
Expressing Preferences in Default Logic

James P. Delgrande
School of Computing Science

Simon Fraser University
Burnaby, B.C.

Canada V5A 1S6
jim@cs.sfu.ca

Torsten Schaub∗

Institut für Informatik
Universität Potsdam

Postfach 60 15 53, D–14415 Potsdam
Germany

torsten@cs.uni-potsdam.de

June 19, 2002

Abstract

We address the problem of reasoning about preferences among properties (out-
comes, desiderata, etc.) in Reiter’s default logic. Preferences are expressed using an
ordered default theory, consisting of default rules, world knowledge, and an ordering,
reflecting preference, on the default rules. In contrast with previous work in the area,
we do not rely on prioritised versions of default logic, but rather we transform an or-
dered default theory into a second, standard default theory wherein the preferences are
respected, in that defaults are applied in the prescribed order. This translation is ac-
complished via the naming of defaults, so that reference may be made to a default rule
from within a theory. In an elaboration of the approach, we allow an ordered default
theory where preference information is specified within a default theory. Here one may
specify preferences that hold by default, in a particular context, or give preferences
among preferences. In the approach, one essentially axiomatises how different order-
ings interact within a theory and need not rely on metatheoretic characterisations. As
well, we can immediately use existing default logic theorem provers for an implemen-
tation. From a theoretical point of view, this shows that the explicit representation of
priorities among defaults adds nothing to the overall expressibility of default logic.

Keywords: Nonmonotonic reasoning, default logic, knowledge representation, preference
handling

∗ Affiliated with Simon Fraser University, Burnaby, Canada.

1

1 Introduction

The notion of preference or priority in commonsense reasoning is pervasive. For example, in
scheduling not all deadlines may be simultaneously satisfiable, and in configuration various
goals may not be simultaneously met. Preferences among deadlines and goals may allow for
an acceptable, non-optimal, solution. In decision making, preferences clearly play a major
role. In buying a car for example, one may have various criteria in mind (inexpensive, safe,
fast, etc.); given such desiderata, preferences allow us to come to an appropriate compromise
solution.

It is not difficult to envisage situations going beyond such simple preferences. Thus,
there may be preferences among preferences. For example, in legal reasoning, laws may
apply by default but the laws themselves may conflict. For instance, newer laws will usually
have priority over less recent ones, and laws of a higher authority have priority over laws
of a lower authority. In case of conflict, the “authority” preference takes priority over the
“recency” preference. This also illustrates that one may have several preference orderings,
where the orderings are by different criteria (recency, authority, specificity, etc.) and where
one will need to adjudicate among these preferences to come up with a “global” preferred
outcome.

We have two goals in this paper. First, we present a general framework based on default
logic [Reiter,1980] in which preferences may be expressed. Given that there has been a wide
variety of approaches proposed for dealing with preference (Sections 3 and 7), this framework
provides a uniform setting in which preference orderings can be expressed and compared.
Second, we present a number of approaches to preference in this framework. In considering
how preference orderings may be encoded in default logic, we address first the case where a
default theory consists of world knowledge and a set of default rules together with (external)
preference information between default rules. We show how such a default theory can be
translated into a second theory where preference information is now incorporated in the
theory. With this translation we obtain a theory in standard default logic, rather than
requiring machinery external to default logic, as is found in previous approaches. We next
generalise this approach so that preferences may appear arbitrarily as part of a default
theory and, specifically, preferences among default rules may (via the naming of default
rules) themselves be part of a default rule. This allows the specification of preferences among
preferences, preferences holding in a particular context, or preferences holding by default.
This allows one to axiomatise within a theory how different preferences orderings interact.
As well we consider elaborations to these approaches. In these approaches, we formalise a
prescriptive notion of preference, wherein the ordering specifies the order in which default
rules are to be applied. This is in contrast to a descriptive notion of preference, where the
order reflects the “desirability” that a rule be applied.

Previous approaches have generally added machinery to an extant approach to nonmono-
tonic reasoning. In contrast, we remain within the framework of standard default logic, rather
than building a scheme on top of default logic. This has several advantages. Foremost, the
approach is flexible. As stated above, we can axiomatise how a preference order interacts
with other knowledge, including other default information and preference orders. Thus we
can integrate different orderings in the same setting, with arbitrary relationships (or meta-

2

orderings) among them. Second, it is easier to compare differing approaches to handling such
orderings. Third, by “compiling” preferences into default logic, and in using the standard
machinery of default logic, we obtain insight into the notion of preference orderings. So,
for instance, if someone doesn’t like our notion of preference given here, they are free to
axiomatise their own within this framework. Also, for example, we implicitly show that ex-
plicit priorities provide no real increase in the expressibility of default logic. This final point
is particularly important given that nonmonotonic reasoning systems are now beginning to
find application in practical reasoning systems; hence explicitly dealing with preferences
may be seen as a step in developing knowledge engineering methods for applying default
reasoning technologies in reasoning systems. Lastly, there exist theorem provers for default
logic. Consequently our approach can be immediately incorporated in such a prover. To this
end, our approach has been implemented under the syntactic restriction of extended logic
programming; this implementation serves as a front-end to the logic programming systems
dlv and smodels.

2 Default Logic and Ordered Default Logic

Default logic [Reiter,1980] augments classical logic by default rules of the form α :β1,...,βn
γ

. For

the most part we deal with singular defaults for which n = 1. [Marek and Truszczyński,1993]

show that any default rule can be transformed into a set of defaults with n = 1 and n = 0;
hence our one use of a non-singular rule in Section 5 is for notational convenience only. A
singular rule is normal if β is equivalent to γ; it is semi-normal if β implies γ. We sometimes
denote the prerequisite α of a default δ by Prereq(δ), its justification β by Justif (δ), and its
consequent γ by Conseq(δ). Accordingly, Prereq(D) is the set of prerequisites of all default
rules in D; Justif (D) and Conseq(D) are defined analogously. Empty components, such
as no prerequisite or even no justifications, are assumed to be tautological. Defaults with
unbound variables are taken to stand for all corresponding instances. A set of default rules
D and a set of formulas W form a default theory (D,W) that may induce a single or multiple
extensions in the following way.

Definition 2.1 Let (D,W) be a default theory and let E be a set of formulas. Define
E0 = W and for i ≥ 0:

GDi =
{
α :β1,...,βn

γ
∈ D

∣∣∣α ∈ Ei,¬β1 6∈ E, . . . ,¬βn 6∈ E
}

Ei+1 = Th(Ei) ∪ {Conseq(δ) | δ ∈ GDi}

Then E is an extension for (D,W) if E =
⋃∞
i=0 Ei.

Any such extension represents a possible set of beliefs about the world at hand. The
above procedure is not constructive since E appears in the specification of GDi. We define
GD(D,E) =

⋃∞
i=0 GDi as the set of default rules generating extension E. An enumeration

〈δi〉i∈I of default rules is grounded in a set of formulas W , if we have for every i ∈ I that
W ∪ Conseq({δ0, . . . , δi−1}) ` Prereq(δi).

For adding preferences among default rules, a default theory is usually extended with
an ordering on the set of default rules. In analogy to [Baader and Hollunder,1993a;

3

Brewka,1994a], an ordered default theory (D,W,<) is a finite set D of default rules, a fi-
nite set W of formulas, and a strict partial order < ⊆ D ×D on the default rules. That
is, < is a binary irreflexive and transitive relation on D. For simplicity in the following
development we assume the existence of a default δ> = > :>

> ∈ D where for every rule δ ∈ D,
we have δ < δ> if δ 6= δ>. This gives us a (trivial) maximally preferred default that is always
applicable.

3 What’s a Default Preference?

This section discusses preference orderings in general. While we employ default logic, the
discussion is independent of any particular approach to nonmonotonic reasoning. Assume
that we have an ordered default theory. We can write α1 :β1

γ1
< α2 :β2

γ2
to express a preference

between two defaults. Informally, the intent is that a higher-ranked default should be applied
or considered before a lower-ranked default.

The notion of preference among defaults, broadly construed, is very general, in that there
are few restrictions that one would place on default rules in a preference ordering. Consider
for example, the defaults “Canadians speak English”, “Québécois speak French”, “residents
of the north of Québec speak Cree”. A preference ordering can be expressed as follows:

Can : English
English

< Que : French
French

< NQue : Cree
Cree

. (1)

So if a resident of the north of Québec didn’t speak Cree, it would be reasonable to assume
that that person spoke French, and if they didn’t speak French, then English. Here we have
a relation of specificity (or subsumption) among the default rule prerequisites. Consider
though a variation on (1) where in the north of Québec the first language is French, then
English, then Cree: The resulting preference ordering is as follows.

NQue : Cree
Cree

< Can : English
English

< Que : French
French

. (2)

So here there is no specificity order implied by < among rules prerequisites. Indeed for
preferences, one need not have any antecedent information. That one prefers something
(say, a car) that is red, then green might be expressed as : Green

Green
< : Red

Red
. In the most general

case, we might have two defaults, with no relation between them except for a given a priori
preference relation.

Preferences may also apply to other preferences. The legal reasoning example given in
the introduction would be such an instance. Finally one may have different preferences in
different contexts, and as well as preferences by default. So, all in all, one may encounter
quite a variety of different preferences in the reasoning process. We address these possibilities
here using default logic. The novel feature of our approach is that preferences are dealt with
within the extant framework of default logic. We do this by introducing machinery whereby
the application of default rules may be very tightly controlled. Given this machinery, we
show how a given preference ordering may be “compiled” into a “standard” default theory in
which defaults are applied according to this ordering. Consequently one has the freedom and
flexibility to axiomatise within a theory how different orderings interact, when they apply,
etc.

4

We have argued elsewhere [Delgrande and Schaub,2000] that the notion of inheritance of
properties is distinct from that of preference. For default property inheritance, the ordering
on defaults reflects a relation of specificity among the default rule prerequisites. Informally,
for adjudicating among conflicting defaults, one determines the most specific (with respect
to rule antecedents) defaults as candidates for application. Consider for example defaults
concerning primary means of locomotion: “animals normally walk”, “birds normally fly”,
“penguins normally swim”:

Animal : Walk
Walk

< Bird : Fly
Fly

< Penguin : Swim
Swim

. (3)

If we learn that some thing is a penguin (and so a bird and animal), then we would want
to apply the highest-ranked default, if possible, and only the highest-ranked default. Signif-
icantly, if the penguins-swim default is blocked (say the penguin in question has a fear of
water) we don’t try to apply the next default to see if it might fly. Our interests in this paper
lie solely with preference; see [Delgrande and Schaub,2000] for an encoding of inheritance of
properties.

Of approaches dealing with inheritance of properties, in [Touretzky et al.,1987;
Pearl,1990; Geffner and Pearl,1992] (among many others) specificity is determined implicitly,
emerging as a property of an underlying formal system. [Reiter and Criscuolo,1981; Ethering-
ton and Reiter,1983; Delgrande and Schaub,1994] have addressed adding specificity informa-
tion in default logic. [Boutilier,1992; Brewka,1994a; Baader and Hollunder,1993a] consider
adding preferences in default logic while [McCarthy,1986; Lifschitz,1985; Grosof,1991] and
[Brewka,1996; Zhang and Foo,1997; Brewka and Eiter,1998] do the same in circumscription
and logic programming, respectively.1 We return to these approaches in Section 7, once we
have presented and developed our framework.

3.1 Prescriptive and descriptive preference

There are (at least) two ways that a preference order may be interpreted. For a prescriptive
interpretation, the idea is that an order on defaults specifies the order in which the defaults
are to be applied. Thus one applies (if possible) the most preferred default(s), the next
most preferred, and so on. This approach then has a somewhat “algorithmic” feel to it. In
a descriptive interpretation, the preference order represents a ranking on desired outcomes:
the desirable (or: preferred) situation is one where the most preferred default(s) are applied.2

The distinction between these interpretations is illustrated in the following example [Brewka
and Eiter,2000]:

: A
A
< :¬B
¬B

< A : B
B
. (4)

Assume that there is no initial world knowledge. In a prescriptive interpretation, one would
fail to apply the most preferred default (viz. A : B

B
) since the antecedent isn’t provable. How-

ever, one might expect to apply the two lesser-preferred defaults, giving an extension con-

1Although these latter papers include examples best interpreted as dealing with property inheritance,
arguably they in fact implement the (distinct) notion of preference, described following.

2This isn’t intended as a cut-and-dried distinction, but rather as an often useful classification. For
example, [Brewka and Eiter,2000] contains elements of both.

5

taining {A,¬B}.3 In a descriptive interpretation one might observe that by applying the
least-preferred default, the most preferred default can be applied; this yields an extension
containing {A,B}. This has led some researchers to advocate systems based on the descrip-
tive interpretation.

In contrast, we advocate a prescriptive interpretation. We elaborate on this in Section 7,
but it is worth summarising our reasons for favouring this approach here. First, a descriptive
interpretation seems to require (at least in its obvious implementation) a meta-level approach,
or failing that, an expensive encoding at the object level (Section 6). This is due to the fact
that one wants to find a scenario (i.e. extension) in which the most preferred default(s) are
applied, enabled perhaps via the application of other, arbitrary, defaults. In contrast, in the
prescriptive approach, one may generate an extension, and be guaranteed that it represents
a scenario in which the most preferred default(s) that can be applied are applied. Second,
there are interesting ordered default theories where, in a prescriptive interpretation, one
can guarantee the existence of a most-preferred extension, generated by a strictly iterative
process (see Theorem 4.6). Hence there is reason to believe that a prescriptive interpretation
will generally be more efficient than a descriptive interpretation (even though the respective
complexity classes may be the same) and specific instances in which it is guaranteed to be
much more efficient. In addition, if a descriptive interpretation uses a meta-level approach
then adjudicating among different preference orderings, choosing preferences by default, and
all the generalities discussed above must be determined at the meta-level. In contrast,
with our prescriptive approach, we can axiomatise within our theory how we want different
preference orders to interact.

Lastly, a prescriptive interpretation arguably comes with more representational “force”
and allows a “tighter” characterisation of a domain. This is illustrated by the example (4).
Here the prescriptive interpretation appears to give a curious result. However, we argue the
problem is not with a prescriptive interpretation per se, but rather with the encoding of the
example. The default A : B

B
has highest priority, but this default can only be applied if the

prerequisite is proved; one way that this can come about is by applying the default : A
A

. But
then it would seem that : A

A
should be considered first and thus have higher priority than

A : B
B

, since it enables the application of this default. Second, there is no situation in which
A : B

B
can be applied and : A

A
cannot. Thus, while the default : A

A
may be pragmatically less

“important” than A : B
B

in a theory, the inference structure of default logic is such that : A
A

cannot be applied after A : B
B

.4 Yet this is what the order < in (4) stipulates. An analogy
may be made with proving a theorem: a theorem (by analogy: A : B

B
) may be “important”

and lemmas (by analogy: : A
A

) may be less “important”, but one way or another the lemmas
are proved before the theorem can be proved. Hence we argue that (4), while syntactically
well-formed, is of questionable meaning. More generally, a prescriptive interpretation forces
a knowledge base designer to be explicit about what things should be applied in what order.
A descriptive interpretation on the other hand simply gives a “wish list” of preferences which
may or may not be meaningful. We return to and elaborate on these points at the end of

3This is for instance obtained in [Baader and Hollunder,1993a; Brewka,1994a; Marek and
Truszczyński,1993]; the approach presented in Section 4 yields no “preferred” extension.

4That is, one cannot have a grounded enumeration of the generating defaults (Definition 2.1) in which
A : B

B is applied before : A
A .

6

the paper in Section 7, where we compare our approach with others.

4 Static Preferences on Defaults

We show here how ordered default theories can be translated into standard default theories.
Our strategy is to add sufficient “tags” to a default rule in a theory to enable the control of
rule application. This is comparable to the usage of abnormality predicates in circumscription
[McCarthy,1986]. We are given an ordered default theory (D,W,<) which is then translated
into a regular default theory (D′,W ′) such that the explicit preferences in < are “compiled”
into D′ and W ′.

We begin by associating a unique name with each default rule. This is done by extending
the original language by a set of constants5 N such that there is a bijective mapping n :
D → N . We write nδ instead of n(δ) (and we often abbreviate nδi by ni to ease notation).
Also, for default rule δ along with its name n, we sometimes write n : δ to render naming
explicit. To encode the fact that we deal with a finite set of distinct default rules, we adopt
a unique names assumption (UNAN) and domain closure assumption (DCAN) with respect
to N . That is, for a name set N = {n1, . . . , nm}, we add axioms

UNAN : (ni 6= nj) for all ni, nj ∈ N with i 6= j
DCAN : ∀x. name(x) ≡ (x = n1 ∨ . . . ∨ x = nm).

For convenience, we write ∀x ∈ N. P (x) instead of ∀x. name(x) ⊃ P (x).
The use of names allows the expression of preference relations between default rules in

the object language. So we assert that default nj :
αj :βj
γj

is preferred to ni : αi :βi
γi

by ni ≺ nj,

where ≺ is a (new) predicate in the object language. Finally, in discussions of preference

relations we sometimes write δi < δj or αi :βi
γi

<
αj :βj
γj

to show a preference between two

defaults; however it should be kept in mind that these latter expressions are not expressions
within a default theory (as are given by ≺), but expressions about a default theory.

Given δi < δj, we want to ensure that before δi is applied, that δj be applied or found
to be inapplicable.6 We do this by first translating default rules so that rule application can
be explicitly controlled. For this purpose, we need to be able to, first, detect when a rule
has been applied or when a rule is blocked, and, second, control the application of a rule
based on other antecedent conditions. For a default rule α :β

γ
, there are two cases for it to

not be applied: it may be that the antecedent is not known to be true (and so its negation
is consistent), or it may be that the justification is not consistent (and so its negation is
known to be true). For detecting this case, we introduce a new, special-purpose predicate
bl(·). Similarly we introduce a special-purpose predicate ap(·) to detect the case where a rule
has been applied. For controlling application of a rule we introduce predicate ok(·). Then,
a default rule δ = α :β

γ
is mapped to

α ∧ ok(nδ) : β

γ ∧ ap(nδ)
,

ok(nδ) : ¬α
bl(nδ)

,
¬β ∧ ok(nδ) :

bl(nδ)
. (5)

5[McCarthy,1986] first suggested naming defaults using a set of aspect functions. See also [Brewka,1994b].
Theorist [Poole,1988] uses atomic propositions to name defaults.

