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Abstract

We present a general approach for introducing specificity information into nonmonotonic theories.

Historically, many approaches to nonmonotonic reasoning, including default logic, circumscription, and

autoepistemic logic, do not provide an account of specificity, and so fail to enforce specificity among

default sentences. In our approach, a default theory is initially given as a set of strict and defeasible

rules. By making use of a theory of default conditionals, here given by System Z, we isolate minimal

sets of defaults with specificity conflicts. From the specificity information intrinsic in these sets, a default

theory in a target language is specified. For default logic the end result is a semi-normal default theory;

in circumscription the end result is a set of abnormality propositions that, when circumscribed, yield a

theory in which specificity information is appropriately handled. We mainly deal with default logic and

circumscription although we also consider autoepistemic logic, Theorist, and variants of default logic

and circumscription. This approach differs from previous work in that specificity information is obtained

from information intrinsic in a set of conditionals, rather than assumed to exist a priori. Moreover, we

deal with the “standard” version of, for example default logic and circumscription, and do not rely on

prioritised versions, as do other approaches. The approach is both uniform and general, so the choice of

the ultimate target language has little effect on the overall approach.

1 Introduction

A general problem in many approaches to nonmonotonic reasoning is that they do not enforce specificity

relations among default assertions as part of their basic machinery. Consider for example where birds fly,

birds have wings, penguins must be birds, and penguins don’t fly. We can write this as:

B ! F; B !W; P ) B; P ! :F: (1)

From this theory, given that P is true, one would want to conclude :F by default. Intuitively, being a

penguin is a more specific notion than that of being a bird, and, in the case of a conflict, we would want to

use the more specific default. Also, given that P is true one would want to conclude that W was true, and

so penguins have wings by virtue of being birds.

Default logic [Reiter,1980], circumscription [McCarthy,1980], and autoepistemic logic [Moore,1985] are

examples of approaches that do not take specificity information into account. For example, in the naı̈ve

representation of the above theory in default logic, we obtain one extension (i.e. a set of default conclusions)

in which :F is true and another in which F is true. One is required to use so-called semi-normal defaults1

1See Section 4.1 for a definition of semi-normal defaults and the way they deal with unwanted extensions.
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to eliminate the second extension. However, it is up to the user to hand-code how specificity is dealt with.

[Reiter and Criscuolo,1981], for example, gives a partial list of ways of transforming default theories so that

unwanted extensions arising from specific “interactions” are eliminated.

There are more recent approaches to nonmonotonic reasoning, based generally on intuitions from prob-

ability theory or conditional logics, that deal with specificity in a very natural way. Moreover, in the past

few years there has been some consensus as to what should constitute a basic conditional system. This,

arguably, is illustrated by the convergence (or at least similarity among) systems such as those developed

in [Delgrande,1987; Kraus et al.,1990; Pearl,1990; Boutilier,1992a; Geffner and Pearl,1992], yet which are

derived according to seemingly disparate intuitions. A general problem with these accounts however is that

they are too weak. Thus in a conditional logic, even though a bird may be assumed to fly by default, a green

bird cannot be assumed to fly by default (since it is conceivable that greenness is relevant to flight). In these

systems some mechanism is required to assert that properties not known to be relevant are irrelevant. This

is done in conditional logics by meta-theoretic assumptions, and in probabilistic accounts by independence

assumptions. In other approaches there are problems concerning property inheritance, and so one may not

obtain the inference that a penguin has wings. While various solutions have been proposed, none are entirely

satisfactory.

Our approach is to use the specificity information determined by a conditional system to generate a default

theory in a nonmonotonic reasoning system, such as default logic, so that specificity is appropriately handled

in the latter approach. Hence we address two related but essentially independent questions:

1. How can a conditional system be used to isolate interacting defaults with differing specificity?

2. How can this information be uniformly incorporated in a theory expressed in a nonmonotonic reason-

ing system where specificity is not directly addressed?

For the first part, we consider System Z [Pearl,1990] as an example of a conditional system of defeasible

reasoning. For the second part, we consider first consistency-based approaches, as exemplified by default

logic [Reiter,1980]; subsequently we consider variants of default logic and other related approaches. Second

we consider minimization-based approaches, as exemplified by circumscription [McCarthy,1980], and again

variants and related systems.

We begin with a background theory made up of a set of strict rules R
N

= fr j �

r

) �

r

g assumed to be

true in every setting, together with a set of defeasible rules R
D

= fr j �

r

! �

r

g; where each �
r

and �
r

are

arbitrary propositional formulas. By means of System Z we isolate minimally conflicting sets of defaults

with differing specificities; the defaults in such a set should never be simultaneously applicable. Notably we

do not use the full ordering given by System Z (which has difficulties of its own, as described in Section 3.1),

but rather appeal to the techniques of this approach to isolate conflicting subsets of defaults. In a second

step, we use the derived specificity information to produce, for instance, a set of default rules in default

logic, or a classical theory that can be circumscribed, in such a way that specificity is suitably handled.

The framework described then is a general approach to “compiling” default theories, using a conditional

approach to determine specificity conflicts, into an approach to nonmonotonic reasoning where specificity

is not “automatically” handled.

This framework offers several advantages over earlier work. First, it is more general, in that it is applicable

to broad classes of systems, rather than to a specific system. In addition, within a specific system, the class

of specificity conflicts handled is broader than previous work, addressing for example the situation of a set

of less-specific defaults with a more-specific default. Second, specificity information is obtained by appeal

to an extant theory of defaults, and not simply some external user-specified ordering of defaults. So the

present approach provides a justification for these modifications. Third, specificity is added to default logic

(or autoepistemic logic, circumscription, etc.) without changing the machinery of default logic. That is,

the resultant default theory is a theory in default logic, and not for example a set of ordered default rules
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requiring modifications to default logic. Hence we effectively remain within the original formalism, and so

can take advantage of previous work (including implementations) concerning these approaches. In addition,

we prove that specificity conflicts are indeed resolved in a general fashion, leaving unchanged other conflicts

(as are found for example in a “Nixon diamond”).

In the next subsection we briefly cover background material, while Section 2 introduces our approach.

Section 3 shows how specificity conflicts are determined. Section 4 shows how specificity is compiled into

consistency-based approaches to nonmonotonic reasoning, while Section 5 does the same for minimization-

based approaches. Section 6 gives a brief summary. Portions of this work appeared earlier in [Delgrande

and Schaub,1994a; 1994b].

1.1 Default Theories

Knowledge about the world, given in a knowledge base �, is assumed to be divided into two sets:

R : Background knowledge, or facts or rules which are assumed to be applicable in every domain.

W : Contingent knowledge, or facts which are true in the case under consideration and which may vary

from case to case.

