v (1 by default) to the formulas occurring in preference state-
ments. In the implementation, this results in the addition of the heuristic directive

#heuristic holds(X) : preference(_,_,_,for(X),_). [v,m]

For example, the option --domain-heuristic=false tells the underly-
ing solver to decide first on formulas appearing in preference statements and
to assign false to them. As another example, we can replicate the modifica-
tion of the sign heuristic proposed in [8] for poset just by issuing the option
--domain-heuristic=sign, that leads to assigning true when deciding on
formulas of a preference statement. In general, the goal of these heuristic specifi-
cations is to direct the search towards optimal solutions in such a way that fewer
intermediate solutions have to be computed. As we see in the next section, this
often helps boosting the performance of asprin.

9. Experiments

This section is devoted to the empirical analysis of asprin’s performance. To
this end, we conducted several experimental series addressing the following ques-
tions:

1. How does asprin’s general approach compare to dedicated implementa-
tions? We consider:
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(a) cardinality and weight optimization to contrast asprin using prefer-
ence types cardinality and weight, with clingo using model-driven op-
timization as in its default setting;

(b) subset optimization to contrast asprin using preference type subset,
with a saturation-based approach using disjunctive logic programs
with clingo;

(c) poset preferences to contrast asprin using preference type poset, with
satpref [37], that relies on inner solver modifications;

(d) ASO optimization to contrast asprin using preference type aso, with
the dedicated system presented in [38], that wraps clingo.

2. What is the effect of heuristics on asprin’s performance?
We consider cardinality and weight as well as subset optimization to con-
trast different strengths of heuristic support. Additionally, for poset we eval-
uate the modification of the sign heuristic in both asprin and satpref.

3. What is the effect of the number of aggregated preferences on asprin’s per-
formance?
We consider multi-objective optimization using pareto and lexico to contrast
different levels of granularity when aggregating cardinality- and weight-
based preferences.

We interleave the study of questions 1a to 1d with the study of question 2, and we
address question 3 at the end.

While we rely on benchmarks accompanying the dedicated systems in (1c)
and (1d), respectively, we built a benchmark set consisting of 193 instances from
eight different classes of optimization problems expressed in ASP. In detail, we
have the following classes: 15-Puzzle, Crossing, and Valves stemming from the
ASP competitions23 of 2009 and 2013; Ricochet Robots from [39], Circuit Di-
agnosis from [40] and adapted to ASP in [36], Metabolic Network Expansion
from [41], Transcription Network Repair from [42], and Timetabling from [43].
All classes involve a single optimization statement;24 Valves and Timetabling deal
with weight summation, all others with cardinality. We selected from each class
(if possible) the 30 most runtime-consuming instances solvable in 300 seconds by
clingo-4.25 The resulting set of benchmarks is summarized in Table 1 by giving
the respective preference type, the number of instances, and the average number
of (ground) preference elements.

23Other competition classes were either too easy or too difficult.
24This is originally expressed as a common minimize statement.
25A cutoff at 900 seconds brought only a handful of additional instances.
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Benchmark class Type Instances Elements

Ricochet c 30 20.00
Valves w 30 56.63
Crossing c 24 211.92
Puzzle c 7 580.57
Diagnosis c 30 1669.00
Repair c 30 6750.73
Expansion c 30 7501.87
Timetabling w 12 23687.75

Table 1: Benchmark classes of ASP optimization problems.

We ran all benchmark instances with asprin-1 and clingo-426 on Linux ma-
chines with Intel dual-core Xeon 3.4 GHz processors, imposing a limit of 900 sec-
onds and 4 gigabyte of memory per run. We always used asprin’s default config-
uration, that executes Algorithms 1 and 2.

The tables where we present the results have all the following form. Rows
represent different benchmark classes, and columns represent different system
configurations. The entries of each cell (above the last line) provide the average
runtime per class and configuration. The number of timeouts is given in paren-
theses. To calculate the average runtimes, timeouts are counted as 900 seconds
throughout all experiments.27 The last line gives, for each configuration, the av-
erage of the runtimes per class and the sum of the timeouts. The best values per
line are highlighted in bold. Additional data about the experiments can be found
at https://github.com/potassco/asprin.

9.1. Questions (1a) and (2)
We address question (1a) by comparing the performance of asprin and clingo

on cardinality and weight optimization. We use clingo’s default setting using
model-driven optimization, that is similar to the configuration used by asprin.
See [44] for alternative optimization modes of clingo. Afterwards, for ques-
tion (2), we analyze the impact of heuristic information on the performance of

26More in detail, we used asprin-1.1 and clingo-4.5 in all experiments except on the evaluation
of aggregate preferences of question 2 and in the saturation-based approach of question 1b, where
we used asprin-1.0 and clingo-4.4. The changes between the different versions are minor.

27The additional data about the experiments contains a document with versions of all tables of
this section where each timeout is counted as 9000 seconds (PAR10).
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both systems in the same benchmarks. In total, for each of clingo and asprin there
are four configurations: without heuristics, modifying the heuristic sign, the
level or both, viz. false. We refer to the three last settings using the subscripts
s, l and f , respectively. For clingo, the heuristic modifications are applied using
option --dom-mod, while for asprin we use option --domain-heuristic.
Table 2 summarizes the results.

clingo clingos clingol clingof asprin asprins asprinl asprinf

Ricochet 407 (5) 425 (5) 74 (0) 74 (0) 432 (4) 407 (4) 68 (0) 71 (0)
Valves 64 (0) 55 (0) 392 (11) 728 (24) 69 (0) 65 (0) 460 (11) 715 (22)
Crossing 60 (0) 75 (0) 731 (17) 381 (6) 104 (1) 98 (0) 805 (20) 387 (6)
Puzzle 81 (0) 105 (0) 128 (0) 372 (1) 82 (0) 112 (0) 136 (0) 416 (1)
Diagnosis 88 (0) 90 (0) 27 (0) 144 (4) 196 (3) 76 (0) 43 (0) 118 (2)
Repair 93 (0) 10 (0) 7 (0) 8 (0) 76 (0) 15 (0) 71 (2) 8 (0)
Expansion 143 (0) 7 (0) 16 (0) 11 (0) 216 (0) 10 (0) 38 (0) 12 (0)
Timetabling 106 (1) 13 (0) 825 (11) 3 (0) 345 (3) 255 (2) 900 (12) 6 (0)

Total 130 (6) 97 (5) 275 (39) 215 (35) 190 (11) 130 (6) 315 (45) 217 (31)

Table 2: Cardinality and weight optimization with clingo and asprin.

For question (1a), comparing clingo and asprin without heuristics, we observe
that their runtimes are similar for all classes except Diagnosis, Expansion and
Timetabling. Note that for Crossing the time difference is due to a single instance
were asprin timeouts. Without this instance, in that class clingo averages 58 sec-
onds and asprin goes down to 70. The three classes where the performance of
asprin is worse, comprise optimization statements involving large sets of atoms,
but this cannot be a direct cause of the slowdown in view of the performance
improvement on Repair. In fact, a closer look reveals that those three classes ex-
hibit the longest convergence to the optimum. For this analysis, we focus only
on the instances that were solved by both clingo and by asprin.28 It turns out
that the average number of models computed by asprin in Diagnosis, Expansion
and Timetabling is 341, 299 and 287, respectively, while for the other classes that
number is always below 50. These values are similar for clingo, that never differs
more than 15% (up or down, depending on the class) with respect to asprin. For
these three classes, this high number of intermediate models leads asprin to spend

28We have found that the additional data, such as the number of enumerated models, is not
always reliable for the runs that timed out. Hence, when we use this additional data, we focus on
instances where none of the compared systems timed out.
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on the solve calls only 72%, 73% and 11% of its runtime, respectively. The rest
of the time is spent mainly on grounding the preference programs at each of the
many iterations of the solving algorithm. This is obviously a bottleneck of our
approach. However, as we see shortly, it can be remedied by improving the con-
vergence to the optimum using heuristics. To complete the picture, we add that
asprin in the other classes always spends more than 90% of its time on the solve
calls, while clingo spends in all classes almost all of its time on solving.

We move now to question (2), where we evaluate the heuristic modifications
on these benchmarks. In asprin, as can be seen in Table 2, heuristics do not im-
prove much on Valves, Crossing and Puzzle, but in the other five classes there
is always at least one modification that boosts the performance of the system.
Overall, it seems that modifying the sign is the best compromise, but the best
heuristic option must be decided case-by-case. The more intrusive modifications
of level and false lead to very bad results in some classes, but they lead to
huge improvements in others. This agrees with previous results in the literature,
that show that in theory the restriction of the choices of the solver may gener-
ate exponentially larger search spaces [35], while in practice it can also result in
significant speedups, cf. [36] and [8].

Focusing now on the instances that are solved by both asprin and asprins, we
observe that the average number of models enumerated by asprins is almost the
same as with asprin, except in the classes that were problematic before, Diagnosis,
Expansion and Timetabling, where it has decreased to 66, 15 and 141, respectively.
As a consequence, now most of the runtime is spent on the solve calls, except
on Timetabling where solving only amounts to 17% of the total runtime. The
values of asprin in these instances are basically the same as before. These results
help to explain the improvement on those three classes, and the similar runtimes
on Ricochet, Valves and Crossing. The worse runtime in Puzzle and the better
runtime in Repair seem to be due to the adequacy of the heuristic modification
for searching each single model. In the first case, the sign heuristic hinders the
search, while in the second it boosts it.

Comparing now asprin and asprinf , we can see that the average number of
models enumerated by asprinf decreases abruptly. It is less than 3 in all classes
except on Crossing, where it is 6. Consequently, now in all classes the solving
time is very close to the total runtime. Interestingly, when we look at the solving
time per enumerated model, we see that those values are always higher for asprinf
than for asprin, and the difference is more acute in the classes Valves, Ricochet and
Puzzle, where asprinf performs very badly. This means that the false heuristic
hinders the search of each single model. But at the same time we have seen that it
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improves the convergence to an optimum. It seems that it is the balance between
these two factors what determines the diverse results that we observe. Moreover,
it turns out that we reach a similar conclusion from having a closer look at the
results of asprinl, but we do not detail them here for brevity.

Turning our attention to clingo, Table 2 shows that the effect of heuristics in
this system is similar to their effect in asprin. And comparing clingo and asprin
both enhanced with heuristics, we observe that asprin is still slower than clingo
but very close to it. The best configuration of asprin is only 10 or less seconds
slower than the best configuration of clingo on all classes except on Crossing and
Diagnosis, where asprin needs 38 and 16 seconds more in average, respectively.
Overall, heuristics clearly improve the convergence to the optimal, and in this way
the additional operations of asprin that hindered its performance in the basic case
are no longer that important, helping asprin to narrow the gap with clingo.

9.2. Questions (1b) and (2)
We consider now subset optimization to answer question (1a), and the effect

of heuristics in this setting to answer question (2). In ASP, this problem is tradi-
tionally solved via saturation-based encodings using disjunctive logic programs.
The metasp system [24] implements this technique by compiling a normal logic
program along with a subset-oriented optimization statement into such a disjunc-
tive logic program, which can then be solved with clingo (see also [25]). This is
very similar to the axiomatic approach of asprin, and from our experience their
performance is comparable. Here, we only evaluate the former, and we contrast it
with asprin without and with heuristics. The benchmarks of this experiment are
based on the ones for cardinality and weight optimization, but we have replaced
the original optimization statements by subset preferences over the atoms in the
original statements. The results of the experiments are shown in Table 3.

For question (1a), the first two columns show that asprin (using the mode-
driven approach) clearly outperforms metasp. Moreover, they show that finding
subset-minimal models is easier than finding cardinality- or weight-minimal ones.

The answer to question (2) for subset optimization is the same as for
cardinality- and weight- optimization. In the classes where asprin enumerates
few models, Valves, Crossing, and Puzzle, heuristics lead to no or small improve-
ments. On the others, heuristics can improve the convergence to the optimum,
and boost the performance of asprin. As before, which heuristic to use should be
decided on a case-by-case basis.
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metasp asprin asprins asprinl asprinf

Ricochet 811 (24) 365 (3) 461 (10) 69 (0) 71 (0)
Valves 900 (30) 38 (0) 39 (0) 339 (6) 673 (21)
Crossing 62 (0) 0 (0) 1 (0) 7 (0) 3 (0)
Puzzle 35 (0) 31 (0) 32 (0) 21 (0) 51 (0)
Diagnosis 182 (6) 19 (0) 2 (0) 0 (0) 0 (0)
Repair 900 (30) 8 (0) 3 (0) 1 (0) 1 (0)
Expansion 900 (30) 64 (0) 14 (0) 4 (0) 3 (0)
Timetabling 799 (10) 217 (2) 21 (0) 900 (12) 5 (0)

Total 574 (130) 93 (5) 72 (10) 168 (18) 101 (21)

Table 3: Subset optimization with metasp and asprin.

