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Abstract

This paper presents a general, consistency-based framework for expressing belief change.
The framework has good formal properties while being well-suited for implementation. For
belief revision, informally, in revising a knowledge bakeby a sentence, we begin witha
and include as much df as consistently possible. This is done by expresairgnda in dis-
joint languages, asserting that the languages agree on the truth values of corresponding atoms
wherever consistently possible, and then re-expressing the result in the original language of
K. There may be more than one way in which the languagés ahda can be so correlated:
in choice revision one such “extension” represents the revised state; alternately (skeptical)
revision consists of the intersection of all such extensions. Contraction is similarly defined
although, interestingly, it is not interdefinable with revision.

The framework is general and flexible. For example, one could go on and express other
belief change operations such as update and erasure, and the the merging of knowledge bases.
Further, the framework allows the incorporation of static and dynamic integrity constraints.
The approach is well-suited for implementation: belief change can be equivalently expressed
in terms of a finite knowledge base; and the scope of a belief change operation can be restricted
to just those propositions common to the knowledge base and sentence for change. We give a
high-level algorithm implementing the procedure, and an expression of the approach in Default
Logic. Lastly, we briefly discuss two implementations of the approach.

Keywords: Belief change, belief revision and contraction, consistency-based reasoning

1 Introduction

This paper describe a general framework for expressing belief change, focussing on revision and
contraction. A key feature of the framework is that it combines theoretical and practical considera-
tions in a single system: revision and contraction operators have good formal properties (satisfying
most AGM postulates) while being well-suited for implementation. Informally, to revise a knowl-
edge basé by sentencey, we begin witha: and “include” as much o as consistently possible.
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This is carried out by expressing and« in disjoint languages, “forcing” (via a maximisation
process) the languages to agree on truth values of atoms wherever consistently possible, and then
re-expressing the result in the original languagé&ofThere may be more than one way in which

the maximisation process can be carried out. This inherent non-determinism gives rise to two
notions of revision. In “choice” revision one such “extension” is selected for the revised state. In
general “skeptical” revision, the revised state consists of the intersection of all such extensions. Be-
lief contraction is defined analogously. Since we are maximising equivalences over a set of atomic
sentences, the approach has the same flavour as the consistency-based approaches for diagnosi
[Rei87b], or default reasoning [P0088], or assumption-based truth maintenance [RdK87].

The approach is developed first in a formal, abstract framework. The central notion is that of
a belief change scenarioonsisting of a triple of sets of formula® = (K, R, C). Informally,

K is a knowledge base that will be changed such that thé& sell be derivable in the resulting
knowledge base, while members@fwill not. Revision and contraction are then easily defined,
by lettingC = () and R = (), respectively. Update, erasure, and merging are similarly definable
although we do not do so here. Moreover it is straightforward to incorporate different sorts of
integrity constraints in this framework.

The approach is independent of syntax, in that revising (or contracting) a knowledg& base
by sentencex is independent of houk” anda are expressed. The belief change operators are also
shown to satisfy the majority of the AGM postulates, with the exception of a “non-basic” postulate
and, in the case of contraction, the recovery postulate. On the other hand, the approach is well-
suited for implementation. Belief change can be expressed in terms of a finite knowledge base,
in place of a deductively-closed belief set. Further, the scope of a belief change operator can be
restricted to those propositions common to a knowledge base and sentence for change. We provide
a high-level algorithm implementing the approach, and show how the approach can be expressed
using Default Logic [Rei80]. Finally we briefly describe two implementations of the approach.

In the next section we briefly review approaches to belief change. In Section 3 we discuss intu-
itions underlying our approach and, in particular, the suitability of a consistency-based approach.
Section 4 presents the general framework, then explores revision and contraction. In Section 5 we
consider implementation issues, while in Section 6 we compare our approach with related work.
We conclude in Section 7 with a summation and discussion. Proofs of theorems are contained in
an appendix. In [DS02], we further explore the general framework, and show that it is flexible
enough to express other belief change operations such as update, erasure, and merging.

2 Background

A common approach in addressing belief change has been to provide aa@irwlity postulates

for a belief change function. These rationality postulates constrain, or give properties of, such
functions, but have little to say about how a specific function is to be implementedAGKeap-
proachof Alchourron, Gardenfors, and Makinson [AGM85,4838] provides the best-known set

of such postulates; see also [Han99, Rot01] for extensive discussions of this and other approaches.
The approach assumes a langudgelosed under the usual set of Boolean connectives; the lan-
guage is assumed to be governed by a logic that includes classical propositional logic, and that is



compact. Belief change is described at km@wledge levelthat is on an abstract level, indepen-
dent of how beliefs are represented and manipulated. Belief states are modelled by logically closed
sets of sentences, calleelief sets Thus, a belief set is a sé&f of sentences which satisfies the
constraint:

If K logically entailsg theng € K.

So K can be seen as a partial theory of the world. For beliefsand formulac, K + « is the
deductive closure of{ U {«a}, called theexpansiorof K by «. K, is the inconsistent belief set
(i.e. K| is the set of all formulas).

A revisionfunction+ is a function from2* x £ to 2* satisfying the following postulates.

K+1) K+ais a belief set.

K+2) a € K+a.

+3

=

K+a C K + a.

~

+5

=

K+4oa = K| iff - —a.

+6

+7

=

If Ha =3, thenK+a = K+4.

=

K+(a A p) C (K4a) + 4.

(K+1)
(K+2)
(K+3)
(K+4) If ma ¢ K, thenK + a C K+a.
(K+5)
(/+6)
(K+7)
(K+3)

If -3 & K+a, then(K+a)+ 8 C K+(a A B).

That is: the result of revisingl by « is a belief set in whichv is believed; whenever the result

is consistent, revision consists of the expansiokdby «; the only time that/, is obtained is

when—a is a tautology; and revision is independent of the syntactic forfi @nda. The last

two postulates deal with the relation between revising with a conjunction and expansion.
Contractionis the dual notion of revision, in which beliefs are retracted but no new beliefs are

added. In the AGM approach, a contraction functiois a function from2* x £ to 2¢ satisfying

the following postulates.

(K—-1) K—ais a belief set.

(K-2) K~a C K.

(K=3) If o« € K, thenK—a = K.
(K—4) If t/ o, thena ¢ K—a.

(K=5) If « € K, thenK C (K—a) + «.
(K—6) If Fa = 3, thenK—a = K—§.
(K=7) K—anNnK—-3C K—(aAp).



(K-8) If 8¢ K—(a A ), thenK—(a A B) C K—3.

Revision and contraction are often interdefinable by means of the following identities:
Levi Identity: K+a = (K——a) + a.
Harper Identity: K—a = K N (K+-a).

The Levi Identity asserts that revision bycorresponds to contraction by followed by expan-
sion bya, while the Harper Identity asserts that contractiidy o corresponds to selecting just
those sentences &f that remain ifK is revised by-a.

Various constructions based preference relationkave been proposed, in terms of which be-
lief change functions can be defined. Earliest and best-known among tregsstesmic entrench-
ment orderinggGar88]. An epistemic entrenchment ordering related to a belieKsista binary
relation < on the formulas inC, reflecting the relative degree of acceptance of sentences. Belief
change can also be characterised by a total preorder on interpretations in the language [Gro88].

The postulate sets for belief change, and their accompanying constructions, do not address the
issue ofiterated belief revision. However, clearly, one would be interested in not just a single
revision of a belief set by a formula, but also in sequences of revisions. [Leh95] provides an
extended set of rationality postulates; other representative work includes [BG93, Bou94, Wil94,
NFPS96, DP97, Pap01]. Much, if not all, of this work is based upon or inspired by [Spo88].
However, it has proven to be very difficult to develop a belief revision operator with plausible
properties for iterated revision; see [NFPS96, DP97] for excellent discussions. We briefly discuss
Darwiche and Pearl’s approach here, as a more recent and well-known proposal.

Darwiche and Pearl employ the notion of @pistemic statéhat encodes how a revision func-
tion changes following a revision. They propose the following postufates.

(C1) If a+ pthen(K+3)+a = K+a.

(C2) If a F =8 then(K+8)+a = K+a.

(C3) If 3 € K+atheng € (K+3)+a.

(C4) If =8 ¢ K+athen—3 ¢ (K+3)+a.

[NFPS96] propose a variant 0£'2) along with the following postulate:
(Conj) If a A B Lthen(K+a)+"3 = K+(aApB).

The superscript os-" indicates that following revision by, + depends in part on. This postu-
late is strong enough to derivé'l), (C3), and(C4) in the presence of the AGM postulates.

These postulates are not uncontentious. For example, an instafe)dfetting « be —p and
G bep A q) is the following:

(C2) (K+(pAgq) +-p = Kt-p

1Darwiche and Pearl phrase their postulates in terms of epistemic states, in which the associated belief set is
represented by a formula; for uniformity, we remain with the preceding terminology.
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Thus if one revises byp(A ¢) and then by the negation of some of this informatien)( then the
other original informationd) is lost. So, in a variant of an example from [DP97], consider where |
see a bird in the distance and come to believe that it is red and flies. If on closer examination | see
that it is yellow, then according t@2’) | no longer believe that it flies. Hence this is too strong a
condition to reasonably adopt, at least for every revision function in all circumstances. Moreover,
for approaches based on [Spo88], such as [DP97], it is not at all obvious how such a result can be
avoided.

There has also been work on specific revision operators based disttiecebetween models
of a knowledge base and a sentence to be incorporated in the knowledge base. This work in-
cludes [Bor85, Web86, Dal88, Sat88, Win88, For89]. In these approaches, the models of the new
knowledge base are those models of the sentence to be added that are closest (based on “distance”
between atomic sentences) to models of the original knowledge base. For example, in [Dal88] the
revision operator uses the Hamming distance between interpretations as metric, where the Ham-
ming distancel(w;, w-) between interpretations,; andw, is the number of propositional variables
on which the interpretations differ. The distance between an interpretataod the models of
is given by:d(Mod(K'), w) = miny,~x d(w;, w), where Mod (k) is the set of models ok” and
w; = K indicates thafX is true inw;. A total pre-order on interpretations is given by:

wy <g wy Iff  d(Mod(K),w) < d(Mod(K),w,).

The operatorp, defined byMod (K + pa) = min<,. Mod(«), satisfies the AGM postulates.

[dV93] provides syntactic characterisations of most of the above-cited distance-based approaches
As well, an algorithm is provided for each characterisation. The general strategy is to first convert
(a portion of) a knowledge base and formula into disjunctive normal form (DNF). A distance is
defined between the clauses in the DNF representations, depending on the approach being consid-
ered. Dependencies are propagated among the clauses, generating the set of clauses in the resulting
knowledge base. In related work, [EG92] considers the decision probteptrue in K +¢?” for
a wide selection of distance-based operators, and syntactic restrictighs;pandp. [LS97] con-
siders how distance-based operators operators can be expressed using circumscription (and vice
versa) along with the complexity of the reductions.