This is essentially the difference between necessary and contingent knowledge in modal logics [Hughes and

Cresswell,1968], or between probabilistic knowledge and conditioning knowledge in probabilistic reasoning

systems [Pearl,1989]. Background knowledge in turn consists of two sets:

R

D

: Default implications, or rules that are usually true but allow exceptions.

R

N

: Necessary implications, or rules which must be true in any setting.

This division is found in the various conditional approaches to default reasoning in Artificial Intelligence,

such as [Delgrande,1987; Geffner and Pearl,1992; Boutilier,1992a; Goldszmidt,1992] and less directly in

[Kraus et al.,1990].2 The background knowledge provides a generic world description. Elements of W are

formulas of classical logic. Elements of R
D

are formulas of the form � ! � while elements of R
N

are

formulas of the form �) �; where � and � are propositional formulas. The expression of elements of R
N

as rules is a convenience only since an arbitrary strict formula � can be expressed by > ) �. Note too that

we reserve � for classical (material) implication.

So a knowledge base is of the form � = hhR

D

; R

N

i;W i; where hR
D

; R

N

i represents generic world

knowledge and W represents case-specific knowledge. Our initial example is represented as:

R = hfB ! F; B !W; P ! :Fg; fP ) Bgi: (2)

It should be obvious how these sets would be mapped into a particular approach to nonmonotonic rea-

soning. In default logic, for example, elements of R
D

would be mapped into default rules, and everything

else would be considered as world knowledge; in circumscription, elements of R
D

would be mapped to

implications with ab propositions, while again everything else would be considered as world knowledge.

However, as the previous section pointed out, the “obvious” mappings are problematic in that specificity

is not properly handled. The purpose of this paper then might be seen as developing a general, provably

correct “compilation” scheme to address specificity for those approaches to nonmonotonic reasoning that,

as part of their formalism, do not.

2The roots of such approaches however extend at least as far back as [Adams,1975; Lewis,1973; Stalnaker,1968].

3



1.2 Related Work

Arguably, specificity per se was first specifically addressed in default reasoning in [Poole,1985], although it

has of course appeared earlier. As mentioned, we could have used a conditional system other than System Z

in our approach; however, System Z is particularly straightforwardly describable. Some approaches though

are too weak to be useful here. For example conditional entailment [Geffner and Pearl,1992] does not

support full inheritance reasoning, in that from fA ! B; B ! C; C ! D; A ! :Dg we cannot

conclude C by default from A. [Delgrande,1988] is unsatisfactory since it gives a syntactic, albeit general,

approach in a conditional logic.

Conditional approaches are founded, one way or another, on notions of preference or normality. Con-

ditional logics for default conditionals [Delgrande,1987; Boutilier,1992a], for example, are modal logics

[Hughes and Cresswell,1968; Chellas,1980] where we can view possible worlds as being ordered by a met-

ric of normality or unexceptionalness. A default conditional � ) � is true, roughly, if in the least worlds

where � is true, � is true also. For our example (1), at the least worlds where B is true, F is true also; at the

least worlds where P is true, :F is true. Since we also have that P ) B (we could as easily have P ! B),

it can be seen that the least P worlds must be more exceptional than (or less normal than) the least B worlds.

If we now say that � follows as a default inference from � in default theory R just when � is true in the least

� worlds, we obtain a form of default inference in which specificity is obtained and, for example, penguins

normally don’t fly whereas birds do.

These approaches are quite weak: since it is conceivable that green birds do not fly (i.e. there are models

where in the least green-bird worlds these birds do not fly), it does not follow by default that a green bird flys,

even though a bird does. While various approaches have been proposed to strengthen such basic systems,

including rational closure [Kraus et al.,1990], System Z, CO� [Boutilier,1992a], possibilistic entailment

[Benferhat et al.,1992], and conditional objects [Dubois and Prade,1991] none is entirely satisfactory. In

this regard, System Z is examined as an exemplar of these approaches in Section 3.1.

In default logic, [Reiter and Criscuolo,1981] considers various patterns of specificity in interacting de-

faults, and describes how specificity may be obtained via semi-normal defaults. However these patterns

are just commonly-occurring configurations of defaults, and there is no notion of this being a complete

characterisation. This work may be regarded as a pre-theoretic forerunner to the present approach, since

the situations addressed therein all constitute instances of what we call (in Section 3) minimal conflicting

sets. [Etherington and Reiter,1983] also considers a problem that fits within the (overall) present framework:

specificity information is given by an inheritance network, and this network is compiled into a default theory

in default logic (see Section 4.3).

More recent work develops priority orderings on default theories, including [Boutilier,1992b; Baader and

Hollunder,1993a; Brewka,1993]. However these approaches obtain specificity by requiring modifications to

how default logic is used. In contrast, we describe transformations that yield classical default logic theories.

Since these approaches are described in Section 4, they are introduced only briefly here. [Boutilier,1992b]

uses the correspondence between a conditional �
r

! �

r

of System Z and defaults of the form :�

r

��

r

�

r

��

r

to

produce partitioned sets of prerequisite-free normal default rules. One reasons in this approach by applying

the rules in the highest set, and working down. [Baader and Hollunder,1993a] addresses specificity in

terminological reasoners. This approach does not rely on conflicts between “levels”; rather a subsumption

relation between terminological concepts is mapped onto a set of partially ordered defaults in default logic.

[Brewka,1993] has adopted the idea of minimal conflicting sets described here, but in a more restricted

setting. In common with [Baader and Hollunder,1993a], partially ordered defaults in default logic are used;

however, for inferencing all consistent strict total orders of defaults must be considered.

Similar remarks apply to circumscription, and to other related approaches. Circumscription was intro-

duced in [McCarthy,1980], and the use of ab predicates in prioritised, parameterised circumscription to

address specificity was addressed in [McCarthy,1986] and [Lifschitz,1985]. [Grosof,1991] extended priori-
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tised circumscription to deal with partial orders. These approaches are discussed more fully in Section 5.3.

Lastly there are direct or path-based approaches to nonmonotonic inheritance, as expressed using inheri-

tance networks [Horty,1994]. It is difficult to compare such approaches with our own for two reasons. First,

inheritance networks are concerned, broadly, with general notions having to do with arguments or nonmono-

tonic inference. Our interests are narrower, being limited to specificity. Second, the account of meaning for

such networks is most often given in terms of paths in the network, and so tend not to rely on more standard

model-theoretic notions. Nonetheless, in Section 4.3 we compare our approach with probably the best-know

translation of an inheritance network, where the network is translated into a theory in default logic, that of

[Etherington and Reiter,1983].