6That is, we wish to exclude the case where δi ∈ GDn and δj ∈ GDm for n ≤ m in Definition 2.1.

7

These rules are sometimes abbreviated by δa, δb1 , δb2 , respectively. While δa is more or less
the image of the original rule δ, rules δb1 and δb2 capture the aforementioned situation of
non-applicability.

None of the three rules in (5) can be applied unless ok(nδ) is true. Since ok(·) is a
new predicate symbol, it can be expressly made true in order to potentially enable the
application of the three rules in the image of the translation. If ok(nδ) is true, the first
rule of the translation may potentially be applied. If a rule has been applied, then this is
indicated by assertion ap(nδ). The last two rules give conditions under which the original
rule is inapplicable: either the negation of the original antecedent α is consistent (with the
extension) or the justification β is known to be false; in either such case bl(nδ) is concluded.

This translation says nothing about which defaults are “considered” in an ordering before
others. However, for δi < δj we can now fully control the order of rule application: if δj has
been applied (and so ap(nj) is true), or known to be inapplicable (and so bl(nj) is true), then
it’s ok to apply δi. So we would have something like (ap(nj)∨ bl(nj)) ⊃ ok(ni), but adjusted
to allow for the fact that there might be other rules with higher priority than δi. The idea
is thus to delay the consideration of less preferred rules until the applicability question has
been settled for the respective higher ranked rules.

Taking all this into account, we obtain the following translation, mapping ordered default
theories in some language L onto standard default theories in the language L+ obtained by
extending L by new predicates symbols (· ≺ ·), ok(·), bl(·), and ap(·), and a set of associated
default names:

Definition 4.1 Given an ordered default theory (D,W,<) over L and its set of default
names N = {nδ | δ ∈ D}, define T ((D,W,<)) = (D′,W ′) over L+ by

D′ =
{

α∧ok(n) :β
γ∧ap(n)

, ok(n) :¬α
bl(n)

, ¬β∧ok(n) :
bl(n)

∣∣∣ n : α :β
γ
∈ D

}
∪D≺

W ′ = W ∪W≺ ∪ {DCAN ,UNAN}

where

D≺ =
{

:¬(x≺y)
¬(x≺y)

}
W≺ = {nδ ≺ nδ′ | (δ, δ′) ∈ <}

∪ {ok(n>)}
∪ {∀x ∈ N. [∀y ∈ N. (x ≺ y) ⊃ (bl(y) ∨ ap(y))] ⊃ ok(x)}.

W ′ contains prior world knowledge W , together with assertions for managing the priority
order < on defaults. The first part of W≺ specifies that ≺ is a predicate whose positive
instances mirror those of the strict partial order <. ok(n>) asserts that it is ok to apply the
maximally preferred (trivial) default. The third formula in W≺ controls the application of
defaults: for every ni, we derive ok(ni) whenever for every nj with ni ≺ nj, either ap(nj)
or bl(nj) is true. This axiom allows us to derive ok(ni), indicating that δi may potentially
be applied whenever we have for all δj with δi < δj that δj has been applied or cannot be
applied.

This alone gives necessary but not sufficient conditions for rendering δi potentially ap-
plicable. If (δi, δj) 6∈ < then (ni ≺ nj) 6∈ W≺; however, for the last formula in W≺ to work

8

properly we must be able to conclude (in the extension) that ¬(ni ≺ nj). This is addressed
by adding the default rule in D≺ that renders the resulting theory complete with respect
to priority statements. That is, for all resulting extensions E we have that (ni ≺ nj) ∈ E
or ¬(ni ≺ nj) ∈ E. We also have (nδ ≺ n>) ∈ W ′ for every rule δ 6= δ> by the definition
of ordered default theories. Since < is a strict partial order, W ′ also includes the transitive
closure of ≺ and no reflexivities such as n ≺ n.

Note that the translation results in a manageable increase in the size of the default theory.
For ordered theory (D,W,<), the translation T ((D,W,<)) is only a constant factor larger
than (D,W,<).7

As an example, consider the defaults:

n1 : A1 :B1

C1
, n2 : A2 :B2

C2
, n3 : A3 :B3

C3
, n> : > :>

> .

We obtain for i = 1, 2, 3:

Ai∧ok(ni) :Bi
Ci∧ap(ni)

, ok(ni) :¬Ai
bl(ni)

, ¬Bi∧ok(ni) :
bl(ni)

,

and analogously for δ> where Ai, Bi, Ci are >. Given δ1 < δ2 < δ3, we obtain n1 ≺ n2,
n2 ≺ n3, n1 ≺ n3 along with nk ≺ n> for k ∈ {1, 2, 3} as part of W≺. From D≺ we get
¬(ni ≺ nj) for all remaining combinations of i, j ∈ {1, 2, 3,>}. It is instructive to verify
that ok(n3), along with

(ap(n3) ∨ bl(n3)) ⊃ ok(n2), and ((ap(n2) ∨ bl(n2)) ∧ (ap(n3) ∨ bl(n3))) ⊃ ok(n1)

are obtained after a few iterations in Definition 2.1 (see below); from this we get that n3

must be taken into account first, followed by n2 and then n1.
For illustration, we provide in Figure 1 traces of extension constructions based on the

pseudo-iterative specification given in Definition 2.1:
Given W = {A1, A2, A3}, we obtain the trace of conclusions given in the left column

of Figure 1. The trace demonstrates how the successive introduction of ok-literals allows
for navigating the consecutive consideration of rules along the given preferences. The delay
between the application of the individual rules is due to the fact that in Definition 2.1 the
deductive closure of Ei is determined at Ei+1.

Next, consider where W also contains C3 ⊃ ¬B2 and C2 ⊃ ¬B3. The corresponding
trace is given in the middle column of Figure 1. We get (δ2)b2 ∈ GD5 instead of (δ2)a ∈
GD5; therefore, also bl(n2) ∈ E6 instead of C2 ∧ ap(n2) ∈ E6. This is because ¬B2 ∈ E.
Suppose there is an extension containing C2 ∧ ¬B3 as opposed to C3 ∧ ¬B2. As before, we
obtain ok(n3) ∈ E3. Since we have ¬B3 in our putative extension, against which we check
consistency, (δ3)a is inapplicable. Also, (δ3)b1 is inapplicable, since A3 belongs to the given
facts. Finally, not even (δ3)b2 is applicable since ¬B3 is not derivable, although it belongs to
the putative extension. So, since we can neither derive ap(n3) nor bl(n3), the pseudo-iterative
process is interrupted; we cannot derive ok(n2) and thus ¬B3 cannot belong to any Ei. This
behaviour nicely reflects the fact that rules (to be more precise, their justifications) can only
be blocked by higher-ranked rules, since the application of lower-ranked rules is delayed until
applicability has been settled for their predecessors.

7This assumes we count the default in D≺ as a single default.

9

i Ei GDi

0 ok(n>)
A1, A2, A3

1 > ∧ ok(n>) (δ>)a
2 > ∧ ap(n>)
3 ap(n>)

ok(n3)
A3 ∧ ok(n3) (δ3)a

4 C3 ∧ ap(n3)
5 C3, ap(n3)

ok(n2)
A2 ∧ ok(n2) (δ2)a

6 C2 ∧ ap(n2)
7 C2, ap(n2)

ok(n1)
A1 ∧ ok(n1) (δ1)a

8 C1 ∧ ap(n1)
9 C1, ap(n1)

i Ei GDi

0 ok(n>)
A1, A2, A3

C3 ⊃ ¬B2

C2 ⊃ ¬B3

1 > ∧ ok(n>) (δ>)a
2 > ∧ ap(n>)
3 ap(n>)

ok(n3)
A3 ∧ ok(n3) (δ3)a

4 C3 ∧ ap(n3)
5 C3, ap(n3)

ok(n2), ¬B2

¬B2 ∧ ok(n2) (δ2)b2
6 bl(n2)
7

ok(n1)
A1 ∧ ok(n1) (δ1)a

8 C1 ∧ ap(n1)
9 C1, ap(n1)

i Ei GDi

0 ok(n>)
A1, A3

1 > ∧ ok(n>) (δ>)a
2 > ∧ ap(n>)
3 ap(n>)

ok(n3)
A3 ∧ ok(n3) (δ3)a

4 C3 ∧ ap(n3)
5 C3, ap(n3)

ok(n2) (δ2)b1
6 bl(n2)
7

ok(n1)
A1 ∧ ok(n1) (δ1)a

12 C1 ∧ ap(n1)
13 C1, ap(n1)

Figure 1: Tracing the pseudo-iterative definition.

10

Finally, consider the case where the prerequisite of the second default rule, A2, is missing.
The corresponding trace is given in the right column of Figure 1. As opposed to the two
previous scenarios, we now get (δ2)b1 in GD5.

The following theorem summarises the major technical properties of our approach, and
demonstrate that rules are applied in the desired order:

Theorem 4.1 Let E be a consistent extension of T ((D,W,<)) for ordered default theory
(D,W,<). We have for all δ, δ′ ∈ D that

1. nδ ≺ nδ′ ∈ E iff ¬(nδ ≺ nδ′) 6∈ E

2. ok(nδ) ∈ E

3. ap(nδ) ∈ E iff bl(nδ) 6∈ E

4. ok(nδ) ∈ Ei and Prereq(δ) ∈ Ej and ¬Justif (δ) 6∈ E implies ap(nδ) ∈ Emax(i,j)+3

5. ok(nδ) ∈ Ei and Prereq(δ) 6∈ E implies bl(nδ) ∈ Ei+1

6. ok(nδ) ∈ Ei and ¬Justif (δ) ∈ E implies bl(nδ) ∈ Ej for some j > i+ 1

7. ok(nδ) 6∈ Ei−1 and ok(nδ) ∈ Ei implies ap(nδ) 6∈ Ej for j < i + 2 and bl(nδ) 6∈ Ej for
j < i

While Theorem 4.1.2 guarantees that we consider all default rules inD, Theorem 4.1.3 reflects
the fact that extensions contain complete knowledge about the application of the rules in
D. Among the more procedural propositions, Theorem 4.1.5 shows that our approach allows
us to detect blockage due to non-derivability of the prerequisite immediately after having
the “ok” for the default at hand. The remaining properties provide a detailed account of
the technical intuitions underlying our approach: as with all default logics, we consider all
default rules during the consideration of rules with lower preference.

This is made more precise in the following theorem, by adopting a rule-based perspec-
tive. For an extension E and its generating default rules GD(D,E), we trivially have
δa ∈ GD(D,E) iff ap(nδ) ∈ E, and δb1 ∈ GD(D,E) or δb2 ∈ GD(D,E) iff bl(nδ) ∈ E.

Theorem 4.2 Let E be a consistent extension of T ((D,W,<)) = (D′,W ′) for ordered de-
fault theory (D,W,<) and GDi be defined wrt E and (D′,W ′). Then, we have for all δ ∈ D

8. δa ∈ GD(D′, E) iff (δb1 6∈ GD(D′, E) and δb2 6∈ GD(D′, E))

For all default rules δ, δ′ ∈ D such that δ < δ′, we have

9. δ′a, δ
′
b1
, δ′b2 6∈ GDi implies δa, δb1 , δb2 6∈ GDj for j < i+ 3

10. δ′a ∈ GDi or δ′b1 ∈ GDi or δ′b2 ∈ GDi implies δa ∈ GDj or δb1 ∈ GDj or δb2 ∈ GDj for
some j > i+ 2

11. δa ∈ GDi or δb1 ∈ GDi or δb2 ∈ GDi implies δ′a ∈ GDj or δ′b1 ∈ GDj or δ′b2 ∈ GDj for
some j < i− 2.

11

Unlike the above, the last series of results focuses on the successive application of lower and
higher ranked rules. As already observable in the traces in Figure 1, the minimum three-
step delay between rules stemming from δ and those originated by δ′ is due to the belated
formation of deductive closure in Definition 2.1. The important overall consequence of this
series of results is that our translation provides full control over default application.

4.1 Semantical underpinnings

So far, we have described our approach in rather specific, technical terms, so that the question
about more general properties arises. To begin with, a more global and systematic view of
the machinery put forward by our translation is obtainable by combining the previously
given results:

Theorem 4.3 Let (D,W,<) be an ordered default theory and let E be a set of formulas.
If E is a consistent extension of T ((D,W,<)) = (D′,W ′) then we have for all grounded

enumerations 〈ζi〉i∈I of GD(D′, E) and for all δ, δ′ ∈ D:

If δ < δ′, then j < i for all ζi = δt and some8 ζj = (δ′)t′ with t, t′ ∈ {a, b1, b2} .

Thus a grounded enumeration for an extension of the translated defaults conforms to the
ordering given on the initial set of defaults.

Moreover, it turns out that our translation T amounts to selecting those extensions of the
original default theory that are in accord with the provided ordering. This can be expressed
in the following way.

Definition 4.2 Let (D,W) be a default theory and let < ⊆ D ×D be a strict partial order.
An extension E of (D,W) is <-preserving if there exists a grounded enumeration 〈δi〉i∈I

of GD(D,E) such that for all i, j ∈ I and δ ∈ D \GD(D,E), we have that

1. if δi < δj then j < i and

2. if δi < δ then Prereq(δ) 6∈ E or W ∪ Conseq({δ0, . . . , δi−1}) ` ¬Justif (δ).

From the perspective of δi, the two conditions distinguish between present and absent higher-
ranked rules. In the former case, an ordering < prescribes that the preferred rule δj must be
applied before δi, while its absence is only tolerable if either its prerequisite is not derivable
(at all) or its justification is refuted by other, even higher-ranked rules. In any case, the
applicability issue must first be settled for higher-ranked default rules before it is address-
able for lower-ranked rules. This conception of prescriptive preference is mirrored by our
translation of ordered theories into regular theories.

Theorem 4.4 Let (D,W) be a default theory and let < ⊆ D ×D be a strict partial order.
Let E be a set of formulas.

We have that E is a <-preserving extension of (D,W) iff E = E ′∩L for some extension
E ′ of T ((D,W,<)).

8This is because there are cases, where both δb1 and δb2 apply.

12

The notion of <-preservation not only provides a semantics for our approach, but it may
also be seen as a general semantical account for prescriptive preferences among defeasible
rules.

By the above theorem, it is clear that any extension of a translated default theory is a
regular extension of the underlying unordered default theory:

Corollary 4.1 Let (D,W,<) be an ordered default theory over L.
If E is an extension of T ((D,W,<)) then E ∩ L is an extension of (D,W).

Also, the approach is equivalent (modulo the original language) to standard default logic if
there are no preferences:

Corollary 4.2 For a default theory (D,W) over L and a set of formulas E, we have that
E is an extension of (D,W) iff E = E ′ ∩ L for some extension E ′ of T ((D,W, ∅)).

4.2 The Existence of Extensions

Given the above theorems, one might expect that ordered default theories would enjoy the
same properties as standard default logic. This is indeed the case, but with one important
exception: normal ordered default theories do not guarantee the existence of extensions. For
example, the image of the ordered default theory (under our translation)(

{n1 : :B
B
, n2 : B :C

C
}, ∅, {δ1 < δ2}

)
(6)

has no extension. Informally the problem is that we have a preference δ1 < δ2. However, if
W = ∅, only default δ1 is applicable, and once it has applied, δ2 becomes applicable. Thus
we have an ordering implicit in the form of the defaults and world knowledge, but where
this implicit ordering is contradicted by the assertion δ1 < δ2. Not surprisingly then there is
no extension.

In more detail, our translation gives us (among other things) the following information:

ok(n1) :B
B∧ap(n1)

, B∧ok(n2) :C
C∧ap(n2)

, ok(n2) :¬B
bl(n2)

, (ap(n2) ∨ bl(n2)) ⊃ ok(n1). (7)

If E is an extension of the translated theory, then in Definition 4.1 we will have for some i (in
fact i = 3) that ok(n2) ∈ Ei and ok(n1) 6∈ Ei. Only the third default in (7) may potentially
be applied. The assumption that B ∈ E leads to an immediate contradiction: this would
block application of the third default, no default is applicable, and so B 6∈ E. Since B 6∈ E
the third default is applicable and we conclude bl(n2) ∈ E4, hence ok(n1) ∈ E5. But now
the first default in (7) is applicable; we derive B, hence B ∈ E, contradiction.

From a declarative point of view, we see that the single regular extension of (6), viz.
Th({B,C}), is generated by the grounded sequence 〈δ1, δ2〉. This extension however is not
<-preserving, since its sequence of generating default rules violates the given preference
ordering.9 Conversely, the only sequence compatible with <, namely 〈δ2, δ1〉, is not grounded
and it is therefore not legitimate. So, we are faced with an explicit preference order that
is incompatible with the implicit application order. In the example, this implicit order

9To be precise, it violates Condition 1 in Definition 4.2.

13

was induced by the inferential relation between one default rule’s consequent and another’s
prerequisite. There is, however, a second source for such an implicit ordering, given by
the blocking of a rule. That is, one rule’s consequent may imply the negation of another’s
justification. To see this, consider the following theory:(

{n1 : :B
B
, n2 : :C∧¬B

C
}, ∅, {δ1 < δ2}

)
(8)

As above, this theory has no <-preserving extension. To see this, note that its single regular
extension, viz. Th({B}), is generated by 〈δ1〉. This sequence violates Condition 2 of Defini-
tion 4.2, since the inapplicability of the higher-ranked rule δ2 is not justifiable in the absence
of the lower-ranked rule δ1. One way to address this problem is to replace rigid preferences
by preferences that apply by default only. An approach which would permit this is detailed
in Section 5. However we suggest that (6) and (8) are incoherent in some sense, and the lack
of extension indicates a problem in the specification of the original theory.