9.3. Questions (1c) and (2)
We compare asprin with the satpref system for poset preferences [37], as

put forward in question (1c). Interestingly, satpref not only extends the SAT
solver minisat with branch-and-bound-based optimization but also uses sign-
based heuristics for boosting optimization. Then, we address question (2) by
comparing both systems using those heuristics.29

We conducted our comparison using random and structured benchmarks
from [37]. Table 4 presents the results of the comparison on random benchmarks.
Every class consists of 100 random instances, each with 500 variables and 1750
clauses, in which an order a > b or b > a between variables a and b is generated
with the probabilities listed in the left column. The results for additional random
classes from [37], with at most 125, 250, or 275 variables subject to optimization,
are similar to those of Table 4, and we do not show them here. Table 5 presents
the results of the comparison on structured benchmarks, showing only the bench-
mark classes where the average solving time of asprin using the sign heuristic
was above 1 second. Starting with Maxsat and following the order in which they
are listed in Table 5, they consist of 35, 16, 28, 188, 148 and 15 instances, respec-
tively. In our experiments, we compared both systems in their basic setting and
with sign-based heuristics (s).

Overall, the results of our comparison show that the general-purpose approach
of asprin is comparable to the dedicated approach of satpref, and that heuristics

29In [13], we also evaluated more elaborated heuristics, that guarantee that the first computed
model is optimal [8]. The interested reader can look at the results in that paper. We do not detail
them here because the performance is worse than with sign-based heuristics, and also because
that approach in asprin has been superseded by the recent work in [45] (see Section 10).
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satpref satprefs asprin asprins

0 0 (0) 0 (0) 1 (0) 0 (0)
0.00621 0 (0) 0 (0) 1 (0) 1 (0)
0.01243 1 (0) 1 (0) 6 (0) 2 (0)
0.02486 8 (0) 6 (0) 55 (0) 9 (0)
0.04972 67 (2) 16 (0) 318 (16) 26 (0)
1 850 (88) 243 (10) 856 (92) 174 (0)

Total 154 (90) 44 (10) 206 (108) 35 (0)

Table 4: Poset optimization on random benchmarks with satpref and asprin.

satpref satprefs asprin asprins

Maxsat 54 (0) 9 (0) 835 (31) 109 (3)
Partial-minone 14 (0) 14 (0) 24 (0) 24 (0)
Pbo-mqc-nencdr 5 (0) 2 (0) 150 (14) 9 (0)
Pbo-mqc-nlogencdr 3 (0) 1 (0) 110 (3) 5 (0)
Pseudo-primes 110 (18) 110 (18) 215 (27) 106 (17)
Pseudo-routing 346 (4) 49 (0) 85 (0) 4 (0)

Total 88 (22) 31 (18) 236 (75) 43 (20)

Table 5: Poset optimization on structured benchmarks with satpref and asprin.

improve the performance of both systems. In the random benchmarks, asprins
is faster than satprefs on the class with more preferences, while satprefs is faster
on the others. In the structured benchmarks, asprins is faster on Pseudo-routing,
on pair on Pseudo-primes, but slower on the other classes. As before, heuristics
decrease the number of enumerated models and, as a result, decrease the total
runtime for both systems. However, a closer look at the results shows that asprins
still spends only a small portion of its runtime on the solve calls. More in detail,
there is no class where it spends more than 12% of its runtime on those calls.
This suggests that there is still room for improvement in the implementation of
the system.

9.4. Question (1d)
We compare asprin with the system for ASO preferences from [38], that im-

plements a branch-and-bound approach in C++ and calls clingo each time from
scratch via a system call. We refer to this system as aso.

We used the benchmark generator from [38] to generate random 3CNF formu-
las with n variables and 4n clauses. For each formula of n variables, it randomly
generates 3n preference rules with a > ¬a or¬a > a for some a in the head, and 0
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to 2 literals in the body. In addition, the approach handles ranked ASO preferences
(asol), which amount to an aggregation of aso preferences with lexico in asprinl.
The generator assigns a higher rank to half of the ASO rules to account for this.

We created a benchmark set comprising 20 instances for every value of n
ranging from 350 to 490 in increments of 10. Table 6 shows the results of the
comparison of asprin and aso on this benchmark set. Overall, we observe that the
general-purpose approach of asprin is comparable with the dedicated approach of
aso. On the other hand, we observed with asprin a very fast convergence, so that
no real difference can be expected on this set of instances.

n aso asol asprin asprinl

350 9 (0) 17 (0) 4 (0) 5 (0)
360 14 (0) 22 (0) 48 (0) 50 (0)
370 15 (0) 25 (0) 38 (0) 39 (0)
380 10 (0) 23 (0) 8 (0) 9 (0)
390 59 (0) 72 (0) 50 (1) 52 (1)
400 22 (0) 33 (0) 28 (0) 30 (0)
410 87 (1) 96 (1) 124 (2) 125 (2)
420 97 (1) 108 (1) 60 (0) 62 (0)
430 68 (0) 79 (0) 144 (0) 147 (0)
440 165 (3) 175 (3) 165 (2) 167 (2)
450 45 (0) 61 (0) 52 (0) 54 (0)
460 112 (1) 125 (1) 117 (2) 120 (2)
470 201 (4) 210 (4) 161 (2) 162 (2)
480 152 (2) 165 (2) 70 (1) 72 (1)
490 206 (2) 218 (2) 265 (4) 267 (4)

Total 84 (14) 95 (14) 89 (14) 91 (14)

Table 6: ASO optimization with aso and asprin.

9.5. Question (3)
We investigate now the effect of the number of aggregated preferences on the

performance of asprin. To do this, we convert the cardinality and weight mono-
objective problems from before into multi-objective problems, using separately
pareto and lexico for their composition. We begin by dividing the atoms in a pref-
erence statement into 16 basic statements of the same type. Then, we use 1, 3, 7,
or 15 pareto (or lexico) statements to combine the 16 basic statements in a tree-like
structure, in such a way that the four aggregations represent the same preference
relation. This experimental design allows us to attribute different runtimes ob-
served in the experiments to different forms of aggregation. Figure 1 represents
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compositions pareto-1, -3, -7 and -15, where the bi’s are basic statements, and
the pi’s are pareto statements. The representation using lexico is similar, but the
pareto statements pi are replaced by lexico statements li, whose priority decreases
as their subindex i increases.

p1

b1 . . . b16

(a) pareto-1

p1

p2

b1 . . . b8

p3

b9 . . . b16

(b) pareto-3
p1
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b5 . . . b8
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(c) pareto-7
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Figure 1: Pareto aggregation using different numbers of composite preferences.

Tables 7 and 8 summarize the results for pareto and lexico, respectively, using
asprin’s default configuration.

Overall, we find that the number of composite preferences does not signifi-
cantly impact the performance or asprin, except in the classes Repair and Expan-
sion using pareto, where the performance deteriorates slightly. At the moment, we
do not have a good explanation for these exceptions. On the other hand, we ob-
serve that pareto optimization is faster than lexico optimization, which is expected
since, by design, every lexico optimal model is also pareto optimal.
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pareto-1 pareto-3 pareto-7 pareto-15

Ricochet 115 (0) 118 (0) 137 (0) 131 (0)
Valves 39 (0) 39 (0) 39 (0) 40 (0)
Crossing 2 (0) 2 (0) 2 (0) 2 (0)
Puzzle 24 (0) 24 (0) 24 (0) 24 (0)
Diagnosis 900 (30) 900 (30) 900 (30) 900 (30)
Repair 5 (0) 14 (0) 16 (0) 17 (0)
Expansion 122 (0) 425 (3) 451 (4) 481 (2)
Timetabling 629 (8) 609 (8) 641 (8) 610 (8)

Total 229 (38) 266 (41) 276 (42) 275 (40)

Table 7: Pareto optimization with asprin using different numbers of composite preferences.

lexico-1 lexico-3 lexico-7 lexico-15

Ricochet 123 (0) 124 (0) 121 (0) 112 (0)
Valves 50 (0) 43 (0) 42 (0) 47 (0)
Crossing 4 (0) 4 (0) 4 (0) 4 (0)
Puzzle 58 (0) 56 (0) 51 (0) 57 (0)
Diagnosis 900 (30) 900 (30) 900 (30) 900 (30)
Repair 900 (30) 900 (30) 900 (30) 900 (30)
Expansion 900 (30) 900 (30) 900 (30) 900 (30)
Timetabling 824 (10) 826 (10) 841 (11) 831 (11)

Total 470 (100) 469 (100) 470 (101) 469 (101)

Table 8: Lexico optimization with asprin using different numbers of composite preferences.

9.6. Summary
In general, the experiments show that asprin compares well to dedicated im-

plementations. It is faster than the saturation-based approach of metasp for sub-
set optimization, and it is as fast as the dedicated implementations for poset and
ASO. The only exception occurs in the comparison with clingo in the basic set-
ting, where both systems perform similarly in some classes (5 out of 8) but asprin
is clearly slower in the others. A closer look reveals that in those classes asprin
enumerates many intermediate models and spends most of its time grounding the
many intermediate preference programs. This is a bottleneck of this approach,
and we plan to improve this part of the implementation in the future.

The experiments show clearly that domain specific heuristics can boost the
performance of asprin. They often improve the convergence to the optimum,
leading in some cases to huge speedups. In particular, they help to close the
gap with clingo, although in the end clingo is still a bit faster. Which heuristic
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modification is better depends on the class of each instance, but is stable among
the instances of the same class.

Finally, our study of pareto and lexico preferences shows that, in general, the
number of those composite preferences does not hinder the performance of asprin,
although this was not the case in 2 classes (out of 8) on pareto optimization.

10. Discussion

This paper introduces a general, flexible and extensible framework for pref-
erence handling in ASP. Our intention was not primarily to come up with new
preference relations on stable models that have not been previously studied (al-
though one can certainly introduce such new relations in asprin). Rather our goal
was to provide ASP technology matching the substantial research on preference
handling in ASP and beyond. Essentially, we wanted to put this research into
practice. We believe that asprin may play a similar role for answer set optimiza-
tion as the development of efficient ASP solvers had in boosting the basic answer
set solving paradigm.

There are two types of users of asprin: those who are happy using the prefer-
ence relations in the asprin library, and those who want to exploit the extensibility
of the system and define their own preference orderings. For the former, much of
the technical capabilities of the system are not needed. In fact, they can use as-
prin as a preference handling system where all one needs to know are the available
preference types and their arguments. For the latter type of users, let us call them
preference engineers, the system provides all the additional functionality to define
interesting new preference orderings. We see examples of both in this section.

From a knowledge representation perspective, the approach closest to ours
is [5], that introduces a specific preference language with a set of basic and com-
posite preference types. Those preference types are predefined, but the language
as such is presented as open to extensions. Our work in asprin can be seen as a
generalization and implementation of this approach, providing that extensibility
and offering additional flexibility.

From a solving perspective, our work is inspired by the methods presented
in [4, 46, 8, 24]. In particular, [4] presents a version of Algorithm 1 for ASO, [46]
and [8] implement Algorithms 1 and 2 for poset, and [24] implements a version of
the axiomatic approach for the preferences pareto, lexico, subset and less(weight).
Recent advances in solving logic programs with weak constraints and subset pref-
erences are discussed in [47] and [48], respectively. While the methods presented
in all those papers are defined for specific types of preferences, our algorithms can
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handle any preference type defined in ASP. The key for the generality of our ap-
proach is the usage of meta-programming to specify the preference programs for
the different preference types. This provides a simple way to add new preferences
to asprin, while at the same time it allows our algorithms to be applicable to any
preference type defined that way.

In the remainder of this section, we discuss other related work. Some of it
precedes the original publication of asprin in [12], some of it was published af-
terwards. We start describing two of our extensions to asprin. Then, we focus
on abstract approaches to preferences and related theoretical results. Next, we
comment on different preference languages of the literature. The work published
in this topic is quite extensive, and we concentrate on the approaches that are of
special interest to us. For the interested reader, an overview of the work on pref-
erences in Artificial Intelligence can be found in the Special Issue on Preferences
of Artificial Intelligence [49], and in the tutorial [50]. A comprehensive, though
somewhat dated, survey of approaches to preferences in logic programming can
be found in [51], and a general overview of the topic can be found in [52]. We
close this section with a description of different applications of asprin.

10.1. Two extensions of asprin
Combinatorial problems often have numerous solutions, and preferences can

be used to select the optimal ones. However, even after applying preferences,
sometimes we are left with a large number of optimal solutions. In these cases,
it can be useful to identify small subsets of diverse optimal solutions. To this
aim, [53] studied the computation of diverse stable models in plain ASP, and [27]
generalized this to logic programs with preferences in asprin. This extension
of asprin allows us to compute a set of optimal solutions that are as diverse as
possible. For doing so, it introduces various methods, including generalizations of
previous work to logic programs with preferences. We also mention that, for ASO
preferences, [38] investigated the problem of computing an optimal answer set
that is diverse with respect to another solution, and presented various algorithms
for this task.