2 Overview of the Approach

There are two major steps in the approach. First, given a default theory expressed as a generic world

description, we locate default rules that conflict and have differing specificity; this is accomplished by using

(part of) the mechanism of System Z. So for our initial example (1) it is clear that the defaults B ! F

and P ! :F conflict and that the second default is more specific than the first. Secondly, we compile

the default theory into a nonmonotonic reasoning system such as default logic or circumscription, so that if

both defaults are potentially applicable—say, B and P are true—then only the second default is applied. In

outline, this is carried out as follows.

In System Z defaults are partitioned into sets R
0

, R
1

, . . . , where, roughly, the defaults in a lower-ranked

partition are less specific than those in a higher-ranked partition. The resulting partition is called a Z-

ordering. For our initial example, treating the strict implication as a default for the moment, we would

obtain the partition:

R

0

= fB ! F; B !Wg

R

1

= fP ! B; P ! :Fg:

The key point in determining the partition is that, if we treat! as classical implication, then for �! � 2 R

i

we have that

f� ^ �g [R

i

[R

i+1

[ : : :

is satisfiable, whereas

f� ^ �g [R

i�1

[R

i

[R

i+1

[ : : :

is unsatisfiable. So the Z-ordering provides specificity information; however, we do not use the full Z-

ordering since it may introduce unwanted specificities (Section 3.1). Rather we determine minimal sets

of rules that conflict, and use these sets to sort out specificity information. In the above example, fB !

F; P ! B; P ! :Fg would be such a set, since if we delete any of the three defaults we would have a

set with no conflict or with no difference in specificity.

There are numerous issues that need to be confronted, even with relatively simple theories. Consider the

following extended example, already expressed as a Z-ordering; we will make reference to this example

throughout the paper. For simplicity we have expressed all rules as default rules.

R

0

= fAn!WB;An! :Fe;An!Mg

R

1

= fB ! An;B ! F;B ! Fe;B !Wg

R

2

= fP ! B;P ! :F; E ! B;E ! :F; P t! B;P t! :Fe; P t! :WBg

That is, in R
0

, animals are warm-blooded, don’t have feathers, but are mobile. In R
1

, birds are animals that

fly, have feathers, and have wings. In R
2

, penguins and emus are birds that don’t fly, and pterodactyls are

birds that have no feathers and are not warm-blooded.
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First we locate the minimal (with respect to set inclusion) sets of rules that differ in specificity and that

conflict; this will be the minimal set of rules having a non-trivial Z-ordering. In our example these consist

of:

C

0

= fAn! :Fe;B ! An;B ! Feg

C

1

= fB ! F; P ! B;P ! :Fg (3)

C

2

= fB ! F;E ! B;E ! :Fg (4)

C

3

= fB ! Fe; P t! B;P t! :Feg

C

4

= fAn!WB;B ! An;P t! B;P t! :WBg

Any such set is called a minimal conflicting set of rules. For any such set, if all the rules are jointly applicable

then one way or another there will be a conflict.3 Note that both of these notions are crucial. If we have a

conflict without a specificity difference, for example with the defaults,

Q! P; R! :P

then given Q^R there is no reason to apply one rule over another. If we have a specificity difference without

a conflict, say birds fly and tropical birds are colourful:

B ! F; B ^ T ! C

Then given B ^ T there is again no reason to not apply both defaults.

We show below that the Z-ordering of a each such set C consists of a binary partition (C

0

; C

1

) of rules.

Furthermore the rules in the set C
0

are less specific than those in C
1

. Consequently, if the rules in C
1

are

applicable, then we would want to insure that some rule in C
0

was blocked. For example, for the minimal

conflicting set C1 we obtain:

C

1

0

= fB ! Fg (5)

C

1

1

= fP ! B; P ! :Fg: (6)

There are now two important issues that need to be addressed:

1. What rules should be selected as candidates to be blocked, using minimal conflicting sets?

2. How can the application of a rule be blocked in the target nonmonotonic formalism?

For the first question, consider where we have a chain of rules, and where transitivity is explicitly blocked,

as in the minimal conflicting set C4 above. We have the Z-ordering:

C

4

0

= fAn!WB;B ! Ang (7)

C

4

1

= fPt! B;P t! :WBg:

Intuitively An is less specific than Pt. If we were given that An, Pt, :B were true, then in a translation

into default logic, we would want the default rule corresponding to Pt ! :WB to be applicable over

An ! WB, even though the “linking” rule Pt ! B is falsified. So we want more specific rules to be

applicable over less specific conflicting rules, independently of the other rules in the minimal conflicting set.

We do this by locating those rules whose joint applicability would lead to an inconsistency. In our example,

this consists of An ! WB, and Pt ! :WB (since (An ^WB) ^ (Pt ^ :WB) is inconsistent). Since

An!WB 2 C

4

0

and Pt! :WB 2 C

4

1

, the rules have differing specificity. The rules selected in this way

from C

4

0

and C

4

1

are called the minimal conflicting rules and maximal conflicting rules respectively. The

3If the rules were represented as normal default rules in default logic for example, one would obtain multiple extensions.
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minimal conflicting rules constitute the candidates to be blocked. This selection criterion has the important

property that it is context independent, in the following fashion. For default theories R and R

0, where

R � R

0, if r 2 R is selected, then r should also be selected in R0. Thus, if we wish to block the default

B ! F in the case of P in default theory R, then we will also want to block this rule in any superset R0.

The second question, (“How can the application of a rule be blocked?”) depends on the target nonmono-

tonic formalism. However we argue that our approach is broadly applicable to nonmonotonic formalisms

that do not, in and of themselves, address specificity issues. In Section 4 we deal with the major consistency-

based formalisms; Section 5 addresses minimization-based formalisms. For default logic4 for example, we

have the following translation of rules. The default theory corresponding to our default rules R
D

consists

of normal defaults, except for those defaults representing minimal conflicting rules, which are semi-normal.

For these latter default rules, the prerequisite is the antecedent of the original rule (as expected). The justi-

fication consists of the consequent together with an assertion to the effect that the maximal conflicting rules

in the minimal conflicting set cannot be applicable.

Consider the set C4

0

in (7), along with its minimal conflicting rule An ! WB. We replace B ! An,

Pt! B, Pt! :WB with

B :An

An

;

Pt :B

B

;

Pt ::WB

:WB

respectively. For An!WB, we replace it with

An :WB^(Pt�:WB)

WB

; which can be simplified to An :WB^:Pt

WB

:

So, for the minimal conflicting rules we obtain semi-normal defaults; all other defaults are normal. Ac-

cordingly, we give below only the semi-normal default rules constructed from the minimal conflicting sets

C

0 to C4:

C

0

:

An ::Fe^(B�Fe)

:Fe

or An ::Fe^:B

:Fe

C

1

+C

2

:

B :F^(P�:F )^(E�:F )

F

or B :F^:P^:E

F

C

3

:

B :Fe^(Pt�:Fe)

Fe

or B :Fe^:Pt

Fe

C

4

:

An :WB^(Pt�:WB)

WB

or An :WB^:Pt

WB

The conditional B ! F occurs inC1 andC2 as a minimal conflicting rule. In this case we have two minimal

conflicting sets sharing the same minimal conflicting rule, and we combine the maximal conflicting rules of

both sets.