We can make this notion more precise by relating our approach to that of [Papadimitriou
and Sideri,1994], which characterises a class of default theories that always have extensions.
In [Papadimitriou and Sideri,1994], a graph G((D,W)) is constructed from a default theory
where default rules are the nodes, and directed edges reflect “positive” and “negative” influ-
ences of one rule on another. Our main result is that if a default theory is of this class that
is guaranteed to have an extension, and if our ordering < does not conflict with an edge in
G((D,W)), then the ordered default theory has an extension.

We assume for the remainder of this section that we are dealing with propositional de-
fault theories only. That is, in both an original theory and the translated theory, we have
propositional formulas only. Hence (former) atomic formulas such as ok(n) and ni ≺ nj are
regarded as propositional atoms. We can do this since we assume that we have a finite set
of default rules with a finite set of instances. Assume further that formulas are expressed
in conjunctive normal form. To be sure, our axiomatisation of Definition 4.1 loses much
of its interest (and so for instance the partial order ≺ becomes a set of unrelated atomic
sentences) but the point remains that we can use this to characterise ordered theories having
extensions.

[Papadimitriou and Sideri,1994] present the following results. For semi-normal default
theory (D,W) define its literal graph L((D,W)) as the graph with nodes consisting of literals
in the theory, and where (x, y) is a directed edge if both ¬x and y appear in the same clause of
W or of a consequent of D. L∗(x, y) indicates that there is a path from x to y in L((D,W)).
Intuitively the graph indicates what literals may contribute to the proof of others in the
context of the default theory.

From this another graph G((D,W)) = (D, E), which we will call the dependency graph,
is defined where the vertices are default rules from D, E = E0∪E1, and E0 and E1 are disjoint.
Informally (δ, δ′) ∈ E0 if the application of δ may help bring about the application of δ′, and
(δ, δ′) ∈ E1 if the application of δ may help prevent the application of δ′. Formally:

1. (δ, δ′) ∈ E0 if there is a literal x appearing positively in the consequent of δ, a literal y
appearing positively in the prerequisite of δ′, and L∗(x, y).

2. (δ, δ′) ∈ E1 if there is a literal x appearing positively in the consequent of δ, a literal y
appearing negatively in the justification or in the consequent of δ′, and L∗(x, y).

14

Observe that the information provided by E0 and E1 (along with the underlying distinction)
amounts to a formalisation of the implicit application orderings discussed above (along with
their two different sources).

Edges in E0 are assigned 0 weight and edges in E1 are assigned a weight of 1. Default
theory (D,W) is even if all cycles in G((D,W)) have total weight that is even (i.e. there
are no cycles with an odd number of edges from E1). Their main result says that every even
default theory has an extension. Given this result, we obtain:

Theorem 4.5 Let (D,W,<) be a propositional, semi-normal, ordered default theory such
that (D,W) is even and for the associated dependency graph G((D,W)) = (D, E), we have
that if C is a cycle of (D, E ∪ {(δ′, δ) | δ < δ′}) then C is a cycle of (D, E).

Then T ((D,W,<)) has an extension.

Thus (D, E ∪ {(δ′, δ) | δ < δ′}) has no new cycles incorporating elements of <. The
dependency graph reflects dependencies among the default rules, specifically which rules may
help block or activate others. [Papadimitriou and Sideri,1994] show that theories obeying
certain constraints have an extension; we show that an ordered theory where the ordering
doesn’t contradict one of these constraints also has an extension.

Now we can make precise why we consider theories (6) and (8) to be incoherent. First, we
observe that both underlying default theories are even. For the standard theory underlying
(6), we get a dependency graph with arc set E = E0 ∪ E1 = {(δ1, δ2)} ∪ ∅. Together with
the preference δ1 < δ2 from (6), we obtain arc set E ∪ {(δ2, δ1)} that includes the new cycle
formed by (δ1, δ2) and (δ2, δ1). Consider how this is reflected in the translated theory: Let
E ′ = E ′0 ∪ E ′1 be the arc set of the dependency graph in the translated default theory
T ((D,W,<)). As the proof of Theorem 4.5 shows, there are many arcs in E ′0, most of them
in a sense redundant, in that they cannot contribute to a cycle. However, two arcs are of
crucial importance in the translated theory of (6). We get(

ok(n2) :¬B
bl(n2)

, ok(n1) :B
B∧ap(n1)

)
∈ E ′0

resulting from (bl(n2), ok(n1)) being in the literal graph of the translated theory, reflecting
the preference of δ2 over δ1. We also get(

ok(n1) :B
B∧ap(n1)

, ok(n2) :¬B
bl(n2)

)
∈ E ′1

by virtue of the occurrences of B in the consequent and its negation in the justification of
the rules. These two edges form an odd cycle (that is, a cycle with weight 1) and so the
applicability condition of [Papadimitriou and Sideri,1994] fails here. Note how this reflects
our earlier intuitions. The first arc is a result of the preference of δ2 over δ1; the second
results from the possibility of δ1 activating δ2.

In (8) something similar happens. In the underlying standard theory we get a dependency
graph with arc set E = E0 ∪ E1 = ∅ ∪ {(δ1, δ2)}. Incorporating the arc (δ2, δ1) induced by
δ1 < δ2 gives an extended arc set possessing a new cycle. In fact, in the translated theory
we get edges(

ok(n1) :B
B∧ap(n1)

, ok(n2) :C∧¬B
C∧ap(n2)

)
∈ E ′1 and

(
ok(n2) :C∧¬B
C∧ap(n2)

, ok(n1) :B
B∧ap(n1)

)
∈ E ′0

15

again yielding an odd cycle. The first edge is a result of δ1 “canceling” δ2; the second reflects
the preference of δ2 over δ1.

A further useful consequence follows. Its proof is independent of the Papadimitriou and
Sideri result, and instead relies on the fact that normal default theories have extensions. Let
Pred(S) be the set of predicate symbols occurring in a set of formulas S.

Theorem 4.6 Let (D,W,<) be a normal, ordered default theory such that

Pred(Prereq(D)) ∩ Pred(Conseq(D)) = ∅ and Pred(W) ∩ Pred(Conseq(D)) = ∅.

Then T ((D,W,<)) has an extension.

Here we have a class of default theories where the default conclusions are independent of the
rule prerequisites, and so represent new default information. The second condition excludes
the expression of such “dependencies” via W . Hence the theory with : q

q
< : p

p
for atomic

sentences p, q, and with W = ∅ is acceptable, whereas the same preference with W = {p ≡ q}
is not.

Note that the proofs of the above theorems show that, as a corollary, an extension E
is found by a purely iterative process. Hence, in select cases, extensions of ordered default
theories may be (relatively) efficiently generated.

5 Dynamic Preferences on Defaults

We now consider situations where the presence of preferences is context-dependent. We
deal with standard default theories (D,W) over a language already including a predicate
≺ expressing a preference relation by means of default names. In order to keep a finite
domain closure axiom, we restrict ourselves to a finite set of default rules D which is in a
1–1 correspondence with a finite name set N .

Since preferences are now available dynamically by inferences from W and D, we lack
a priori complete information about the ordering predicate ≺. This a priori complete in-
formation was available in the rigid case since we were given all positive instances of the
explicit order < between rules and the “closed world default” :¬(x≺y)

¬(x≺y)
for negative instances.

However this leads to a problem if we allow positive preferences by default. Consider where
our only preference is given by :n≺m

n≺m . Intuitively if we have no other preference informa-
tion, this default should be applicable. However we also have the “closed world” default for
preferences, given in D≺ above, that asserts that if there is no known or derived preference
between rules, then no preference exists. An instance of D≺ is :¬(n≺m)

¬(n≺m)
. So if we simply

have these two defaults then we run the risk of potentially having an unwanted extension
where :¬(n≺m)

¬(n≺m)
applies over :n≺m

n≺m . Obviously we cannot solve the problem by asserting that
:¬(n≺m)
¬(n≺m)

< : n≺m
n≺m since our approach would now be circular. We address this issue by adding

a new binary predicate ⊀ indicating that for defaults δ and δ′ neither (nδ ≺ nδ′) ∈ E nor
¬(nδ ≺ nδ′) ∈ E for a given extension E. We add the following rule, where x, y are variables
ranging over default names:

: ¬(x ≺ y), (x ≺ y)

(x ⊀ y)
. (9)

16

This rule accounts for situations where neither (x ≺ y) nor ¬(x ≺ y) is derivable. That is for
names n and m, the only time this rule will apply is when n ≺ m 6∈ E and ¬(n ≺ m) 6∈ E.
So, since ⊀ is an introduced predicate, the only time we have n ⊀ m ∈ E is when the default
theory has no information on whether the two defaults are in a preference relation or not.

We now consider standard default theories in a language L including the set of default
names and propositions formed by binary predicate ≺ applied to variables and default names
only; these are mapped onto theories in the language L? obtained by extending L with new
predicate symbols (· ⊀ ·), ok(·), bl(·), and ap(·):

Definition 5.1 Given a default theory (D,W) over L and its set of default names N =
{nδ | δ ∈ D}, we define D((D,W)) = (D′,W ′) over L? by

D′ =
{

α∧ok(n) :β
γ∧ap(n)

, ok(n) :¬α
bl(n)

, ¬β∧ok(n) :
bl(n)

∣∣∣ n : α :β
γ
∈ D

}
∪D≺

W ′ = W ∪W≺ ∪ {DCAN ,UNAN}

where

D≺ =
{

:¬(x≺y),(x≺y)
(x⊀y)

}
W≺ = {∀x ∈ N.¬(x ≺ x)}

∪ {∀xyz ∈ N. ((x ≺ y) ∧ (y ≺ z)) ⊃ (x ≺ z)}
∪ {∀x ∈ N. (x 6= n>) ⊃ (x ≺ n>)}
∪ {ok(n>)}
∪
{
∀x ∈ N.

(
∀y ∈ N. (x ⊀ y) ∨ [(x ≺ y) ⊃ (bl(y) ∨ ap(y))]

)
⊃ ok(x)

}
In contrast to Definition 4.1, D and W now may contain preference information expressed
by ≺ applied to default names. The first three axioms in W≺ account for information that
was implicitly provided by ordered default theories in the rigid case. The last axiom is
a straightforward extension of that found in the rigid case, now also accounting for the
information provided by the default rule in D≺.

Again, we observe that for ordered theory (D,W), the translation D((D,W)) is only a
constant factor larger than (D,W). We note that Theorem 4.1 and Theorem 4.2 carry over
to the general case except for Theorem 4.1.1. We get instead

1′. either nδ ≺ nδ′ ∈ E or ¬(nδ ≺ nδ′) ∈ E or nδ ⊀ nδ′ ∈ E

In fact, ordered default theories are treated in the same way by our basic and general
approach, except for different augmented languages:

Theorem 5.1 Let (D,W,<) be an ordered default theory over L.
For each extension E of T ((D,W,<)) there is an extension E ′ of D((D,W ∪ {nδ ≺ nδ′ |

(δ, δ′) ∈<})) such that E ∩ L = E ′ ∩ L and vice versa.

Together with Corollary 4.2, this result implies that our dynamic approach yields all regular
extensions (modulo the original language) if (D,W) does not contain an occurrence of ≺ :

17

Theorem 5.2 For a default theory (D,W) over a language L excluding ≺-symbols, and a
set of formulas E, we have that

E is an extension of (D,W) iff E = E ′ ∩ L for some extension E ′ of D((D,W)).

The notion of <-preservation is not directly applicable to the dynamic case. This is
because there is no adequate counterpart of a ‘regular extension of the original theory’ since
the preference information is only fully developed in the extensions of the image of the
translation. Nonetheless, we can provide an analogous criterion being invariantly satisfied
by all extensions obtained after our translation:

Theorem 5.3 Let (D,W) be an ordered default theory and let E be a set of formulas.
If E is a consistent extension of D((D,W)) then we have for all grounded enumerations

〈ζi〉i∈I of GD(D,E) and for all δ, δ′ ∈ D:

If (nδ ≺ nδ′) ∈ E then j < i for all ζi = δt and some ζj = (δ′)t′ with t, t′ ∈ {a, b1, b2} .

As argued above, there is no sensible correspondence to regular extensions in a dynamic
setting since preferences are present in both the original and resulting theory. Thus, there
is no counterpart for Corollary 4.1 in the dynamic case.

The advantage of dynamic preferences over static ones is that they allow for specifying
context-sensitive preferences, where the context is spanned by the encompassing extension.
In fact, the dynamic setting does not necessarily furnish “softer” preferences than obtainable
in the static case. Dynamic preferences do rather provide additional means for canceling
preferences in certain cases. Clearly, a theory like(

{n1 : :B
B
, n2 : :¬B

¬B , n21 : :n1≺n2

n1≺n2
}, ∅
)

yields a single extension containing ¬B. Adding n2 ≺ n1 as a fact results in a single extension
with B. Adding instead a default rule such as n12 : :n2≺n1

n2≺n1
gives rise to two extensions, one

with B and one with ¬B. The important thing to note is that the two last additions gave rise
to alternative contexts, that is, in both cases ¬(n1 ≺ n2) was derivable, first in an overriding
way (in W), then as included in an alternative extension.

If no such default alternative is provided, dynamic preferences are as rigid as static ones.
To see this, let us reconsider theories (6) and (8) in a dynamic setting:(

{n1 : :B
B
, n2 : B :C

C
, n21 : :n1≺n2

n1≺n2
}, ∅
)

(10)(
{n1 : :B

B
, n2 : :C∧¬B

C
, n21 : :n1≺n2

n1≺n2
}, ∅
)

(11)

As in the static case, the images of both theories do not possess any extensions. This is
because there is simply no way to refute the preference imposed by the third default rule. If
this was possible, we would get unwanted preferences, as argued at the start of this section
when motivating D≺.

So, it should be clear that if one wants to suspend dynamic preferences in certain contexts,
one has to provide a specification for these contexts. One way of doing this is to equip rules
with dynamic preferences with predicates playing the same role as abnormality predicates in

18

circumscription [McCarthy,1986]. For implementing this option in the above examples, we
could replace

nyx : :nx≺ny
nx≺ny by p(y, x) : : (nx≺ny)∧¬ko(p(y,x))

nx≺ny

and supply a corresponding blocking policy, comparable to circumscription policies. In the
case of (10), one could fix the problem by means of ∀x, y ∈ N. ap(nx)∧ ap(ny) ⊃ ko(p(y, x)),
that is, by canceling preferences between non-conflicting rules. Alternately one could adopt
a different strategy by putting:

∀x, y ∈ N. (Conseq(δx) ⊃ Prereq(δy)) ⊃ ko(p(y, x)) .

This axiom ranks derivability over preference (see Section 4.2). One could similarly rank
blockage over preference in addressing the lack of extensions in (11):

∀x, y ∈ N. (Conseq(δx) ⊃ ¬Justif (δy)) ⊃ ko(p(y, x)) .

Of course, our axiomatic approach leaves room for many other policies.

5.1 Examples

To further illustrate our approach, we consider two extended examples, taken from the
literature. The first is given by Junker in [1997]: 10

“Jim and Jane have the following habits:

1. Normally, Jim and Jane go to at most one attraction when they go out in
an evening.

2. Jim prefers the theatre to the night club.

3. Jane prefers the night club to the theatre.

4. If Jim invites Jane then he respects her preferences (and vice versa).

5. Normally Jim invites Jane.

6. An exception to 1. is Saturday.

7. An exception to 5. is Jim’s birthday, where Jane invites Jim.

If no further information is given we conclude that Jim and Jane will go to the
night club. When we learn that Jim has birthday we revise this and conclude that
they go to the theatre. However, the day in question is a Saturday. Hence, they
should go to both attractions. Finally the news tells that the theatre is closed for
work. Thus we again conclude that they go to the night club.”

10A resemblance to existing persons is accidental and not in accord with the intention of the authors.

19

We adapt Junker’s modelling as follows:

ntheatre :
: goto(theatre) ∧ ¬closed(theatre)

goto(theatre)
(12)

nnight-club :
: goto(night-club) ∧ ¬closed(night-club)

goto(night-club)
(13)

nevenings :
: ¬(goto(theatre) ∧ goto(night-club)) ∧ ¬party-night

¬(goto(theatre) ∧ goto(night-club))
(14)

njane :
invites(jim, jane) : ntheatre ≺ nnight-club

ntheatre ≺ nnight-club

(15)

njim :
invites(jane, jim) : nnight-club ≺ ntheatre

nnight-club ≺ ntheatre

(16)

ninvitation :
: invites(jim, jane)

invites(jim, jane)
(17)

saturday ⊃ party-night (18)

birthday(jim) ⊃ invites(jane, jim) (19)

invites(jim, jane) ⊃ ¬invites(jane, jim) (20)

closed(theatre) ⊃ ¬goto(theatre) (21)

∀x ∈ N. (goto(x) ⊃ (nx ≺ nevenings)) (22)

∀x ∈ N. (goto(x) ⊃ (nx ≺ ninvitation)) (23)

Recall that nx is simply an abbreviation for n(x). The choice where to go, is formalised
by means of default rules δtheatre and δnight-club . Both spots are supposed to be open, unless
they are known to be closed. Observe that both δjane and δjim model a combination of above
statements 2. and 3. with 4., respectively. So, δjane tells us that Jane’s preferences hold since
Jim is inviting her. Finally, following [Junker,1997], we give in (22/23) preference to rules
δevenings and δinvitation , talking about where to go, over δtheatre and δnight-club simply indicating
where to go.11

First of all, it is easy to see that default theory

(D,W) = ({(12)− (17)} , {(18)− (23)}) (24)

has three extension in standard default logic, one containing goto(theatre), one containing
goto(night-club), and one including both.