A separate direction in belief revision is to assume that revision is not carried out on a belief
set per se, but rather on an arbitrary set of formulas. This notidrasé revisions proposed in
[Mak85, FUV83], and fully explored in [Neb92]. The idea is that a knowledge base is represented
by a (arbitrary, syntactid)elief basehat is to be modified, queried, etc. While conceptually sim-
ple, revision in these approaches frequently relies on arbitrary syntactic distinctions. With respect
to implementations, [Wil95] provides a computational model for belief base revision; other rele-
vant work includes [BDPO1] and [Lib99]. These approaches are further discussed and compared
with the present approach in Section 6.

Revision and contraction reflect the intuition that an agent receives new information concern-
ing a static world or domain. [KM92] explores the distinct notions of balieflateanderasure
in which an agent changes its beliefs in response to changes in its external environment. As well,
recently there has been significant interest in behefgingor fusing where two or more knowl-
edge sources are combined. Our interests in this paper centre on revision and contraction; as will
become apparent, the present approach can be easily extended to represent these other operations.
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3 Consistency-Based Belief Change

This section informally introduces our approach to belief change, concentrating on belief revision.
As well as describing underlying intuitions and the approach, we also discuss the broader paradigm
of consistency-based reasoning.

3.1 A Naive Approach
The problem we address is the general problem of belief revision:

Given a general knowledge base and sentence for revision (contraction, etc.), what
should the revised (contracted, etc.) knowledge base look like?

A common assumption is tha is to be minimally changed, in order to accommodatdn our
approach, we require thatis true in K +«, and we subsequently “add” whatever we can frf@m

An obvious way to realise such a scheme is to consider an enumeration of senteRicashf
beginning witha, iteratively add each sentence to a candidate revision whenever consistent. Let
(¢:):c1 be an exhaustive enumeration of the sentences of beliéf sahd letw be the sentence for
revision. Define:

1. KO = Q.

2. K, U{p; /L
(@) thenk;,, = On(K; U {¢;})
(b) otherwiseK;; = On(K;).

Define K+« aslJ,.; K; and K+« as(); K+« over all enumeration&p; );c; of K.

i€l
Theorem 3.1 Let K be a belief set and a formula such thaf - -« anda t/ L.
1. For every3 € £ wherea I/ -3, there is an enumeratiof®;);c; of K such thatk +;a - 3.

2. For every enumeratiofy;);; of K and for every formulg, we have that
K—i-]Oél_ﬁ or K—i—[()él__\ﬂ.

3. K+a = On(a).

Proof 3.1 (Outline) The proofs are straightforward, and follow those in [AM82] showing similar
results for full meet and maxichoice belief change. The key step is to note that/Sikcea and
K is a belief set, we also hav€ - —«a V v. Hence the addition of a sentenee: \V v to a set
containinga, in the proposed definition for revision, effectively adds ]

The properties given in Theorem 3.1 are unappealing. Moreover, these difficulties are not easily
repaired. For example, in the definition &t ;«, if we don't take the deductive closure, \i&a(-),
we get the same results. Second, if we just consider enumerations ordered by the logical strength
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of formulas, we also get the same results given in Theorem 3.1. Third, if we relax the assumption
that K be a belief set, and alloi to be a belief base (i.e. an arbitrary set of formulas), then we
essentially obtain the approach to base revision of [FUV83], also explored in [Neb92]. In standard
approaches to base revision, among other things, we lose the principle of irrelevance of syntax,
given as AGM postulatéK +6).

On this last point, [Neb92, p. 58] concludes that abstracting from a syntactic representation of
a belief base to a belief set leads nowhere. Nebel goes on to note that several authors (e.g. [Dal88,
Win88, KM91]) as a result advocate approaches based on the models characterising a knowledge
base and formula. Our approach, introduced informally next, can be seen as a compromise, where
a knowledge base and formula can (ultimately) be represented as arbitrary formulas, yet wherein
irrelevance of syntax obtains.

3.2 Our Approach

In general, the syntactic form of a sentence doesn’t give a clear indication as to which sentences
should or should not be retained in a revision. Alternately, one can consider interpretations, and
look at the models ok anda. The interesting case occurs whimJ {«} is unsatisfiable because

K anda share no models. Intuitively, a model &f+a should then contain models of, but
incorporating “parts” of models ok that don’t conflict with those of. That is, we will have

Mod(K+a) C Mod(c),

and form € Mod (K +«) we will want to incorporate whatever we can of modelgiaf

We accomplish this by expressiigand« in different languages, but such that there is an iso-
morphism between atomic sentences of the languages, and so between the languages themselves
In essence, we replace every occurrence of an atomic sentéméé by a new atomic sentengé
yielding knowledge bas&” and leavingx unchanged. Clearly, under this relabelling, the models
of K" anda will be independent, an&” U {a} will be satisfiable (assuming that each i6f «
are satisfiable). We now assert that the languages agree on the truth values of corresponding atoms
wherever consistently possible. So, for every atomic sentgnee assert that = p’ whenever
this is consistent with” U {«} along with the set of equivalences obtained so far. We obtain a
maximal set of such equivalences, calEi€), such thatk” U {a} U EQ is consistent. A model
of K’ U {a} U EQ then will be a model ofv in the original language, wherein the truth values of
atomic sentences iR’ anda are linked via the seb'(). A candidate “choice” revision ok by «
consists of " U {a} U EQ re-expressed in the original language. General revision corresponds to
the intersection of all candidate choice revisions.

To illustrate, consider where

K=0{(pVq Nr}) and o= (-pV-q)A-r

Renaming the atoms i gives K’ = Ch({(p' V¢) Ar'}). Clearly K’ U {a} is consistent,
even thoughX' U {a} is not. We have thath(K'U {a} U{p' =p,q¢ = q}) is consistent, but
On(K'U{a} U{p =p,¢ =q,7 =r})isnot. Hence we tak€Q = {p' = p, ¢ = ¢}. Intersect-
ing Cn(K' U {a} U EQ) with the original language yieldéh({(p = —q) A —r}) as the revised
knowledge base.



We can justify this process is as follows: A language has implicit inductive commitments, ex-
pressed in the choice of atomic propositions. That is, the atoms are (pragmatically) chosen because
they are intended tmeansomething relevant in the domain of discourse. The collection of atomic
sentences represents the basic set of meaningful propositions from which further propositions are
constructed. In the approach, we essentially employ something resembling a frame assumption,
asserting that the truth value of the atomic sentences do not change unless “forced” to change by an
incompatibility betweeri anda. This also means that if we change the representation language,
the results of revision may, not unnaturally, change; see [Som94] for a discussion on the sensitivity
of revision to the underlying language.

Overall this yields a specific approach to belief revision. The general framework (next section)
also allows the expression of contraction and integrity constraints. Further, the general approach
also allows the expression of update, erasure, and knowledge base merging operations [DS02].
Significantly, the approach is independent of how the knowledge base and formula for revision
are represented. As well, as we show in subsequent sections, the belief change operators have
reasonable properties and are well-suited for implementation.

3.3 Consistency-Based Reasoning

The overall approach to belief change described here is founded on the same intuitions as a group of
closely-relatectonsistency-basagasoning methodologies in Artificial Intelligence. Consistency-
based reasoners can be broadly characterised as essentially involving

1. a nonmonotonic minimisation (or maximisation) step that is
2. based on a distinguished set of atoms.

In Theorist [P0088] for example, one can make predictions of default properties based on selecting
from a set of hypotheses, such that the hypotheses selected, together with the background theory
and facts, are consistent. Hypotheses are drawn from a designated set of atoms. Similarly, in
consistency-based diagnosis [Rei87b], a diagnosis is a conjecture that some minimal set of com-
ponents are faulty. That a components faulty, or abnormal, is expressed by a ground formula
Ab(¢;), and the assertion that a minimal set of components is faulty is effected by minimizing
the set of positivedd instances. In assumption-based truth maintenance [dK86], explanations are
selected from a designated set of atoms.

The emphasis here is slightly different. The maximisation step is applipdits of corre-
sponding atoms which are asserted to be equivalent. Hence, we do not have a distinguished set of
atoms per se to which the maximisation is applied , but rather a designated set of sentences, viz. a
set of equivalences between atoms, that is used in the maximization step.



4 Specifying Belief Change Functions

4.1 Formal Foundations

We deal with propositional languages and use the logical symbpls, -, V, A, D, and= to
construct formulas in the standard way. We wite to denote a language over an alphaBedf
propositional lettersor atomic propositions Formulas are denoted by the Greek letiers, a4,
.... Knowledge baseare initially identified with deductively-closed sets of formulasbetief
sets and are denoted’, K, .... ThusK = On(K), whereCn(-) is the deductive closure in
classical propositional logic of the formula or set of formulas given as argument. Later we relax
this restriction and allow knowledge bases to be arbitrary belief bases. Given an alphateet
define a disjoint alphabé®’ asP’ = {p' | p € P}. Fora € Lp, o is the result of replacing
in « each propositiop € P by the corresponding propositign € P’ (so implicitly there is an
isomorphism betweeR andP’). This is defined analogously for sets of formulas.

A belief change scenarim Ly is defined as a triplé3 = (K, R,C), whereK, R, andC
are sets of formulas ifr. Informally, K is a knowledge base that is to be modified so that the
formulas inR are contained in the result, and the formula&’iare not. For an approach to revision
we have|lR| = 1 andC = (), and for an approach to contraction we hde- () and|C| = 1.

We next define the notion of an extension for a belief change scenario, cdlkdgbhichange
extension In the definition below, “maximal” is with respect to set containment (rather than set
cardinality). The following is our central definition.

Definition 4.1 Let B = (K, R, C) be a belief change scenario .
DefineEQ as a maximal set of equivalencEs) C {p = p' | p € P} such that

On(K'URUEQ)N(CU{L}) = 0.
Then
On(K'URUEQ)N Lp

is a(consistent) belief change extenswins.
If there is no such st then B is inconsistenand L is defined to be the so(econsistent)
belief change extensianf B.

The sole use of {1 }" in the definition is to take care of the case whéte= (). The consistency
condition on belief change extensions can be written equivalently as follows:

Alternative Consistency Condition: K’ U RU EQ If ¢ foreveryp € C U{L}.
We make use of this alternative formulation in the proofs of the theorems.

20ur technique of maximizing sets of equivalences of propositional letters bears a superficial resemblance to the
use of such equivalences in [LS97] (based in turn on techniques developed in [dK89]). However the approaches are
distinct; in particular and in contradistinction to these references, we employ disjoint alphabets for a knowledge base
and revising sentence.



Clearly a consistent belief change extensiomag a modification of’ which contains every
formula in R, and which contains no formula ifi. We say thatE() determineghe respective
consistent belief change extension/f For later use, we definBQ as{p =p' | p € P} \ EQ.

For a given belief change scenario there may be more than one consistent belief change exten-
sion. We will make use of the notion ofslection function: that for any sef # () has as value
some element of. When we come to define revision and contraction, in Definition 4.2 and 4.3,
we will use a selection function to select a specific consistent belief change extension. This use of
selection functions then is slightly different from that in the AGM approach.