On another issue, the experiments in Section 9 show that there is still a perfor-
mance gap between clingo and asprin when dealing with cardinality and weight
optimization. This raises the question of how to leverage the native solving func-
tionalities of clingo to improve the performance of asprin. This has been answered
in [45], where all preference types implemented in asprin are mapped to either
weak constraints or heuristic directives, in such a way that one optimal model can
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be computed using clingo’s native machinery. The results in that paper indicate
that this approach effectively closes the gap observed in our experiments.

10.2. Abstract and theoretical approaches to preferences
The work of [45] takes a more abstract approach than this paper. Instead of

logic programs, it considers knowledge bases, that are simply defined as sets of
models. Such an abstract approach is interesting because it can be instantiated
by different languages, that are used to specify those models. Then, the results
obtained for the abstract approach apply to those specific languages. In this line,
[54] introduces and studies weighted abstract modular systems. Such systems
consist of two parts: a set of modules, possibly written in different languages over
different vocabularies, that define a set of models; and a set of weighted condi-
tions, similar to weak constraints, that select the optimal models. The approach
is instantiated by MaxSAT and logic programs with weak constraints, and allows
for the study of the relations among them. In a related fashion, the work of [55]
presents a model-theoretic framework for reasoning about preferences. In this
case, the models (called structures) are defined by a formula in some logic, and
the preference relation is defined by lifting a preorder over a set of ground atoms.
The authors present three different methods of doing such a lifting, and the ap-
proach applies to any lifting method where the problem of deciding dominance
can be solved in polynomial time. Related to this, [56] presents an in-depth study
of methods for lifting a preorder. The work of [55] also introduces the problem of
Model Finding (called Prioritized Model Expansion) and study the complexity of
the problems of Optimality and Query (called Optimal Expansion Problem, and
Goal-Oriented Optimal Expansion Problem, respectively). The authors provide a
membership result for the Optimality problem and a completeness result for the
Query problem that coincide with ours where they overlap, namely, where j = 0.

Faber et. al [57] introduce also an abstract approach to preferences. Their goal
is to study the property of strong equivalence. In other words, they investigate un-
der which conditions a logic program with preferences can be replaced by another.
For this, they define abstract preference frameworks, and study strong equivalence
in that general setting. The approach can be instantiated by different preference
languages, to which the general results obtained for abstract preference frame-
works apply. They focus on so-called separated preference frameworks, where
one can identify two syntactic components: generators that determine sets of fea-

54



sible outcomes, and selectors that determine which of them are optimal.30 This
fits with the approach of asprin, where logic programs are generators, and prefer-
ence specifications are selectors. In fact, it seems that the language of asprin falls
under the scope of these frameworks. This would allow us to apply to asprin the
theorems about separated preference frameworks from [57], and obtain directly
strong equivalence results for our approach. We leave this for future work.

Another contribution of [45] is the establishment of different relations between
preference types. In particular, the work presents two types of translations from
an input statement of some preference type to an output statement of another pref-
erence type. The first type of translation, called approximation, guarantees that
the preorder defined by the output statement is a superset of the preorder defined
by the input statement. This ensures that every optimal model with respect to the
output statement is also optimal with respect to the input one. For example, a sub-
set statement can be approximated by a less(cardinality) statement with the same
preference elements. The second translation guarantees that the preorders defined
by the input and the output statements are the same. As an example, poset can be
translated in this way to subset, using additional atoms.

The works of [58] and [59] address related issues. In the first case, the authors
compare the expressiveness and succinctness of different preference languages.
Expressiveness, according to [58], is about what type of preorders can be ex-
pressed in one preference language. For example, less(weight) can express all
complete preorders and nothing else. Succintness is about the existence of poly-
nomial translations between different preference languages, such that the preorder
that results from the translation coincides with the input preorder. The work of
[58] studies the case where the size of the output statements is polynomial in the
size of the input statements. The work of [59] develops a similar study on suc-
cinctness, but in this case the requirement is a bit stronger, since the translations
should be computable in polynomial time. Both studies consider a variety of pref-
erence languages, related to the ones we have studied and implemented here.

10.3. Preference languages
In Section 7, we have seen how many approaches to preferences can be mod-

elled in our system. These include established ASP optimization techniques like
#minimize directives [2] and weak constraints [3], but also ASO [4], poset [22]

30The paper also studies formalisms like logic programs with ordered disjunctions ([6], see
below) where the separation is not strict, and a single syntactic component (a rule, for example)
takes part both in the generation of outcomes and in the selection of the optimal ones.
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and the language for specifying preferences in planning domains from [7]. In the
following paragraphs, we comment on other preference formalisms.

We start with logic programs with ordered disjunction (LPODs, [6]), that ex-
tend logic programs with the capability of expressing alternatives with decreasing
degrees of preference. For example, the following rule expresses that if it is hot
then we prefer going diving, and only if that is not possible then we want to go to
the beach:

dive × beach ← hot

Together with the fact hot ← , that rule leads to the unique optimal solution
{hot , dive}, while adding the constraint ← dive the unique optimal solution
becomes {hot , beach}. Observe how the same rule is used for the generation
of stable models and for the selection of the optimal ones. Recent years have
seen a growing interest in LPODs. For example, [60] introduced a novel model-
theoretic semantics for LPODs, and [61] investigated a family of choice logics
closely related to LPODs. Namely, Qualitative Choice Logic (QCL) is one of
those choice logics, and LPODs can be seen as the combination of logic programs
and QCL. An implementation of LPODs using asprin was presented in [62] and
is available at http://reasoning.eas.asu.edu/lpod2asprin. The system translates an
LPOD to the input language of asprin and runs our system. In this case, the
authors acted as preference engineers and defined preference programs for the
different preference relations underlying the semantics of LPODs.

Another related approach in ASP was presented in [63], where logic programs
are extended with so-called consistency restoring rules, that only are activated if
they are needed to restore the consistency of the rest of the logic program. For
example, the following consistency restoring rule could be used in a diagnosis
application to generate some abnormal faults only when they are necessary to
obtain a model:

r(C) : ab(C)
+←− component(C)

The term r(C) is the identifier of the rule, that states that if C is a component,
then ab(C) may be added to a stable model to recover consistency. This kind of
rules can be represented in asprin using additional atoms as follows:

{appl(r(C))} ← component(C)

ab(C)← component(C), appl(r(C))

#preference(1, subset){appl(r(C)) : component(C)}
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The first rule chooses the application of consistency restoring rules, the second
rule generates abnormalities whenever consistency restoring rules are applied,
and the preference statement minimizes the application of consistency restoring
rules, to ensure that they are only applied whenever they are needed to recover
consistency. In addition to this, when different consistency restoring rules can
be applied, it is possible to specify a preference over them. For example, the fact
prefer(r(c1), r(c2))← can represent our preference towards faults of component
c1 over faults of component c2. The semantics of the language define a relation
between models using these prefer/2 atoms, but this relation is not a preorder,
and therefore does not fit directly into our approach. In fact, it can happen that a
satisfiable logic program becomes unsatisfiable after adding some preferences be-
tween consistency restoring rules, something that cannot happen in asprin when
we add preferences to a satisfiable logic program.

We continue with weighted LARS [64], a framework for quantitative stream
reasoning in ASP. This approach captures some quantitative extensions of ASP,
and lifts them to the streaming setting. It is based in LARS, a kind of tempo-
ral language for stream reasoning in ASP, that includes usual temporal operators
like eventually and always, and others specific to stream reasoning like a win-
dow operator. Formally, weighted LARS extends LARS programs by adding a
weighted LARS formula that is interpreted over some semiring. This weighted
formula assigns to every solution of the LARS program one element of the semir-
ing, its weight. The framework is extended for preferential reasoning by providing
a strict partial order over those weights. Then, optimal solutions are those whose
weight is not dominated by the weight of another solution. In some respects,
weighted LARS is more general than asprin. It applies to answer streams, and it
uses weighted formulas to determine the weight of a solution. Compare this, for
example, with a less(weight) preference, that assigns a weight to a normal answer
set, and uses a logic program to determine it. On the other hand, in wLARS, the
specification of preferences is restricted to the combination of a weighted formula
and a given order, while the highlight of asprin is precisely that it provides a very
rich and extensible language for doing that thing.

Outside the field of ASP, preference trees [65, 66] and lexicographic prefer-
ence trees [67] have received significant attention in the recent years, specially in
connection with the problem of learning preferences. A preference tree is a binary
tree, whose nodes are labeled by propositional formulas, that defines a total order
over the interpretations of the formulas. As an example, the preference tree of
Figure 2 expresses that we prefer hot weather, and whenever it is hot we prefer
diving , while otherwise we prefer going to the sauna. More precisely, the pref-
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hot

dive sauna

Figure 2: A preference tree.

erence tree defines an order where solutions that satisfy hot and dive are most
preferred, followed by those that satisfy hot but not dive, and then by those not
satisfying hot but satisfying sauna, that are preferred to those that neither satisfy
hot nor sauna. The same order can be captured by the partially ordered set prefer-
ence over formulas ({hot , hot ∧ dive,¬hot ∧ sauna}, >) where the partial order
specifies that hot > hot ∧ dive and hot > ¬hot ∧ sauna. We conjecture that
preference trees can be captured in general like this. Lexicographic preference
trees are a special type of preference trees where all labeling formulas are literals
and from every path from the root to one leaf every atom occurs exactly once. It
would be certainly interesting to add these preference types to asprin’s library.

CP-nets [30] are one of the main approaches to preferences in the litera-
ture. They allow us to represent preferences between alternatives under a ceteris
paribus assumption, i.e., as long as everything else stays the same. For example,
the following CP-net expresses that whenever it is hot we prefer going diving ,
and otherwise we prefer going to the sauna, everything else being equal:

dive > ¬dive ‖ hot sauna > ¬sauna ‖ ¬hot

The net represents the order where {dive, hot} is preferred to {hot},
{dive, hot, sauna} is preferred to {hot, sauna}, {sauna} is preferred to ∅, and
{dive, sauna} is preferred to {dive}. As can be seen in the example, the syntax
of CP-nets is similar to the syntax of ASO, but their semantics are different. We
refer the reader to the original paper on ASO [4] for a comparison between both
languages. CP-nets have been integrated into asprin in [31]. Deciding whether
one stable model is strictly better than another wrt a CP-net is in general PSPACE-
complete [68]. For this case, asprin includes a normal preference program whose
size is exponential in the size of the input in the worst case. For tree-shaped
CP-nets, dominance can be decided in linear time [69]. Accordingly, asprin is
equipped with a preference program specific to this class of CP-nets. This shows
the versatility of asprin’s approach, that allows us to improve the performance of
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the system by adding more efficient preference programs for specific cases. Sim-
ilarly, for acyclic CP-nets, dominance testing is known to be NP-hard [30], but in
asprin these nets are handled specifically by an approximation using poset.

The works of [56, 19] introduce preference languages where CP-nets can be
easily embedded, while the complexity of dominance remains PSPACE-complete.
The first one introduces a language where the user can specify different forms of
atomic improvements between solutions, and a solution is better than another if
there is a sequence of such improvements transforming the former in the latter.
As an example, using the translation presented in [56], the previous CP-net can be
represented by the following statements:

gain(dive) : in(hot) gain(sauna) : ¬in(hot)

The second work introduces a preference logic where preference formulas are
Boolean combinations of preference statements of the form α.β‖F 31 where α and
β are propositional formulas and F is a set of propositional formulas. The models
of such formulas are preference relations � that interpret Boolean connectives in
the usual way, and that satisfy a statement α .β ‖F if for every two sets X and Y
such that (i) both interpret the same way F , (ii) X satisfies α and (iii) Y satisfies
β, it holds that X � Y . Following [19], the previous CP-net can be represented
by the next preference formula:(
dive∧hot > ¬dive∧hot‖{sauna}

)
∧
(
sauna∧¬hot > ¬sauna∧¬hot‖{dive}

)
It would be interesting to integrate these languages, or fragments of them, into
asprin. The challenge in this case, as with CP-nets, is to find some subsets of the
languages that are useful and at the same time can be implemented efficiently.

In the field of constraint processing (CP), the work of [70, 71] can be seen
as paralleling the approach of asprin in that area, with the purpose of represent-
ing and reasoning about solution dominance. In that work, the authors define
constraint dominance problems, that extend the usual constraint satisfaction prob-
lems by dominance relations, just like in asprin logic programs are extended by
preference relations. Similarly, in the implementation, dominance nogoods fulfill
the role of preference programs in asprin.

10.4. Applications of asprin
We begin with the implementations of some description logics with prefer-

ences by L. Giordano and D. Dupré. The work in [72] presents a nonmonotonic

31There are also non-strict preference statements where . is replaced by D.
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extension of the description logic SROEL(t,×) for defeasible reasoning, and ap-
plies asprin to reason in this logic. The implementation uses the preference types
pareto, lexico and less(weight). The same authors, in [73, 74], extend description
logics of the EL family with preferences (ranks and weights over defeasible inclu-
sions) and reduce reasoning in those logics to reasoning in asprin. In this case, the
authors have defined a new preference type that matches the preference semantics
defined for that logic. In would be interesting to see if those kind of preferences
could be captured by the preference types already present in asprin’s library. But
independently of that, it is interesting to see that, given the preference semantics
defined in their paper, the definition and the implementation of the new prefer-
ence type in asprin is quite direct. This line of work has been continued in [75],
where a similar approach is applied to reasoning about neural networks. A finitely
multi-valued extension of the description logic ALC is used to formalize neural
networks, and reasoning in the Boolean fragment of that extension is reduced to
reasoning in asprin. As before, the authors have defined and implemented their
own preference types, and acted as preference engineers.