So why does this approach work? The formal details are given in the following sections. However,

informally, consider where we have a minimal conflicting set of defaults C with a single minimal conflicting

rule �
0

! �

0

and a single maximal conflicting rule �
1

! �

1

. If we can prove that �
0

(and so in default

logic can prove the antecedent of the conditional), then �

0

may be a default conclusion, provided that no

more specific rule applies. But what should constitute the justification? Clearly, that �
0

is consistent and

that more specific, conflicting conditionals not be applicable. Now, in our setting, �
0

! �

0

is such that

f�

0

^ �

0

g is satisfiable, but for the conditional �
1

! �

1

, f�
0

^ �

0

g [ f�

1

^ �

1

g is unsatisfiable. Hence it

must be that f�
0

^ �

0

g [ f�

1

� �

1

g j= :�

1

for these conditionals. Thus if a minimal conflicting rule is

applicable, then the maximal rule cannot be applicable. Hence we add these more specific conditionals as

part of the justification.

We show too that this approach is applicable to general default theories and not, as the preceding examples

might indicate, just simple chains of defaults. Consider the following example, in which we have two less-

specific default rules, a situation frequently found in multiple inheritance networks. We have the Z-ordering:

R

0

= fA! :B;C ! :Dg (8)

R

1

= fA ^ C ! B _Dg (9)

4A formal introduction to default logic is given in Section 4.1.
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In this case we would want to ensure that if the default in R
1

were applicable, then at most one default in R
0

can be applied. One can also show that conflicts that do not result from specificity (as found for example,

in the “Nixon diamond”) are handled correctly. These and other examples are discussed in detail following

the presentation of the formal details.

3 Determining Specificity Conflicts

3.1 System Z

In System Z a set of rules R representing default conditionals is partitioned into an ordered list of mutually

exclusive sets of rules R
0

; : : : ; R

n

: Lower ranked rules are considered more normal (or less specific) than

higher ranked rules. Rules in lower-ranked sets are compatible with those in higher-ranked sets, whereas

rules in higher-ranked sets conflict in some fashion with rules in lower-ranked sets. [Pearl,1990] deals only

with default rules, whereas the extension described in [Goldszmidt,1992] deals with default and strict rules.

For our use of System Z we do not need to distinguish default and strict rules, 5 and so we describe the

original approach. We assume that we begin with a set of defeasible conditionals R = fr j �

r

! �

r

g where

each �
r

and �
r

are propositional formulas over a finite alphabet. A central notion is that of toleration:

Definition 1 Let R be a set of defeasible conditionals.

A rule �! � is tolerated by R iff f� ^ �g [ f�
r

� �

r

j r 2 Rg is satisfiable.

Note that this definition treats the connective ! as �.

We assume in what follows that R is Z-consistent,6 i.e. for every non-empty R

0

� R, some r0 2 R

0 is

tolerated by R0. Using this notion of tolerance, a Z-ordering on the rules in R is defined:

1. Find all rules tolerated by R, and call this subset R
0

.

2. Next, find all rules tolerated by (R�R

0

), and call this subset R
1

.

3. Continue in this fashion until all rules in R have been accounted for.

In this way, we obtain a partition (R

0

; : : : ; R

n

) of R where

R

i

= fr j r is tolerated by (R �R

0

� : : :�R

i�1

)g

for 1 � i � n. More generally, we write R

i

to denote the ith set of rules in the partition of a set of

conditionals R. A set of rules R, or its Z-ordering, respectively, is called trivial iff its partition consists only

of a single set of rules.

The rank of rule r, written Z(r), is given by: Z(r) = i iff r 2 R

i

: Every interpretation M of R is given a

Z-rank, Z(M), according to the highest ranked rule in R it falsifies:

Z(M) = minf n jM j= �

r

� �

r

; Z(r) � ng:

When interpreting all rules in our example (1) as defeasible, we obtain the following Z-ordering:

R

0

= fB ! F; B !Wg

R

1

= fP ! :F; P ! Bg: (10)

So the Z rank of the model in which B, :F , W , and P are true is 1, since the rule B ! F is falsified. The Z

rank of the model in which B, F , W , and P are true is 2, since the rule P ! :F is falsified. The rank of an

5Essentially we use System Z to isolate conflicting rules, independent of whether they are strict or default. This distinction is

important for us only when deciding on what rules to block.
6[Pearl,1990] uses the term consistent.
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arbitrary formula ' is defined as the lowest Z-rank of all models satisfying ': Z(') = minfZ(M) j M j=

'g:

7 Finally we can define a form of default entailment, called 1-entailment, as follows: A formula ' is said

to 1-entail � in the context R, written ' `
1

�, iff Z('^�) < Z('^:�): In the terminology of Section 1.1,

the background theory R determines a Z-ordering, and � follows from our contingent knowledge W iff

W `

1

�.

This gives a form of default inference that has some very nice properties. In the preceding example, we

obtain that P `

1

:F , and P `

1

B and so penguins don’t fly, but are birds. Unlike default logic, we cannot

infer that penguins fly, i.e. P 6`

1

F . Some irrelevant facts are handled well (unlike conditional logics), and

for example we have B^G `

1

F , so green birds fly. There are two weaknesses with this approach. First, one

cannot inherit properties across exceptional subclasses. So one cannot conclude that penguins have wings

(even though penguins are birds and birds have wings), i.e. P 6`

1

W . Second, undesirable specificities are

sometimes obtained. For example, if we add to the above example the default that large animals are calm

we get the Z-ordering:

R

0

= fB ! F; B !W; L! Cg (11)

R

1

= fP ! :F; P ! Bg: (12)

Intuitively L! C is irrelevant to the other defaults, yet one obtains the default conclusion that large animals

aren’t normally penguins since Z(L ^ :P ) < Z(L ^ P ).

[Goldszmidt and Pearl,1990] has shown that 1-entailment is equivalent to rational closure [Kraus et

al.,1990]; [Boutilier,1992a] has shown that CO� is equivalent to 1-entailment. [Pearl,1990] notes that pref-

erential entailment [Lehmann,1989] is equivalent to the more basic notion of 0-entailment (also �-entailment

[Pearl,1988] or p-entailment [Adams,1975]), proposed in [Pearl,1989] as a “conservative core” for default

reasoning. Consequently, given this “locus” of closely-related systems, each based on distinct semantic intu-

itions, these systems (of which we have chosen System Z as exemplar) would seem to agree on a principled

minimal approach to defaults.