The following theorem provides elementary results that will be useful later.

Theorem 4.1 Let K be a knowledge base ande Lp. LetEQ, EQ* C{p=7p'|p € P}.

1. If EQ determines a consistent belief change extensigiofR, C'), then
for (p =p') € EQ thereisp € C U {1} suchthatk’' URU {-¢} UEQFp = —p'.

2. If EQ determines a given consistent belief change extensioR aR, {«}), then
K'URU{=a}UEQ & p=—p forevery(p =p') € EQ.

3. If E; and E, are two distinct belief change extensionsg &% R, {«}), thenE; U By - L.

4. If K I/ —a, then{p = p' | p € P} determines the sole consistent belief change extension of
(K, {a}.0).
5. If EQ determines a belief change extensioni i (), {a A 5}), then
EQ determines a belief change extensiori @t (), {a}) or of (K, 0, {3}).
6. If EQ determines a belief change extensiofi®f (), {a}), then there is a set of equivalences
EQ* determining a belief change extension &f, ), {« A 3}) such thatEQ C EQ*.
7. EQ determines a belief change extensionof (K, {«}, 0) iff
EQ determines a belief change extensionof (K, 0, { ~a}).
Furthermore,E; = Cn(E, U {a}).
Parts 1 and 2 of the theorem state that a belief change extension determines the relation between all
corresponding pairs of atoms ™ andP’. Part 3 asserts that distinct belief change extensions are
mutually inconsistent. The fourth part states that i& consistent with/' then all corresponding
atoms in? and P’ share the same truth value in a (in faitte) resulting belief change exten-
sion. The next two parts relate the components of a conjunction compfisioghe individual
conjuncts; via Part 7 we get an analogous relation between parts of a disjunction of a formula

comprisingRR. Part 7 of the theorem shows the relation of singleton elemenisarfdC', along
with their respective belief change extensions.
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4.2 Revision and Contraction

Definition 4.1 provides a very general framework for specifying belief change. In this subsection
we restrict the definition to obtain specific functions for belief revision and contraction. In the
definitions below, note thak’ need not be a belief set, but rather may be any arbitrary set of

formulas.

Definition 4.2 (Revision) Let K be a knowledge base anda formula, and let(E;);c; be the
family of all belief change extensions(df, {a}, ). Then, we define

1. Kica=E; as achoice revisiorof K by o with respect to
some selection functianwith ¢(1) = 7.

2. K+a=, E: asthe(skeptical) revisiorof K by c.

Observe that for each belief change extensigrnthere is some selection functiansuch that

E; = K+.o and vice versa. A choice revision represents one feasible way in which a knowl-
edge base can be revised to incorporate new information. The intersection of all belief change
extensions (comprising skeptical revision) represents a “safe” means of taking all choice revisions
into account. One might also take the intersectiosaheset of belief change extensions as the
revision of K by «. For example, one may have background information indicating that there is
apreferredsubset of the belief change extensions whose intersection could comprise the revision
of K by a. However, we do not address this intermediate notion, analogqertial meetbelief
change [AGM85].

Table 1 gives examples of skeptical revision. The first column specifies the original knowledge
base, but with atoms already renamed. The second column gives the revision formula, while the
third lists the determining’(Q set(s), and the last column gives the results of the revision. For the
first and last column, we give a formula whose deductive closure is the corresponding belief set.

K’ a EQ K+a
/ / —_

P Ag —q {p=7r} pA—q
»'=q| —q {p=v,9=4d} | pA—q
pPVd |pV-q| {p=v,9=4d} |p=—q
pPANg |pVg|{p=p} {a=d} | p=q

Table 1: Skeptical revision examples.

In detall, for the last example, we wish to determine

{pAqtt+(—pV—q). 1)

We find determining maximal sefsQ) C {p = p’, ¢ = ¢} such that

PNy U{-pV g} UEQ

11



is consistent. These ar&Q; = {p = p'} andEQ, = {q = ¢'}. Accordingly, we obtain

{PAGH(pV =g = Nic (' AU {=pV =gt UEQ;) N Lp
= Onh(p=—q).

In this example there are two choice extensi@gngp A —¢) andCn(—p A ¢). This raises the ques-
tion of the usefulness of choice revision compared to general revision. A choice reasoner may be
expected to be faster than a full, skeptical, reasoner, since only one extension is generated. How-
ever the conclusions obtained from a single extension may be overly strong, since they won’t be
tempered by those in other extensions. In belief revision this may be less of a problem than, say,
in nonmonotonic reasoning: the goal in revision is to determine the true state of the world; if a
(choice) revision results in an inaccurate knowledge base themaccuracy will presumably be
detected and rectified in a later revision. So, over several revisions, choice revision may converge
to the true state of the world as quickly as skeptical revision. Hence for a land vehicle exploring a
benign environment, choice revision might be an effective part of a control mechanism; for some-
thing like flight control, or controlling a nuclear reactor, one would prefer the more conservative
skeptical revision.

Contraction is defined similarly to revision.

Definition 4.3 (Contraction) Let K be a knowledge base amada formula, and le{ E; )<, be the
family of all belief change extensions(df, (), {a}). Then, we define

1. K—a=E; as a choice contractioof K by « with respect to
some selection functianwith ¢(1) = i.

2. K—a=(),E; asthe(skeptical) contractioof K by c.

A choice contraction represents a feasible way in which a knowledge base can be contracted to
incorporate new information, while the intersection of all choice contractions represents a “safe,”
skeptical means of taking all choice contractions into account.

Table 2 gives examples of skeptical contraction, using the same format as Table 1. For the

K’ Q EQ K-a
PN q {p=7} P
PAGAT [ pVyg {r=1"} r

PV |pAg| {p=p.9=d} |pVyg
A pAgl{p=rt {e=d} | pVy

Table 2: Skeptical contraction examples.

first example we wish to determide A ¢} —q. To compute the belief change extensiong{gf A
q}, 0, {q}) we rename the propositions{p A ¢} and look for maximal subsefsQ of {p = p/, ¢ =
q'} such thaf{p’ A ¢'} U {—¢} U EQ is consistent. Thu&Q = {p = p'}, yielding
{pAat—q = Ch({P AdIUDU{p=p})NLp
= On({p}).
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We thus gep, along with all of its logical consequences.

The general approach, witty'| > 1, can be immediately employed to expresdtiple contrac-
tion [Fuh88], in which contraction is with respect to a set of (not necessarily mutually consistent)
sentences. Hence we can use a belief change scenario of th¢Aofin{a, —«}) to represent a
(say)symmetric contractiofKM92] of « from K. See Section 4.4 for a related discussion.

4.3 Properties of Revision and Contraction
With respect to the AGM postulates, we obtain the following.

Theorem 4.2 Let 4 and . be given as in Definition 4.2,
Then-+ and -, satisfy the following postulatés.

1. (K+1) to (K+4), (K+6), (K+7)
2. (K+5) K+a =K, ifft K=K, or -« (a weaker version of K +5)).

3. (K+6) If - K; = Ky and- o = g thenK,+a = Ky+03
(a stronger version of K +6)).

Hence the basic AGM postulates are (effectively) satisfied, while one of the two supplementary
postulates is not. The following is a counterexampleio-g) [KM91, p. 272]:

K = On((pAgATAS)V(pA—=gA—1rAN=s)) ,
a = (("pA-gATAS)V(PA-gA-TA=S)V(pAogATA-S),
B = ("pA=gATAS)V(PA-gA—TA-S).

So(K+a)+fis(pA—gA—-rA-s)while K+(aAB)is(mpA=gArAs)V (pA=gA—rA=s).
We obtain analogous results ferand—. with respect to the AGM contraction postulates:

Theorem 4.3 Let — and —. be given as in Definition 4.3.
Then,— and —, satisfy the following postulates.

1. (K—1)to (K-3), and(K—6),

2. (K—4) If+ K # K, andi/ ¢ theng & K—¢ (a weaker version ofK —4)).

3. (K—6) If - K; = Ky andr o = gthenK;—a = K,—( (a stronger version of K —6)).
In addition, — satisfies the following postulate.

4. (K-7) K-anK=-3C K=(aAp).

8If K, andK, are sets of formulas, we takeK; = K, to mean thaf; I- o, Vo € K», and vice versa.

4In Definitions 4.1 and 4.2, we have given what seems to us to be the most natural approach to (consistency-
based) revision. These definitions yield a slightly weaker versidiof5). To obtain(K+5) one can either modify
Definition 4.1 so that whei®3 is inconsistent the belief change extension consists of just the closuteaf as in
[KM91], simply assume thak is consistent.

13



For —., we have the following results, corresponding to AGM postulétés 7) and (K —8).
Theorem 4.4 For any selection function, there is selection functioti such that
1. K~ (anB)=K-—wa o K-—(aAfB)=K-upj3
2. F K—(aAB)t —athenK—(aAB) = K—ua.
The controversial recovery postuldt& —5) is not satisfied; a counterexample is given by
K=0O(pANq), a=pVg.

We obtain(K —a) + a = Ch(p V q) . Hencep € K butp € (K—a) + a.
We also obtain the following (near) interdefinability results:

Theorem 4.5 (Levi Identity) K+a = (K——a) + a.
Theorem 4.6 (Partial Harper Identity) K—a C K N (K+-a).

The following example shows that equality fails in the Harper IdentityKif= p A ¢ A r and
a=pAg thenK—a = (pV q) Arwhile KN (K+-a) = (p = —q) A r. Similar results are
obtained for choice revision and contraction by appeal to appropriate selection functions.

The operato#- provides a (near) syntactic counterpart to the minimal-distance-between-models
approach of [Sat88]. For two setsandT’, let SAT be the symmetric differencéSUT)\ (SNT).
For formulasy, 3, define

A", ) = minc({MAM; | My € Mod(a), My € Mod(3)}),
where we identify a model with the set of literals true in the model. Then, we have:

Theorem 4.7 Let B = (K, R, () be a belief change scenario ifip where X' # K, and let
(EQ;):cr be the family of all sets of equivalences, as given in Definition 4.1.
Then,we have {{peP|(p=p) € EQ;} |icl} = A" (K, R).

Corollary 4.8 For any K anda, K+a = K+,a where+, is the Satoh revision operator.

This correspondence provides a semantics for a restriction (viz. skeptical revision) of our general
approach. However, we emphasise that the approaches are distinct. First, contraction is expressed
here in terms of belief change scenarios, a topic not addressed in Satoh’s or other distance-based
approaches. Theorem 4.6 shows that contraction can’t simply be introduced via the Harper Identity
without violating Definition 4.1. As we show in the next section, the implementation of contraction
is quite different from that of revision. Lastly, the choice approach, “joint” revision and contraction,
and (below) integrity constraints, are not readily expressed in distance-based serantics.

Since we can determine a revision ®rery K anda, the approach clearly supports iterated
revision. Indeed, there are nontrivial results concerning iterated revision that hold for the present
approach. For exampfewe have:

5An analogy may be drawn to Theorist [P0088] or the causal calculator [GLMTO02]. These approaches begin from
independent intuitions, yet are expressible by fragments of default logic or extended logic programs, respectively.