The proposal of [76] is grounded also in an extension of description logics
for nonmonotonic reasoning. In this case, the task is to represent and reason
about context dependent language in the framework of Contextualized Knowledge
Repositories (CKR). The authors show how to model an extension of CKR in
weighted LARS [77], and then show how to represent a fragment of that language
in asprin, using the preference types poset, pareto and lexico.

In another application to description logics, in [78] asprin has been used to
compute justifications in a version of the description logic SROIQ under fixed
domain semantics, where the cardinality of the domain is known a priori. Specif-
ically, that computational task has been reduced to reasoning in asprin with the
preference type subset.

On a completely different application, [79] presents an approach to formal-
ize natural language sentences in logic in the presence of inconsistency, with an
application to job puzzles. For this, the authors introduce a nonmonotonic se-
mantics for the paraconsistent logic of Annotated Predicate Calculus. Then, they
show how to reason in that logic using asprin with the preference types subset and
lexico.

In the domain of sequential pattern mining, [80] describes an application of as-
prin to the task of identifying frequent subsequences in sequence databases. This
work tries to identify frequent patterns that are of special interest to the user, and
to this aim it extends with preferences the usual setting in sequential pattern min-
ing. The implementation uses the preference types more(cardinality) and pareto,

60



as well as a new preference type that represents a preference for the highest value
of an arithmetical division. This new preference type could be represented by
more(weight), but the new preference type, specific for that mathematical oper-
ation, provides a more efficient encoding. This is another example of how the
flexibility of asprin can be used to improve its own efficiency.

Last but not least, the works of [81, 82] present ASP-based approaches to ar-
gumentative reasoning. The first addresses the task of reasoning about the logic
programming fragment of assumption-based argumentation frameworks extended
with preferences (ABA+), and reduces reasoning in that framework to reasoning
in asprin with superset preferences. The second focuses on representing and rea-
soning about the rule-based argumentation framework of ASPIC+, using asprin
to represent the preferred semantics, again with the preference type superset.

11. Conclusion

In this work, we presented asprin, a framework for representing and reason-
ing with preferences in ASP. We started with the definition of a general language
to specify preferences. We then showed how preferences can be implemented
by preference programs, and introduced different reasoning methods that rely on
these programs. We complemented this with an extensive complexity analysis
of the reasoning tasks tackled by our system. We also introduced the first-order
modeling language of asprin, and used it to implement various approaches to pref-
erences from the literature. We gave an overview of the features of the system, and
evaluated its performance experimentally. In this evaluation, we concluded that
asprin in general compares well to dedicated implementations for preferences,
although there was a gap with respect to clingo on cardinality and weight op-
timization. Fortunately, this gap has been closed by the new solving methods
presented in [45]. Moreover, we found that domain-specific heuristics improve
the performance of asprin, and that the usage of composite preferences does not
significantly affect the performance of the system. Finally, we discussed our ap-
proach and put it in connection with related work.

For future work, we plan to integrate further approaches into asprin’s library,
such as preference trees [65] and the general preference languages in [56, 19]
discussed above. A major step forward would be the extension of asprin to multi-
shot solving and theory solving, paralleling the extension of clingo in the same
directions [9, 83]. Additionally, we would like to study the application of asprin’s
framework to the problem of learning user preferences. From a more theoretical
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perspective, we plan to apply the theoretical results from [57] to study strong
equivalence in asprin.
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Appendix A. Proofs of results

Appendix A.1. Proofs of Section 4 (Handling Preferences)
PROOF. (Proposition 1)

The proposition follows from the following equivalences: (X, Y ) belongs to
�s iff X �s Y (by a simple rewriting) iff X, Y ⊆ A and the program Ps ∪
H(X) ∪ H(Y )′ is satisfiable (by Definition 1) iff (X, Y ) belongs to {(X, Y ) |
X, Y ⊆ A, Ps ∪H(X) ∪H(Y )′ is satisfiable} (by a simple rewriting).

PROOF. (Proposition 2)
We prove the proposition by showing that the following statements are equiv-

alent:

1. (X, Y ) ∈�s.
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2. X, Y ⊆ A and Ps ∪H(X) ∪H ′(Y ) is satisfiable.
3. X, Y ⊆ A and there is a stable model Z of Ps ∪H(X) ∪H ′(Y ) such that
X = {a | holds(a) ∈ Z} and Y = {a | holds ′(a) ∈ Z}.

4. There is a stable model Z of Ps ∪ C(A) ∪ C ′(A) such that X = {a |
holds(a) ∈ Z} and Y = {a | holds ′(a) ∈ Z}.

5. (X, Y ) ∈ (10).

The equivalence between statements 1 and 2 follows from Definition 1, and the
equivalence between statements 4 and 5 is trivial. Next, we prove the other two
equivalences.

Statement 2 is equivalent to statement 3: Statement 2 follows trivially from
statement 3. In the other direction, if statement 2 holds, then

X, Y ⊆ A and there is some stable model Z of Ps ∪H(X)∪H(Y )′. (A.1)

From (A.1) it follows that H(X) ⊆ Z and, given that atoms in H(X) have the
form holds(a) for some a ∈ X , we can conclude that

H(X) ⊆ {holds(a) | holds(a) ∈ Z}. (A.2)

On the other hand, given that in the heads of Ps there are no atoms of the predicate
holds , we have that the only rules whose heads contain atoms of the predicate
holds are H(X), and therefore

H(X) ⊇ {holds(a) | holds(a) ∈ Z}

that, together with (A.2), implies that

H(X) = {holds(a) | holds(a) ∈ Z}.

By a simple rewriting, we obtain that

X = {a | holds(a) ∈ Z}. (A.3)

We can reason similarly about H(Y )′ to obtain that

Y = {a | holds ′(a) ∈ Z}. (A.4)

Then, statement 3 follows from (A.1), (A.3), and (A.4).
Statement 3 is equivalent to statement 4: Let us consider the program

Ps ∪ C(A) ∪ C ′(A) (A.5)
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of statement 4. Given that in the heads of Ps there are no atoms of the predicates
holds or holds ′, by the Splitting Set Theorem [91] it follows that

Z is a stable model of (A.5) iff Z is a stable model of Ps ∪ Z1 for some
stable model Z1 of C(A) ∪ C ′(A). (A.6)

It is easy to see that the stable models of C(A) ∪ C ′(A) are the subsets of the set
H(A) ∪H(A)′, or in other words, the sets H(V ) ∪H(W )′ such that V,W ⊆ A.
Hence, from (A.6) it follows that

Z is a stable model of (A.5) iff Z is a stable model of Ps ∪H(V ) ∪H(W )′

for some sets V,W ⊆ A. (A.7)

Applying the same reasoning that we used to obtain (A.3), we can infer that V =
{a | holds(a) ∈ Z} and W = {a | holds ′(a) ∈ Z}. Then by (A.7) it follows that

Z is a stable model of (A.5) iff Z is a stable model of Ps ∪H(V ) ∪H(W )′

for some sets V,W ⊆ A such that V = {a | holds(a) ∈ Z} and W = {a |
holds ′(a) ∈ Z}.

This implies that statement 4 is equivalent to the following statement:

There is a stable model Z of Ps ∪H(V )∪H(W )′ for some sets V,W ⊆ A
such that V = {a | holds(a) ∈ Z}, W = {a | holds ′(a) ∈ Z}, X = {a |
holds(a) ∈ Z} and Y = {a | holds ′(a) ∈ Z}. (A.8)

Finally, using the fact that V = X and W = Y , this statement can be rewritten as
statement 3.

PROOF. (Proposition 3)
Let X ⊆ A be a set of atoms, and let Q denote the program P ∪ Ps ∪R(A)∪

H(X)′. We start by proving the following statement:

M is a stable model of Q iff M = M1 ∪M2 for some sets of atoms M1

and M2 such that M1 is a stable model of P , and M2 is a stable model of
Ps ∪H(M1) ∪H(X)′. (A.9)

Recall that by the form of the programs P and Ps we have that the sets of atoms
occurring in P and Ps are disjoint, no atoms over holds or holds ′ occur in P , and
no such atoms occur in the heads of Ps. Then, by the Splitting Set Theorem, we
can split Q in three parts: P , R(A), and Ps ∪H(X)′; and it follows that
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M is a stable model of Q iff there are some sets of atoms M1 and M3 such
that M1 is a stable model of P , M3 is a stable model of M1 ∪R(A), and M
is a stable model of M3 ∪ Ps ∪H(X)′.

It is easy to see that the program M1 ∪ R(A) has a unique stable model M1 ∪
H(M1). Then, the set M3 is exactly that set of atoms, and we have that

M is a stable model of Q iff there is a set of atoms M1 such that M1 is a
stable model of P , and M is a stable model of M1 ∪H(M1)∪Ps ∪H(X)′.

(A.10)

Since M1 is a stable model of P , by the form of P the atoms in M1 do not occur
in the rules H(M1) ∪ Ps ∪ H(X)′, and therefore M has the form M1 ∪M2 for
some stable model M2 of H(M1) ∪ Ps ∪H(X)′. This allows us to rewrite (A.10)
as (A.9), and prove the latter.

Let X be a stable model of P . Then it holds that X ⊆ A. We prove part 1 by
showing that

X is not �s-preferred iff the program Q is satisfiable.

We do this by showing that the following statements are equivalent:

1. X is not �s-preferred.
2. There is some stable model Y of P such that Y �s X .
3. There is some stable model Y of P such that Ps ∪H(Y ) ∪H(X)′ is satis-

fiable.
4. There are some sets of atoms Y and Z such that is Y is a stable model of P ,

and Z is a stable model of Ps ∪H(Y ) ∪H(X)′.
5. The program Q has some stable model M .
6. The program Q is satisfiable.

The equivalence between 1 and 2 holds by definition of �s-preferred, the equiva-
lence between 2 and 3 holds because Ps is a preference program for s, the equiv-
alence between 3 and 4 holds trivially, the equivalence between 4 and 5 holds
by (A.9) given that X ⊆ A, replacing Y by M1 and Z by M2, and the equivalence
between 5 and 6 holds trivially.

For part 2, if Y is a stable model of Q for some X ⊆ A, by (A.9) it follows
that

Y = M1 ∪M2 for some sets of atoms M1 and M2 such that M1 is a stable
model of P , and M2 is a stable model of Ps ∪H(M1) ∪H(X)′. (A.11)
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Given that the atoms of A do not occur in the program Ps ∪H(M1)∪H(X)′, the
set M2 ∩ A is empty, and since we have that Y = M1 ∪M2 by (A.11), we can
conclude that

Y ∩ A = M1. (A.12)

On the other hand, from (A.11) and the fact that Ps is a preference program for s,
it follows that

M1 �s X . (A.13)

Putting all together, we can prove that Y ∩ A is a stable model of P by (A.11)
and (A.12), and that Y ∩ A �s X by (A.12) and (A.13).

PROOF. (Proposition 4, sketch)
Let X, Y ⊆ A, then by Q(X, Y ) we denote the logic program

Esubset ∪ Fs ∪G ∪H(X) ∪H(Y )′.

The set G consists of the set of rules defining holds and holds′ atoms for the
boolean formulas in E, that we denote by G′, together with the rule (9). To sim-
plify the proof, we assume that G′ is a set of facts. By definition 1, we have to
prove that

for all sets X, Y ⊆ A the program Q(X, Y ) is satisfiable iff X �s Y .
(A.14)

Take any sets X, Y ⊆ A, and let Q′(X, Y ) be the logic program

Esubset ∪ Fs ∪G′ ∪H(X) ∪H(Y )′.

Given that (9) is an integrity constraint,

the stable models of Q(X, Y ) are the stable models of Q′(X, Y ) that do not
violate the integrity constraint (9). (A.15)

Observe that the program Q′(X, Y ) consists of a set of facts along with the rule
Esubset , that defines the predicate better, that does not occur in any fact. Then, it
is easy to see that

the programQ′(X, Y ) has a unique stable modelM that has the formN∪O
whereN is the set of atoms Fs∪G′∪H(X)∪H(Y )′ andO is a set of atoms
over better. (A.16)
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More precisely, below we prove that

O is the set of atoms {better(s)} if X �s Y , and it is ∅ otherwise. (A.17)

On the other hand, given that the fact optimize(s) ← belongs to Fs, it follows
that optimize(s) belongs to M . Since predicate optimize does not occur in any
other rule head, we have that no other instances of predicate optimize belong to
M . Therefore, M violates the constraint (9) iff better(s) 6∈ M . Moreover, since
M has the form N ∪O and better(s) 6∈ N , we can conclude that

M violates the constraint (9) iff better(s) 6∈ O.