3.1.1 Why System Z?

The previous subsection described System Z, which we use to isolate minimal sets of rules (strict and

default) that conflict with respect to specificity. The natural questions arise, why choose System Z when, as

indicated previously, it is not unproblematic? And, are there alternatives to the choice of System Z?

First of all, we do not use System Z per se, but rather the notion of tolerance; this we use to isolate minimal

sets of rules with a nontrivial partition. In such (minimal) sets the problems of unwanted specificities do not

arise (since there are no “irrelevant” rules). Moreover, we are unconcerned about lack of property inheritance

since we obtain such inheritance in the target language, whether it be default logic, circumscription, or some

other.

In the second case, while there are approaches that could be used in place of System Z, System Z (or the

part that we use) is certainly the simplest. For those familiar with conditional logics (or related approaches)

we note that a system corresponding to the conservative core is too weak for our purposes. In particular,

such a system allows the conditionals

f�! ; :(� ^ � ! ); :(� ^ :� ! )g

to be simultaneously and non-trivially satisfied. For a logic of defaults, this appears unreasonable: if 

follows by default from �, then it would seem that it should also follow from either � ^ � or � ^ :�.

Arguably the weakest logic in which � !  � ((� ^ � ! ) _ (� ^ :� ! )) is a theorem, is N

[Delgrande,1987]. If we do not consider negated conditionals, then this is equivalent to VTA [Lewis,1973]

7If there is no model satisfying � we set the rank of � as1.

9



or CO [Boutilier,1992a], and is the conditional equivalent of S4.3 [Hughes and Cresswell,1968]. While these

latter systems could be used as a basis from which specificity information could be determined, System Z

is markedly easier to describe than these other approaches; moreover determining 1-entailment is efficient

(disregarding consistency tests).

3.2 Minimal Conflicting Sets

We consider Z-consistent generic world descriptions R = hR

D

; R

N

iwhere the antecedents and consequents

of rules in R are propositional formulas over a finite alphabet. For simplicity, we sometimes identify R with

R

D

[R

N

. For Z-orderings of subsets of R, we treat the connective ) as ! (that is, we do not distinguish

strict and default rules in an ordering). We denote the set of classical implications corresponding to a set R

of strict and/or defeasible rules by R�. That is,

R

�

= f� � � j �! � 2 R

D

g [ f� � � j �) � 2 R

N

g:

Moreover, we define

Prereq(R) = f� j �! � 2 R

D

g [ f� j �) � 2 R

N

g and

Conseq(R) = f� j �! � 2 R

D

g [ f� j �) � 2 R

N

g:

The set of minimal conflicting sets of a set of rules R represents conflicts among the rules in R due

to disparate specificity. Each minimal conflicting set is a minimal set of conditionals having a non-trivial

Z-ordering.

Definition 2 Let R = hR

D

; R

N

i be a generic world description. A set of rules C � R is a minimal

conflicting set in R iff C has a non-trivial Z-ordering and any C 0 � C has a trivial Z-ordering.

That is, the rules in C make up a nontrivial Z-ordering and they form a least set for which a nontrivial order-

ing is obtained. A minimal conflicting set then constitutes a minimal theory in which there is a specificity

conflict. Observe that adding new rules to R cannot alter or destroy any existing minimal conflicting sets.

That is, for default theories R and R0, where C � R � R

0, we have that if C is a minimal conflicting set in

R then C is a minimal conflicting set in R0. This property is of great practical relevance since it allows an

incremental computation of minimal conflicting sets, even in evolving knowledge bases.

The next theorem shows that any minimal conflicting set has a binary partition:

Theorem 1 Let C be a minimal conflicting set in some generic world description hR
D

; R

N

i. Then, we have

that the Z-ordering of C is (C
0

; C

1

) for some non-empty sets C
0

and C
1

with C = C

0

[C

1

:

Moreover, a minimal conflicting set entails the negations of the antecedents of the higher-level rules:

Theorem 2 Let C be a minimal conflicting set in R. If �! � 2 C

1

then C� j= :�:

Hence, given our initial generic world description in (2),

R = h fB ! F; B !W; P ! :Fg ; fP ) Bg i

there is one minimal conflicting set

C = fB ! F; P ! :F; P ) Bg:

As shown in (5/6), the first rule constitutes C
0

and the last two C
1

in the Z-ordering of C (in fact, the last

rule provides rather necessary linking knowledge, as explicated (13). If we discard the necessary knowledge

provided by P ) B; the set fB ! F; P ! :Fg is not a minimal conflicting set since alone it has a trivial

10



Z-ordering. Replacing P ) B by P ! B yields obviously the same minimal conflicting set. It is easy to

see that C� j= :P .

Intuitively, a minimal conflicting set consists of three mutually exclusive sets of rules: the least specific

or minimal conflicting rules in C , min(C); the most specific or maximal conflicting rules in C , max (C);

and the remaining rules providing a minimal inferential relation between these two sets of rules, inf (C).

The following definition provides a general formal frame for these sets:

Definition 3 Let R be a generic world description and let C be a minimal conflicting set in R. We define

max (C), min(C), and inf (C) to be non-empty subsets of C such that

min(C) � C

0

max (C) � C

1

inf (C) = C � (min(C) [max (C))

We observe that min, max, and inf are exclusive subsets ofC such thatC = min(C)[inf (C)[max (C):We

show below that the rules in max (C) and min(C) are indeed conflicting due to their different specificity.

Note however that the following three theorems are independent of the choice of min(C), inf (C), and

max (C). However following these theorems we argue in Definition 4 for a specific choice for these sets

that complies with the intuitions described in the previous section.

First, the antecedents of the most specific rules in min(C) imply the antecedents of the least specific rules

in max (C) modulo the “inferential rules” in inf (C):

Theorem 3 Let C be a minimal conflicting set in a generic world description hR
D

; R

N

i: Then, we have:

inf (C)

�

[max (C)

�

j= Prereq(max (C)) � Prereq(min(C)):

In fact, inf (C)

�

[max (C)

� constitutes the weakest condition under which the above entailment holds. Note

that omitting max (C) would eliminate rules that may belong to max (C), yet provide “inferential relations”.

This is the case for the rule P ) B in (5/6): P ) B is in C
1

and so is a potential candidate for max (C),

even though this choice is not a reasonable one (since of course, P ) B should be a part of inf (C)). The

same applies of course to a defeasible rule like P ! B.

The next theorem shows that the converse of the previous does not hold in general.