6This theorem relies on that fact that we can express knowledge bases and the results of revision as formulas; this
is covered in the next section.
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Theorem 4.9 Let + be defined as in Definition 4.2. Then, we have
1. (a+08)+a = f+a.
2. B+ (B+a) = fa.
3. (a+f)+a = at(f+a).

A revisiona+43 is often interpreted as comprising that partiahat in some sense is “closest” or
“most similar to” the knowledge base given by Under this readingia+3)-+« is the revision

of that part of$3 that is closest tav, by «; Part 1 of the theorem then says that this revision is the
same ag}a. In other words, the part of that plays a role in the revisiofi-« is given bya+/.
Theorem 4.9.2 has an analogous reading, that the parthwdt plays a role in the revisigfi-« is
exactly given by3+«. Combining Theorem 4.9.1 with the simple resgta = a+(3+a) yields
Theorem 4.9.3. See [DS02] for a further discussion of iterated revision in this framework.

4.4 Integrity Constraints

Definition 4.1 allows simultaneous revision and contraction by sets of formulas. This in turn leads
to a natural and general treatment of integrity constraints. There are two standard definitions of a
knowledge basé satisfying a static integrity constraii”'. In the consistency-basegpproach

of [Kow78, SK87], K satisfies/C iff K U {IC} is satisfiable. In thentailment-basedpproach

of [Rei84], K satisfies/C iff K + IC. Neither definition is wholly satisfactory; as well, there

are others [Rei87a]. [KM91] shows how entailment-based integrity constraints can be maintained
across revisions: given an integrity constraiigt (represented as a propositional formula) and
revision functiont, a revision function-"“ which preservesC is defined by K +'“a = K-+(an

IC). In our approach, we can define revision taking into account both approaches to integrity
constraints.

Corresponding to Definition 4.2 (and ignoring the choice approach) we obtain:

Definition 4.4 Let K be a knowledge base,a formula, and/ C,, IC, sets of formulas. L&tZ; )<,
be the family of all belief change extensiong &t {a} U IC., IC.) whereIC,. = {4 | 6 € IC.}.

Then, we defingd + /%% = Nic; Ei as therevisionof K by o incorporating integrity
constraints/ C, (entailment-based) anflC, (consistency-based).

[SK87] assumes that the set of consistency-based integrity constraints is mutually consistent; in
our approach this would correspond to considering belief change scenario

(K, {a} UIC., {~ Nyesc, #}) instead of (K, {a}UIC,,IC,).

That s, in our approach, elementsidf. are individually consistent with respect to a belief change
extension. This permits for exampl€’'. = {p, —p} to be a nontrivial set of consistency-based
integrity constraints (in which the resulting knowledge base remains uncommitted with regards the
truth value ofp). The next theorem shows that integrity constraints preserve their respective forms
of integrity.
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1Ce,1C,

Theorem 4.10 Letir( ) be defined as in Definition 4.4. Then, we have

1, (Kir(’Ce’ICC)a) - IC,.

2. If Kt/ 1 then:
for everyy € IC.,: if we havelC, U {a} I/ =y then (KJ}UC“ICC)@) b —y.

Finally, and in contrast with previous approaches, it is straightforward taladamicintegrity
constraints, which express constraints that hold between states of the knowledge base before and
after revision. The simplest way of so doing is to add the negation of such constraints to the
setC in Definition 4.1. To state that i& A b is true in a knowledge base before revision tlken
must be true afterwards, we would aéda’ A b D ¢) to C. Note however that the addition of
dynamic constraints may lead to an operator that violates some of the propertieEmfexample
Oh(a) +-a with dynamic constraint’ O « leads to an inconsistent revision.

5 Implementability Considerations

In this section we address general implementability issues. First we consider the problem of repre-
senting the results of revision in a finite, manageable representation. Second, we address limiting
the range of?(). Following this we present a high-level algorithm for implementing the approach;

as well we show how the approach can be expressed in Default Logic. Two specific implementa-

tions are briefly reviewed, and we finish by giving several complexity results.

5.1 Finite Representations

Definitions 4.1, 4.2, and 4.3 provide a characterisation of revision and contraction, yielding in
each case a deductively-closed belief set. Here we consider how the same (with respect to logical
equivalence) operators can be defined so that they yield a knowledge base consisting of a (finite)
formula. It proves to be the case that, for formulagnd«, we can define choice revision so that
the size of K 4.« is no greater than the sum of the sizegofinda for any selection function.
Informally the procedure is straightforward, although the technical details are less so. A knowl-
edge basé is now represented by a formula. For simplicity we lightly abuse notation in this sec-
tion, and allow the first argument of a belief change scenario to also be a single formula. Whether
a single formula or set of formulas is intended will be clear from the context.
Via Definitions 4.1 and 4.2 we consider maximal sBtg where{ K’} U{a}UEQ is consistent.
For each such s&t(@, we carry out the substitutions:

e forp =9’ € EQ, substitutey uniformly for p’ in K7,

e forp =9’ & EQ, substitute-p uniformly forp’ in K’.
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The result of these substitutions infd' A « is a sentence of size |K| + |«| in languagely
and whose deductive closure is equivalent to (some) choice revision. The disjunction of all such
sentences (and so considering all possible BE¥is equivalent tak +a.
Observe that any set of equivalende® induces a binary partition of its underlying alphabet
P, namely(Prq, Pgg) With Prg = {p € P | p = p) € EQ} andPyg = P \ Prq. Given
a belief change scenariB along with a set of (determining) equivalences); (according to
Definition 4.1), we define fop € Lp, that[¢]; is the result of replacing ip each proposition
p € Pgg; by its negation-p.

Definition 5.1 Let B = (K, R, () be a belief change scenario ifi, and let(EQ;);c; be the
family of all sets of equivalences, as defined in Definition 4.1. Then, we define

1. [B]. as [K, for some selection functianwith ¢(1) = k.
2. [B] as V[K];
Accordingly, we define
1. [(K,{a},0)].Aa as the finite representation &f-+.« and
2. [(K,{a},0)] Aa asthe finite representation af+a.
We have the following result.

Theorem 5.1 Let K, € Lp. Then, for(EQ;);c; as given in Definition 4.1, we have

Kta = [(KA{a},0)Ae = \/[K|iAa

Consider{p A q}+(—pV —q). SOB = ({p A q}, {—p V —q}, D). We obtain:
[B] A (=pV —q) = [(pA=q)V (=p A Q)] A (=pV —q) = (p=—q).

Contraction is handled somewhat differently. This is not surprising, given that revision and con-
traction are not fully interdefinable (Theorem 4.6). In revision we replace each atomic proposition
in EQ; by its negation ink. For contraction, we need to substitute irtoall possible combi-
nations of truth value assignments for all element&@,. As [Lin00] points out, this notion of
“forgetting” was first defined by Boole in 1854; it has reappeared in [Web86, LR94, Lin00].

Given a belief change scenari a set of equivalencds(); (according to Definition 4.1) along
with its induced partitionPxq,, Pgg;) of P, we consider the set of functions

I ={m, | m, : Prog, — {T,L}}.

For eachr;, € II; and¢ € Lp, we define|¢|™ as the result of replacing i each proposition
p € Pgg; by ™, (p). Note that every set of equivalences); induces a whole sdf; of such
mappingsr;,, amounting to all possible truth assignment$g;-.

(7]
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Definition 5.2 Let B and (EQ;);c; be defined as in Definition 4.1. Then, we define

1. [B]c as V,en, |K |4 for some selection functianwith ¢(1) = k.
2. |B] as Vimen KN
Accordingly, we define
1. |(K,0,{a})]. as the finite representation &f—.« and
2. |(K,0,{a})] as the finite representation &f—a.
We have the following result.

Theorem 5.2 Let K, € Lp. Then, for(EQ;);c; as given in Definition 4.1, we have

K-a = [(K0{a})] = \/ [KJ.

Consider(p A q)—q. We obtain

[ {pAah04a}) | = (eAL)V(PAT) = p.

Theorems 5.1 and 5.2 show that revision and contraction can be defined with respect to syn-
tactic objects (viz. a formula foK) yet are essentially independent of syntactic form. That is,
whether a knowledge base is represented by a formula, or a set of formulés,=f K, and
a; = oy then K +a; = Ky+a, (and similarly for contraction). Hence in a certain sense the
approach combines the advantages of base revision [Neb92] and syntax-independent approaches:
knowledge bases and formulas can be represented arbitrarily, yet the results of belief change are
independent of syntactic form.

5.2 Limiting the range of EQ

Intuitively, if an atomic sentence appears in a knowledge babat not in the sentence for revision
«, Or vice versa, then that atomic sentence plays no part in the revision process. This is indeed the
case here. In the following, we show that for computing a belief change extension of belief change
scenarioB = (K, R, C), we need consider just those atoms commoR tand toR U C'.’

Let P(¢) be the atomic sentences in formula, or set of formutasRecall the notation: for
a € Lp, the formulac’ is obtained by replacing every atomic sentepda « by p’. This is
extended to: folQ C P, the formulad/[Q] is the same as except that for every € Q, where
a hasp, o/[Q] hasp’. This notation is extended to sets of formulas in the expected fashion.
Definition 4.1 is modified to apply to a restricted set of atoms:

’In a related but orthogonal vein, [dV93, Par99] split a knowledge base into (effectively) relevant and irrelevant
parts. Such techniques could also be used to improve an implementation. We don’t pursue the matter here; however
see Section 6 for a discussion.
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Definition 5.3 Let B = (K, R, (') be a belief change scenario fy> and letQ C P.
Define£Q< as a maximal set of equivalencBg)© C {p = p' | p € Q} such that

On(K'[QURUEQ®)N(CU{L}) = 0.
Then
On(K'[QIURUEQ®) N Lp

is a(consistent) definitional extensiai B with respect taQ.
If there is no such set'() then B is inconsistentvith respect ta@ and L is defined to be the
sole belief change extension Bf

Similarly we define vocabulary-restricted revision:

Definition 5.4 (Vocabulary-Restricted Revision) Let K be a knowledge base,a formula, and
Q C P. Let(E;);c; be the family of all consistent belief change extensiongsof a}, ) with
respect toQ. Then, we define

1. Kircga =FE; as achoice revisiorof K by « with respect to
some selection functianwith ¢(7) = ¢ and with respect t@.

2. K+% = Nic; Ei  as the(skeptical) revisiorof K by o with respect taQ.

Vocabulary-restricted contractimfwf2 andég) is defined in the obvious analogous fashion.
The next result shows that one obtains the same belief change extensions if the “context” of
change is restricted to atoms commorif@and R U C.

Theorem 5.3 Let K C Lp anda € Lp. LetQ = P(K) N P(«). Then, we have
1. Kia = K+%a.
2. K-a=K-°a.

So for belief change, we need consider just the atomic sentences comrRoartd toa; we can
ignore (with regard4/(Q) other atomic sentences.