Clearly, the application of the rules in (14)–(17) is not subject to any preferences, so that
any extension must contain:

ap(nevenings), ap(njane), ap(njim), and ap(ninvitation) .

This is different for the rules in (12) and (13), whose application depends on the con-
text spanned by the encompassing extension. Because of (22) and (23), the rules δtheatre

11This is because the former influence the latter but not vice versa.

20

and δnight-club depend both on the applicability of δevenings and δinvitation . Their interde-
pendency, however, is subject to the presence of corresponding preference literals, like
ntheatre ⊀ nnight-club and ntheatre ≺ nnight-club in the case of δtheatre . This is reflected by the
following two formulas, common to all extension construction processes:

([(ntheatre ⊀ nnight-club)
∨

(ntheatre ≺ nnight-club ⊃ ap(nnight-club) ∨ bl(nnight-club))]
∧ [ap(nevenings) ∨ bl(nevenings)]
∧ [ap(ninvitation) ∨ bl(ninvitation)]) ⊃ ok(ntheatre)

([(nnight-club ⊀ ntheatre)
∨

(nnight-club ≺ ntheatre ⊃ ap(ntheatre) ∨ bl(ntheatre))]
∧ [ap(nevenings) ∨ bl(nevenings)]
∧ [ap(ninvitation) ∨ bl(ninvitation)]) ⊃ ok(nnight-club)

The image D((D,W)) of theory (D,W), given in (24), leads to an extension con-
taining invites(jim, jane) and therefore also ntheatre ≺ nnight-club and ¬(nnight-club ≺ ntheatre).
Because of ap(ninvitation) and ap(nevenings), we then get ok(nnight-club) and (ap(nnight-club) ∨
bl(nnight-club)) ⊃ ok(ntheatre). As a result, we obtain goto(night-club) and ¬goto(theatre).

When we learn that it happens to be Jim’s birthday, thus adding birthday(jim), we
get an extension containing invites(jane, jim) and therefore also nnight-club ≺ ntheatre and
¬(ntheatre ≺ nnight-club). Analogously, we then obtain goto(theatre) and ¬goto(night-club).

Learning furthermore that Jim’s birthday falls on a Saturday makes it a real party-night.
In fact, we conclude from saturday that it’s party-night , which blocks default rule δevenings ,
and we end up with an extension containing both goto(theatre) and goto(night-club). Note
that this is concluded in the presence of invites(jane, jim) and nnight-club ≺ ntheatre .

Finally, the news tells us that the theatre is closed, closed(theatre); this blocks de-
fault rule δtheatre and we only conclude goto(night-club), as above, despite the presence of
nnight-club ≺ ntheatre .

Next, we consider an example from [Gordon,1993], discussed in [Brewka,1994b]:

“A person wants to find out if her security interest in a certain ship is ‘perfected’,
or legally valid. This person has possession of the ship, but has not filed a financ-
ing statement. According to the code UCC, a security interest can be perfected
by taking possession of the ship. However, the federal Ship Mortgage Act (SMA)
states that a security interest in a ship may only be perfected by filing a financ-
ing statement. Both UCC and SMA are applicable; the question is which takes
precedence here. There are two legal principles for resolving such conflicts. Lex
Posterior gives precedence to newer laws; here we have that UCC is more recent
than SMA. But Lex Superior gives precedence to laws supported by the higher
authority; here SMA has higher authority since it is federal law.”

Apart from δ>, we obtain the following default rules:

ucc :
possession : perfected

perfected
, sma :

ship ∧ ¬finstmt : ¬perfected

¬perfected
,

21

lp(x, y) :
newer(y, x) : x ≺ y

x ≺ y
, ls(x, y) :

statelaw(x) ∧ fedlaw(y) : x ≺ y

x ≺ y
.

To preserve finiteness, we restrict our attention to name set N = {n>} ∪ N0 ∪ N1 where
N0 = {ucc, sma} and N1 = {lp(x, y), ls(x, y) | x, y ∈ N0}, and the corresponding default
instances. We have the facts:

possession, ship, ¬finstmt ,
newer(ucc, sma), fedlaw(sma), statelaw(ucc),
∀x, y, u, v ∈ N0. lp(x, y) ≺ ls(u, v) .

From this specification, we obtain a single extension, E ⊇ {¬perfected , ucc ≺ sma}. We
obtain ∀xy ∈ N0. ok(ls(x, y)). In E we get ok(ls(ucc, sma)) while

bl(ls(ucc, sma)) ∨ ap(ls(ucc, sma)) ⊃ ok(lp(sma, ucc)).

(All other instances of these axioms are eliminated by deriving x ⊀ y.) We then conclude
by ls(ucc, sma) that ucc ≺ sma. This blocks lp(sma, ucc) since its justification sma ≺ ucc
has become refuted. Thus, sma ⊀ ucc ∈ E yielding ok(sma) and subsequently ¬perfected .

[Brewka,1994b] solves this problem by first generating 4 entire extensions, where E1 ⊇
{perfected , sma ≺ ucc}, E2 ⊇ {¬perfected , sma ≺ ucc}, E3 ⊇ {perfected , ucc ≺ sma},
E4 ⊇ {¬perfected , ucc ≺ sma}. In a second step he rules out E1, E2, E3 since they do not
verify a certain priority criterion. The remaining extension, E4 is after all the one obtained
in our approach.

6 Further extensions

An axiomatic approach to preferences offers a highly flexible framework for specifying pref-
erences. For instance, a more fine-grained approach is to distinguish the source of blockage
by replacing δb1 and δb2 by

ok(nδ) : ¬α
blp(nδ)

and
¬β ∧ ok(nδ) :

blj(nδ)
, respectively.

Accordingly, we would obtain in W≺ the axiom

∀x ∈ N. [∀y ∈ N. (x ≺ y) ⊃ (blp(y) ∨ blj(y) ∨ ap(y))] ⊃ ok(x) .

We use such an encoding in [Delgrande and Schaub,2000] where we argue that property
inheritance comprises a mechanism distinct from preference.12

Two different substantive extensions are discussed in the remainder of this section.

12Thus one would encode that it is ok to apply a rule just if all <-greater rules are blocked via failure
to prove the antecedent. We do not develop this mechanism here since it would take us too far from our
primary interest, preference.

22

6.1 Expressing generalised preferences

An important generalisation of our notion of preference, expressed in Section 3 is the follow-
ing.

Generalised Preference For preferences δ1 < . . . < δm, apply δm if possible; apply δm−1 if
possible, continue in this fashion until no more than k (for fixed k where 1 ≤ k ≤ m)
defaults have been applied.

An example is where a student wishes to take k = 3 courses out of m = 10 possible courses,
and so provides a list of preferences over the courses. There are two important subcases
corresponding to k = 1 and k = m. In the first case a maximum of one default is applied.
In the second case one attempts to apply every default.

Given the predicates bl(·), ap(·), and notably ko(·), it is a straightforward matter to
assert that a maximum of k default rules in a priority order can be applied. We modify the
definition of δa (cf. (5)), by setting

δa =
α ∧ ok(nδ) : β ∧ ¬ko(nδ)

γ ∧ ap(nδ)
.

In addition we add the following axiom to the initial set of facts:

∀x1, . . . , xk ∈ N.
(

[
∧

i6=j;i,j=1..k

(xi 6= xj) ⊃
∧
i=1..k

ap(xi)] ⊃ ∀x ∈ N. [
∧
i=1..k

(x 6= xi) ⊃ ko(x)]
)

We abbreviate ¬(x = y) by x 6= y. This axiom states that if k distinct rules are applied,
then all remaining rules are ko’ed. For coherence, it is furthermore convenient to supply a
statement to the effect that all rules are considered in turn, although some of them have
been “knocked out”. This can be done with ∀x ∈ N. ko(x) ⊃ bl(x).

For illustration, consider a student who wishes to take three courses, and has a preference
ordering on the ten available courses. So depending on the prerequisites and what courses
are still open (i.e. aren’t fully subscribed) the student’s preferences are satisfied as far as
possible. Taking a variable s for students and another ci for courses, we get:

prerequisite(s, ci) : open(ci) ∧ ¬canceled(ci)

subscribe(s, ci)

Our student has the following preferences: c5 is her most preferred course; she wants to avoid
c4; she prefers c6 over c2, if c5 isn’t open anymore; and finally she prefers c6 over c3 and c5,
unless Smith is giving the course:

ci ≺ c5, i = 1..4, 6..10,
c4 ≺ cj, j = 1..3, 5..10,

¬open(c5) ⊃ c6 ≺ c2,
: lecturer(c6) 6=Smith
(c3≺c6)∧(c7≺c6)

Assume that our student fulfills the prerequisites for all but course 9 and 10, and that courses
1,3, and 8 are already fully subscribed. Fortunately, Smith is on sabbatical.

For k = 3 and C = {ci | i = 1..10}, we get

∀x1, x2, x3 ∈ C.
(

[(x1 6= x2) ∧ (x1 6= x3) ∧ (x2 6= x3) ⊃ ap(x1) ∧ ap(x2) ∧ ap(x3)]

⊃ ∀y ∈ C. [(y 6= x1) ∧ (y 6= x2) ∧ (y 6= x3) ⊃ ko(y)]
)

23

Applying our dynamic translation D along with the above modifications to the corresponding
default theory yields, after a few iterations in Definition 2.1, among others:

ok(n5),
(ap(n5) ∨ bl(n5)) ⊃ ok(ni),

[(ap(n6) ∨ bl(n6)) ∧ (ap(n5) ∨ bl(n5))] ⊃ ok(nj),
[(
∧
j∈J ap(nj) ∨ bl(nj)) ∧ (

∧
i∈I ap(ni) ∨ bl(ni)) ∧ (ap(n5) ∨ bl(n5))] ⊃ ok(n4),

for i ∈ I = {1, 2, 6, 8, 9, 10} and j ∈ J = {3, 7}. Taking into account the above constraints,
we get that c5 must be taken first, followed by c2 or c6 or c7 (but c6 before c7) and finally c4.

As a result, we obtain two extensions: one containing c5, c6, and c2 and another one
containing c5, c6, and c7. Neither of them contains c4 nor is there an extension containing c5,
c2, and c7 due to c7 ≺ c6. If c5 turned out to be overbooked, we would get a single extension
containing c2, c6, and c7. If additionally c7 is canceled, we get c2, c6, and c4. That is, our
student is finally obliged to take c4. Otherwise, if it turns out that Smith keeps lecturing c6

despite his sabbatical, she is faced with three alternatives: c5, c6, c2 or c5, c6, c7 or c5, c2, c7.

6.2 Preferences among Sets of Defaults

Preferences also may apply to sets of defaults. Consider for example preferences in buying
a car, specifically a situation in which one ranks the price (E) over safety features (S), and
safety features (S) over power (P), but safety features together with power is ranked over
price. In an obvious extension of preference to sets of defaults, we can write this as:13{

:P
P

}
<
{

:S
S

}
<
{

:E
E

}
<
{

:P
P
, :S
S

}
. (25)

Intuitively, if we were given only that not all desiderata can be satisfied (i.e. W = {¬(P ∧
E∧S)}) then we could apply the defaults in the highest-ranked set and conclude that P and
S can be met.14 This approach is described in [Delgrande and Schaub,1998], and a related
approach and implementation in the framework of extended logic programs is described in
[Delgrande et al.,2000a].

We omit the details here, but the overall methodology is the same as for static and
dynamic preferences. In the set-based approach, a default theory now has an ordering given
on sets of defaults. As before, we take an ordered theory and translate it into a standard
default theory. Consider a general assertion D′ < D′′ where D′, D′′ ⊆ D. Informally we
prefer the application of the set D′′ to that of D′. We can say that D′′ is applicable if all its
member defaults are, and inapplicable if one of its members is inapplicable. Consequently
we consider D′ after all defaults in D′′ are found to be applicable, or some default in D′′ is
found to be inapplicable.

To do this, we extend our set of names so that, in addition to names for individual
default rules, we also have names for the sets of rules mentioned in the ordering over sets,

13To be sure, this is a näıve encoding; see [Brewka and Gordon,1994] for a more realistic formalisation.
14Note that we cannot simply replace a set of defaults with a default consisting of the conjunction of the

respective prerequisites, justifications, and consequents of defaults in the set, since this doesn’t allow for rule
interactions. For example by this scheme the set

{
:P
P , P :S

S

}
would be replaced by the meaningless default

P :P∧S
P∧S .

24

<. Roughly speaking, for a set with name m, if it is ok(m) to apply a set of rules then it is
ok to apply the individual rules in the set. If ap(ni) is true for every rule δi in a set, then
the set is flagged as applied by ap(m). If bl(ni) is true for some rule δi in a set, then the set
is so flagged by bl(m). Finally, for a given set, if every <-greater set is applied or blocked
then it is ok to apply the set.

However, there is a problem with “side-effects” in a näıve implementation of this ap-
proach. Assume in the example (25) that P and S cannot be jointly met (i.e. W =
{¬(P ∧ S)}). We would expect that there would be a single extension containing E and
S. In a näıve implementation, one would try to apply the defaults in the highest-ranked
set. On applying the default :P

P
it would prove to be the case that :S

S
could not be applied,

or vice versa. So we would find that the topmost nontrivial set isn’t applicable. However,
in finding that defaults in the highest ranked set cannot all be applied, we do not want to
actually apply the default :P

P
, since this will lead to an incorrect result: if the instance of :P

P

in this set were applied, then we would next try to apply the default in the next set (viz. :E
E

),
which would be successful, but then, given P , we couldn’t apply the default in the following
set, viz. :S

S
. We would then (incorrectly) obtain an extension containing {P,E}. So in

determining that the defaults in a set cannot all be applied, we must avoid the side-effect
where some of these defaults are in fact applied. We do this by detecting when a set of
defaults is going to be blocked. This will occur just when the negation of a prerequisite is
consistent (with the final extension), or if the set of consequents denies the justification of
a default in a set. In either of these cases, the set as a whole is blocked, and there are no
side effects that propagate to lower ranked sets. Consult [Delgrande and Schaub,1998] for
details.

7 Related Work

In Section 3 we argued that there is no single notion for treating prioritised information.
Of work in default logic, we have argued that [Reiter and Criscuolo,1981; Etherington and
Reiter,1983; Delgrande and Schaub,1994] address property inheritance (as exemplified by
Example (3)). In particular, these approaches are based on the idea of resolving conflicts
by appeal to specificity information. Hence, for non-conflicting rules they may produce
inappropriate results when used for preferences. For instance, take A :B

B
< C :D

D
along with

A,C,¬D. While one expects a single extension containing B, the aforecited approaches
would replace the first rule either by A :B∧¬C

B
or A :B∧(C⊃D)

B
, respectively, neither of which

would be applicable for providing B.
For preference, there are descriptive and prescriptive interpretations. In the former case,

one has a “wish list” where the intent is that one way or another the highest-ranked defaults
be applied. In the latter case the ordering reflects the order in which defaults should be
applied.

[Rintanen,1995] addresses descriptive preference orders in normal default theories (this
despite the paper’s title and examples, which would indicate that the paper deals with
property inheritance). An order on extensions is defined as follows. A default rule A :B

B
is

applied in extension E just if A,B ∈ E. Extension E is preferred over E ′ iff there is δ ∈ D
applied in E but not in E ′ such that if δ′ is preferred over δ and δ′ is applied in E ′ then

25

it is also applied in E. While this paper addresses a different notion of preference than
ours, it is worth noting two sources of “inefficiency” in Rintanen’s approach not present in
ours. First, preference on extensions is given in terms of a total order on preferences among
rules; consequently, given a partial order on rules, all total orders that preserve the original
partial order must be generated. Second, all extensions are generated, and then the preferred
extension is found via the “filtering” mechanism. Consider an ordered theory where we just
have the preference :B(x)

B(x)
< :A(x)

A(x)
along with ∀x(¬A(x) ∨ ¬B(x)). Clearly the number of

total orders resulting from this partial order will be exponential in the number of instances
of A and B. Similarly the number of extensions in the unordered theory will be exponential
in the number of instances. In contrast, in our approach a single extension is produced, in
a translated theory that is only a constant factor larger than the original.

For prescriptive approaches, [Baader and Hollunder,1993a] and [Brewka,1994a] present
prioritised variants of default logic in which the iterative specification of an extension is
modified. A default is only applicable at an iteration step (cf. Definition 2.1) if no <-
greater default is applicable.15 The primary difference between these approaches rests on
the number of defaults applicable at each step. While Brewka allows only for applying a
single default that is maximal with respect to a total extension of <, Baader and Hollunder
allow for applying all <-maximal defaults at each step. In contrast we translate priorities
into standard default theories.

As a first distinguishing example, consider the normal default rules

δ1 : :A
A
, δ2 : :B

B
, δ3 : B :C

C
, δ4 : A :¬C

¬C

along with δ4 < δ3, taken from [Baader and Hollunder,1993b]. With no facts Baader and
Hollunder obtain one extension containing {A,B,C}. Curiously, Brewka obtains an addi-
tional extension containing {A,B,¬C}. In our approach, the resultant default theory yields
only the first extension containing {A,B,C}. So here our approach yields the same result
as Baader and Hollunder’s.

As a second example, again from [Baader and Hollunder,1993b], consider the rules

δ1 : :A
A
, δ2 : B :¬A

¬A , δ3 : :B
B
, δ4 : A :¬B

¬B

along with δ1 < δ2, δ3 < δ4. Baader and Hollunder show that in Brewka’s approach two
extensions are obtained, one containing {A,¬B} and another containing {¬A,B}. However
an additional extension is obtained in Baader and Hollunder’s approach, containing {A,B}.
Our approach yields only the first two extensions. So, as opposed to the previous example,
our approach yields here the same result as Brewka’s approach. In all, we observe that in
both examples our approach yields the fewer and arguably more intuitive extensions.