By this, (A.15), (A.16) and (A.17), it follows that the program Q(X, Y ) has a
unique stable model M that has the form N ∪ {better(s)} if X �s Y , and it has
no stable models otherwise. This implies (A.14) and completes the main part of
the proof.

Proof of (A.17). Given the form of Esubset , O is the set of atoms of the form
better(p) such that there are some terms x, t1, t2 and t3 satisfying these conditions:

1. preference(p, subset) ∈ N ;
2. holds(x) 6∈ N , holds′(x) ∈ N , and preference(p, t1, t2, for(x), t3) ∈ N ;
3. for all terms y, if holds(y) ∈ N and there are some terms t4, t5 and t6 such

that preference(p, t4, t5, for(y), t6) ∈ N , then holds′(y) ∈ N .

In what follows, we abuse notation and identify the term representation x of a
boolean formula with the boolean formula itself. Observe that, given the form of
N , the following equivalences hold:

• preference(p, subset) ∈ N iff s = p;

• there are some terms t1, t2 and t3 such that
preference(p, t1, t2, for(x), t3) ∈ N iff x ∈ E;

• for every x ∈ E we have that holds(x) ∈ N iff X |= x, and holds′(x) ∈ N
iff Y |= x.

They allow us to reformulate the previous conditions as follows:

1. s = p;
2. X 6|= x, Y |= x, and x ∈ E;
3. for all terms y, if X |= y and y ∈ E, then Y |= y.
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Then, it follows that O is the set of atoms {better(s)} if:

1. there is some x ∈ E such that X 6|= x and Y |= x, and
2. for all y ∈ E, if X |= y then Y |= y;

and it is ∅ otherwise. The first condition can be rewritten as

{x ∈ E | X |= x} 6⊇ {x ∈ E | Y |= x},

and the second one can be rewritten as

{x ∈ E | X |= x} ⊆ {x ∈ E | Y |= x}.

Together, they can be rewritten as

{x ∈ E | X |= x} ⊂ {x ∈ E | Y |= x}.

By definition of the subset preference type, this is equal to

(X, Y ) ∈ subset(E),

which, given the form of s, is equal to

X �s Y.

Hence, (A.17) follows: O is the set of atoms {better(s)} if X �s Y , and it is ∅
otherwise.

PROOF. (Proposition 5, sketch)
The proof is essentially the same as the proof of Proposition 4, except for the

proof of the statement (A.17):

O is the set of atoms {better(s)} if X �s Y , and it is ∅ otherwise;

that we prove next using the notation introduced in Proposition 4.
Given the form of Emore(weight), O is the set of atoms of the form better(p)

satisfying these conditions:

1. preference(p,more(weight)) ∈ N ;
2. the sum of the following integers is greater than 0:

• the integer terms w for every pair of terms (w, x) such that
holds(x) ∈ N and there are some terms t1 and t2 such that
preference(p, t1, t2, for(x), w) ∈ N ; and
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• the integer terms −w for every pair of terms (w, x) such that
holds′(x) ∈ N and there are some terms t1 and t2 such that
preference(p, t1, t2, for(x), w) ∈ N .

In what follows, we abuse notation and identify the term representation x of a
boolean formula with the boolean formula itself. Observe that, given the form of
N , the following equivalences hold:

• preference(p,more(weight)) ∈ N iff s = p;

• there are terms t1 and t2 such that preference(p, t1, t2, for(x), w) ∈ N iff
w : x ∈ E;

• for every w :x ∈ E we have that holds(x) ∈ N iff X |= x, and holds′(x) ∈
N iff Y |= x.

They allow us to reformulate the previous conditions as follows:

1. s = p;
2. the sum of the following integers is greater than 0:

• the integers w for every w : x ∈ E such that X |= x, and

• the integers −w for every w : x ∈ E such that Y |= x.

Then, it follows that O is the set of atoms {better(s)} if the sum of the following
integers is greater than 0:

• the integers w for every w : x ∈ E such that X |= x, and

• the integers −w for every w : x ∈ E such that Y |= x;

and it is ∅ otherwise. The sum can be formally written as:∑
(w:x)∈E,X|=x

w +
∑

(w:x)∈E,Y |=x

−w

and it is greater that 0 iff ∑
(w:x)∈E,X|=x

w >
∑

(w:x)∈E,Y |=x

w.

By definition of the more(weight) preference type, this is equal to

(X, Y ) ∈ more(weight)(E),
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which, given the form of s, is equal to

X �s Y.

Hence, (A.17) follows: O is the set of atoms {better(s)} if X �s Y , and it is ∅
otherwise.

Appendix A.2. Proofs of Section 5.1 (Computing a preferred model)
We first prove Lemmas 1 and 2. They are used to prove Proposition 6, that in

turn is used to prove Theorem 1.

Lemma 1. Let (Y0, Y1, . . . ) be a trace of Algorithm 1 for a finite program P and
a preference program Ps for preference statement s. For every Yi of the trace, it
holds that

1. either Yi is ⊥ and it is the last element of the trace;
2. or Yi is a stable model of P such that it is not the last element of the trace

and Yi �s Yi−1 if i > 0.

PROOF. Take any Yi, and observe that it has been computed either at Line 1 or
Line 5 of Algorithm 1. We consider four cases, depending on whether Yi is ⊥ or
not, and on whether Yi was computed at Line 1 or Line 5. We prove the lemma by
showing that for all cases either item 1 or item 2 holds.

If Yi is ⊥ and it has been computed at Line 1, then the algorithm returns at
Line 2, Yi is the last element of the trace, and the first item of the lemma holds.

If Yi is ⊥ and it has been computed at Line 5, then the algorithm exists the
loop at Line 6. Hence, Yi is the last element of the trace, and the first item of the
lemma holds.

If Yi is not ⊥ and it has been computed at Line 1, then it is a stable model of
P . Moreover, in this case the condition of Line 2 is not true, hence the algorithm
enters the loop and in Line 5 defines Yi+1. Therefore, Yi is not the last element of
the trace. Given all this and the fact that in this case i = 0, the second item of the
lemma holds.

If Yi is not ⊥ and it has been computed at Line 5, then we have that i > 0.
Moreover, in this case the condition of Line 6 is not true, hence the algorithm
re-enters the loop and in Line 5 defines Yi+1. Therefore, Yi is not the last element
of the trace. Given this, the second item of the lemma follows from the following
statement, that we prove by induction over j:
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for every Yj of the trace such that Yj is not ⊥ and j > 0, it holds that Yj and
Yj−1 are stable models of P such that Yj �s Yj−1. (A.18)

In the basic case we consider that j = 1. Then, Yj−1 = Y0 has been computed in
Line 1 and is a stable model of P . After Line 1, the condition of Line 2 fails, and
X is assigned the value Yj−1 in Line 4. After executing Line 5, we have that Yj is

solve(P ∪ Ps ∪R(A) ∪H(Yj−1)′) ∩ A.

Given that Yj is not ⊥, it must have the form M ∩A for some stable model M of

P ∪ Ps ∪R(A) ∪H(Yj−1)′.

Then, by the second item of Proposition 3, we obtain that Yj is a stable model of
P and Yj �s Yj−1, and this completes the proof of the basic case.

In the induction case, we consider that j > 1 and assume that (A.18) holds
for j − 1. Hence, Yj−1 is a stable model of P computed in Line 5. After that, the
condition of Line 6 fails, and X is assigned the value Yj−1 in Line 4. Then, after
executing Line 5, Yj has the same form as in the basic case, and the rest of the
proof is the same as before.

The following Lemma proves items 2 to 5 of Proposition 6, using the previous
Lemma 1.

Lemma 2. Let (Y0, Y1, . . . ) be a trace of Algorithm 1 for a finite program P and
a preference program Ps for preference statement s. Then, the trace is finite and
has the form (Y0, . . . , Yn) for some integer n ≥ 0, and

1. Yi is a stable model of P for 0 ≤ i < n

2. Yi �s Yi−1 for 0 < i < n

3. Yn = ⊥
4. Yn−1 is a �s-preferred stable model of P , if n > 0

PROOF. First, we prove that the trace is finite. For this, we show that

every pair of elements Yi and Yj of the trace such that i < j are different.
(A.19)
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Assume, for the sake of contradiction, that for some i < j, the sets Yi and Yj are
the same. By Lemma 1, Yi and Yj must be either⊥, or a stable modelM of P . The
first case is not possible because, by Lemma 1, if Yi is ⊥ then it must be the last
element of the trace. In the second case, consider the subtrace (Yi, Yi+1, . . . , Yj).
By Lemma 1, all the Yk for i < k ≤ j must be stable models of P such that
Yk �s Yk−1. Hence, by transitivity of �s, it follows that Yj �s Yi and, by our
assumption, we have that M �s M , which contradicts the fact that �s is a strict
partial order. Both cases lead to a contradiction, therefore the assumption does not
hold and (A.19) follows.

By Lemma 1, every element Yi of the trace must be either⊥, or a stable model
M of P . Given that the program P is finite, the set of its stable models is also
finite. Then, by (A.19) it follows that the trace is finite, and therefore the trace
must have the form (Y0, . . . , Yn) for some integer n ≥ 0. In addition, from this
and Lemma 1 we can conclude items 1, 2 and 3 of the proposition.

For item 4, if n > 0, then Yn−1 is a stable model that has been computed either
at Line 1 or Line 5 of Algorithm 1, and in both cases the assignment in Line 4 is
executed afterwards. Then, after executing Line 5, Yn is

solve(P ∪ Ps ∪R(A) ∪H(Yn−1)′) ∩ A.

By item 3 we have that Yn is⊥, therefore the program P ∪Ps∪R(A)∪H(Yn−1)′

is unsatisfiable, and item 4 follows by the first item of Proposition 3.

PROOF. (Proposition 6)
From the previous Lemma 2, we have that the trace is finite and has the form

(Y0, . . . , Yn) for some integer n ≥ 0, and we also have items 2 to 5 of the propo-
sition.

We prove item 1 of the proposition as follows. If P is satisfiable, then Y0 is a
stable model of P , and by item 4 it must be the case that n > 0. Otherwise, if P
is not satisfiable, then Y0 is ⊥, and by Lemma 1 the element Y0 is the last of the
trace, that must have the form (Yn) with n = 0.

For item 6, if n = 0 then by item 4 we have that Y0 = ⊥, hence Y has the
value ⊥ in Line 1, and the algorithm returns ⊥ = Y0 in Line 2. If n > 0, then
we are in the same situation as for item 5, that was proved as item 4 of Lemma 2:
in Line 4 the variable X is assigned the value Yn−1, in Line 5 the variable Y is
assigned the value ⊥, then the condition to stop the loop is true and X = Yn−1 is
returned in Line 7.
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PROOF. (Theorem 1)
The theorem follows applying the items of Proposition 6. If P is satisfiable,

then by item 1 it follows that n > 0 and by item 6 it follows that the algorithm
returns Yn−1, that is a �s-preferred stable model by item 5. Otherwise, if P is not
satisfiable, then by item 1 it follows that n = 0 and by item 6 the algorithm returns
Y0, that is equal to ⊥ by item 4.

Appendix A.3. Proofs of Section 5.2 (Computing all preferred models)
PROOF. (Proposition 7)

Let C be the integrity constraints of P , and Q be the rest of the rules, such that
P = Q ∪ C. It is easy to see that

N is a stable model of P iff N is a stable model of Q that satisfies all
constraints in C. (A.20)

Using this notation, we can represent P as Q ∪ C, where C is the set of rules
{u← body(r) | r ∈ C}∪{ ← ¬u}.Observe thatQ is a stratified program without
integrity constraints. Hence,

Q has a unique stable model, that we denote by M . (A.21)

Consider the next statement, that we will use afterwards:

M satisfies body(r) for some r ∈ C. (A.22)

The proposition is implied by the following statements, that we prove below:

P is satisfiable iff (A.22) does not hold, (A.23)

and

P is satisfiable iff (A.22) holds. (A.24)

Proof of (A.23). P is satisfiable iff there is some stable modelN of P iff there
is some stable model N of Q that satisfies all constraints in C (by (A.20)) iff M
satisfies all constraints in C (by (A.21)) iff (A.22) does not hold.

Proof of (A.24). We show that the following statements are equivalent:

1. P is satisfiable.
2. There is some stable model N of P .
3. There is some stable model N of O ∪ C for some stable model O of Q.
4. There is some stable model N of M ∪ C.
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5. M ∪ {u} is a stable model of M ∪ C.
6. M ∪ {u} satisfies body(r) for some r ∈ C.
7. (A.22) holds.