We can combine Theorems 5.1 and 5.3 in the obvious fashion to obtain a finite, vocabulary-
restricted formulation of revision that is equivalent to the original. We extend our previous notation
as follows: Given a belief change scenaBoand forQ C P, let EQ; be a set of (determining)
equivalences based @ (according to Definition 5.3). Define far € Lp, that[¢]2 is the result
of replacing ing each propositiop € Qx5 by its negation-p.

Definition 5.5 Let B = (K, R, () be a belief change scenario and [g1Q;).c; be the family of
all sets of equivalences with respeci@o= P(K)NP(R), as given in Definition 5.3. Then, define

1. [B]2 as [K]2 for some selection functianwith c(1) = k.
2. [B]? as Vi [K]?
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Accordingly, we define
1. [(K,{a},0)]2Aa as the finite representation &+ 2o and
2. [(K,{a},0)]2 Ao as the finite representation af+a.

We have the following result.

Theorem 5.4 Let K, € Lp, and letQ = P(K) NP(«). Then,

Kia = [(K{a}0)]1%ra = \/[K]®Aa

el
for (EQ;):cr as given in Definition 5.3.
Consider an extension to example ({):A ¢ A r}+((—=p V —q) A s). We haveQ = {p, ¢} and

[BI2A((-pV =) As) = rA[(pA=qQ)V (~pAQ]A(=pV—=g)As
= (p=—-q) AT As.

Notably, in determining the revision, the(Q) sets are drawn frorfip, ¢} only.
A finite, vocabulary-restricted version of contraction, obtained by combining Theorems 5.2 and 5.3
and equivalent to the original, is similarly obtained. We omit the details.

5.3 Algorithm

The results of the previous subsections lead to an algorithm for computing a belief change exten-
sion for an arbitrary belief change scenalioWe have:

Function: BeliefChangeCompute a belief change extension for given belief change scenario.
Input: Belief change scenariB = (K, R, ()
Output: ForinputB, a formula equivalent to some belief change extensioR.of
Using:
FunctionAtoms(S) — Returns the set of atoms in the set of formufas
FunctionPrime(S, A) — S is a set of formulasA is a set of atoms.
ReturnsS, but where every atom € A is replaced by/'.
FunctionReplace(S, Aty, Aty) — S is a set of formulasAt,, At, are individual atoms.
ReturnsS with every occurrence ofit; replaced byAt,.

Function body:

1. ifKFLorRF L thenreturn L.

2.  In:=Out:= 0.

3. At:= Atoms(K) N (Atoms(R) U Atoms(C)).
4. K':= Prime(K, At)

5. foreacha € At do{

5.1 if { foreach ¢ € CU{L}
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we have K'URU{p=p |peInU{a}}t/ o }
5.2 then In:=1InU{a}
53 else  Out:=OutU{a} }
6 foreachp € In
6.1 K’ := Replace(K',p', p).
7 for each p € Out
7.1 K’ := Replace(K',p', —p).

8  return ((/\QGK, @) A </\5635>> :

This algorithm allows to generate a belief change extension in nondeterministic polynomial
time. In other words, an extension can be computed by a deterministic polynomial Turing machine
which uses the answers given by an NP oracle. The oracle is in charge of performing the con-
sistency and entailment checks at 1 and 5.1, which are computations doable in nondeterministic
polynomial time. It is clear from the algorithm that only a polynomial number of calls to the oracle
are needed (see also Section 5.6). Note that the selection function is left implicit in Line 5; it is
realised by the particular order chosen when treating the atoms in

5.4 Belief change scenarios and default logic

As pointed out in Section 3.3, our approach falls within the category of consistency-based rea-
soning methodologies. As we show now, there is an intimate connection between belief change
scenarios and default theories in Default Logic [Ref8(]he following theorem makes this pre-

cise by showing that there is a 1-1 correspondence between the set of consistent belief change
extensions of a belief change scenarios and the extensions of a particular default theory.

Theorem 5.5 Let B = (K, R, C) be a belief change scenario, whete= {¢1, ..., ¢,}.
Let (E;);cr be the family of all extensions of default theory

({ :pEplv_'(Zﬁl?"‘?_'gbn
p=p

Then(E; N Lp)<; is the family of all belief change extensionsifand vice versa.

pEP},K’UR) .

Similar (yet unconstrained) default theories were also used in [BS98] for modelling different forms
of paraconsistent reasoning.

5.5 Implementations

There are two prototype implementations available for computing the results of belief change op-
erations. First, belief revision and belief contraction operators have been axiomatised by means
of quantified Boolean formulas [DSTWO1], in that for both the general approach and for specific
operators, a quantified Boolean formula is given such that satisfying truth assignments to the free

8This section assumes a basic familiarity with Default Logic.
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variables correspond to belief change extensions in the original approach. Thus, in this case the
problem of determining the results of a belief change operation is reduced to that of satisfiability.
This axiomatisation also allows us to identify strict complexity bounds for the considered reasoning
tasks described in the next subsection. The results given in Sections 5.1 and 5.2 are implemented
as a special module of the reasoning syst@diP [EETWO0O], a prototype tool for solving various
nonmonotonic reasoning tasks based on reductions to QBFs.

The second implementation, call@®@BA [DHSO02], is implemented in Java. The program was
originally implemented as a stand-alone application, after which an applet interface was designed
that is suitable for testing any belief revision software. The interface allows the user to enter
sentences to the knowledge base or the revision list through a text box; then they can simply click
a button to perform the revision. The revised knowledge base appears in a preview window, and
can be subsequently saved. In this manner, iterated revision can be easily carried out. Results from
the program may be displayed without simplification, with (limited) simplification, or in CNF or
DNF. The implementation is intended as a proof-of-concept, and there is room for considerable
improvement, to be addressed in later work.

The prototype implementations can be accessed from

http://lwww.cs.sfu.ca/ ~cl/software.htm

5.6 Complexity

We consider briefly the complexity of several decision problems in general belief change scenarios,
as well as restrictions to revision and contraction. Specifically, we deal with the following basic
reasoning tasks:

DEFEXT: Decide whether a belief change scendsibias a consistent belief change extension.

CHOICE: Given a belief change scenaridand some formula, decide whethep is contained
in at least one consistent belief change extensiaf.of

SKEPTICAL: Given a belief change scenariband some formula, decide whethes is contained
in all consistent belief change extensiongf

The above general tasks can also be relativised to analogous tasks for revision (ceaFEkR
RcHoICE, and RSKEPTICAL respectively) and contraction (EFEXT, CCHOICE, and GSKEPTHK

CAL). The following complexity results are obtained in [DSTWO01], strengthening and extending
those discussed in [DSO0O]:

Theorem 5.6 We have the following completeness results:
1. DEFEXT, RDEFEXT, and CDEFEXT are NP-complete.
2. CHOICE, RcHoICE, and CCcHOICE are YX5-complete.

3. SKEPTICAL, RSKEPTICAL, and CSKEPTICAL are IT5-complete.
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Informally, the above complexity bounds are the results of two factors. First, propositional
satisfiability is NP-complete. To this end, we have not yet addressed restrictions on the syntactic
form of K or a; however see [EG92]. The second results from the determination of the sets
(EQ;):cr. Of considerable heuristic value in this case is the fact that (via Theorem 5.3) we can
restrict these sets to the atoms commoitanda.

Note that our algorithm from Section 5.3 allows for deciding the first group of problems, viz.
DEFEXT, RDEFEXT, and MEFEXT; in addition, it provides us with some belief change extension.

6 Related Work

In Section 2 we reviewed the area of belief revision, concentrating on its theory. Here we con-
tinue the discussion by comparing our approach with other specific approaches. Previous work on
implementing belief change can be divided into two groups, essentially consisting of implemen-
tations of non-base revision and of base revision. The former group typically have good formal
properties (for example, conforming to the AGM postulates) but with inefficient implementations,
while the latter group may violate some pertinent postulate (often syntax-independence), while
being expected to perform reasonably well. We survey this work in some detail since we claim
that our approach bridges these categories, in that we have good formal properties (in particular
syntax-independence) yet an implementation may be expected to perform reasonably.
Approaches that satisfy the AGM postulates (or, for update, KM postulates) generally imple-
ment a distance-based approach. For example, [CW94] implements the PMA approach to update
[Win88] in a process that mimics the original definition: for each model of the knowledge base,
the closest models of the update formula are determined; the union of all such models is the new
knowledge base. The resulting algorithm satisfies the KM update postulates. However, repre-
senting a knowledge base by its set of models is not going to be a compact, nor intuitive, way of
representing a KB in general. The approach also allows entailment-based integrity constraints.
[dV93] provides a syntactic characterisation and algorithm for most of the distance-based ap-
proaches to revision and update. The formula to be incorporated is assumed to be in DNF; as well
the algorithms rely on a “relevant” portion of the knowledge base (see below) being in DNF. Hence
these algorithms may require an exponential time step, and exponential space, that our’'s do not.
Revision or update by formula is restricted to a “relevant” portion of the knowledge base; this
consists of those clauses in the knowledge base sharing atomsa watil thems),, along with,
recursively at Step + 1, those clauses sharing atoms with clauses;if This is distinct from
our approach, wherg(@) sets are drawn just from those atoms common to the knowledge base and
formula for revision. Entailment-based integrity constraints are handled in the following manner:
First the revision without integrity constraints is computed. If the integrity constraints are true in
the result, the process halts. Otherwise the revision is recomputed with the original formula con-
joined with those integrity constraints that didn’t follow after the original revision. This process is
repeated until all integrity constraints are entailed.

9[Par99] does something similar aplitting the language of a theory. To incorporate del Val’'s or Parikh’s heuristic
in our algorithm of Section 5.3: Prior to Line 4 would be split into relevant and irrelevant parfs,.; and K;,.,;
K.,..; would be primed and assigned&d in Line 4; and in Line 8 K,.- would be returned as an additional conjunct.
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[Lib99] presents a framework in which revision, update, and merging of knowledge bases may
be jointly expressed; contraction and erasure are not considered. (As Section 4.3 shows, one can't
just use the Harper Identity to obtain these latter operations.) The operators are expressed in terms
of a distance-based semantics, in which the AGM (or KM) postulates are claimed to hold. Update
corresponds to Forbus’ approach [For89] while revision appears to correspond to Dalal’'s approach
[Dal88].:° As with [CW94], the output of the system is a set of models.

In the above-cited works, the requirement that the knowledge base be in DNF (or represented
by its models) will be impractical for many applications or for large knowledge bases. Often, one
would expect a knowledge base to consist of a large number of relatively small-sized assertions,
and so be relatively close to conjunctive normal form.

For belief base revision, the earliest work appears to be [FUV83], where a revision consists of
the formula for revision together with (the disjunction of) all maximal subsets of the knowledge
base that are consistent with the formula for revision; no model theoretic analysis is given.