Neither Brewka nor Baader and Hollunder deal with context-sensitive preferences or
sets of preferences. In addition, in our approach we translate preferences into standard
default theories. [Junker,1997] addresses static and dynamic preferences in a more restricted
framework that roughly corresponds to ordered prerequisite-free normal default theories.
In a preliminary report, [Brewka and Gordon,1994] consider sets of preferences, but not in
default logic.

15These authors use < in the reverse order from us.

26

[Brewka and Eiter,1998] address (static) preference in extended logic programs; this is
extended to default logic in [Brewka and Eiter,2000] . In common with previous work,
Brewka and Eiter begin with a partial order on a rule base, but define preference with
respect to total orders that conform to the original partial order. As well, answer sets or
extensions, respectively, are first generated and the “preferred” answer sets (extensions) are
selected subsequently. In contrast, in our approach, we deal only with the original partial
order, which is translated into the object theory. As well, only “preferred” extensions are
produced in our approach; there is no need for meta-level filtering of extensions.

We have the following result relating the approach of [Brewka and Eiter,2000] with the
instance of our framework captured by translation T :

Theorem 7.1 Let (D,W,<) a normal, prerequisite-free, ordered default theory over L.
For each extension E of T ((D,W,<)), there is an extension E ′ of (D,W,<) according

to [Brewka and Eiter,2000] such that E = E ′ ∩ L and vice versa.

To see that this result does not extend to prerequisite-free theories, consider({
n1 : :B

B
, n2 : :A

A
, n3 : :¬B

A

}
, ∅, {δi < δj | i < j}

)
(26)

This theory has a single regular extension, containing A and B. Observe that the theory
obtained by applying translation T yields no preferred extension due to the interaction
among blockage and preference, described in Section 4.2. This differs from the approach
of Brewka and Eiter in [2000], who accept the above extension as a preferred one.16 This
is done by imposing an additional fixed-point condition: Given an ordered default theory
(D,W,<) and a regular extension E, the preferredness of E is established with respect to
the theory

(D \ {δ | Conseq(δ) ∈ E and ¬Justif (δ) ∈ E},W,<).

This turns theory (26) into
({

n1 : :B
B
, n2 : :A

A

}
, ∅, {δ1 < δ2}

)
, whose only preferred exten-

sion contains A and B (see Theorem 7.1).
Theorem 7.1 does not extend to normal default theories, either. Observe that (6) yields

a preferred extension, Th({A,B}), in the approach of Brewka and Eiter, while ours does not
due to the interaction among groundedness and preference. Such an interaction is avoided
in [Brewka and Eiter,2000] by another fixed-point construction eliminating prerequisites
that belong to the extension and eliminating rules whose prerequisites do not belong to the
extension.

In all, our initial approach captured by T can be seen as refining the set of extensions
obtained in [Brewka and Eiter,2000]:

Theorem 7.2 Let (D,W,<) be an ordered default theory over L.
For each extension E ′ of T ((D,W,<)) there is a preferred extension E of (D,W,<)

according to [Brewka and Eiter,2000] such that E = E ′ ∩ L.

16We note that theory (8), used to illustrate the interaction between preferences and blockage relations,
yields also no preferred extension in the approach of [Brewka and Eiter,2000].

27

To see that such a refinement makes sense, consider the following example due to Baader
and Hollunder [1993a]:({

n1 : Penguin :¬Fly
¬Fly

, n2 : Bird : Winged
Winged

, n3 : Winged : Fly
Fly

, n4 : Penguin : Bird
Bird

}
, {Penguin}, {δ2 < δ1}

)
While this theory has a single extension in our approach, containing ¬Fly , Bird , and Winged ,
the approach of Brewka and Eiter yields an additional extension with Fly .

The above discussion was dominated by the comparison between our specific transla-
tion T and the approach of Brewka and Eiter. In fact, our overall framework is general
enough to express the strategy for preference handling proposed in [Brewka and Eiter,2000].
This instance of our framework is described in [Delgrande et al.,2000b] and is omitted here
for brevity. Lastly we note that Brewka and Eiter begin with two “principles” that in their
view provide meaning postulates for the term “preference”, and so should be satisfied by any
approach dealing with preference. We show in [Delgrande et al.,2000a] that our approach
also satisfies both principles.17 18

Among the various approaches to preferences in (extended) logic programming, a central
role is played by the approach in [Gelfond and Son,1997] because unlike others it avoids
defining a new nonmonotonic formalism in order to cope with preference information. In-
stead, Gelfond and Son introduce a special-purpose language for directly encoding prefer-
ences in a logic programming setting.19 As with our framework, this approach offers a variety
of different preference handling instances. Unlike us, however, Gelfond and Son pursue a
“two-level” approach in reifying rules and preferences. For example, a rule like r∧¬s :¬q

p
, or

p← r,¬s, not q in terms of logic programming, is expressed by the formula (or after reifica-
tion by the corresponding term inside a holds-predicate, respectively) default(n, p, [r,¬s], [q])
where n is the name of the rule. The semantics of a domain description is defined in terms
of a set of domain-independent rules for predicates like holds. These rules can be regarded
as a meta-interpreter for the domain description. Interestingly, the approach is based on
the notion of “defeat” (of justifications) in contrast to an order-preserving consideration of
rules, as found in our approach. Also, the specific strategy elaborated upon in [Gelfond and
Son,1997] differs from the ones considered in this paper in that it “stops the application of
default d2 if defaults d1 and d2 are in conflict with each other and the default d1 is applica-
ble.” [Gelfond and Son,1997]. (We consider such strategies in a companion paper [Delgrande
and Schaub,2000].) For detecting such conflicts, however, the approach necessities an extra
conflict-indicating predicate. That is, one must state explicitly conflict(d1, d2) to indicate
that d1 and d2 conflict.

17To be precise, we do this in the framework of extended logic programming. The underlying proofs lift
to default logic in a straightforward way.

18[Brewka and Eiter,1998] claim, erroneously, that the present approach violates their Principle I, based
on their claim that we have extension Th({A,¬B}) for Example (4). However our approach in this case has
no extension; see the discussion preceding Theorem 4.5.

19The chosen setting, viz. answer set semantics, corresponds to default logic on the fragment of extended
logic programs [Gelfond and Lifschitz,1991].

28

8 Discussion

We have described a very general framework for incorporating preferences into default logic.
Via the naming of defaults we allow preferences to appear arbitrarily in D and W in a
default theory. This allows preferences among preferences, preferences by default, preferences
holding only in certain contexts, and so on. Given that such preferences are axiomatised
using standard default logic, this approach may be regarded as providing a formalisation
of a notion of “preference”. The intuition on which the approach is based is clear: that a
preference order specifies the order in which defaults are to be taken into account to see
whether they are applicable. We argue that such a prescriptive approach is preferable to
a descriptive approach, both from the point of view of representational force, as well as
(pragmatic) computational considerations.

In the base approach, we are given a standard Reiter default theory together with a strict
partial order on the defaults. We also allow preference information to be expressed within
a default theory, so that preference information can appear in the world knowledge W or in
the defaults D. In [Delgrande and Schaub,1998] we show how preferences on sets of defaults
can be similarly handled. In all cases we translate the default theory into second, standard
default theory without explicit preferences, but in which defaults are applied according to
the given ordering. Notably in all cases the translated theory is larger than the original by
only a constant factor.

We prove that the defaults are indeed applied in the appropriate order. As well, we show
that we have developed a set of strict generalisations in each of the elaborations to the basic
approach, in that in a preference-based theory with no preferences, the translated theory
(modulo the language) gives the same result as in classical default logic. In addition to the
formal results, we illustrate the generality of the approach by formalising examples due to
Junker and Gordon, of context-based preference, canceling preferences, preferences among
preferences, and preferences by default. As well, elsewhere we show that we can capture the
approach of [Brewka and Eiter,2000].

It might be argued that, given complete information about preferences, such generality
may not be required: [Doyle and Wellman,1991], building on work by Arrow, argue that in
any preference-based default theory, for coherence, one requires a “dictator” to adjudicate
preferences. That is, in a complete system there must be, essentially, some way of determin-
ing a unique, complete, priority ordering. So in this sense, all one needs is what we have
called the rigid approach of Section 4. We provide the more general framework of Section 5
for several reasons. First, in most realistic scenarios, one may not have complete information
regarding preferences, and so a complete adjudication of preferences may not be possible.
In this case one would obtain multiple extensions, representing possible “completions” of an
incomplete ordering. Second, it allows the more flexible specification of preferences, leaving
it up to the user to ensure that there is no ambiguity in preferences. This is well illustrated
by Gordon’s legal example (see below also) where a natural expression of interacting types
of laws uses preferences among preferences.

Our approach of translating priorities into standard default theories has several advan-
tages over previous work, which is phrased at the meta-level or alters the machinery of
standard default logic. First, for a translated default theory, in our approach any extension

29

is “preferred”, in the sense that only “preferred” extensions (as specified by the ordering on
rules) are produced. In contrast, previous approaches, in one fashion or another, must select
among extensions for the most preferred. Hence one could expect the present approach to
be (pragmatically) more efficient, since it avoids the generation of unnecessary extensions.

Another advantage of this axiomatic approach is that it allows us to formalise preference
within the object theory. In particular this allows one to combine several orderings inside
the same framework, and to specify in the theory how they interact. For instance, in legal
reasoning different principles prefer different laws. We saw how Lex Posterior gives prece-
dence to newer laws, while Lex Superior gives precedence to laws supported by the higher
authority and finally Lex Specialis gives precedence to more specific laws. For reasoning
with and about such principles, an explicit representation seems to be advantageous. For
instance, we can state that Lex Specialis applies unless Lex Posterior or Lex Superior denies
the precedence:

(x ≺specialis y) : ¬(y ≺posterior x),¬(y ≺superior x)

x ≺ y

Also, generally, authority takes precedence over time. However, here too there may be
exceptions, so that we must account for this by a default rule:

(x ≺superior y) ∧ (y ≺posterior x) : x ≺ y

x ≺ y
.

The axiomatic approach makes it easier to compare differing approaches to handling dif-
ferent preference orderings or types of orderings, since we remain within the same “base”
framework. That is, default logic provides a powerful tool with which to express such or-
derings. As a result also, our approach can be immediately implemented by making use of
existing default logic theorem provers, since a preference based theory can be translated in a
straightforward and efficient way into default logic. Lastly, by “compiling” preferences into
default logic, and in using the standard machinery of default logic, we obtain insight into
the notion of preference orderings. Thus, and as a point of theoretical interest, we show that
incorporating explicit priorities among sets of rules in default logic in fact provides no real
increase in the expressibility of default logic.

Lastly, our approach has been implemented under the syntactic restriction of extended
logic programming and serves as a front-end to the logic programming systems dlv [Eiter et
al.,1997] and smodels [Niemelä and Simons,1997]. The current prototype is available at

http://www.cs.uni-potsdam.de/~torsten/plp/ .

This URL also contains examples taken from the literature, including those discussed in this
paper. Both the dynamic approach to (single) preferences and a set-based approach have
been implemented. Details on this implementation can be found in [Delgrande et al.,2000a].

A Proofs of Theorems

The following definition is drawn upon in the following proofs.

30

Definition A.1 Let (D,W) be a default theory. For any set of formulas S, let Γ(S) be the
smallest set of formulas S ′ such that

1. W ⊆ S ′,

2. Th(S ′) = S ′,

3. For any α :β
γ
∈ D, if α ∈ S ′ and ¬β 6∈ S then γ ∈ S ′.

A set of formulas E is an extension of (D,W) if Γ(E) = E.

Proof 4.1

1. By consistency of E, we cannot have both nδ ≺ nδ′ ∈ E and ¬(nδ ≺ nδ′) ∈ E.

Assume that for some δ, δ′ ∈ D, we have neither nδ ≺ nδ′ ∈ E nor ¬(nδ ≺ nδ′) ∈ E.

Then, however, the default rule
:¬(nδ≺nδ′)
¬(nδ≺nδ′)

in D≺ is applicable and we obtain ¬(nδ ≺
nδ′) ∈ E, which contradicts our assumption.

We have thus shown that nδ ≺ nδ′ ∈ E iff ¬(nδ ≺ nδ′) 6∈ E.

For further proofs, we observe moreover the following complementary proposition.

Lemma 1 Let E be a consistent extension of T ((D,W,<)) = (D′,W ′) for ordered
default theory (D,W,<). We have for all δ, δ′ ∈ D that (nδ ≺ nδ′) ∈ E iff (nδ ≺ nδ′) ∈
W ′ .

Proof 1 Clearly, we have (nδ ≺ nδ′) ∈ E if (nδ ≺ nδ′) ∈ W ′.

Assume we have (nδ ≺ nδ′) ∈ E and (nδ ≺ nδ′) 6∈ W ′. Since (nδ ≺ nδ′) 6∈ W ′ = E0,
there must exist (according to Definition 2.1) some i ≥ 0 with (nδ ≺ nδ′) 6∈ Ei but
(nδ ≺ nδ′) ∈ Ei+1. Since there are no default rules with consequents containing positive
occurrences of ≺-literals, we must have (nδ ≺ nδ′) ∈ Th(Ei). Due to the same reason,
all positive occurrences in Ei must stem from W≺. In fact, all positive occurrences of
≺-literals in W≺ are connected disjunctively with a positive ok-literal. That is, they
are of the form ((nδ ≺ nδ′) ∧ φ) ∨ ϕ ∨ ok(nδ) for some formulas φ, ϕ. A proof for
Ei ` (nδ ≺ nδ′) must thus contain the negative ok-literal ok(nδ). There are however
no negative occurrences of ok-literals in T ((D,W,<)), neither in D′ nor in W ′, a
contraction.

2+3. We show by induction on < that ok(nδ) ∈ E and either ap(nδ) ∈ E or bl(nδ) ∈ E for
all δ ∈ D.

Base By definition, ok(n>) ∈ W≺ ⊆ E. Also, ⊥ 6∈ E, since E is consistent. This

implies that >∧ok(n>) :>
>∧ap(n>)

∈ GD(D′, E) along with ok(n>)∧⊥ :
bl(n>)

6∈ GD(D′, E) and
ok(n>) :⊥

bl(n>)
6∈ GD(D′, E). That is, ap(n>) ∈ E and bl(n>) 6∈ E.

Step Consider δ and assume that for all δ′ with δ < δ′ we have ok(nδ′) ∈ E and either
ap(nδ′) ∈ E or bl(nδ′) ∈ E.

First, we prove the following lemma.

31

Lemma 2 Given the induction hypothesis, we have ok(nδ) ∈ E.
Proof 2 By the induction hypothesis, we have either ap(nδ′) ∈ E or
bl(nδ′) ∈ E for all δ′ with δ < δ′.
By definition of W≺ and Lemma 1, we have nδ ≺ nδ′ ∈ E for all δ, δ′ with
δ < δ′.
Analogously, we get (nδ ≺ nδ′) 6∈ E for all δ, δ′ with δ 6< δ′. From this,
we get by means of D≺ that ¬(nδ ≺ nδ′) ∈ E for all δ, δ′ with δ < δ′.
Because E is deductively closed and contains

∀x ∈ N. [∀y ∈ N. (x ≺ y) ⊃ (bl(y) ∨ ap(y))] ⊃ ok(x) ,

we therefore deduce that ok(nδ) ∈ E.

Consider n : α :β
γ
∈ D. We distinguish the following two cases.

– α∧ok(n) :β
γ∧ap(n)

∈ GD(D′, E). Consequently, we have ok(n), ap(n) ∈ E.

– α∧ok(n) :β
γ∧ap(n)

6∈ GD(D′, E). Then, we have one of the following cases.

∗ α ∧ ok(n) 6∈ E. By Lemma 2 and the fact that E is deductively closed,

we get α 6∈ E. Again, by Lemma 2, this implies ok(n) :¬α
bl(n)

∈ GD(D′, E).

That is, bl(n) ∈ E.

∗ ¬β ∈ E. By Lemma 2, this implies ¬β∧ok(n) :
bl(n)

∈ GD(D′, E). That is,

bl(n) ∈ E.

This demonstrates that either ap(nδ) ∈ E or bl(nδ) ∈ E for all δ ∈ D. That is,
ap(nδ) ∈ E iff bl(nδ) 6∈ E.

4. Given ok(nδ) ∈ Ei and Prereq(δ) ∈ Ej, we get ok(nδ) ∧ Prereq(δ) ∈ Emax(i,j)+1. With
¬Justif (δ) 6∈ E, this implies δa ∈ GDmax(i,j)+1, and furthermore Conseq(δ) ∧ ap(nδ) ∈
Emax(i,j)+2. Hence, ap(nδ) ∈ Emax(i,j)+3.

5. Given ok(nδ) ∈ Ei and Prereq(δ) 6∈ E, we get δb1 ∈ GDi, and furthermore bl(nδ) ∈ Ei+1.

6. We have ok(nδ) ∈ Ei and ¬Justif (δ) ∈ E. Assume ¬Justif (δ) ∈ Ek for some minimal
k. Then, we get ok(nδ)∧¬Justif (δ) ∈ Emax(i,k)+1. This implies δb2 ∈ GDmax(i,k)+1, and
furthermore bl(nδ) ∈ Emax(i,k)+2. That is, bl(nδ) ∈ Ej for some j > i+ 1.

7. Let ok(nδ) 6∈ Ei−1 and ok(nδ) ∈ Ei. We distinguish two cases.

– ap(nδ) ∈ E. Consequently, Prereq(δ) ∧ ok(nδ) ∈ E and ¬Justif (δ) 6∈ E.

Assume that Prereq(δ) ∈ Ej for some j < i (otherwise the claim follows trivially).
We then have Prereq(δ)∧ok(nδ) ∈ Ei, implying that δa ∈ GDi. Hence, Conseq(δ)∧
ap(nδ) ∈ Ei+1 and ap(nδ) ∈ Ei+2. Accordingly, ap(nδ) 6∈ Ek for k < i+ 2.