The equivalence between 1 and 2 is trivial, the equivalence between 2 and 3 fol-
lows by the Splitting Set Theorem, and the equivalence between 3 and 4 follows
by (A.21). Statement 4 implies 5 because, on the one side, N must contain all
atoms asserted by the facts in M , as well as the atom u to satisfy the constraint
‘← ¬u’, and on the other side, N cannot contain more atoms because no other
atoms occur in the heads of M ∪ C. In the other direction, statement 5 implies
4 trivially. Statement 5 implies 6 because the atom u in M ∪ {u} must be sup-
ported by some rule of M ∪ C, and the only rules that could support u are those
in {u← body(r) | r ∈ C}. In the other direction, statement 6 implies 5 because
M∪{u} satisfies all rules inM∪C, the atoms inM are justified by the correspond-
ing facts, and the atom u is justified by some rule r in {u← body(r) | r ∈ C} such
that M ∪ {u} satisfies body(r). Finally, statement 6 is equivalent to statement 7
because the atom u does not occur in any body(r) for r ∈ C.

PROOF. (Proposition 8)
We prove the proposition by showing that, for all X, Y ⊆ A, the following

statements are equivalent:

1. X �s Y .
2. Ps ∪H(X) ∪H(Y )′ is not satisfiable.
3. Ps ∪H(X) ∪H(Y )′ is satisfiable.
4. Ps ∪H(X) ∪H(Y )′ is satisfiable.

Statement 1 is equivalent to 2 by Definition 1. Observe that Ps ∪H(X) ∪H(Y )′

is stratified, given that Ps is stratified and the other rules are facts. Then,
statement 2 is equivalent to statement 3 by Proposition 7. Finally, the equiv-
alence between statements 3 and 4 holds because, by definition, the programs
Ps ∪H(X) ∪H(Y )′ and Ps ∪H(X) ∪H(Y )′ are the same.

PROOF. (Proposition 9)
The proof is similar to the proof of part 2 of Proposition 3.
LetX ⊆ A be a set of atoms, and letQ denote the program

(
P ∪Ps∪H(X)∪

R′(A)
)
. Then, the following statement holds:

M is a stable model of Q iff M = M1 ∪M2 for some sets of atoms M1

and M2 such that M1 is a stable model of P , and M2 is a stable model of
Ps ∪H(X) ∪H(M1)′. (A.25)
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The proof of this statement is the same as the proof of statement (A.9) of Propo-
sition 3, changing what has to be changed.

To prove the proposition, let Y be a stable model of Q for some X ⊆ A.
Hence, by (A.25) it follows that

Y = M1 ∪M2 for some sets of atoms M1 and M2 such that M1 is a stable
model of P , and M2 is a stable model of Ps ∪H(X) ∪H(M1)′. (A.26)

Given that the atoms of A do not occur in the program Ps ∪H(X)∪H(M1)′, the
set M2 ∩ A is empty, and since we have that Y = M1 ∪M2 by (A.26), we can
conclude that

Y ∩ A = M1. (A.27)

On the other hand, from (A.26), the fact that Ps is a stratified preference program
for s, and Proposition 8, it follows that

X �s M1. (A.28)

Putting all together, we can prove that Y ∩ A is a stable model of P by (A.26)
and (A.27), and that X �s Y ∩ A by (A.27) and (A.28).

PROOF. (Proposition 10)
We divide the proof in three steps.
Step 1. We prove that:

For every i ∈ I , it holds that Xi ⊆ A. (A.29)

Observe that the set X is initialized to the empty set in Line 1. The elements Xi

for i ∈ I are added in Line 9, and they always obtain their value from variable Y
in Line 6. In turn, variable Y is assigned either in Line 3 or in Line 7. In both
cases, either (i) the corresponding solving call returns some stable model M , or
(ii) it returns ⊥. If (i), then Y is assigned the value M ∩A. Hence, Y ⊆ A holds,
and X will be assigned in Line 6 some subset of A. If (ii), then Y is assigned the
value ⊥. But in this case X is never assigned that value, because the algorithm
either returns in Line 4, or stops the innermost loop in Line 8. Then it is clear that
X only obtains the value of Y in case (i). Hence, X will always be assigned some
subset of A, and (A.29) holds.

Step 2. Let {X1, . . . , Xn} be the value of X in Line 2, I be {1, . . . , n}, and Q
denote the program P ∪

⋃
Xi∈X

(
NXi
∪ (Ps ∪H(Xi))

i ∪R′(A)i
)

used in Line 3.
We prove that:
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M is a stable model of Q iff M = M0 ∪M1 ∪ . . . ∪Mn for some sets of
atoms M0, M1, . . . , Mn such that M0 is a stable model of P that satisfies
all constraints in

⋃
Xi∈X NXi

, and Mi is a stable model of (Ps ∪ H(Xi) ∪
H(M0)′)i for every Xi ∈ X . (A.30)

We start by applying the Splitting Set Theorem. First, we can split Q in two parts:

• Q1 = P ∪
⋃
Xi∈X NXi

, and

• Q2 =
⋃
Xi∈X

(
(Ps ∪H(Xi))

i ∪R′(A)i
)
.

This splitting is possible because the atoms that occur in Q1 do not occur in the
heads of the rules of Q2, that consist of new atoms with some superscript i ∈ I .
The program Q2 can in turn be splitted in two parts:

• Q3 =
⋃
Xi∈X R

′(A)i, and

• Q4 =
⋃
Xi∈X (Ps ∪H(Xi))

i.

Like before, this splitting is possible because the atoms that occur in Q3 do not
occur in the heads of the rules of Q4. To see this, observe that the atoms of Q3

either belong to A or have the form holds ′(a)i for some a ∈ A and i ∈ I , while
the heads of Q4 consist of new atoms with some superscript i ∈ I that do not have
the form holds ′(a)i for some a ∈ A and i ∈ I , given that no atoms over holds′

occur in the heads of Ps ∪H(Xi). Then, applying the Splitting Set Theorem, we
have that:

M is a stable model of Q iff there are some sets of atoms M0 and M ′ such
that M0 is a stable model of Q1, M ′ is a stable model of M0 ∪Q3, and M is
a stable model of M ′ ∪Q4.

It is easy to see that the program M0 ∪ Q3 has a unique stable model M0 ∪⋃
Xi∈X H(M0)′i. Then, the set M ′ is exactly that set of atoms, and we have that:

M is a stable model of Q iff there is some set of atoms M0 such that M0 is a
stable model of Q1, and M is a stable model of M0∪

⋃
Xi∈X H(M0)′i∪Q4.

SinceM0 is a stable model ofQ1, by the form ofQ1, the atoms inM0 do not occur
in the rules

⋃
Xi∈X H(M0)′i ∪ Q4. Hence, M has the form M0 ∪M ′′ for some

stable model M ′′ of
⋃
Xi∈X H(M0)′i ∪Q4, and we have that:
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M is a stable model of Q iff M = M0 ∪M ′′ for some sets of atoms M0

and M ′′ such that M0 is a stable model of Q1, and M ′′ is a stable model of⋃
Xi∈X H(M0)′i ∪Q4. (A.31)

Observe now that the program
⋃
Xi∈X H(M0)′i ∪ Q4 is the same as

⋃
Xi∈X (Ps ∪

H(Xi)∪H(M0)′)i, and that for every Xi, Xj such that i 6= j, the atoms occurring
in (Ps ∪ H(Xi) ∪ H(M0)′)i are disjoint from those occurring in (Ps ∪ H(Xi) ∪
H(M0)′)j . Hence, it follows that:

M ′′ is a stable model of
⋃
Xi∈X H(M0)′i ∪ Q4 iff M ′′ = M1 ∪ . . . ∪Mn

for some sets of atoms M1, . . . ,Mn such that Mi is a stable model of (Ps ∪
H(Xi) ∪H(M0)′)i for every Xi ∈ X .

Using this, we can rewrite (A.31) as follows:

M is a stable model of Q iff M = M0 ∪M1 ∪ . . . ∪Mn for some sets of
atoms M0,M1, . . . ,Mn such that M0 is a stable model of Q1, and Mi is a
stable model of (Ps ∪H(Xi) ∪H(M0)′)i for every Xi ∈ X . (A.32)

By the form of Q1, it is easy to see that:

M0 is a stable model of Q1 iff M0 is a stable model of P that satisfies all
constraints in

⋃
Xi∈X NXi

.

Finally, from this and (A.32) we can conclude (A.30).
Step 3. Using (A.29), (A.30), and Proposition 9, we prove the following state-

ments:

1. If the program Q used in Line 3 is satisfiable, then item 1 of the proposition
holds.

2. Otherwise, item 2 of the proposition holds.

This will prove that either item 1 or item 2 of the proposition holds, concluding
the proof.

Proof of statement 1. If Q is satisfiable, then there is some stable model M of
Q, and

Y = M ∩ A. (A.33)

Given that M is a stable model of Q, by (A.30) we have that:

86



M = M0 ∪M1 ∪ . . . ∪Mn for some sets M0,M1, . . . ,Mn such that M0 is
a stable model of P that satisfies all constraints in

⋃
Xi∈X NXi

, and Mi is a
stable model of (Ps ∪H(Xi) ∪H(M0)′)i for every Xi ∈ X . (A.34)

All the atoms occurring in P belong to A. Then, given that M0 is a stable model
of P , we have that:

M0 ∩ A = M0. (A.35)

On the other hand, no atoms occurring in the programs (Ps ∪H(Xi) ∪H(M0)′)i

for Xi ∈ X belong to A. Then, given that the Mi’s for Xi ∈ X are stable models
of those corresponding programs, we have that:

Mi ∩ A = ∅ for Xi ∈ X . (A.36)

Now, by (A.33) and (A.34) if follows that Y = (M0 ∩ A) ∪ (M1 ∩ A) ∪ . . . ∪
(Mn ∩ (A)), and then by (A.35) and (A.36) it follows that:

Y = M0. (A.37)

We are ready to show that Y satisfies the conditions of item 1 of the proposition:

• By (A.34) and (A.37), Y is a stable model of P .

• Moreover, Y satisfies all constraints in
⋃
Xi∈X NXi

, and this implies that
Y 6= Xi for all i ∈ I .

• In addition, the programs (Ps ∪ H(Xi) ∪ H(Y )′)i for every Xi ∈ X are
satisfiable. This implies that the programs Ps ∪ H(Xi) ∪ H(Y )′ for every
i ∈ I are satisfiable, and then by (A.29) and Proposition 9 it follows that
Xi �s Y for all i ∈ I .

Proof of statement 2. If Q is not satisfiable, then clearly Y is ⊥. We only have
to show that in this case there is no stable model Y of P such that Y 6= Xi, and
Xi �s Y for all i ∈ I . We prove this by contradiction, assuming that there is
some stable model Y of P that satisfies those properties. Given that Y 6= Xi for
all i ∈ I , it is easy to see that:

Y is a stable model of P that satisfies all constraints in
⋃
Xi∈X NXi

. (A.38)
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Given that Xi �s Y for all i ∈ I , by Proposition 9 and (A.29), it follows that the
programs Ps ∪ H(Xi) ∪ H(Y )′ for every i ∈ I are satisfiable. This implies that
the programs (Ps ∪H(Xi) ∪H(Y )′)i for every Xi ∈ X are satisfiable. Then, let
Mi be the stable model of (Ps ∪H(Xi) ∪H(Y )′)i for every Xi ∈ X . Given this,
(A.30), and (A.38), it follows that Y ∪

⋃
Xi∈X Mi is a stable model of Q, which

contradicts the fact that Q is not satisfiable.

Next, we have Lemmas 3 and 4, that are very similar to the previous Lemmas 1
and 2. We use them afterwards to prove Propositions 11 and 12, that in turn are
used to prove Theorem 2.

Lemma 3. Let (Yi0 , Yi1 , . . . ) be an i-trace of Algorithm 2 for a finite program P
and a preference statement s. For every Yij of the trace, it holds that

1. either Yij is ⊥ and it is the last element of the trace;
2. or Yij is a stable model of P such that it is not the last element of the trace

and Yij �s Yij−1
if j > 0.

The proof of this Lemma is almost the same as the proof of Lemma 1. The only
differences are that we have to consider an i-trace (Yi0 , Yi1 , . . . ) instead of a trace
(Y0, Y1, . . . ), Lines 3 to 8 of Algorithm 2 instead of Lines 1 to 6 of Algorithm 1,
and that we have to use Proposition 10 to justify that Line 3 of Algorithm 2 assigns
to Y either ⊥ or some stable model of P .

Lemma 4. Every i-trace of the algorithm is finite, has the form (Yi0 , . . . , Yin) for
some integer n ≥ 0, and

1. Yij is a stable model of P for 0 ≤ j < n

2. Yij �s Yij−1
for 0 < j < n

3. Yin = ⊥
4. Yin−1 is a �s-preferred stable model of P , if n > 0

The proof of this Lemma is almost the same as the proof of Lemma 2, except for
using Lemma 3 instead of Lemma 1, and for the differences already mentioned
for Lemma 3.

We prove first Proposition 12 and then Proposition 11.

PROOF. (Proposition 12)
The finiteness of the i-trace, as well as items 2 to 5 follow from Lemma 4.
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We prove item 1 by showing that it holds for the two possible cases of Propo-
sition 10. Note that the value Y , mentioned in that proposition, is the same as the
element Yi0 of the corresponding i-trace.