With respect to implementations, [Wil95] provides a computational model for belief base revi-
sion based opartial entrenchment rankingg he dynamic behaviour of the system is described by
a procedure oadjustment Adjusting a sentence down in the ranking reflects a generalised notion
of contraction; adjusting upwards reflects a notion of increased acceptance. The adjustment of one
sentence may result in the adjustment of other sentences. The result is an intuitively-appealing
model for revising and contracting a finite base of beliefs although, as with other such approaches,
there is a syntactic sensitivity to how a ranking is expressed. For example the two rankings

Bi(¢p A1) =6, Bi(p V) =8 and  Ba(¢) = Bz(¢) =6, Ba(p V) =8

are equivalent, yet a contraction ©fin B; results in a contraction ap (since the formulay A
is adjusted downwards), while in the second case it does not.

[BDPO1] gives a framework in which belief change and fusion are expressed in the context of
possibility theory. The authors consider change both with respect to possibilistic belief sets and
to possibilistic belief bases. While complexity results and algorithms are not given, the syntactic
framework appears suitable for the realisation of a variety of belief change operators.

7 Conclusion

We have presented a general consistency-based framework for belief change, having the same
flavour as the consistency-based approaches to diagnosis or default reasoning. The approach cen-
tres on the notion of a belief change scenario, consisting of a triple of sets of fornitilas,

(K, R,C). Informally, K is a knowledge base that is to be modified so that the formulds in

are contained in (or implied by) the result, and the formula&’iare not. We focus initially on
approaches to belief revision, wheé| = 1 andC' = (), and to belief contraction, in whicR = ()

and|C| = 1. To determine a revisiok +«, the knowledge bas& and sentence are expressed

in separate languages. Given this, we syntactically force truth assignments to the atoms in the
languages of{ anda to coincide insofar as consistently possible. Lastly, we express the resultant

101t is suggested that Dalal revision is captured in [Lib99], but not in [LS00].
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knowledge base in the original language. There may be more than one way in which this process
may be carried out. This gives rise to two notions of revision: a choice notion, in which one such
“extension” is used for the revised state, and the intersection of all such extensions.

The approach is amenable for implementation: belief change can be expressed in terms of a
finite knowledge base; and the scope of a change operation can be restricted to those propositions
common to the knowledge base and sentence. Other considerations, such as splitting the language
of the knowledge base, are easily incorporated. We give an algorithm for computing a belief change
extension, and show how the approach may be realised in Default Logic. There are two prototype
implementations, one using quantified Boolean formulas, and the other providing a Java applet.

A primary contribution of the approach is that we combine theoretical and practical aspects in
a single system. Our revision and contraction operators have good formal properties, in particular
satisfying the majority of the AGM postulates. Notably, the result of a belief change is indepen-
dent of the syntactic form of the knowledge base and formula for change. As well, the approach
is amenable to implementation. For choice revision, the size of the revised knowledge base is
bounded by the sum of the size of the knowledge base and formula for revision. In general revi-
sion, the size of a resulting knowledge base depends further on the number of (choice) extensions.
This contrasts with previous implementations of non-base approaches, which may require expo-
nential space in a DNF representation or in listing a set of models. Unlike previous approaches, we
also consider contraction (along with arbitrary combinations of revision and contraction). Notably,
given our assumptions, contraction is not interdefinable with revision, and its implementation must
be handled differently from that of revision.

The approach allows for a simple, uniform treatment of integrity constraints, including consis-
tency-based and entailment-based static constraints, as well as dynamic constraints. The approach
trivially supports iterated revision, since belief change extensions are defined over all triples of
formulas. Although we do not do so here (but see [DS02]), it is straightforward to apply the
approach to other belief operations such as update, erasure, and merging.

A Proofs

A.1 Proofs of Section 4
Proof 4.1

1. LetEQ C {p = p' | p € P} be a set of equivalences determining some consistent belief
change extension o<, R, C).

Assume thatFQ # (), and letp = p' € EQ. By the maximality of £Q, we have that
K'URU{—-¢}UEQU{p =p'} F L forsomep € CU{L}. Thatis,K'"URU{-¢}UEQ
—(p =) orequivalentlyx” U RU {—=¢} UEQ F (p = —p).

2. This is an obvious consequence of the previous part in wWhick- 1.

3. Thisis an immediate consequence of the previous part: ginee £, we getEQ, # EQs,
from which the result follows.
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4. Any model of K U {a} overLp can be extended to a model &fU {a} U EQ over Lppr,
whereEQ = {p = p' | p € P}. Further, a model o U {a} U EQ over Lp_p is a model
of K’ U {a} U EQ. Since we are given that’ U {«} has a model, and sincgQ is the
maximum set of equivalences, it is, trivially, the only maximal set of equivalences.

5. LetEQ be a maximal set of equivalences determining a belief change extensgiBhibf{ oA
(}). By definition, K’ U EQ / a A 5. ThusK' U EQ I/ aor K" U EQ ¥/ 3. Further

K'UEQU{e}FaAp forany ec EQ. (2)

If K"UEQ/ othenEQ is a maximal (from (2)) set of equivalences determining a belief
change extension ¢f<’, 0, «).

Alternately, K’ U EQ t/ § and an analogous result holds for a belief change extension of
(K,0,5).

6. We are given thak” U EQ I/ «; henceK' U EQ t/ a A 3. Clearly EQ) can be extended
to a maximal set of equivalencds)* O EQ such thatK’ U EQ* I/ o A 3, and either
EQ*={p=yp |pePorK'UEQ*U{e}F aA(foreverye € EQ*. In either case,
EQ* determines a belief change extensio Bt (), « A 3).

7. if part: Let E, be a belief change extension @f, 0, {—~«}) given byCn(K' U EQ) N Lp
whereK’ U EQ I —a and soK' U EQ U {a} I/ L.

ThusCn(K' U EQ U {a}) N Lp satisfies the definition of a belief change extension of
(K, {a},0). As well,

Ei = Oh(K'UEQU{a})NLp
= Oh((Cn(K'U EQ) N Lp) U {a})
= @l(EQ U {Oé}) .

only-if part: LetE; = Oh(K' U EQ U {a})NLp be abelief change extension(df, {a}, 0).
ThusK' U{a} UEQ/ L.
Hence by Definition 4.1F, = Ch(K'U EQ) N Lp is a belief change extension of
belief change scenarids, ), {—~a}).
By the same argument as in the if part, we get that= Ch(F> U {a}).

Proof 4.2

We just give proofs for-; those for-+, follow as corollaries.

(K+1), (K+2), and(K+6)" are obvious.

For (K+3),if K - -athenK +a = Lp and soK+a C K + a.

So assume that’ I —a. By Theorem 4.1.4 there is a single consistent belief change extension
inwhichEQ ={p=p' | p € P}. Itfollows thatCn(K' U{a} U EQ) N Lpr = Cn(K U{a}):
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C: We obtain thatn(K’ U EQ) N Lp C On(K) by virtue of the fact that any model
of K’ U EQ is a model of’; the result then follows immediately.

DO: We need to show that if, for evetyc Lp, K U{a} F ¢thenK'U{a}UEQ F ¢.
This is the same as, for evegyc Lp, if K'U{a}UEQ I/ ¢ thenK U{a} t/ ¢,
or:

If K/U{a}UEQU{—¢}t/ LthenK U{a}U{-¢}t/ L.
But clearly any model ok’ U{a}UEQU{—¢} is also a model ok U{a}U{—¢},
from which our result follows.

HenceK+a = On(K U {a}) = K + «. This also established({+4).

For (K+5),if K = K, or ~athenK+a = K. Otherwise,K # K, andl/ —a, and so
K+a # K, by Definition 4.1.

For (K+T7), the postulate is trivially satisfied {fx+«) + 3 - L. Consequently assume that
(K+a)+ 8t L.

We must show thak +(a A 3) C (K+a) + 3, or, expanding via Definition 4.2,

(ﬂ On(K'U{a A B}U EQZ-)> NLp C Oh (((ﬂ On(K' U {a} U EQZ-)> N cp> U {5}) .

el el
Assume that
(OUE U{aABYUEQ;) k¢ where ¢ € Lp
iel

To conclude we need to show that

((ﬂ Cn(K' U {a} U E@n) n cp> U{B}F o

el
or that
(Cn(K'U{a} UEQ;) N Lp) U{B}F ¢ ©)
for every belief change extension @, {a}, 0).
We make use of the following lemma.

Lemma A.1 If EQ determines a belief change extensiori®f {a v 5}, 0), thenEQ determines
a belief change extension @K, {«}, 0) or of (K, {5}, 0).

Proof A.1 Immediate from Theorem 4.1.7 and Theorem 4.1.5 ]

Let EQ be a set of equivalences determining some belief change extens{én £}, () or
(K7 {(a A ﬁ) \ (a N _'5)}7 ®)

From Lemma A.1 we get thdt(@Q determines some belief change extensiotvof{a A 5}, D)
or (K,{a A —3},0).

In the former case we have by assumption tat’ U {a A 8} U EQ) F ¢ and saCn(K' U {a} U EQ)U
{B} F ¢ as required.
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If this case does not hold, théin (K’ U {a} U EQ) - - and scOn(K' U {a} U EQ)U{S}
1, thus trivially On(K' U {a} U EQ) U {8} + ¢.
|

Proof 4.3

We just give proofs for-; those for—, follow as corollaries, except as noted in Theorem 4.4.

(K—-1) and(K—6)" are obvious.

For (K—2) we need to show that if € K —a theng € K. As noted in the proof of K +3),
this amounts to showing that i U {—¢} I/ L then(K—a) U {=¢} I/ L, or: if K U {=¢} I/ L
then(,c (K" U EQ;) U{~¢} I L.

So letM be a model of{U{—¢} over the languagé». We construct a modél/’ of (", (K'U
EQ;) U {—¢} overLp,p by: M’ assigngrue top’ € P’ iff M assigngrue top € P. Obviously
then M’ is a model of K’ U EQ U {—¢} for EQ = {p = p' | p € P}, and soM’ is a model of
K'UEQ; U{-¢} foreveryEQ; C EQ, from which our result follows.

For(K—3),if a ¢ K thenK U {-a} t/ 1; henceK’' U {-a}U{p=p'|pec P} L;hence
K is the sole consistent belief change extensio(¥afi), {a}); henceK —a = K.

For (K—4)', assumeK # K, andl/ «. For belief change scenarids, ), {«}) we have
K' U {-a} I/ L; hence there is a maximal set of equivalené&g (Definition 4.1) such that
K'U{-a}UEQ L. HenceK' U EQ I/ o and soK —a I a.

For (K—7), let:

e FEQY, ..., EQ% determine the belief change extensions$gf ), {«})

e EQY ... EQP determine the belief change extension$ st 0, {3})

1. For eachFQ € {EQ%,...,EQ* EQY. ... EQP’} there existsfQ*’ D EQ that deter-
mines a belief change extension(é, ), {« A 3}) (Theorem 4.1.6).

2. Also for everyEQ that determines a belief change extensio/6f(), {a A 3}), we have
that EQ*® determines a belief change extension(éf, 0, {a}) or of (K, 0, {3}) (Theo-
rem4.1.5).