– bl(nδ) ∈ E. We may distinguish the following cases.

∗ Prereq(δ) 6∈ E. This along with ok(nδ) ∈ Ei implies that δb1 ∈ GDi. Hence,
bl(nδ) ∈ Ei+1 but bl(nδ) 6∈ Ek for k < i+ 1.

32

∗ ¬Justif (δ) ∈ E. Assume that ¬Justif (δ) ∈ Ej for some j < i. We then have
¬Justif (δ) ∧ ok(nδ) ∈ Ei, implying that δb2 ∈ GDi. Hence, bl(nδ) ∈ Ei but
bl(nδ) 6∈ Ek for k < i.

Considering both last cases, we obtain that bl(nδ) 6∈ Ek for k < i.

Proof 4.2

8. This is a corollary to Theorem 4.1.3.

9. We have δ < δ′ and δ′a, δ
′
b1
, δ′b2 6∈ GDi for some δ, δ′ ∈ D.

Assume that one of δ′a ∈ GDi+1 or δ′b1 ∈ GDi+1 or δ′b2 ∈ GDi+1 holds for all δ′ with
δ < δ′. Thus, we have bl(nδ′) ∈ Ei+2 or Conseq(δ′)∧ap(nδ′) ∈ Ei+2 — and subsequently
ap(nδ′) ∈ Ei+3 — for all such δ′.

Consider Ei+2. By definition of W≺, we have nδ ≺ nδ′ ∈ Ei+2 for all δ, δ′ with δ < δ′

and by applying the argument of Lemma 1, we obtain ¬(nδ ≺ nδ′) ∈ Ei+2 for all δ, δ′

with δ 6< δ′. Also, we have(
∀x ∈ N. [∀y ∈ N. (x ≺ y) ⊃ (bl(y) ∨ ap(y))] ⊃ ok(x)

)
∈ Ei+2 .

Because Ei+3 contains the deductive closure of Ei+2, we deduce that ok(nδ) ∈ Ei+3 but
ok(nδ) 6∈ Ej for j < i+ 3. We thus have δa, δb1 , δb2 6∈ GDj for j < i+ 3.

10. Assume we have δ′a ∈ GDi or δ′b1 ∈ GDi or δ′b2 ∈ GDi for all δ′ with δ < δ′ but δ′a 6∈ GDi−1

and δ′b1 6∈ GDi−1 and δ′b2 6∈ GDi−1 for some such δ′.

We then get either bl(nδ′) ∈ Ei+1 or Conseq(δ′) ∧ ap(nδ′) ∈ Ei+1 — and subsequently
ap(nδ′) ∈ Ei+2 — for all such δ′.

By the reasoning employed in 9, this implies one of the following: δb1 ∈ GDi+2 or δa ∈
GDi+3 or δb2 ∈ GDi+3 . In all, we thus have δa ∈ GDj or δb1 ∈ GDj or δb2 ∈ GDj for
some j > i+ 2.

11. Assume we have δa ∈ GDi or δb1 ∈ GDi or δb2 ∈ GDi for all δ with δ < δ′ but δa 6∈ GDi−1

and δb1 6∈ GDi−1 and δb2 6∈ GDi−1 for some such δ.

By reasoning backwards along the lines of 9, we get that either ok(nδ) ∈
Ei−1 or ok(nδ) ∈ Ei−2. Assume ok(nδ) ∈ Ei−1. Continuing reasoning backwards in
this way yields bl(nδ′) ∈ Ei−2 or ap(nδ′) ∈ Ei−2 for all δ′ with δ < δ′.

– If bl(nδ′) ∈ Ei−2, we have either δb1 ∈ GDi−3 or δb2 ∈ GDi−3.

– If ap(nδ′) ∈ Ei−2, then Conseq(δ′) ∧ ap(nδ′) ∈ Ei−3, that is, δa ∈ GDi−4.

In all, we thus have δ′a ∈ GDj or δ′b1 ∈ GDj or δ′b2 ∈ GDj for some j < i− 2.

33

Proof 4.3 Let E be a consistent extension of T ((D,W,<)) = (D′,W ′).
Assume there is an enumeration of 〈δi〉i∈I of GD(D′, E) and some δ, δ′ ∈ D with δ < δ′

such that i < j for some δi = δt and all δj = (δ′)t′ with t, t′ ∈ {a, b1, b2}. (Note that
δi, δj ∈ D′.)

Since 〈δi〉i∈I is grounded, we have that W ′ ∪ Conseq({δ0, . . . , δi−1}) ` Prereq(δi), which
implies that W ′ ∪ Conseq({δ0, . . . , δi−1}) ` ok(nδ).

Without loss of generality, assume that we have for all δ′′ ∈ D with δ′′ 6= δ′ and δ′′ 6= δ
that either δ 6< δ′′, and so ¬(nδ ≺ nδ′′) ∈ E by Lemma 1, or if δ < δ′′, that is (nδ ≺ nδ′′) ∈ E
by Lemma 1, then W ′ ∪Conseq({δ0, . . . , δi−1}) ` ap(nδ′′)∨ bl(nδ′′). That is, we suppose that
δ′ is at i the only default preferred to δ whose application has not yet been settled. By means
of Lemma 1, we also have (nδ ≺ nδ′) ∈ E since δ < δ′.

Now, by definition of T ((D,W,<)), literal ok(nδ) is only derivable by means of

∀x ∈ N. [∀y ∈ N. (x ≺ y) ⊃ (bl(y) ∨ ap(y))] ⊃ ok(x) ,

By what we have just supposed, this is reducible at i to

W ′ ∪ Conseq({δ0, . . . , δi−1}) ` (ap(nδ′) ∨ bl(nδ′)) ⊃ ok(nδ) .

However, we have that W ′ ∪ Conseq({δ0, . . . , δi−1}) 6` ap(nδ′) ∨ bl(nδ′), since j > i for all
δj = (δ′)t′ with t′ ∈ {a, b1, b2} (and the fact that E is consistent), a contradiction.

Proof 4.4 Let (D,W) be a default theory and let < ⊆ D ×D be some strict partial order
on the default rules.

if-part Let E ′ be an extension of (D′,W ′) = T ((D,W,<)) .
Define

E = Th(W ∪ {Conseq(δ) | δ′a ∈ GD(D′, E ′)})

Obviously, we have E = E ′ ∩ L and for all ϕ ∈ L that ϕ ∈ E iff ϕ ∈ E ′. We show first that
E is an extension of (D,W) and second that E is <-preserving.

By construction of E, we have the following.

1. W ⊆ E

2. E = Th(E)

To see that also

3. For any δ ∈ D, if Prereq(δ) ∈ E and ¬Justif (δ) 6∈ E then Conseq(δ) ∈ E.

is true, assume Prereq(δ) ∈ E and ¬Justif (δ) 6∈ E. We then also have Prereq(δ) ∈ E ′ and
¬Justif (δ) 6∈ E ′. Since also ok(nδ) ∈ E ′ by Theorem 4.1.2, we obtain δ′a ∈ GD(D′, E ′),
which implies Conseq(δ) ∈ E by definition of E. According to A.1, we have Γ(E) ⊆ E by
minimality of Γ(E).

To show the reversal, assume that E 6⊆ Γ(E). Since W ⊆ Γ(E) and both E and
Γ(E) are deductively closed, there must be some δ ∈ D such that Conseq(δ) ∈ E but

34

Conseq(δ) 6∈ Γ(E). By definition of E, Conseq(δ) ∈ E implies δ′a ∈ GD(D′, E ′). Hence,
¬Justif (δ) 6∈ E ′, which is equivalent to ¬Justif (δ) 6∈ E. An induction on the grounded
enumeration of GD(D′, E ′) shows that δ′a ∈ GD(D′, E ′) implies Prereq(δ) ∈ Γ(E). According
to Definition A.1, we thus have Conseq(δ) ∈ Γ(E), a contradiction.

We have therefore shown that E is an extension of (D,W).
Finally, we must show that E preserves < :
Since E ′ is an extension of (D′,W ′), there is a grounded enumeration 〈δ′k〉k∈K of

GD(D′, E ′). Let 〈δi〉i∈I be the enumeration obtained from 〈δ′k〉k∈K by removing all default
rules of form δb1 and δb2 and by replacing all default rules of form δa by their original rules
δ ∈ D. We note that E = Th(W ∪ {Conseq(δi) | i ∈ I}), since {δ | δa ∈ GD(D′, E ′)} = {δi |
i ∈ I}. Furthermore, {δi | i ∈ I} equals GD(D,E).

Consider δi for some i ∈ I along with some δ ∈ D such that δi < δ. According to
Definition 4.2, we distinguish the following two cases.

• If δ ∈ GD(D,E), then δ = δj for some j ∈ I.

Moreover, there are ki, kj ∈ K such that δ′ki = (δi)a and δ′kj = (δj)a. Since δi < δj, we
get by Theorem 4.1.11, that kj < ki.

By construction of 〈δi〉i∈I , this implies j < i.

• If δ 6∈ GD(D,E), then we also have δa 6∈ GD(D′, E ′).

By Theorem 4.1.8, this implies that δb1 ∈ GD(D′, E ′) or δb2 ∈ GD(D′, E ′):

– If δb1 ∈ GD(D′, E ′), then ¬Justif (δ) ∈ E ′. This is however equivalent to
¬Justif (δ) ∈ E.

– If δb2 ∈ GD(D′, E ′), then Prereq(δ) 6∈ E ′.
More precisely, let δb2 = δ′k for some k ∈ K. Then, we have

W ∪ {Conseq(δ′l) | l < k} ` ¬Prereq(δ) .

With δ′ki = (δi)a, Theorem 4.1.10, implies moreover that k < ki. By construction
of 〈δi〉i∈I , we thus obtain W ∪ {Conseq(δl) | l < i} ` ¬Prereq(δ).

only-if-part Let E be a <-preserving extension of (D,W). That is, there exists a grounded
enumeration 〈δi〉i∈I of GD(D,E) satisfying Conditions 1. and 2. in Definition 4.2.

Define

E ′ = Th
(
E ∪W≺ ∪ {DCAN ,UNAN} ∪ EL

)
where W≺ is as defined in Definition 4.1 and

EL = {ok(nδ) | δ ∈ D} ∪ {ap(nδ) | δ ∈ GD(D,E)} ∪ {bl(nδ) | δ 6∈ GD(D,E)}
∪ {¬(nδ ≺ nδ′) | (δ, δ′) 6∈ <}

Clearly, we have E = E ′ ∩ L and for all ϕ ∈ L that ϕ ∈ E iff ϕ ∈ E ′ We show that E ′ is an
extension of (D′,W ′) = T ((D,W,<)).

For this, define E ′0 = W ′ and otherwise let E ′i and GD′i be defined as in Definition 2.1
but here with respect to E ′.

35

“⊆”-part We first show that E ′ ⊆
⋃∞
i=0 E

′
i. To begin with, we note that

W ∪W≺ ∪ {DCAN ,UNAN} ⊆ E ′0 ⊆
⋃∞
i=0 E

′
i (27)

by definition of T ((D,W,<)).

By definition of E ′, we have
:¬(nδ≺nδ′)
¬(nδ≺nδ′)

∈ GD′0 whenever (δ, δ′) 6∈ <, which implies

{¬(nδ ≺ nδ′) | (δ, δ′) 6∈ <} ⊆ E ′1 ⊆
⋃∞
i=0 E

′
i . (28)

In what follows, we show the following inclusions.

{ok(nδ) | δ ∈ D} ⊆
⋃∞
i=0 E

′
i (29)

{Conseq(δ), ap(nδ) | δ ∈ GD(D,E)} ⊆
⋃∞
i=0 E

′
i (30)

{bl(nδ) | δ 6∈ GD(D,E)} ⊆
⋃∞
i=0 E

′
i (31)

First, we draw the reader’s attention to the fact that the individual membership of the
aforementioned sets in

⋃∞
i=0 E

′
i implies also that their deductive closure, given by E ′, is in⋃∞

i=0 E
′
i, since

⋃∞
i=0 E

′
i is a deductively closed set.

For proving inclusions (29) to (31), we define from the grounded enumeration 〈δi〉i∈I
of GD(D,E), the enumeration 〈δi,j〉i∈I,j∈J , where δi,0 = δi and for j > 0, we let δi,j
denote the default rules, say δ, in D \ GD(D,E) for which either Prereq(δ) 6∈ E or
W ∪ Conseq({δ0, . . . , δi−1}) ` ¬Justif (δ). The enumeration, or better its underlying lex-
icographic order on I × J , is subject to the following constraint:

If δi,j < δk,l, then k, l < i, j, that is, k < i or k = i and l < j ,

stipulating compatibility with < ⊆ D × D. This is a feasible condition because (i) it is
true for all δ ∈ GD(D,E), and (ii) all default rules in D \ GD(D,E) can be arranged
accordingly. Also, note that the enumeration encompasses all default rules in D, that is,
D = {δi,j | i ∈ I, j ∈ J}.

In concrete terms, we show by induction on the lexicographic order induced by I×J that

1. ok(nδ) ∈
⋃∞
i=0 E

′
i for all δ ∈ D,

2. δa ∈
⋃∞
i=0 GDi or δb1 ∈

⋃∞
i=0 GDi or δb2 ∈

⋃∞
i=0 GDi for all δ ∈ D.

The latter is clearly equivalent to proving inclusions (30) and (31).

Base By definition, we have δ0,0 = δ>. Also, by definition, ok(n>) ∈ E0. Clearly, we have
δ> ∈ GD1. The argument for default rules of form δ0,j is analogous to that given below.

Step Consider δi,j and assume that 1. and 2. hold for all δi′,j′ with i′, j′ < i, j.

We first show the following lemma:

Lemma 3 Given the induction hypothesis, we have ok(ni,j) ∈
⋃∞
i=0 E

′
i.

Proof 3 By the induction hypothesis, we have either ap(nδi′,j′) ∈
⋃∞
i=0 E

′
i

or bl(nδi′,j′) ∈
⋃∞
i=0 E

′
i for all δi′,j′ with i′, j′ < i, j. By construction, this

36

implies that either ap(nδi′,j′) ∈
⋃∞
i=0 E

′
i or bl(nδi′,j′) ∈

⋃∞
i=0 E

′
i for all δi,j

with δi,j < δi′,j′ .

By definition of W≺ and the fact that W≺ ⊆ E ′0, we have nδ ≺ nδ′ ∈
⋃∞
i=0 E

′
i

for all δ, δ′ with δ < δ′. Together with (28) and the fact that(
∀x ∈ N. [∀y ∈ N. (x ≺ y) ⊃ (bl(y) ∨ ap(y))] ⊃ ok(x)

)
∈
⋃∞
i=0 E

′
i ,

we deduce that ok(nδ) ∈
⋃∞
i=0 E

′
i, because

⋃∞
i=0 E

′
i is deductively closed.

For δi,j ∈ D, we distinguish the following two cases.

j = 0 Consider δi,0 ∈ GD(D,E). Since 〈δi〉i∈I is grounded, we have W ∪
Conseq({δ0, . . . , δi−1}) ` Prereq(δi,0). By the induction hypothesis, assuring that
{(δ0)a, . . . , (δi−1)a} ⊆

⋃∞
i=0 GD

′
i holds, we get that Prereq(δi,0) ∈ E ′j′ for some

j′ ≥ i. In addition, we have ok(ni) ∈ E ′j′′ for some j′′ ≥ i, by Lemma 3. There-
fore, Prereq(δi,0) ∧ ok(ni) ∈ E ′j for some j ≥ i.

Also, δi,0 ∈ GD(D,E) implies that ¬Justif (δi,0) 6∈ E, which is equivalent to
¬Justif (δi,0) 6∈ E ′ by definition of E ′.

As a consequence, we obtain that (δi,0)a ∈ GD′j, that is, (δi,0)a ∈
⋃∞
i=0 GD

′
i .

j 6= 0 Otherwise, we have δi,j 6∈ GD(D,E), which makes us distinguish the following
cases:

• If Prereq(δi,j) 6∈ E, then Prereq(δi,j) 6∈ E ′ by definition of E ′. By Lemma 3,
we get ok(ni,j) ∈ E ′m for some m; hence (δi,j)b1 ∈ GD′m. That is, (δi,j)b1 ∈⋃∞
i=0 GDi.

• If W ∪ Conseq({δ0, . . . , δi−1}) ` ¬Justif (δi,j), then the induction hypoth-
esis, assuring that {(δ0)a, . . . , (δi−1)a} ⊆

⋃∞
i=0 GD

′
i holds, implies that

¬Justif (δi,j) ∈ E ′p for some p. In addition, we get by the induction hypoth-
esis that ok(ni,j) ∈ E ′m holds for some m. Hence ¬Justif (δi,j) ∧ ok(ni,j) ∈
E ′max(p,m)+1; whence (δi,j)b2 ∈ GD′max(p,m)+1. That is, (δi,j)b2 ∈

⋃∞
i=0 GDi.

“⊇”-part Next, we show that
⋃∞
i=0 E

′
i ⊆ E ′. That is, we prove by induction that

E ′i ⊆ E ′ for all i.

Base We have E ′0 = W ∪W≺ ∪ {DCAN ,UNAN} ⊆ E ′ by definition of E ′.

Step Assume E ′i ⊆ E ′ and consider v ∈ E ′i+1.

• If v ∈ Th(E ′i), we also get v ∈ E ′i+1 by the induction hypothesis and the fact that
E ′ is deductively closed.

• If v ∈ {Conseq(δ′) | δ′ ∈ GD′i}, then we must distinguish the following cases:

– If δ′ = :¬(n≺m)
¬(n≺m)

, then (n ≺ m) 6∈ E ′. By definition of E ′, we then have

¬(n ≺ m) ∈ E ′; therefore, we also have v ∈ E ′.