Theorem 4 Let C be a minimal conflicting set in a generic world description hR
D

; R

N

i: Then, for any set

of rules R0 such that C � R

0 and any set of rules R00 � min(C) such that R0 [ Prereq(R00) is satisfiable,

we have:

(R

0

)

�

6j= Prereq(R00) � Prereq(max (C)):

The reason for considering consistent subsets of min(C) is that its entire set of prerequisites might be

equivalent to those in max (C). Then, however, C [ Prereq(min(C)) and so R

0

[ Prereq(min(C)) is

inconsistent. This is, for instance, the case in (8/9). In fact, (R0)� is the strongest condition under which the

above theorem holds.

Finally, we demonstrate that these rules are indeed conflicting.

Theorem 5 Let C be a minimal conflicting set in a generic world description hR
D

; R

N

i: Then, for any

�! � 2 max (C); we have:

inf (C)

�

[ f�g j= :(Conseq(min(C)) ^ Conseq(max (C))):

As above, inf (C)

�

[ f�g is the weakest condition under which the last entailment holds. In all, the last

three theorems demonstrate that the general framework given for minimal conflicting sets (already) provides

a very expressive way of isolating rule conflicts due to their specificity.

11



In the worst case the number of minimal conflicting sets grows exponentially with the size of a default

theory. This is an artifact of the problem in general, rather than the specific approach at hand – there may

simply be an exponential number of ways in which a set of defaults conflict.

Theorem 6 There exist generic world descriptions R of size n such that the number of minimal conflicting

sets is of size O(2

n

).

Consider for example the class of default theories where we have

�! �

i;1

for i 2 f1; 2g

�

i;j

! �

i

0

;j+1

for i; i

0

2 f1; 2g and 1 � j < n

�

i;n

!  for i 2 f1; 2g

For a given n there are clearly 2

n “inferential paths” between � and . If we add the default � ! :,

then clearly for given n there are 2

n minimal conflicting sets. While this characterises the worst case, in

general we might expect the number of minimal conflicting sets to be more manageable. For example, in an

inheritance hierarchy where a different “exception” type accounts for each level in the hierarchy, we would

have a set of minimal conflicting sets that is linear in the size of the hierarchy.

3.3 Specific Minimal and Maximal Conflicting Rules

A minimal conflicting set C = (C

0

; C

1

), is a minimal set of rules that contains a specificity conflict.

However we need to isolate a minimal subset C 0
0

� C

0

whose application would conflict with a minimal

subset of rules in C

0

1

� C

1

. We do this in the following definition of a conflicting core of a minimal

conflicting set:

Definition 4 Let C = (C

0

; C

1

) be a minimal conflicting set. A conflicting core of C is a pair of least sets

(min(C);max (C)) where

1. min(C) � C

0

\R

D

,

2. max (C) � C

1

\R

D

,

3. f�
r

^ �

r

j r 2 max (C) [min(C)g j= ?;

provided that min(C) and max (C) are non-empty.

This definition specialises the general setting of Definition 3. So, �
r

! �

r

is in min(C) if its application

conflicts with that of a rule (or rules) in C

1

. By isolating the actually conflicting rules in C

0

and C

1

, a

conflicting core imposes a strict structure on a given minimal conflicting set.

It is only with Definition 4 that we distinguish default from strict rules, in that we eliminate members

of R
D

from min(C) and max (C). In Section 4.2 we show that this is a convenience only, in that if we

included members of R
D

in min(C) and max (C) we would simply introduce redundant elements into our

default theory. However, consider informally the effect of strict rules in Definition 4. For example, the rules

B ! F and P ! :F yield the conflicting core (fB ! Fg; fP ! :Fg) in our example (1). This induces

the following structure on the minimal conflicting set C given in (5/6):

min(C) = fB ! Fg max (C) = fP ! :Fg inf (C) = fP ) Bg (13)

Observe that we obtain the same conflicting core for C1 in (3), where P ) B is treated defeasibly by means

of P ! B. That is, the applicability of P ! B (or P ) B) is irrelevant to the conflict between B ! F
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and P ! :F , and so can be applied independently of these last two defaults. However things are quite

different if we replace B ! F or P ! :F by their strict counterpart. In the theory

fB ! F; P ! B;P ) :Fg

for example, there is no conflict. If P is true or if P ^ B is true, then it logically follows that :F is true,

and so we cannot “apply” the default rule B ! F , regardless of the “target” formalism. On the other hand,

in the theory

fB ) F; P ! B;P ! :Fg

we lose our specificity difference. If P is true, then application of P ! B (regardless of how this is done)

immediately blocks P ! :F and application of P ! :F immediately blocks P ! B.

In the extended example of Section 2 the conflicting cores are

C

0

: (fAn! :Feg; fB ! Feg)

C

1

: (fB ! Fg; fP ! :Fg)

C

2

: (fB ! Fg; fE ! :Fg)

C

3

: (fB ! Feg; fPt! :Feg)

C

4

: (fAn!WBg; fPt! :WBg)

respectively. As anticipated in Section 2, we thus obtain the following structure for minimal conflicting set

C

4 (given as a Z-ordering in (7)):

min(C

4

) = fAn!WBg max (C

4

) = fPt! :WBg inf (C

4

) = fB ! An; P t! Bg

The remaining sets max (C

i

);min(C

i

), and inf (C

i

) are constructed in the obvious way.

For a complement consider the example given in (8/9), where the conflicting core contains two minimal

and one maximal conflicting rules:

(fA! :B;C ! :Dg; fA ^ C ! B _Dg):

That is, min(C) = fA! :B;C ! :Dg; max (C) = fA ^ C ! B _Dg; and inf (C) = ;:

A conflicting core need not necessarily exist for a specific minimal conflicting set. For example, consider

the minimal conflicting set (expressed as a Z-order):

C

0

= fQ! P;R! :Pg

C

1

= fQ ^R! PAg

Thus Quakers are pacifists while republicans are not; Quakers that are republicans are politically active.

Here the conflict is between two defaults at the same level (viz. Q! P and R! :P ) that manifests itself

when a more specific default is given. In such a case, according to Definition 4, there is no conflicting core.

We do have the following result however.

Theorem 7 For minimal conflicting set C in a set of rules R, if f�
r

^ �

r

j r 2 min(C)g 6j= ? and

f�

r

^ �

r

j r 2 max (C)g 6j= ? then C has a conflicting core.

Note that while in “normal” cases a minimal conflicting set (apparently) has a unique conflicting core,

this is not always the case. Consider the following minimal conflicting set:

C

0

= f:�

1

_ :�

2

! �

1

g

C

1

= f�

1

! :�

1

^ �

2

; �

2

! :�

1

^ :�

2

g:
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We have two conflicting cores, since

f:�

1

_ :�

2

; �

1

g [ f�

1

;:�

1

^ �

2

g j= ? and

f:�

1

_ :�

2

; �

1

g [ f�

2

;:�

1

^ :�

2

g j= ?:

This example is the only one that we have been able to construct in which there is a non-unique conflicting

core. In the sequel, for simplicity we restrict our attention to minimal conflicting sets having a unique con-

flicting core. Non-unique conflicting cores are easily handled in Definition 6 by considering each minimal

conflicting set/conflicting core pair separately.