If item 1 of Proposition 10 holds, then

Yi0 is a stable model of P such that Yi0 6= Xj , and Xj �s Yi0 for all
Xj ∈ Xi−1. (A.39)

By this and item 2 of Lemma 3 we have that Yi0 is not the last element of the trace,
and therefore

n > 0. (A.40)

By item 2, 4 and the transitivity of �s, it follows that Yin is a �s-preferred stable
model of P such that Yin �s Yi0 . By (A.39), Yin has to be different to all Xj ∈
Xi−1. Hence, Xi−1 does not contain all �s-preferred stable models of P , and
with (A.40) we can conclude that item 1 holds in this case.

On the other hand, if item 2 of Proposition 10 holds, then

Yi0 is ⊥, (A.41)

and

there is no stable model Y of P such that Y 6= Xj , and Xj �s Y for all
Xj ∈ Xi−1. (A.42)

By (A.41), item 2 and item 4 of this proposition, it follows that

n = 0. (A.43)

We also have that (A.42) implies that

Xi−1 contains all �s-preferred stable models of P . (A.44)

Then, by (A.43) and (A.44) we can conclude that item 1 holds in this case.
We prove now item 6. If n = 0, then by item 4 we have that Yi0 is ⊥. This

means that in Line 3 of Algorithm 2 the variable Y is assigned the value ⊥, and
therefore the procedure returns in the next line, leaving Xi undefined. On the
other case, if n > 0, then by item 4 we have that Yin is ⊥. This means that in
Line 7 of Algorithm 2 the variable Y is assigned the value ⊥, and therefore the
loop finishes in the next line. In this iteration, in Line 6 the variable X is assigned
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the value Yin−1 , and this is precisely the element that is added to X in Line 9 after
finishing the loop. Hence, in this case Xi is Yin−1 .

For item 7, the case where j = 0 and j < n is implied by Proposition 10, since
the value Y , mentioned in that proposition, is the same as Yi0 . For the other case
where j is such that 0 < j < n, by item 3 and the transitivity of �s, we have that

Yij �s Yi0 . (A.45)

We can then conclude item 7 for this case because, for all Xk ∈ Xi−1, it cannot be
the case that either Xk = Yij or Xk �s Yij hold. Given (A.45) and the transitivity
of �n, any of them would imply that Xk �s Yi0 holds, which would contradict
the case where j = 0.

PROOF. (Proposition 11)
We prove first by contradiction that the trace (Xi)i∈I is finite. Assume that

the trace is infinite. Given that every i-trace is finite (by Proposition 12), the trace
(Xi)i∈I can only be infinite if Algorithm 2 never returns in Line 4, and this is only
possible if in Line 3 the variable Y is never assigned the value⊥. This means that
for every i-trace of the form (Yi0 , . . . , Yin) it is never the case that Yi0 is ⊥. Then,
by item 4 of Proposition 12, for every i-trace it must hold that n > 0. Moreover,
by items 5, 6 and 7 of that proposition, it follows that Xi should be a�s-preferred
stable model of P that is different than all previous Xk ∈ Xi−1. Assuming that
the trace (Xi)i∈I is infinite, this implies that the set of �s-preferred stable models
of P is infinite, which is false, given that P is finite.

Now we prove items 1 and 3. For every i ∈ I , let us consider the i-trace
(Yi0 , . . . , Yin). The size n cannot be 0, because in that case, by item 4 of Proposi-
tion 12, we would have that Yi0 is ⊥. This would imply that Algorithm 2 returns
in iteration i in Line 4, and then no Xi would be added in Line 9, implying that
i /∈ I . Hence, we have that n > 0, and in this case items 1 and 3 follow from
items 6 and 5 of Proposition 12.

Next, we prove items 2 and 4. Given that the trace (Xi)i∈I and all i-traces
are finite, Algorithm 2 must return at some point. This has to be done at iteration
i+ 1 in Line 4, after the variable Y is assigned the value ⊥ in Line 3. In this case,
we have that n = 0 and X = Xi. This, together with item 1 of Proposition 12,
implies that X contains all �s-preferred stable models of P . Item 4 follows from
this, and item 2 also follows because every Xi ∈ X is the element Yin−1 of the
corresponding i-trace (by item 6 of Proposition 12) that must be different to all
the other elements of the set X by item 7 of that proposition.
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PROOF. (Theorem 2)
Given that the trace (Xi)i∈I and all i-traces are finite (by Propositions 12 and

11), Algorithm 2 must return at some point. This has to be done at iteration i+ 1,
where it returns at Line 4 the variable X , that has the value

⋃
i∈I Xi. The theorem

follows from this and items 1 and 2 of Proposition 11.

Appendix A.4. Proofs of Section 5.4 (Computational Complexity)
We prove one lemma for membership and another for hardness for every prob-

lem that we consider. We do it in this order: Optimality (Lemmas 5 and 6), Model
Finding (Lemmas 7 and 8), Query (Lemmas 9 and 11), and Non Dominance (Lem-
mas 12 and 13). The membership proof for Optimality is used in the membership
proofs for Model Finding and Query. This is the only dependency between the
proofs. Additionally, before the hardness proof for Query, we include Lemma 10,
that proves part of the hardness results for both Query and for Non Dominance.
In the end, Theorem 3 follows directly from the previous lemmas.

Lemma 5. Given a base program P over A of class i ∈ {1, 2}, and a preference
program Ps of class j ∈ {0, 1, 2} for some preference statement s, the problem
Optimality is in Πp

max({i,j}).

PROOF. Let X be an stable model of P . By item 1 of Proposition 3 we have that
X is not a�s-preferred stable model of P iff the program P ∪Ps∪R(A)∪H(X)′

is satisfiable. Since that program is of class max ({i, j}), we can conclude that the
problem of deciding whether X is not a �s-preferred stable model of P is in
Σp

max({i,j}). Then, the lemma follows from the fact that this is the complement of
the Optimality problem.

Lemma 6. Given a base program P over A of class i ∈ {1, 2}, and a preference
program Ps of class j ∈ {0, 1, 2} for some preference statement s, the problem
Optimality is Πp

max({i,j})-hard.

PROOF. LetX be an stable model of P , and let Non Optimality be the problem of
deciding whether X is not a �s-preferred stable model of P . We show below that
Non Optimality is both Σp

i and Σp
j -hard. Hence, Non Optimality is Σp

max({i,j})-
hard, and the lemma follows from the fact that Non Optimality is the complement
of the Optimality problem.

Non Optimality is Σp
i -hard. Given a logic program P of class i, the problem of

deciding whether P has some stable model is Σp
i -complete. We prove Σp

i -hardness
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by reducing that problem to Non Optimality where the base program is of class
i and the preference program is of class 0 ≤ j. Take any logic program P over
A of class i, let α be a fresh atom such that α /∈ A, and let W be the set {α}.
Consider the base program P ′ of class i, that contains the choice rule {α} ←, as
well as all the rules of P extended with one additional literal ¬α in the body. It is
easy to see that the stable models of P ′ are the stable models of P together with
the stable model W . Next, let Q be the logic program of class 0 that consists of
the two integrity constraints ← holds(α) and ← ¬holds ′(α). Consider also the
preference relation �= {(X, Y ∪{α}) | X, Y ⊆ A}∪{(X,X) | X ⊆ A∪{α}}
that specifies that the sets without α are better than those with α. Clearly, � is
a preference relation, and Q is a preference program for �. Note that, for every
stable model X of P , it holds that X � W . Then, we can reduce the problem of
deciding whether the program P has some stable model to the problem of deciding
whether the stable model W of P ′ is not a �-preferred stable model of P ′. The
reduction works given that, on the one hand, if P has some stable model X , then
W is not a�-preferred stable model of P ′ because in this caseX is a stable model
of P ′ such that X � W . And on the other hand, if P has no stable model, then
W is a �-preferred stable model of P ′ because in this case W is the unique stable
model of P ′ and therefore there is no stable model X of P ′ such that X � W .

Non Optimality is Σp
j -hard. Given a logic program Q of class j, the problem

of deciding whether Q has some stable model is Σp
j -complete. We prove Σp

j -
hardness by reducing that problem to Non Optimality where the base program is
of class 1 ≤ i and the preference program is of class j. Take any logic program
Q over A of class j, and let α be a fresh atom such that α /∈ A. Moreover, let
P be the base program that consists only of the choice rule {α} ←. The stable
models of P are ∅ and {α}. Next, let Q′ be the logic program that contains the
integrity constraints ← holds(α) and ← ¬holds ′(α) as well as all the rules of
Q. Let EQ be {(∅, ∅), ({α}, {α})}, and consider the preference relation � such
that �= {({}, {α})} ∪ EQ if Q has some stable model, and �= EQ otherwise.
Clearly, for any Q, the preference relation� is reflexive and transitive, and Q′ is a
preference program for �. Then, we can reduce the problem of deciding whether
the program Q has some stable model to the problem of deciding whether the
stable model {α} of P is not a �-preferred stable model of P (given P and Q′).
The reduction works given that, on the one hand, if Q has some stable model
X , then {α} is not a �-preferred stable model of P because in this case �=
{({}, {α})} ∪ EQ and therefore ∅ is a stable model of P such that ∅ � {α}.
And on the other hand, if Q has no stable model, then {α} is a �-preferred stable
model of P because in this case �= EQ and therefore there is no stable model X
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of P such that X � {α}.

Lemma 7. Given a base program P over A of class i ∈ {1, 2}, and a preference
program Ps of class j ∈ {0, 1, 2} for some preference statement s, the problem
Model Finding is in FΣp

max({i,j})+1.

PROOF. We prove the lemma by showing a nondeterministic Turing machine,
with an oracle for any problem in Σp

max({i,j}), that can compute a solution to the
Model Finding problem (if it exists) in polynomial time. The machine first guesses
a set X ⊆ A. Then it checks whether X is a stable model of P , and whether X
is a �s-preferred stable model of P . If both checks succeed, it prints the solution
X . The first check is in Πp

i−1 (see Table III of [3]) and the second is in Πp
max({i,j})

(Lemma 5), hence both can be performed by the oracle for Σp
max({i,j}) problems.

Lemma 8. Given a base program P over A of class i ∈ {1, 2}, and a preference
program Ps of class j ∈ {0, 1, 2} for some preference statement s, the problem
Model Finding is F∆p

i+1-hard.

PROOF. The problem of computing a stable model of a logic program of class
i ∈ {1, 2} with optimization statements is F∆p

i+1-complete. For i = 1, the result
can be found in Theorem 3.6 of [2]. For i = 2, the result can be easily obtained
by modifying the proof of Theorem 19 of [92], which states that the problem of
deciding if a given atom belongs to some optimal stable model of a logic program
of class 2 with optimization statements is ∆p

3-complete. Then, the lemma fol-
lows from the translation of logic programs with optimization statements to logic
programs with preference specifications in asprin, presented in Section 7.1.

Lemma 9. Given a base program P over A of class i ∈ {1, 2}, and a preference
program Ps of class j ∈ {0, 1, 2} for some preference statement s, the problem
Query is in Σp

max({i,j})+1.

PROOF. The proof is analogous to the proof of Lemma 7, except for the fact that
the machine only guesses sets X ⊆ A that contain a, and that it should return
only ‘yes’ or ‘no’ depending on whether the guess passed the check.

In the next proofs we will use some complexity results about abduction from
logic programs presented in [32]. We introduce those results simplifying slightly
the notation, since we only need to consider one type of reasoning (brave rea-
soning under the stable model semantics) among the many considered in that pa-
per. Let A be a set of atoms. A logic programming abduction problem (LPAP)
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P over A is a tuple 〈H,M,P 〉 where H ⊆ A is a finite set of hypotheses,
M ⊆ A ∪ {¬a | a ∈ A} is a finite set of manifestations, and P is a proposi-
tional logic program overA. We say that a set of atoms X satisfies a set of literals
M if X contains all the atoms a such that a belongs to M , and X does not contain
any atom a such that ¬a belongs to M . Let |= be the brave reasoning relation un-
der the stable model semantics. Formally, if P is a logic program over A and M
is a set of literals overA, then P |= M iff there is some stable model X of P such
that X satisfies M . Let P = 〈H,M,P 〉 be a LPAP and let S ⊆ H . Then, S is a
solution to P if P ∪S |= M , and S is also a⊆-solution to P if there is no solution
S ′ to P such that S ′ ⊂ S. We say that a hypothesis h ∈ H is relevant for P if there
is some solution S to P such that h ∈ S, and it is⊆-relevant for P if there is some
⊆-solution S to P such that h ∈ S. Let ⊆-Relevance be the problem of deciding
if a given hypothesis is ⊆-relevant for a LPAP P = 〈H,M,P 〉. This problem is
Σp

2-complete if P is normal (part (4) of Theorem 15 of [32]) and it is Σp
3-complete

if P is disjunctive (Theorem 23 of [32]). In other words, ⊆-Relevance is Σp
i+1-

complete if P is of class i ∈ {1, 2}. We can represent the solutions to P by the
following logic program lp(P):

P ∪ {{h} ←| h ∈ H} ∪ {← ¬a | a ∈ A, a ∈M} ∪ {← a | a ∈ A,¬a ∈M}.