Assume that{ —a - ¢ and K- F ¢. Hence for evenyz(Q, as given in 1.K' U EQ + ¢.
As well, there isEQ™® D EQ (as specified in 1.) that determines a belief change extension of
(K,0,{a A 3}); and from monotonicity we also hav€’ U EQ*’ I ¢. From 2. we get that
every belief change extension @K, (), {a A 5}) has a corresponding belief change extension of
(K,0,{a})orof (K,0,{3}). It follows that for every belief change extension(&f, ), {« A 5})
determined byFQ* we haveK’ U EQ*  ¢. HenceK—a N K—3 C K—(a A 3). n

Proof 4.4
1. Thisis a corollary of Theorem 4.1.5.

2. Assume thaki —.(a A 3) I/ —a. Thus for some sebQ*° determining(K, 0, {a A 3}) we
haveK’' U EQ*’ I/ aand soK’' U EQ*® U {—-a} I/ L.
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Further if EQ*? # () thenK' U EQ** U {e} - a A B for anye € EQ*?; henceK' U EQ*° U
{e} F a.

S0 EQ™ = EQ*’ is a maximal set of equivalences determining a belief change extension of
(K,0,{a}). Hence there is a selection function(that choose47Q*) such thatk —.(a A
ﬁ) = K;C/Oé.

Proof 4.5

We have tha¥; is belief change extension 0K, 0, {~«}) iff On(E; U {«}) is a belief change
extension of K, {«}, 0) (Theorem 4.1.7).

Let (E;);c; be the family of all consistent belief change extensiongaf{«}, ). Then

K+oa = [(\On(E) = ()On(E:u{a})

icl 1€l

— ﬂ On(On(E)U{a}) = Cn (ﬂ On(E;) U {a}>
= Onh((K-a)U{a})
= (Kéa) + «.

Proof 4.6
We need to show the two parts:

1. K~a C K.
This is just (£ —2).
2. K—a C K+-a.

From Theorem 4.1.7 we get that there is a 1-1 correspondence between every belief change
extensionE; of (K,(,{«a}) and E; of (K, {—a},0), whereE, = Oh(E; U{«a}), and so
E, C Es.

Hence, if(E, ;);c;s is the family of all consistent belief change extension&rof(), {a}) and
(E2.):er is the family of all consistent belief change extensionsiof{«}, ), then

K;(X = ﬂEl,i g ﬂEQ’i = K—i-_\a.

el i€l

Proof 4.7
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D: Let{p,...,p,} € A" (K, R).
So there are model®/; of K and M, of R such thatV;AM; = {p1,...,pa}
Thus we have:

pE{pL,...,pn}y iff M Epiff Myl p
iff: My "plﬁ M,y + —-p.

Thus for K’ over L. there is a model/;| isomorphic to)/; such that
pe{p,...,pn} i M Fpiff My —p.
Let M" be the composition af/] and M, over language&»_»-. We obtain:

pe{pr,...,p,} iff M"Epiff M"F—p
iff: M+ = p.
Hence
pE€P\Ap1,...,pa} iffe M"Hp' =—p.
iff: M +p = p.

ThusEQ ={p=9p' |p € P\ {p1,...,pn}} IS asetof equivalences such thatu R U

EQ VY L. Aswell, since{p,...,p,} € A™*(K, R), we get forany & {pi,...,p,}, that
K'URUEQU{p =p'} F L. HenceE(Q is a maximal set of such equivalences, and so
determines some consistent belief change extensiéh of

C: Let B = (K, R, () be a belief change scenariofly where K # K, andR t/ L, and letEQ
be a set of equivalences as given in Definition 4.1.

Then there is an assignment of truth values to atom3in?’ where K’ U RU EQ t L.
For any modelV/” of K’ U R U EQ we have by definition:

p=p e EQ iff M'kFp=yp.
For modelM” as above, we define modélg, and M, over Lp by:
My Fp iff M'Ep and: MybFp iff M'bFp

Then:

1. M, is a model ofK (sinceM” is a model ofK”).
2. M, is a model ofR (sinceM” is a model ofR).
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3. M{AM, € A™*(K,R). (This follows from the maximality of(Q).)

From this it follows that{p € P | (p =p') € EQ} € A™™(K,R).

SinceE( is an arbitrary set of equivalences determining a belief change extensityroaf
result follows.

Proof 4.9

Notation: In Section 4.1, forv € Lp, we definedy’ as being the same asbut with all atoms
replaced by primed counterparts. Here (only) we extend the definitier&t»p: in the natural
fashion: Fora € Lp pr, o is the result of replacing in. each propositiop € P by the the cor-
responding propositiop’ € P’, and replacing each propositiphe P’ by the the corresponding
propositionp € P. Hencea = (a/)" and for a set of equivalencés), we haveE () = EQ)'.

We assume a finite language for expressing a belief change scenario and we rely on the fact
that a belief set in such a case can be finitely represented (see Section 5).
We begin with the following lemma

LemmaA.2 1. EQ determines a belief change extensionnef3 iff £Q deter-
mines a belief change extension®ia.

2. EQ determines a belief change extensiofof 3)+« iff EQ determines a belief
change extension gfi-a.

Proof A.2

1. This follows immediately from Definition 4.1.
2. Let EQ) be a maximal set of equivalences determining a belief change extension
of (a+03)+a.
Then(a+6) U{a} UEQ L.
So for(EQ),),e; determining the belief change extensionsef3 we have:
Nies (Cn({a'} U{BYUEQ;) N Lp) U{a} UEQ/ L.
Nyes (Cn({a’y U{BYUEQ;) N Lp) UEQY L (sincea = (o')).
Nyes (Cn{a’}U{BLUEQ;UEQ)N Lp) i/ L (sinceEQ = EQ).
For specificE@; we have thattQ; U EQ = L iff £Q; # EQ. Consequently
the above simplifies to:

({aFU{BYUEQ)N L) L.

Thus({#'} U{a} U EQ)N Lp ¥ L from which it follows thatE() determines
an extension of+a.

Since each step in the preceding can be replaced by an “iff” the result follows.
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1. Let(EQ;)cr be the family of all sets of equivalences determining extensiofs-ef3, {a}, 0)
andlet(EQ);) s be the family of all sets of equivalences determining extensiotgdf, {5}, 0).
Then:

(a+8)+a = ((On({a+BY U{a} UEQ:) N Ly

el

= ﬂ O”((ﬂ Cn({a} U{B} U EQ;) N £p> U{a}u E@) NLp
— NN ((Cr{a’} ULBYUEQ;) N Lp) U{a} UEQ) N Lp (4)

i€l jed

(4) is of the form(,.; M;c; ¥i; N Lp. From Lemma A.2.2, it follows, for specificand

J appearing in the intersections in (4), that; = Lpup if EQ; # EQ;. Moreover from
Lemma A.2.2, it follows that for every distindt(); (as indexed by the first intersection
in (4)) there is a£(Q); (indexed in the second intersection in (4)) such thal, = EQ);,.
Conequently we can simplify (4):

(4) = ﬂcw {3 U{BYUEQ;) N Lp) U{a}UEQ;) N Ly

= (On((n({a'} U{F} U BQ;) N Lp) U{a} UEQ)) N Ly
= ﬂCn {o'YU{BYUEQ,) U{a} UEQ;) N

Cn(Lp U {a} UEQ))) N Lp
= [ n((Ch({e} U{B}YUEQ)) U{a} UEQ;) N Lpup) N Lp

JjeJ

= (on(On({a} U{B}UEQ;) U{a} UEQ;) N Lp

jedJ

= (On(Cr({a} U{FIUEQ;)U{a} UEQ;) N Lp

JjEJ

= ﬂ Cn({a} U{FYUEQ;) N Lp

= (4.

2. The proof of this part proceeds analogously to the preceding part.

3. From Part (1) above we haye+3)+a = 3+a.

Since3+a F « we havef+a = Ch(a A (6+a)) by propositional logic. Fronik +4) we
get thatCh (a A (6+a)) = a-+(8+a), from which our result obtains.
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Proof 4.10
If K+ L then both parts of the theorem trivially hold.
Thus assume that t/ L. SincelC, U {y} U {a} I/ L for everyy € IC,, there is a belief

change extension ¢f<, {a} U IC,, IC,).
From Definition 4.1, we have thdt’ is true in every such extension, and every member of

1C, is consistent with every such extension. [

A.2 Proofs of Section 5

Proof 5.1
We make use of the following Lemma.

Lemma A.3 Let E; be a belief change extension of belief change scen&rie=
(K, R, C') with determining set of equivalences),. Then we have:

- ( AN w=r)r N\ = ﬁp’)> O (K'=[KT).
p=p'€EQ; P=p'¢EQ;
Proof A.3
Let M be amodel of\ _, cpo. (P = P') A N\pepzro, (P = —P).
[ K]; is the same a&” except that for every € Py, whereK mentionsp, [ K]; has
—|p_
1. Forp € Pgq, we have thatl/ assigns the same truth valuepgtan K’ asp in K,
and sop in [K ;.
2. Forp € Pgg;, we have that\l assigns the opposite truth valueptan K’ as it
does tgp in K. But this means that/ assigns the same truth valuegtan K’ as

Thus ) is a model ofK” iff M is a model off K;, from which our result follows.m

Let (EQ;):c; be the family of equivalences determing a belief change extensidd of
(K,{a},0). We have that
K+a = [((Oh({K'}U{a}UEQ:)N Lp.
1€l
As well,
(K, {a}, ) rna = \[Klira
i€l
We just need to show: Fdr; = On({ K’} U {a} U EQ;) N Lp a belief change extension &f
with determining set of equivalencéX);:
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1. On({K'}U{a} UEQ) NLp - [K]|; N and
2. {[K|ina} F ¢ for everyp € Cn({K'} U{a} U EQ;) N Lp.
For each part in turn:
1. From Lemma A.3 we have
- ( A e=)n N = ﬂp’)> O (K'=T[KT).
p=p'€EQ; P=p'¢EQ;

Hence,
{K'}UEQ;UEQ; - [K];. (5)

Since we havgd K'} U {a} U EQ; - p = —p' for every(p = p’) € EQ; by Theorem 4.1.1,
we obtain from (5) thaf{ K’} U {a} U EQ; F [K],.
Hence, we gef K’} U{a} U EQ; F [K]; A a.
By the definition ofCh(-), this means thatK'|; A a € Cn({K'} U{a} U EQ;).
SincealsdK|; ANa € Lrweget|K]|; Aa € On({K'} U{a} UEQ;) N Lp.
HenceOn({K'} U{a} UEQ;) N Lp F [K]; A .

2. Assume thap € On({K'} U{a} U EQ;) N Lp.
Thus¢ € L» and

{K'YU{a} UEQ; F ¢.
From monotonicity of classical logic it follows that
{K'YUu{a} UEQ; UEQ; F ¢.

Lemma A.3yields[[K];} U {a} U EQ; U EQ; - ¢.
Since|K'];,a, ¢ € Lp it follows that{[K|;, a} I ¢ as required.