4 Compiling Specificity into Consistency-Based Approaches

In the previous section, we described how to isolate minimal sets of rules that contain conflicting rules with

differing specificity. We also showed how to isolate specific minimal and maximal conflicting rules. In

this section, we use this information for specifying blocking conditions or, more generally, priorities among

conflicting defaults in default logic.

There are two obvious approaches. First, we could determine a strict partial order on a set of rules

R

D

from the minimal conflicting sets in R. That is, for two rules r; r0 2 R

D

; we can define r < r

0 iff

r 2 min(C) and r0 2 max (C) for some minimal conflicting set C in R. In this way, r < r

0 is interpreted

as “r is less specific than r0”. Then, one could interpret each rule �! � in R
D

as a normal default � :�

�

and

use one of the approaches developed in [Baader and Hollunder,1993a] or [Brewka,1993] for computing the

extensions of ordered normal default theories, i.e. default theories enriched by a strict partial order on rules.

Such an approach has the disadvantage that it steps outside the machinery of default logic for computing

extensions.

This motivates our primary approach, one that remains inside the framework of classical default logic,

where we transform rules with specificity information into semi-normal default theories. After an introduc-

tion to default logic we develop this latter approach and explore its properties. Following this we compare

our approach with that of related approaches in default logic. Lastly, we show how this approach can be

applied to other consistency-based approaches to nonmonotonic reasoning.

4.1 Default Logic

In default logic, classical logic is augmented by default rules of the form � :�

!

: Even though almost all “natu-

rally occurring” default rules are normal, i.e. of the form � :�

�

; semi-normal default rules of the form � :�^!

�

are required for establishing precedence in the case of “interacting” defaults [Reiter and Criscuolo,1981]

(see below). Default rules induce one or more extensions of an initial set of facts. Given a set of facts W

and a set of default rules D, any such extension E is a deductively closed set of formulas containing W such

that, for any � :�

!

2 D; if � 2 E and :� 62 E then ! 2 E: One of the simplest definitions of an extension,

due to [Reiter,1980], is the following:

Definition 5 Let (D;W ) be a default theory and let E be a set of formulas. Define E
0

= W and for i � 0

E

i+1

= Th(E

i

) [

n

!

�

�

�

� :�

!

2 D;� 2 E

i

;:� 62 E

o

:

Then E is an extension for (D;W ) if E =

S

1

i=0

E

i

.

The above procedure is not constructive since E appears in the specification of E
i+1

.

In terms of our specification of default theories, we assume that a default theory is given by hhR
D

; R

N

i;W i

whereas in default logic it is given by a pair (D0

;W

0

): The naı̈ve translation for default logic is to identify

the set of defeasible rules R
D

with the set of normal default rules
n

� :�

�

�

�

�

�! � 2 R

D

o

;
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while the strict rules in R
N

are interpreted as material implications

R

�

N

= f� � � j �) � 2 R

N

g:

In this way, a world description hhR
D

; R

N

i;W i may be transformed into a default theory
�n

� :�

�

�

�

�

�! � 2 R

D

o

;W [R

�

N

�

:

Consider our example (1) along with the fact that P is true; this can be expressed as:
�n

B :F

F

;

B :W

W

;

P ::F

:F

o

; fPg [ fP � Bg

�

: (14)

We obtain two extensions: one in which P;B;W; and F are true and another in which P;B;W; and

:F are true. Intuitively we want only the last extension, since the more specific default P ::F

:F

should

take precedence over the less specific default B :F

F

: The usual solution, originally proposed in [Reiter and

Criscuolo,1981], is to establish a precedence among these two interacting defaults by adding the negation

of the exception, P , to the justification of the less specific default rule. This amounts to replacing B :F

F

by
B :F^:P

F

which yields the desired result, a single extension containing P;B;W; and :F .

4.2 Z-Default Theories

This section describes translation for producing a standard semi-normal default theory that provably main-

tains specificity. The transformation is succinctly defined:

Definition 6 Let R = hR

D

; R

N

i be a generic world description and let (Ci

)

i2I

be the family of all minimal

conflicting sets in R. For each r 2 R

D

; we define

�

r

=

�

r

: �

r

^

V

r

0

2R

r

(�

r

0

� �

r

0

)

�

r

(15)

where R
r

= fr

0

2 max (C

i

) j r 2 min(C

i

) for i 2 Ig:

We define D
R

= f�

r

j r 2 R

D

g:

In what follows, we write D
R

0

= f�

r

j r 2 R

0

g for any subset R0 of R
D

. Any default theory obtained

according to the above transformation will be referred to as a Z-default theory.

The most interesting point in the preceding definition is the formation of the justifications of the (some-

times) semi-normal defaults. Given a rule r, the justification of �
r

is built by looking at all minimal con-

flicting sets, Ci, in which r occurs as a least specific rule (i.e. r 2 min(C

i

)). Then, the consequent of r is

conjoined with the strict counterparts of the most specific rules in the same sets (viz. (�
r

0

� �

r

0

) for r0 2

max (C

i

)). These rules are put together in R
r

. In this way, R
r

contains all rules that conflict with r while

being more specific than r. Hence, for the minimal conflicting rules we obtain semi-normal defaults; all

other defaults are normal (since then R

r

= ;). So for any minimal conflicting set C in R, we transform

the rules in min(C) into semi-normal defaults, whereas we transform the rules in inf (C) [ max (C) into

normal defaults, provided that they do not occur elsewhere as a minimal conflicting rule.

Consider our initial example in (1). There, we obtain a single minimal conflicting set C given in (5/6),

having a unique conflicting core. As shown in (13), the latter induces the minimal and maximal conflicting

rules: min(C) = fB ! Fg and max (C) = fP ! :Fg: According to Definition 6, we obtain for the

defeasible rules in (1):

R

B!F

= fP ! :Fg; R

B!W

= ; and R

P!:F

= ;:

In turn, these sets induce the following default rules:

�

B!F

=

B :F^(P�:F )

F

; �

B!W

=

B :W

W

and �

P!:F

=

P ::F

:F

:
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The first rule can be simplified to B :F^:P

F

.