37

– If δ′ = α∧ok(nδ) :β
γ∧ap(nδ)

, then α ∧ ok(nδ) ∈ E ′i and ¬β 6∈ E ′.
By the induction hypothesis and the fact that E ′ is deductively closed, we
get α ∈ E ′. This is however equivalent to α ∈ E. Correspondingly, we
have ¬β 6∈ E. This implies δ ∈ GD(D,E), that is, γ ∈ E; hence γ ∈ E ′

because E ⊆ E ′. Also, ap(nδ) ∈ E ′ because {ap(nδ) | δ ∈ GD(D,E)} ⊆ E ′.
Therefore, we obtain α ∧ ok(nδ) ∈ E ′, that is, v ∈ E ′.

– If δ′ = ok(nδ) :¬α
bl(nδ)

), then ¬α 6∈ E ′, whence ¬α 6∈ E. Therefore, δ 6∈ GD(D,E),

which implies bl(nδ) ∈ E ′ because {bl(nδ) | δ 6∈ GD(D,E)} ⊆ E ′. That is,
v ∈ E ′.

– If δ′ = ¬β∧ok(nδ) :
bl(nδ)

, then ¬β ∧ ok(nδ) ∈ E ′i. By the induction hypothesis and

the fact that E ′ is deductively closed, we get ¬β ∈ E ′. This is however
equivalent to ¬β ∈ E. Therefore, δ 6∈ GD(D,E), which implies bl(nδ) ∈ E ′
because {bl(nδ) | δ 6∈ GD(D,E)} ⊆ E ′. That is, v ∈ E ′.

Accordingly, E ′i+1 ⊆ E ′.

Therefore, we have shown that
⋃∞
i=0 E

′
i ⊆ E ′

Proof 4.1 This is an immediate consequence of Theorem 4.4.

Proof 4.2 For < = ∅, the two conditions of Definition 4.2 are trivially true for any enu-
meration of default rules. In such a case, all extension of a default theory are <-preserving.

The actual result is then an immediate consequence of Theorem 4.4.

Proof 4.5 Let (D,W,<) be a propositional, semi-normal, ordered default theory such
that (D,W) is even. Consequently (D,W) has an extension [Papadimitriou and Sideri,1994,
Theorem 5]. Let the associated literal graph be L((D,W)) and let the associated dependency
graph be G((D,W)) = (D, E).

Since (D,W) is propositional, we can simplify the translation given in Definition 4.1.
We define the translation of ordered default theory (D,W,<) over a propositional lan-

guage based on a set of atomic sentences P as follows. For each n ∈ N , corresponding to
the ground instances ok(n), ap(n), bl(n) we will have additional atomic sentences ok.n, ap.n,
bl.n respectively. For each n,m ∈ N , corresponding to the ground instance n ≺ m we will
have additional atomic sentence n.≺.m. For sentence α of FOL, we will let Pr(α) be the
sentence where each ground instance of the form ok(n), ap(n), bl(n), n ≺ m is replaced by
its corresponding atomic sentence in P.

Our translation is given as follows: T ((D,W,<)) = (D′,W ′) where

D′ =
{

α∧ok.n :β
γ∧ap.n

, ok.n :¬α
bl.n

, ¬β∧ok.n :
bl.n

∣∣∣ n : α :β
γ
∈ D

}
W ′ = W ∪W≺

and where

W≺ = {Pr(nδ ≺ nδ′) | (δ, δ′) ∈ <} ∪ {¬Pr(nδ ≺ nδ′) | (δ, δ′) 6∈ <}
∪ {ok.n>}
∪ {Pr((∧y∈N [(x ≺ y) ⊃ (bl(y) ∨ ap(y))]) ⊃ ok(x)) | x ∈ N}.

38

For δ ∈ D we denote the defaults in the image of the translation by δa, δb1 , δb2 respectively.
The translation given in Definition 4.1 is simplified by removing the default in D≺ and

instead listing explicitly the occurrences and non-occurrences of ≺ (again, represented by
|D|2 atomic sentences) about which we have complete knowledge. We no longer require
DCAN and UNAN . The last formula in W≺ in Definition 4.1 is replaced by |D| explicit
conjunctions.

Consider the image of T ((D,W,<)), viz. (D′,W ′).
Clearly, for the respective literal graphs we have L((D,W)) ⊆ L((D′,W ′)).
Observe that the only addition to the literal graph comes from the final formula in W≺,

viz. the m = |D| instances of

Pr((∧y∈N [(n ≺ y) ⊃ (bl(y) ∨ ap(y))]) ⊃ ok(n)) for each n ∈ N.

For δi ∈ D, we have the associated formula

([ni.≺.n1 ⊃ (bl.n1 ∨ ap.n1)] ∧
[ni.≺.n2 ⊃ (bl.n2 ∨ ap.n2)] ∧
. . . ∧
[ni.≺.nm ⊃ (bl.nm ∨ ap.nm)]) ⊃ ok.ni.

This can be written in DNF as

[ni.≺.n1 ∧ ¬bl.n1 ∧ ¬ap.n1] ∨
[ni.≺.n2 ∧ ¬bl.n2 ∧ ¬ap.n2] ∨
. . . ∨

[ni.≺.nm ∧ ¬bl.nm ∧ ¬ap.nm] ∨ ok.ni. (32)

Since we have complete knowledge about our partial order on defaults, Equation (32) is
logically equivalent (with respect to W≺) to

[ni.≺.ni1 ∧ ¬bl.ni1 ∧ ¬ap.ni1] ∨
[ni.≺.ni2 ∧ ¬bl.ni2 ∧ ¬ap.ni2] ∨
. . . ∨

[ni.≺.nij ∧ ¬bl.nij ∧ ¬ap.nij] ∨ ok.ni

where, for δi, exactly ni.≺.ni1 , ni.≺.ni2 , . . . , ni.≺.nij ∈ W≺.

Since ni.≺.ni1 , ni.≺.ni2 , . . . , ni.≺.nij ∈ W≺, this in turn is equivalent (with respect to W≺)
to

[¬bl.ni1 ∧ ¬ap.ni1] ∨
[¬bl.ni2 ∧ ¬ap.ni2] ∨
. . . ∨

[¬bl.nij ∧ ¬ap.nij] ∨ ok.ni

where, for δi, exactly ni.≺.ni1 , ni.≺.ni2 , . . . , ni.≺.nij ∈ W≺.

39

So these formulas (one for each default) are the only formulas that add edges to the
literal graph. Since these formulas are in DNF, the edges added to arrive at L((D′,W ′)) will
consist of pairs of literals drawn from distinct disjuncts in these formulas.

We obtain the following edges. For default δi we obtain the following three sets of edges
in L((D′,W ′)):

(bl.ni,¬bl.nj)

(bl.ni,¬ap.nj)

(ap.ni,¬bl.nj)

(ap.ni,¬ap.nj) for various 1 ≤ j ≤ |D|, i 6= j (33)

(¬ok.ni,¬bl.nj)

(¬ok.ni,¬ap.nj) for ni.≺.nj ∈ W≺ (34)

(bl.ni, ok.nj)

(ap.ni, ok.nj) for ni.≺.nj ∈ W≺ (35)

Consider the dependency graph G((D′,W ′)) = (D′, E ′) where E ′ = E ′0 ∪ E ′1.

1. The four edge types in the first group (33), contribute no edges to E ′0 or E ′1. This is
because, for any default rule with bl.ni or ap.ni in its consequent, there is no default
rule with bl.ni or ap.ni in its prerequisite or ¬bl.ni or ¬ap.ni in its justification.

2. For the second set of edge types, group (34), ¬ok.ni does not occur in the consequent
of a default in D′, and so these edges do not contribute any edges to E ′0 or E ′1.

3. This leaves the group (35). ok.nj does not appear negatively in the justification or
consequent of a rule in D′, and so does not contribute to E ′1. However, for every rule
with literals bl.ni or ap.ni in its consequent, there are rules with literal ok.nj in the
antecedent, namely the image of every rule δj (in D) where δj < δi.

So what this means is that, for W ′, we have that

If (δ′, δ) ∈< then (δx, δ
′
y) ∈ E ′0 for x, y ∈ {a, b1, b2}. (36)

Moreover, as argued above, there are no other additions to E ′0 resulting from W ′ that weren’t
already present from (D,W).

For the defaults in D′, we have the following.

1. If (δ, δ′) ∈ E0 then there is a literal x appearing positively in Conseq(δ), a literal
appearing positively in Prereq(δ′) and L∗(x, y).

But any literal in Conseq(δ) is a literal in Conseq(δa) and any literal in Prereq(δ′) is a
literal in Prereq(δ′a).

As well, a literal in Prereq(δ′) appearing positively also appears negatively in
Prereq(δ′b1).

Thus if (δ, δ′) ∈ E0 then (δa, δ
′
a) ∈ E ′0 and (δa, δ

′
b1

) ∈ E ′1. (37)

40

2. If (δ′, δ) ∈ E1, a similar argument shows that

(δ′a, δa) ∈ E ′1 and (δ′a, δb2) ∈ E ′0. (38)

Since there are no other cases, E ′ = E ′0 ∪ E ′1 is completely specified by (36)–(38).
Observe that if G((D,W)) is even, then the graph with vertices in D′ and edges given

in (37) and (38) is even. (That is, the subgraph with vertices {δa|δ ∈ D} is isomorphic to
G((D,W)). Otherwise for δ, δ′ ∈ D the only other edges are of the form (δ′a, δb1) (from (37))
and (δ′a, δb2) (from (38)). But the vertices δb1 , δb2 have no outgoing edges and so cannot be
part of any cycle.) We will use this observation to conclude the proof.

Our result now follows easily: we are given that (D,W,<), a propositional, semi-normal,
ordered default theory where (D,W) is even and for the associated dependency graph
G((D,W)) = (D, E), we have that

(D, E ∪ {nδ.≺.nδ′ | (δ′, δ) ∈ <})

has no cycles incorporating elements of <. (That is, if C is a cycle in (D, E ∪ {nδ.≺.nδ′ |
(δ′, δ) ∈ <}) then C is a cycle in (D, E).)

For the dependency graph G((D′,W ′)) = (D′, E ′), let

EC = {(δx, δ′y) | x, y ∈ {a, b1, b2} and: (δ′, δ) ∈ < or (δ, δ′) ∈ E ′}.

We have that

E ′ = E ′0 ∪ E ′1 ⊆ EC .

and so (D′, E ′) is a subgraph of (D′, EC).
By assumption, in G((D,W)) the edge set E ∪ {nδ.≺.nδ′ | (δ′, δ) ∈ <}) has no cycles

incorporating elements of <.
So in EC there are no cycles incorporating elements in the image of <.
So in E ′ ⊆ EC there are no cycles incorporating elements in the image of <.
So from the above observation, the only cycles in E ′ are even.

Proof 4.6 Let (D,W,<) be a normal, ordered default theory where

Pred(Prereq(D)) ∩ Pred(Conseq(D)) = ∅ and Pred(W) ∩ Pred(Conseq(D)) = ∅.

Consider the default theory (D′,W) where D′ is defined by:

D′ =
{
> :β
β

∣∣∣ α :β
β
∈ D and W ` α

}
.

We make use of the following lemma:

Lemma 4 Given our assumptions above, E is an extension of (D,W) iff E is
an extension of (D′,W).

Proof 4 Clearly it is harmless replacing the prerequisite of a default by > if
the prerequisite is implied by W .

41

Since Pred(Prereq(D)) ∩ Pred(Conseq(D)) = ∅, for any default δ where W 6`
Prereq(δ), we have that for extension E of (D,W), δ 6∈ GD(D,E).

If this were not the case, then we would have W 6` Prereq(δ) but E ` Prereq(δ)
or equivalently W ∪ Conseq(GD(D,E)) ` Prereq(δ).

However this is impossible since W ∪ Conseq(GD(D,E)) is consistent by as-
sumption, and we have that Pred(Prereq(δ))∩Pred(Conseq(GD(D,E))) = ∅ and
Pred(W) ∩ Pred(Conseq(GD(D,E))) = ∅.
Consequently δ 6∈ GD(D,E) and the lemma follows immediately.

Given Lemma 4 we can assume without loss of generality that for δ ∈ D we have
Prereq(δ) ≡ >.

Definition 4.1 simplifies considerably. We obtain

D′ =
{
>∧ok(n) :β
β∧ap(n)

, ok(n) :¬>
bl(n)

, ¬β∧ok(n) :
bl(n)

∣∣∣ n : > :β
β
∈ D

}
=

{
ok(n) :β
β∧ap(n)

, ¬β∧ok(n) :
bl(n)

∣∣∣ n : > :β
β
∈ D

}
We conclude by noting that since it is impossible to derive ¬ok(n) for any δn ∈ D, so

it is impossible to derive ¬ap(n), ¬bl(n). Hence ok(n) :β∧ap(n)
β∧ap(n)

has precisely the same effect

as ok(n) :β
β∧ap(n)

, and ¬β∧ok(n) : bl(n)
bl(n)

has precisely the same effect as ¬β∧ok(n) :
bl(n)

. Consequently our
translated default theory is equivalent to a normal default theory, which is guaranteed to
have an extension.

Proof 5.1 We start by fixing the components of the different default theories:
Define T ((D,W,<)) = (Dt,W t),

Dt = {δa, δb1 , δb2 | δ ∈ D} ∪Dt
≺ (39)

W t = W ∪W t
≺ ∪ {DCAN ,UNAN} (40)

where W t
≺ and Dt

≺ are defined as their unindexed counterparts W≺ and D≺, respectively, in
Definition 4.1.

Accordingly, define D((D,W ∪ {nδ ≺ nδ′ | (δ, δ′) ∈ <})) = (Dd,W d),

Dd = {δa, δb1 , δb2 | δ ∈ D} ∪Dd
≺ (41)

W d = W ∪ {nδ ≺ nδ′ | (δ, δ′) ∈ <} ∪W d
≺ ∪ {DCAN ,UNAN} (42)

where W d
≺ and Dd

≺ are defined as their unindexed counterparts W≺ and D≺, respectively, in
Definition 5.1.

only-if part Let E be an extension of T ((D,W,<)). Define

E ′ = Th(W d ∪ {ok(nδ) | δ ∈ D}
∪ {Conseq(δ) ∧ ap(nδ) | δa ∈ GD(Dt, E)}
∪ {bl(nδ) | δbi ∈ GD(Dt, E), i = 1, 2}
∪
{

(nδ ⊀ nδ′) | :¬(nδ≺nδ′)
¬(nδ≺nδ′)

∈ GD(Dt, E)
})

First, we show that E ∩ L = E ′ ∩ L. We distinguish three cases, while abbreviating
{Conseq(δ) | δ ∈ GD(Dt, E)} by Conseq(GD(Dt, E)):

42

• Consider v ∈ W .

Since W ⊆ E ∩ L and W ⊆ E ′ ∩ L, this implies v ∈ E ∩ L iff v ∈ E ′ ∩ L.

• Consider v ∈ Conseq(GD(Dt, E)).

As before, Conseq(GD(Dt, E)) ⊆ E ∩ L and Conseq(GD(Dt, E)) ⊆ E ′ ∩ L, implies
v ∈ E ∩ L iff v ∈ E ′ ∩ L.

• Consider v ∈ Th(W ∪ Conseq(GD(Dt, E))).

We have W ∪ Conseq(GD(Dt, E)) ⊆ E ∩ L and W ∪ Conseq(GD(Dt, E)) ⊆ E ′ ∩ L.
The fact that E as well as E ′ are deductively closed imply furthermore that v ∈
Th(W ∪ Conseq(GD(Dt, E))) ⊆ E ∩ L iff v ∈ Th(W ∪ Conseq(GD(Dt, E))) ⊆ E ′ ∩ L.

We have thus shown that for all v ∈ L that

v ∈ E ∩ L iff v ∈ E ′ ∩ L. (43)

We draw on this fact in the sequel.
Second, we show that E ′ is an extension of D((D,W ∪ {nδ ≺ nδ′ | (δ, δ′) ∈ <})).

For this, we first show the following three propositions:

1. W d ⊆ E ′. This is true by definition.

2. Th(E ′) = E ′. This is true by definition.

3. For any δ ∈ Dd, if Prereq(δ) ∈ E ′ and ¬Justif (δ) 6∈ E ′ then Conseq(δ) ∈ E ′.
To show this, suppose Prereq(δ) ∈ E ′ and ¬Justif (δ) 6∈ E ′.

• If δ =
:¬(nδ≺nδ′),(nδ≺nδ′)

(nδ⊀nδ′)
, then we have ¬(nδ ≺ nδ′) 6∈ E ′ as well as (nδ ≺ nδ′) 6∈ E ′.

The definition of E ′ and the fact that (nδ ≺ nδ′) 6∈ E ′ imply that (nδ ≺ nδ′) 6∈ W d,
that is, (δ, δ′) 6∈ <. This implies that (nδ ≺ nδ′) 6∈ W t

≺, that is, (nδ ≺ nδ′) 6∈ W t.

This implies by Lemma 1 that (nδ ≺ nδ′) 6∈ E. Hence,
:¬(nδ≺nδ′)
¬(nδ≺nδ′)

∈ GD(Dt, E),

which finally implies (nδ ⊀ nδ′) ∈ E ′ by definition of E ′.

• If δ = δa, then Prereq(δ) ∧ ok(nδ) ∈ E ′ and ¬Justif (δ) 6∈ E ′. Since E ′ is deduc-
tively closed we have Prereq(δ) ∈ E ′.
With (43), we obtain Prereq(δ) ∈ E and ¬Justif (δ) 6∈ E. Since E is an ex-
tension of T ((D,W,<)), we obtain by Theorem 4.1.1 that ok(nδ) ∈ E. Since
E is deductively closed we have moreover Prereq(δ) ∧ ok(nδ) ∈ E. We thus get
δa ∈ GD(Dt, E), which implies Conseq(δ) ∧ ap(nδ) ∈ E ′ by definition of E ′.