Proof 5.2
Let (FQ;);c; determine belief change extensions®t= (K, (), {a}). We have that

K-a = ()Oh({K'}UEQ:)N Lp.

el
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As well,
(K, 0. {a})] = \/ \ K.

We just need to show that for each belief change extensiéghwith determining set of equiv-
alencestQ);:

h({KYUEQ)NLp = \/ |KJ.
TI']'EI—L;
only-if part: We show{K"} U EQ; - \/_ .y, | K]].
Let M be a model of K"} U EQ;.

Then there ist;, € 1I; that corresponds to the assignment of truth values to membé?s of
(and soP’) in Pgg;; let the corresponding disjunct M, ;[ K7 be | K|~

Since M is a model of EQ);, for everyp = p’ € EQ;, we obtain that\/ assigns the same
truth values to occurrences gfin K’ as top in | K |*.

As well, we have choseh so that for every € Pz, M assigns the opposite truth values
to occurrences gf in K’ as top in | K | .

Hence (using Lemma A.3)/ is a model of| K’ |¥ and soM is a model of\/ﬂjeni | K |7

if part: We show that if{ K’} U EQ; F ¢ for arbitrary¢ € Lp then{\/ﬂjem LKJ{} - ¢,
or equivalently, if{\/wjeni LKJ?} U{-¢} ¥ Lthen{K'} UEQ; U {-¢} I/ L.
So we need to find a modél, over the languag€, p:, of {aneni LKJ{} U {—¢} such
that M is also a model of K’} U EQ; U {—¢}.
Let M7 be a model ovet» of {Vmeni LKJ{} U {—¢}.

Forp € Pgg., M? coincides with a specific mapping;, € II;. As well, M” satisfies a
specific disjunct i |¥ of \/_ ;[ K 7.
We extendV/” to a modelM over Ly as follows.

1. M is the same as/” for atoms inP.

2. Forp = p' € EQ,, M assigns the same valuejfoas M7” does top.

3. The remaining atoms € P’ (and so fop = p’ € EQ);) are assigned according1@’s
assignment to atoms @1.

Thus from 1. we get thato is satisfied; from 2. we get th&t(); is satisfied; and from 3. we
get thatK” is satisfied.
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Proof 5.3
We make use of the following Lemmas.

Lemma A.4 Let EQ be a set of equivalences determining a consistent belief change
extension of belief change scenafio= (K, R, ().

Then{p=p' |pe P(K)AP(RUC)} C EQ.
(So if p is mentioned ink, but notR or C, or else inR or C, but notK, thenp = p’ € EQ for
any £ () determining a belief change extension®f (K, R, C).
Proof A.4
Assume otherwise. So there is a belief change extension of belief change scenario
B = (K, R, C) where for corresponding set of equivalené#g we have
1. dp e Pwherep € P(K),p ¢ P(RUC)andp =p ¢ EQ or
2. 3p € Pwherep ¢ P(K),p € P(RUC) andp =p' ¢ EQ.
For the first case, and fgr as above, we have from Theorem 4.1.1 that for some
pe CU{L}thatK' URU{—¢} UEQF —~(p=p)orK'URU{—-¢}UEQ I
(VD) A (=pV—p).
So:

K'URU{-¢}UEQ F+ pVyp (6)
K'URU{-¢}UEQ F —-pV-p (7)

We have thap ¢ P(R U {—¢}) by assumption, and clearly ¢ P(EQ), andp ¢
P(K'). That is,p doesn't appear on the left hand side-oh (6) and (7).

So from (6) we must have
K'URU{—-¢} UEQ} p'. (8)

(If this isn’t the case and<" U R U {—¢} U EQ t/ p' then there is a model/ of
K'URU{—-¢}U EQ thatisn't a model of/. Let M; be the same a%/ but assigning
false top. ThenM; is a model ofK’ U RU{—-¢} U EQ but not ofp Vv p’, contradicting

(6).)

Analogously, from (7) we derive
K'URU{—-¢} UEQF —p. 9)

But (8) + (9) givesK'URU{—-¢}UEQ F L, contradicting the fact that'() determines
a belief change extension.
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For the second case, we derive, as previously,

K'URU{~¢}UEQ + pVyp
K'URU{=¢}UFEQ + —-pV-p

Sincep ¢ P(K) by assumption, sp’ ¢ P(K’). As well, clearlyp’ € P(R U {—¢})
andp’ € P(EQ). Analogous to the first case, we obtain the contradiction

K'URU{-¢}UEQ + -p
K'URU{—-¢}UEQ + p.

Lemma A5 Let B = (K, R,C) be a belief change scenario and Iet= P(K) N
P(RUC).

For EQ C {p = p' | p € P} a set of equivalences determining some belief change
extension oB we have that, for every € C' U { L }:

On(K'URU{=¢}UEQ)NLp = On(K'[QURU{~¢} UEQ®) N Lp

whereEQC = EQ\{p=p |p & Q}.

Thus there is a 1-1 correspondence betweens@tand EQ< determining belief change exten-
sions of belief change scenati

Proof A.5

Only-if part: We show that any model df” U R U {—¢} U EQ is also a model of
K'[QU RU {-¢} U EQ°.
Let M be a model ofK” U R U {—¢} U EQ. From substitution of equivalent
formulas (here inEQ) we get thatk’ U EQ + K'[Q].
Thus sincel/ is a model ofK” U EQ itis of K'[Q].
SinceEQ< C EQ (Lemma A.4), andV/ is a model ofEQ), it is also of EQ<.
ThusM is a model ofK'[Q] U RU {—¢} U EQ°.

If part:  We show that for arbitrary € £p, any proof of K’'[QJURU{—=¢}UEQ® I- §
can be transformed into a proof &f U R U {—¢} U EQ + 6.
Letwy, ..., ¥, = d be a proof off from K'[Q] U R U {—¢} U EQ<.
We construct a proof of from K’ U RU {—¢} U EQ as follows.
Forv;, 1 < j < n we have the following cases.

1. = ¢;. We leavey; unchanged.
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2. ¢; € K'[Q]. It follows easily thatk” U EQ + v;. We replace); by a proof
(sequence of formulas) ef; from K’ U EQ.

3. ¢¥; = Rory; = {—¢}. We leavey); unchanged.

¥; € EQ2. We leave)); unchanged.

5. ®; results fromyy, ¢y, 1 < k, 1 < j by an application of modus ponens.
Since, by an induction hypotheses, we haye; are logical consequences
of K'URU{—¢}UEQ andy; isy, D 1;, we obtainK'URU{—¢ }UEQ F 1),
by modus ponens.

B

Hence we obtain a sequence of formulas where each formula is

1. atautology,
2. apremiss drawn from the skt U R U {—¢} U EQ, or

3. obtained from previous formulas in the sequence by an application of modus
ponens.

Hence we have shown that U RU {-¢} U EQ 6.

Let B = (K, {«a}, D) be a belief change scenario.

1. For-+. we have:

Let £; be a belief change extension 8fsuch thatK 4. = FE; for selection functiorr.
Then we have foE(Q); determiningE; that:

K'U{a}UFEQ;l/ L and
E;=On(K'U{a}UEQ;) N Lp.
From Lemma A.5 we obtain that
On(K'U{a} UEQ,)NLp = On(K'[QQU{a}UEQ?) N Lp.

HenceK'[Q] U {a} UEQS2 I/ L.

As well forp = p' ¢ EQ; we obtainkK’[Q] U {a} U EQ2 U {p = p'} + L, again from
Lemma A.5.

ThusE; = KJrCQa is a choice revision for selection functiemwith respect taQ.

2. For+, the theorem follows by noting that for belief change scenBrithere is a 1-1 corre-
spondence between belief change extensions determined by a set of equivaléneexl
the corresponding sétQ?2.

3. Proofs for—, and—, follow analogously to those for revision.
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Proof 5.4

From Theorem 5.1 we have thatia = \/,_; [K]; A o

Hence we just need to show thdt_, [K]; Aa. = .\, [K]R Aa.

We have, for anyE'Q; determining a belief change extension®f thatp € P(K) AP («)
implies thatp = p' € EQ;, orp = p’ € EQ, implies thatp € P(K) N P(a).

ThusE(Q), determines a belief change extensioBofvia Definition 4.1) iff £Q); determines a
belief change extension @f with respect toQ (via Definition 5.3).

From this it follows that (informally stated) Definitions 5.1 and 5.5 identify precisely the same
formulas, from which our result follows.

|

Proof 5.5
The proof relies upon the following lemma which follows easily from the results proven
in [Rei80].

Lemma A.6 Let W and E be sets of formulas and ldd be a set of default rules of the form
:ﬁm#“"” whereg, ¢, . .., ¢, are formulas.

Then, we have thal is an extension ofD, W) iff E = Ch(W U{B | L8ymn ¢ D’}) for

some maximal subsé?’ C D such that for every®¢.=n ¢ D' we have that:3 ¢ E and
—¢; & Efori=1.n.

Moreover, [Rei80] tells us that is consistent iffil is consistent.
Let B = (K, R, C) be a belief change scenario. Define

AB: ({ :pzpa_‘¢l7/"'7_‘¢n
pP=Dp

pGP},K’UR).

AssumeB is an inconsistent belief change scenario, thakis, R is inconsistent. Then, by
Definition 4.1, we have thaf» is the sole (inconsistent) belief change extensiofs oAccording
to [Rei80], the inconsistency df’'U R implies thatA g has a single (inconsistent) extensioa ».

For the remainder, assume thfiat U R is consistent.

only-if part: Let E be an extension ah 3.
According to Lemma A.6, we have that

E=Ch(K'URU{(p=p) | {0ttetn ¢ /1)

(p=p")

for some maximal subse®’ C {w
fori = 1..n.

We show thatrQ = {(p = p) | {85722 ¢ D'} determines a belief change extension
of Bsuch thatt' = EN Lp.

pE 7?} such that-(p = p') ¢ Fand—¢; ¢ E
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Infact, E = On(K' U RU EQ). By the theory of default logic, we getthAt= Ch(K’' U RU EQ)
is consistent, due to the consistency/0fu R. Thatis, L & Cn(K' U RU EQ).
Moreover, we get thak'Q is maximal in satisfying

Oh(K'URUEQ)NC =10.
As a consequencé;() determines the belief change extensioof B.
ifpart:  Let F' be a belief change extensionBfdetermined by='(). DefineE = Cn(K' U RU EQ).

Clearly, we have” = E N Lp.
By definition, £Q) is a maximal set of equivalences satisfying

On(K'URUEQ) N {é1,...,én L} =0.

That is,—¢; ¢ E fori = 1..n. Clearly, we also have(p = p') ¢ E forall (p =p') € EQ.
Given thatE'(Q) is also maximal with respect to the latter requirements, it induces a maximal

subsetD’ C {w (p=yp) € EQ} such that

p=p’

AE:@%KURU{@EﬂHiEﬂﬂJ@GD})

(p=p’)
According to Lemma A.6F is an extension of\ . [ ]
Proof 5.6 See [DSTWO01]. [ |
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