The choice rules guess some possible solution S ⊆ H , while P together with the
integrity constraints enforce that P ∪ S |= M . It is easy to see that there is a
one-to-many correspondence between the solutions to P and the stable models of
lp(P):

if S is a solution to P then there is at least one stable model X of lp(P)
such that X ∩H = S, (A.46)

and

if X is a stable model of lp(P) then X ∩H is a solution to P . (A.47)

Note that lp(P) is normal if P is normal, and it is disjunctive if P is disjunctive.

Lemma 10. Given a base program P overA of class 1, and a preference program
Ps of class j ∈ {1, 2} for some preference statement s, the problems Query and
Non Dominance are Σp

j+1-hard.

PROOF. We reduce the problem ⊆-Relevance of deciding whether a given hy-
pothesis h is ⊆-relevant for a LPAP P = 〈H,M,P 〉 over A, where P is of class
j. As we have seen before, this problem is Σp

j+1-complete.

94



Let α be a new atom that does not belong to A. Consider the following logic
program Q:

{{α} ←} ∪ {{a} ← α | a ∈ A} ∪ {h← α}.
It is easy to see that

the set of stable models of Q is
{
∅ ∪ {W ∪ {h, α} | W ⊆ A}

}
. (A.48)

Consider also the relation � over A ∪ {α} such that X � Y iff X = ∅ and
Y = W ∪ {α} for some set W ⊆ A such that:

1. either W is not a stable model of lp(P),
2. or W ∩H is not a ⊆-solution to P .

Let � be � ∪{(X.X) | X ⊆ A∪{α}}. Clearly, � is a strict partial order, and �
is a preorder.

We show that the three following statements are equivalent:

1. The hypothesis h ∈ H is ⊆-relevant for P .
2. There is some �-preferred stable model Y of Q such that α ∈ Y .
3. There is some stable model Y of Q such that for X = {∅} it holds that
Y 6= X and X 6� Y for all X ∈ X .

From statement 1 to statement 2. If statement 1 holds, then by definition

there is some ⊆-solution S for P such that h ∈ S. (A.49)

Hence, by (A.46), we have that

there is some stable model W of lp(P) such that W ∩H = S. (A.50)

Since h ∈ H , h ∈ S and W ∩H = S, we have that h ∈ W . Let Y = W ∪ {α}.
By (A.48) it follows that Y is a stable model of Q. Furthermore, ∅ � Y does not
hold because W is a stable model of lp(P) by (A.50), and W ∩H is a ⊆-solution
to P by (A.49) and (A.50). Hence, Y is a �-preferred stable model of Q, and
statement 2 follows given that α ∈ Y .

From statement 2 to statement 1. If statement 2 holds, then Y is a stable model
of Q such that α ∈ Y , and by (A.48) we have that Y has the form W ∪ {α} for
some W ⊆ A such that h ∈ W . Since Y is �-preferred, it follows that ∅ � Y
does not hold, and therefore W ∩H is a ⊆-solution to P . Given that h ∈ W and
h ∈ H , we can conclude that h ∈ W ∩ H . Hence, W ∩ H is a ⊆-solution to P
such that h ∈ W ∩H , and this implies statement 1.

Statement 2 is equivalent to statement 3. Consider the following statements:
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4. There is some stable model Y of Q such that α ∈ Y and there is no stable
model X of Q such that X � Y .

5. There is some stable model Y of Q such that Y 6= ∅ and ∅ 6� Y .

Statement 2 is equivalent to statement 4 by definition of �-preferred. We prove
that statement 4 is equivalent to statement 5. From 4 to 5, α ∈ Y implies that
Y 6= ∅, and by (A.48) we have that ∅ is a stable model of Q, from which we can
conclude that ∅ 6� Y . From 5 to 4, Y 6= ∅ together with (A.48) imply that α ∈ Y ,
and if ∅ 6� Y then by definition of � there is no set X such that X � Y . Next,
it is easy to see that statement 5 is just a rewriting of statement 3. Finally, the
equivalence between statements 2 and 3 is implied by the previous equivalences.

Now, we can reduce the problem ⊆-Relevance of deciding whether statement
1 holds to the Query problem of deciding whether statement 2 holds, and to the
Non Dominance problem of deciding whether statement 3 holds. Observe that
the logic program Q is of class 1. Then, to finish the proof, we just have to show
a preference program R for � of class j. In other words, we have to show a
program R of class j such that for every X, Y ⊆ A ∪ {α} we have that X � Y
iff R ∪H(X) ∪H ′(Y ) is satisfiable.

Before doing this, we provide an alternative definition of the strict partial order
�. We say that X � Y iff X = ∅ and Y = W ∪ {α} for some set W ⊆ A such
that:

1. either W is not a classical model of lp(P),
2. or there is some set W ′ ⊂ W such that W ′ is a minimal model of the reduct

of lp(P) wrt W ,
3. or there is some W ′ ⊆ A such that W ′ is a stable model of lp(P) and
W ′ ∩H ⊂ W ∩H .

The equivalence between condition 1 of the original definition and the disjunction
of conditions 1 and 2 of the alternative definition follows from the definition of
stable models. If none of those conditions hold, then W is a stable model of
lp(P). In this case, by (A.46) and (A.47), the condition 2 of the original definition
is equivalent to condition 3 of the alternative definition. This shows that both
definitions are equivalent, and from now on we continue using the alternative one.

The preference program R has the form I ∪ C1 ∪ C2 ∪ C3. The rules in I
constrain the form of X and Y , select one condition i ∈ {1, 2, 3}, and require
the derivation of an special atom ok . The rules in every Ci check that condition i
holds whenever it is selected, and in this case they derive the atom ok . As we will
see, the set of rules I is of class 1, the set of rules C1 is of class 0, while C2 and
C3 are both of class j. Hence, the program R is of class j.

96



The first part of I consists of the following rules:

{← holds(a) | a ∈ A ∪ {α}} ∪ {← ¬holds ′(α)}.

The first set enforces that X = ∅, and the second set enforces that Y has the form
W ∪ {α}. We immediately have that W ⊆ A since � is defined over A ∪ {α}.
The set I also contains the following rules, that use the atoms ci for i ∈ {1, 2, 3}
to represent condition i:

{{ci} ←| i ∈ {1, 2, 3}}∪{← ¬c1,¬c2,¬c3}∪{← ci, cj | i, j ∈ {1, 2, 3}, i 6= j}.

They state that exactly one condition i has to be chosen. Finally, the following
integrity constraint from I ensures that the chosen condition derives the atom ok :

← ¬ok .

The set of rules C1 contains for every rule r ∈ lp(P) of the form

a1 ; . . . ; am ← am+1, . . . , an,¬an+1, . . . ,¬ao

one rule of the form

ok ←¬holds ′(a1), . . . ,¬holds ′(am),

holds ′(am+1), . . . , holds ′(an),¬holds ′(an+1), . . . ,¬holds ′(ao), c1

that derives ok if W does not satisfy r and condition 1 is selected. All together,
the rules of C1 enforce condition 1 by deriving the atom ok if and only if W is not
a classical model of lp(P). Note that the choice rules of lp(P) are not considered
for C1.

The set of rules C2 contains for every rule r ∈ lp(P) of the form

a1 ; . . . ; am ← am+1, . . . , an,¬an+1, . . . ,¬ao

one rule of the form

a1 ; . . . ; am ← am+1, . . . , an,¬holds ′(an+1), . . . ,¬holds ′(ao), c2

where the atoms occurring in the negative literals are replaced by their interpre-
tation in Y using the unary predicate holds ′. Moreover, for every choice rule
r ∈ lp(P) of the form

{a0} ← a1, . . . , am,¬am+1, . . . ,¬an
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the set C2 also contains one rule of the form

a0 ← holds ′(a0), a1, . . . , am,¬holds ′(am+1), . . . ,¬holds ′(an), c2

where the rule is translated to a normal one and the atom holds ′(a0) is added to the
body to guarantee that the rule is only fired if a0 belongs to W . This set of rules
generates minimal modelsW ′ of the reduct of lp(P) wrtW , whenever condition 2
is activated. Now, to represent condition 2, we only have to enforce thatW ′ ⊂ W .
We do this in two parts. First, we guarantee that W ′ ⊆ W with these rules:

{← a,¬holds ′(a), c2 | a ∈ A}

and then derive the special atom ok when W ′ is strictly smaller that W :

{ok ← ¬a, holds ′(a), c2 | a ∈ A}.

The set of rules R3 contains all the rules of lp(P) extended with the additional
atom c3 in the body. This set of rules generates stable models W ′ of lp(P) when
condition 3 is activated. Now, to represent condition 3, we only have to enforce
that W ′ ∩H ⊂ W ∩H , and we do that with similar rules to the ones we used in
R2:

{← a,¬holds ′(a), c3 | a ∈ H} ∪ {ok ← ¬a, holds ′(a), c3 | a ∈ H}

All in all, this combination of rules ensures that the program R ∪ H(X) ∪
H ′(Y ) is satisfiable iff X and Y have the right form and some condition i holds.
This implies that R is a preference program for � (of class j) and concludes the
proof.

Lemma 11. Given a base program P overA of class i ∈ {1, 2}, and a preference
program Ps of class j ∈ {0, 1, 2} for some preference statement s, the problem
Query is Σp

max({i,j})+1-hard.

PROOF. We prove that if j = 0 then the problem is Σp
i+1-hard. This gives us

immediately Σp
max({i,j})+1-hardness for all the combinations of i and j, except for

the case where i = 1 and j = 2, that follows from Lemma 10.
Σp
i+1-hardness when j = 0. We reduce the problem ⊆-Relevance of deciding

whether a given hypothesis h is ⊆-relevant for a LPAP P = 〈H,M,P 〉. As
we have seen above, this problem is Σp

i+1-complete if P is of class i ∈ {1, 2}.
Consider the logic program lp(P) of class i, that generates the solutions to P .
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Consider also the preference statement #preference(s, subset)H that declares the
preference relation X �s Y as {h ∈ H | X |= h} ⊆ {h ∈ H | Y |= h}. It is
easy to see that the ⊆-solutions to P correspond one-to-many to the �s-preferred
stable models of lp(P). Recall that the problem⊆-Relevance amounts to deciding
whether there is some⊆-solution S to P such that h ∈ S. Then,⊆-Relevance can
be reduced to the Query problem of deciding whether there is some �s-preferred
stable model X of lp(P) such that h ∈ X . To finish the proof, we just have to
show how to build a preference program of class 0 for �s, and this can be done
simply adapting to our preference statement s the encoding of class 0 presented in
Listing 1.

Lemma 12. Given a base program P overA of class i ∈ {1, 2}, and a preference
program Ps of class j ∈ {0, 1, 2} for some preference statement s, the problem
Non Dominance is in Σp

max({i,j+1}).

PROOF. We prove the lemma by showing a nondeterministic Turing machine,
with an oracle for any problem in Σp

max({i−1,j}), that can solve the Non Dominance
problem in polynomial time. The machine first guesses a set Y ⊆ A. Then it
checks whether Y is a stable model of P , and whether for all X ∈ X it holds that
X 6= Y andX 6�s Y . The first check is in Πp

i−1 (see Table III of [3]). In the second
check, for each X ∈ X , the condition X 6= Y can be decided in polynomial time,
and the condition X 6�s Y is in Πp

j . To see the latter, note that Ps is a preference
program for �s of class j. Hence, deciding whether X �s Y is in Σp

j (see again
Table III of [3]) and its complement is in Πp

j . Since the set X is part of the input,
we can conclude that the second check on all the elements of X is also in Πp

j .
Putting all together, it follows that the checks are in Πp

max({i−1,j}), and therefore
they can be performed by the oracle for Σp

max({i−1,j}) problems.

Lemma 13. Given a base program P overA of class i ∈ {1, 2}, and a preference
program Ps of class j ∈ {0, 1, 2} for some preference statement s, the problem
Non Dominance is Σp

max({i,j+1})-hard.

PROOF. Recall that given a logic program Q of class i, the problem of deciding
whetherQ has some stable model is Σp

i -complete. Then, we prove Σp
i -hardness by

reducing that problem to Non Dominance where the set X is empty. This implies
Σp

max({i,j+1})-hardness for the cases where i = 1 and j = 0, and where i = 2

and j ∈ {0, 1}. On the other hand, Lemma 10 states Σp
j+1-hardness for the cases

where i = 1 and j ∈ {1, 2}, from which we also have Σp
j+1-hardness for the case
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where i = 2 and j = 2. This implies Σp
max({i,j+1})-hardness for the cases where

i = 1 and j ∈ {1, 2}, and where i = 2 and j = 2. Putting all together, we have
Σp

max({i,j+1})-hardness for all i ∈ {1, 2} and j ∈ {0, 1, 2}, concluding the proof.

PROOF. (Theorem 3)
Follows from Lemmas 5 to 9 and 11 to 13.
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