• If δ = δb1 , then ok(nδ) ∈ E ′ and ¬Prereq(δ) 6∈ E ′.
With (43), we obtain ¬Prereq(δ) 6∈ E. Since E is an extension of T ((D,W,<)),
we obtain by Theorem 4.1.1 that ok(nδ) ∈ E. We thus get δb1 ∈ GD(Dt, E),
which implies bl(nδ) ∈ E ′ by definition of E ′.

43

• If δ = δb2 , then ¬Justif (δ) ∧ ok(nδ) ∈ E ′. Since E ′ is deductively closed we have
¬Justif (δ) ∈ E ′.
With (43), we obtain ¬Justif (δ) ∈ E. Since E is an extension of T ((D,W,<)), we
obtain by Theorem 4.1.1 that ok(nδ) ∈ E. Since E is deductively closed we have
moreover Prereq(δ) ∧ ok(nδ) ∈ E. We thus get δb2 ∈ GD(Dt, E), which implies
bl(nδ) ∈ E ′ by definition of E ′.

We have thus shown that Conseq(δ) ∈ E ′.

According to Definition A.1, we get Γ(E ′) ⊆ E ′ by minimality of Γ(E ′).
To show the reverse, assume that E ′ 6⊆ Γ(E ′). Consider v ∈ E ′ and assume v 6∈ Γ(E ′).

We distinguish the following cases.

• If v ∈ W d then v ∈ Γ(E ′), since W d ⊆ Γ(E ′), a contradiction.

• If v ∈
{

(nδ ⊀ nδ′) | :¬(nδ≺nδ′)
¬(nδ≺nδ′)

∈ GD(Dt, E)
}

then (nδ ≺ nδ′) 6∈ E. This implies by

Lemma 1 that (nδ ≺ nδ′) 6∈ W t, that is, (δ, δ′) 6∈ <.

By definition of E ′, we thus have ¬(nδ ≺ nδ′) 6∈ E ′ as well as (nδ ≺ nδ′) 6∈ E ′.

Since
:¬(nδ≺nδ′),(nδ≺nδ′)

(nδ⊀nδ′)
∈ Dd, we have by definition of Γ that (nδ ⊀ nδ′) ∈ Γ(E ′), a

contradiction.

• We proceed by induction on the grounded enumeration 〈δi〉i∈I of GD(Dt, E) for

v ∈ {bl(nδ) | δbi ∈ GD(Dt, E), i = 1, 2} ∪ {Conseq(δ) ∧ ap(nδ) | δa ∈ GD(Dt, E)} .

We show that for all δi, i ∈ I such that δi = (δ)a or δi = (δ)bj for some j = 1, 2 and
some δ ∈ D that either Conseq(δ) ∧ ap(nδ) ∈ Γ(E ′) or bl(nδ) ∈ Γ(E ′).

First, we have the following lemma.

Lemma 5 Given the induction hypothesis, we have ok(nδ) ∈ Γ(E ′).

Proof 5 Analogous to Proof 2.

Base By definition, ok(n>) ∈ Γ(E ′). Clearly, we have δ0 = (δ>)a, which implies that
Conseq(δ>) ∧ ap(n>) ∈ Γ(E ′).

Step Consider δi.

Since 〈δi〉i∈I is grounded in W t, we obtain W t ∪ Conseq({δ0, . . . , δi−1}) `
Prereq(δi). Let Prereq(δi) = φ ∧ ok(nδ) For φ ∈ {Prereq(δ),>,¬Justif (δ)} where
δi = (δ)a or δi = (δ)bj for some j = 1, 2 and some δ ∈ D. Then, we clearly have
W∪Conseq({δ0, . . . , δi−1}) ` φ and by monotonicity W d∪Conseq({δ0, . . . , δi−1}) `
φ. By definition, W d ⊆ Γ(E ′). Furthermore, we have Conseq(δj) ∈ Γ(E ′) for j < i
by the induction hypothesis. This implies that φ ∈ Γ(E ′) because Γ(E ′) is de-
ductively closed. By Lemma 5, we have furthermore ok(nδ) ∈ Γ(E ′) which gives
us, again by appeal to Γ(E ′)’s deductive closure, that φ ∧ ok(nδ) ∈ Γ(E ′). As a
consequence, Prereq(δi) ∈ Γ(E ′).

44

Since δi ∈ GD(Dt, E) for all i ∈ I, we have ¬Justif (δi) 6∈ E. By (43), this implies
¬Justif (δi) 6∈ E ′.
By Definition A.1, we get Conseq(δi) ∈ Γ(E ′). That is, either Conseq(δ)∧ap(nδ) ∈
Γ(E ′) or bl(nδ) ∈ Γ(E ′).

Thus, we obtain v ∈ Γ(E ′), the desired contradiction.

• For v ∈ {ok(nδ) | δ ∈ D}, we draw on what we have just shown in Lemma 5 and
Theorem 4.2.8. This gives v ∈ Γ(E ′), a contradiction.

Since both E ′ and Γ(E ′) are deductively closed, we get that E ′ ⊆ Γ(E ′).
This completes the proof showing that E ′ is an extension of D((D,W ∪ {nδ ≺ nδ′ |

(δ, δ′) ∈ <})).

if part Let E be an extension of D((D,W ∪ {nδ ≺ nδ′ | (δ, δ′) ∈ <})). Define

E ′ = Th(W t ∪ {ok(nδ) | δ ∈ D}
∪ {Conseq(δ) ∧ ap(nδ) | δa ∈ GD(Dd, E)}
∪ {bl(nδ) | δbi ∈ GD(Dd, E), i = 1, 2}
∪
{
¬(nδ ≺ nδ′) | :¬(nδ≺nδ′),(nδ≺nδ′)

(nδ⊀nδ′)
∈ GD(Dd, E)

})
The rest of the proof continues in analogy to that given in the only-if-part; it is therefore
omitted for brevity.

Proof 5.2 The result follows from Theorem 5.1 and Corollary 4.2.

Proof 5.3 Analogous to Proof 4.3.

Proof 7.1

if part Let E be an extension of (D,W,<) according to [Brewka and Eiter,2000].
Wlog. we stipulate for every δ ∈ D that δ ∈ GD(D,E) iff Conseq(δ) ∈ E. This condition

is easily enforced by substituting each default δ = α :β
γ
∈ D by α :β

γ∧pδ
, where pδ is a new unique

atom. This facilitates the treatment of generating defaults δ ∈ GD(D,E) that are “inactive”
in some set Ei ⊆ E because their consequent already belongs to Ei, viz. Conseq(δ) ∈ Ei. We
thus ensure that GD(D,E) is identical to the set of actually applied rules in [Brewka and
Eiter,2000, Definition 4].

Since E is by definition also a regular extension of (D,W), we show next that E is
<-preserving. To this end, consider the application sequence 〈δi〉i∈I of GD(D,E) induced
by [Brewka and Eiter,2000, Definition 4]. We must distinguish the following two cases:

1. Consider δi < δj. Assume i < j.

Since δi ∈ GD(D,E) and δj ∈ GD(D,E), we have ¬Justif (δi) 6∈ E and ¬Justif (δj) 6∈
E. By monotonicity, we get for Ei−1 ⊆ E that ¬Justif (δi) 6∈ Ei−1 and ¬Justif (δj) 6∈
Ei−1.

By what we assume wlog we moreover have Conseq(δi) 6∈ Ei−1 and Conseq(δj) 6∈ Ei−1.

45

Hence both δi and δj are active in Ei according to [Brewka and Eiter,2000].

Applying δi at this stage is a contradiction to δi < δj. Hence, j < i

2. Consider δi < δ, where δ ∈ D \GD(D,E).

By [Brewka and Eiter,2000, Proposition 2], there is a set Kδ ⊆ {δ′ ∈ GD(D,E) | δ′ <′
δ} (where <′ is a total extension of <) such that

W ∪ Conseq(Kδ) |= ¬Justif (δ)

Clearly k < i for all δk ∈ Kδ. Hence, we obtain W ∪ Conseq({δ0, . . . , δi−1}) `
¬Justif (δ).

By Theorem 4.4, there is then an extension E ′ of T ((D,W,<)) such that E = E ′ ∩ L.

only-if part This direction is a special case of Theorem 7.2.

Proof 7.2 Let E ′ be a preferred extension of T ((D,W,<)) = (D′,W ′). Then, according
to Theorem 4.4, E = E ′ ∩ L is a <-preserving extension of (D,W). That is, there exists a
grounded enumeration 〈δi〉i∈I of GD(D,E) such that for all i, j ∈ I and δ ∈ D \GD(D,E),
we have that

1. if δi < δj then j < i and

2. if δi < δ then Prereq(δ) 6∈ E or W ∪ Conseq({δ0, . . . , δi−1}) ` ¬Justif (δ).

Consider δ ∈ D with Prereq(δ) ∈ E and Conseq(δ) 6∈ E. Clearly, δ ∈ D \GD(D,E). Hence,
there is some minimal k ∈ I such that W ∪ Conseq({δ0, . . . , δk}) ` ¬Justif (δ) and δl 6< δ
for l ∈ {1, . . . , k}. Now, consider a total extension <′ of <, where δ <′ δl for l ∈ {1, . . . , k}.
Given that E is a regular extension of (D,W) and that for any δ ∈ D with Prereq(δ) ∈ E
and Conseq(δ) 6∈ E there is some k ∈ I such that W ∪ Conseq({δ0, . . . , δk}) ` ¬Justif (δ)
where δ <′ δl for l ∈ {1, . . . , k}, we get according to [Brewka and Eiter,2000, Proposition 2]

that E is a preferred extension of (D,W,<′) according to [Brewka and Eiter,2000]. Since,
<′ is a total extension of <, E is furthermore a preferred extension of (D,W,<) according
to [Brewka and Eiter,2000].

References

[Baader and Hollunder, 1993a] F. Baader and B. Hollunder. How to prefer more specific de-
faults in terminological default logic. In Proceedings of the International Joint Conference
on Artificial Intelligence, pages 669–674, 1993.

[Baader and Hollunder, 1993b] F. Baader and B. Hollunder. How to prefer more specific
defaults in terminological default logic. Technical Report RR-92-58, DFKI, December
1993.

46

[Boutilier, 1992] C. Boutilier. What is a default priority? In J. Glasgow and B. Hadley,
editors, Proceedings of the Canadian Artificial Intelligence Conference, pages 148–155.
Morgan Kaufmann Publishers, 1992.

[Brewka and Eiter, 1998] G. Brewka and T. Eiter. Preferred answer sets for extended logic
programs. In A. Cohn, L. Schubert, and S. Shapiro, editors, Proceedings of the Sixth
International Conference on the Principles of Knowledge Representation and Reasoning,
pages 86–97. Morgan Kaufmann Publishers, 1998.

[Brewka and Eiter, 2000] G. Brewka and T. Eiter. Prioritizing default logic. In St.
Hölldobler, editor, Intellectics and Computational Logic — Papers in Honour of Wolf-
gang Bibel. Kluwer Academic Publishers, 2000. To appear.

[Brewka and Gordon, 1994] G. Brewka and T. Gordon. How to buy a porsche: An approach
to defeasible decision making. In AAAI-94 Workshop on Computational Dialectics, pages
28–38, Seattle, WA, July 1994. AAAI Press.

[Brewka, 1994a] G. Brewka. Adding priorities and specificity to default logic. In
L. Pereira and D. Pearce, editors, European Workshop on Logics in Artificial Intelligence
(JELIA’94), Lecture Notes in Artificial Intelligence, pages 247–260. Springer Verlag, 1994.

[Brewka, 1994b] G. Brewka. Reasoning about priorities in default logic. In Proceedings of
the AAAI National Conference on Artificial Intelligence, volume 2, pages 940–945. The
AAAI Press/The MIT Press, 1994.

[Brewka, 1996] G. Brewka. Well-founded semantics for extended logic programs with dy-
namic preferences. Journal of Artificial Intelligence Research, 4:19–36, 1996.

[Delgrande and Schaub, 1994] J. Delgrande and T. Schaub. A general approach to specificity
in default reasoning. In J. Doyle, P. Torasso, and E. Sandewall, editors, Proceedings of
the Fourth International Conference on the Principles of Knowledge Representation and
Reasoning, pages 146–157. Morgan Kaufmann Publishers, 1994.

[Delgrande and Schaub, 1998] J. Delgrande and T. Schaub. Reasoning with sets of prefer-
ences in default logic. In H.-Y. Lee and H. Motoda, editors, Pacific Rim International
Conference on Artificial Intelligence, volume 1531 of Lecture Notes in Artificial Intelli-
gence, pages 134–145. Springer Verlag, 1998.

[Delgrande and Schaub, 2000] J.P. Delgrande and T. Schaub. The role of default logic in
knowledge representation. In J. Minker, editor, Logic-Based Artificial Intelligence. Kluwer
Academic Publishers, 2000.

[Delgrande et al., 2000a] J. Delgrande, T. Schaub, and H. Tompits. Logic programs with
compiled preferences. In C. Baral and M. Truszczyński, editors, Proceedings of the Eighth
International Workshop on Non-Monotonic Reasoning. arXiv.org e-Print archive, 2000.

[Delgrande et al., 2000b] J. Delgrande, T. Schaub, and H. Tompits. Logic programs with
compiled preferences. In W. Horn, editor, Proceedings of the European Conference on
Artificial Intelligence, pages 392–398. IOS Press, 2000.

47

[Doyle and Wellman, 1991] J. Doyle and M.P. Wellman. Impediments to universal prefer-
ence-based default theories. Artificial Intelligence, 49(1-3):97–128, 1991.

[Eiter et al., 1997] T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A deduc-
tive system for nonmonotonic reasoning. In J. Dix, U. Furbach, and A. Nerode, edi-
tors, Proceedings of the Fourth International Conference on Logic Programming and Non-
Monotonic Reasoning, volume 1265 of Lecture Notes in Artificial Intelligence, pages 363–
374. Springer Verlag, 1997.

[Etherington and Reiter, 1983] D.W. Etherington and R. Reiter. On inheritance hierarchies
with exceptions. In Proceedings of the AAAI National Conference on Artificial Intelligence,
pages 104–108. Morgan Kaufmann Publishers, 1983.

[Geffner and Pearl, 1992] H. Geffner and J. Pearl. Conditional entailment: Bridging two
approaches to default reasoning. Artificial Intelligence, 53(2-3):209–244, 1992.

[Gelfond and Lifschitz, 1991] M. Gelfond and V. Lifschitz. Classical negation in logic pro-
grams and deductive databases. New Generation Computing, 9:365–385, 1991.

[Gelfond and Son, 1997] M. Gelfond and T. Son. Reasoning with prioritized defaults. In
J. Dix, L. Pereira, and T. Przymusinski, editors, Third International Workshop on Logic
Programming and Knowledge Representation, volume 1471 of Lecture Notes in Computer
Science, pages 164–223. Springer Verlag, 1997.

[Gordon, 1993] T. Gordon. The pleading game: An Artificial Intelligence Model of Procedural
Justice. Dissertation, Technische Hochschule Darmstadt, Alexanderstraße 10, D-64283
Darmstadt, Germany, 1993.

[Grosof, 1991] B. Grosof. Generalizing prioritization. In J. Allen, R. Fikes, and E. Sandewall,
editors, Proceedings of the Second International Conference on the Principles of Knowledge
Representation and Reasoning. Morgan Kaufmann Publishers, 1991.

[Junker, 1997] U. Junker. A cumulative model semantics for dynamic preferences on as-
sumptions. In M. Pollack, editor, Proceedings of the International Joint Conference on
Artificial Intelligence, pages 162–167. Morgan Kaufmann Publishers, 1997.

[Lifschitz, 1985] V. Lifschitz. Closed-world databases and circumscription. Artificial Intel-
ligence, 27:229–235, 1985.

[Marek and Truszczyński, 1993] V. Marek and M. Truszczyński. Nonmonotonic logic:
context-dependent reasoning. Artifical Intelligence. Springer Verlag, 1993.

[McCarthy, 1986] J. McCarthy. Applications of circumscription to formalizing common-
sense knowledge. Artificial Intelligence, 28:89–116, 1986.

[Niemelä and Simons, 1997] I. Niemelä and P. Simons. Smodels: An implementation of the
stable model and well-founded semantics for normal logic programs. In J. Dix, U. Fur-
bach, and A. Nerode, editors, Proceedings of the Fourth International Conference on Logic
Programing and Nonmonotonic Reasoning, pages 420–429. Springer, 1997.

48

[Papadimitriou and Sideri, 1994] C. Papadimitriou and M. Sideri. Default theories that al-
ways have extensions. Artificial Intelligence, 69:347–357, 1994.

[Pearl, 1990] J. Pearl. System Z: A natural ordering of defaults with tractable applications
to nonmonotonic reasoning. In R. Parikh, editor, Proc. of the Third Conference on The-
oretical Aspects of Reasoning About Knowledge, pages 121–135, Pacific Grove, Ca., 1990.
Morgan Kaufmann Publishers.

[Poole, 1988] D. Poole. A logical framework for default reasoning. Artificial Intelligence,
36:27–47, 1988.

[Reiter and Criscuolo, 1981] R. Reiter and G. Criscuolo. On interacting defaults. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence, pages 270–276,
Vancouver, B.C., 1981.

[Reiter, 1980] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-2):81–132,
1980.

[Rintanen, 1995] J. Rintanen. On specificity in default logic. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, pages 1474–1479, Montreal, 1995.

[Touretzky et al., 1987] D.S. Touretzky, J.F. Horty, and R.H. Thomason. A clash of intu-
itions: The current state of nonmonotonic multiple inheritance systems. In Proceedings of
the International Joint Conference on Artificial Intelligence, pages 476–482, Milan, 1987.

[Zhang and Foo, 1997] Y. Zhang and N. Foo. Answer sets for prioritized logic programs. In
J. Maluszynski, editor, Proceedings of the International Symposium on Logic Programming
(ILPS-97), pages 69–84. MIT Press, 1997.

49