Given an entire world description hhR
D

; R

N

i;W i; we can apply Definition 6 in order to obtain Z-default

theory (D

R

;W [ R

�

N

): Our initial example along with the contingent fact that P is true is then translated

into the following Z-default theory:

�n

B :F^:P

F

;

B :W

W

;

P ::F

:F

o

; fPg [ fP � Bg

�

:

As opposed to the naı̈ve translation given in (14), this theory yields only the single, specificity-preserving

extension, in which P;B;W; and :F are true.

In the extended example of Section 2 the conflicting cores for (3) and (4) are

(fB ! Fg; fP ! :Fg) and (fB ! Fg; fE ! :Fg)

respectively. According to Definition 6, we get

R

B!F

= fP ! :F;E ! :Fg; R

P!B

= ; and R

P!:F

= ;:

The first set expresses the fact that the rule B ! F conflicts with the two more specific rules in fP !

:F;E ! :Fg: This results in a single semi-normal default rule

B :F^(P�:F )^(E�:F )

F

; or B :F^:P^:E

F

:

Observe that we obtain P :B

B

and P ::F

:F

for P ! B and P ! :F since these rules do not occur elsewhere

as minimal rules in a conflicting core.

These examples suggest that we might simply add the negation of the antecedent of the higher-level

conflicting conditional. However this strategy does not work whenever a minimal conflicting set has more

than one minimal conflicting rule. We defer the discussion to Section 4.3.

For a more general example, consider the case where, given a rule r, R
r

is a singleton set containing a

rule r0. Thus r is less specific than r0. This results in the default rules

�

r

:�

r

^(�

r

0

��

r

0

)

�

r

and
�

r

0

:�

r

0

�

r

0

:

Our intended interpretation is that r and r0 conflict, and that r0 is preferable over r (because of specificity).

Thus, assume that �
r

and �

r

0 are not jointly satisfiable. Then, the second default takes precedence over

the first one whenever both prerequisites are derivable (i.e. �
r

2 E and �

r

0

2 E) and both �

r

and �

r

0

are individually consistent with the final extension E (i.e. :�
r

62 E and :�
r

0

62 E). That is, while the

justification of the second default is satisfiable, the justification of the first default, �
r

^ (�

r

0

� �

r

0

); is

unsatisfiable.

In general, we obtain the following results. GD(E;D) stands for the generating defaults of E with respect

to D, i.e. GD(E;D) = f

� :�

!

2 D j � 2 E;:� 62 Eg: Note that Theorem 8 is with respect to the general

theory of minimal conflicting sets while Theorem 9 is with respect to the specific development involving

conflicting cores.

Theorem 8 Let hhR
D

; R

N

i;W i be a world description with R = hR

D

; R

N

i. Let C be a minimal conflict-

ing set in R. Let E be a consistent extension of (D
R

;W [R

�

N

). Then,

1. if D
max (C)

[D

inf (C)\R

D

� GD(E;D) then D
min(C)

6� GD(E;D);

2. if D
min(C)

[D

inf (C)\R

D

� GD(E;D) then D
max (C)

6� GD(E;D):

As with Theorems 3, 4, and 5, the last result refers to the more abstract conception of minimal conflicting

sets, as described in Definition 3. The above theorem then can be seen as naturally extending these results to
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default logic. Observe that only the defeasible rules in inf (C) are transformed into default rules; the strict

rules in inf (C) are dealt with via R�
N

.

Let us relate this theorem to the underlying idea of specificity. Observe that in the first case, where

D

max (C)

[D

inf (C)\R

D

� GD(E;D); we also have

Prereq(min(C)) � E

by Theorem 3. That is, even though the prerequisites of the minimal conflicting defaults are derivable, they

do not contribute to the extension at hand. This is so because some of the justifications of the minimal

conflicting defaults are not satisfied. In this way, the more specific defaults in D

max (C)

take precedence

over the less specific defaults in D
min(C)

: Conversely, in the second case, where D
min(C)

[D

inf (C)\R

D

�

GD(E;D); the less specific defaults apply only if the more specific defaults do not contribute to the given

extension.

As regards the specific type of minimal conflicting sets induced by the notion of a conflicting core, we

obtain the following result.

Theorem 9 Let hhR
D

; R

N

i;W i be a world description with R = hR

D

; R

N

i. Let (min(C);max (C)) be

the conflicting core of some minimal conflicting setC inR. LetE be a consistent extension of (D
R

;W[R

�

N

).

Then,

1. if D
max (C)

� GD(E;D) then D
min(C)

6� GD(E;D);

2. if D
min(C)

� GD(E;D) then D
max (C)

6� GD(E;D):

Thus in this case we obtain that the defaults in a conflicting core are not applicable, independent of the

“linking defaults” in D
inf (C)\R

D

and inf (C) \R

N

.

The following theorem gives an alternative characterization for extensions of Z-default theories. In par-

ticular, it clarifies further the effect of the set of rules R
r

associated with each rule r. Recall that in general,

however, such extensions are computed in the classical framework of default logic.

Theorem 10 Let hhR
D

; R

N

i;W i be a world description and let E be a set of formulas. Let

D

n

R

=

n

�

r

:�

r

�

r

�

�

�

�

r

! �

r

2 R

D

o

(and R
r

and D
R

as in Definition 6).

Define E
0

= W [R

�

N

and for i � 0

E

i+1

= Th(E

i

) [

n

�

r

�

�

�

�

r

:�

r

�

r

2 D

n

R

; �

r

2 E

i

; E [ f�

r

g [

S

r

0

2R

r

(�

r

0

� �

r

0

) 6` ?

o

Then, E is an extension of (D
R

;W [R

�

N

) iff E =

S

1

i=0

E

i

:

It is interesting to note that in determining minimal conflicting sets and conflicting cores, the only place

where we distinguish elements of R
N

from R

D

is in the formation of a conflicting core. We claimed in

Section 3.3 that, for the definition of a conflicting core, the reference to R

D

is present only to eliminate

redundant terms; otherwise we obtain the same default theory. Now that we have the final translation into

default logic we can formalise this claim: A mixed conflicting core has the same definition as a conflicting

core, except that we replace conditions 1. and 2. in Definition 4 by

1. min(C) � C

0

,

2. max (C) � C

1

.

Then, we have the following result.

Theorem 11 Let hhR
D

; R

N

i;W i be a world description with R = hR

D

; R

N

i. Then E is an extension of

the corresponding Z-default theory iff E is an extension of the default theory obtained in transformation

(15) but making appeal to mixed conflicting cores.
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4.3 Discussion of Z-Default Theories

We illustrate the approach further first with an example from [Fahlman et al.,1981], studied in detail by

Etherington and Reiter in [1983], and second, with an example involving two minimal conflicting rules.

First, we have the following rules (represented by the figure on the right):

Molluscs are normally shell-bearers. M ! S

*

Cephalopods must be Molluscs but normally are not shell-bearers. C ! :S

*

Nautili must be Cephalopods and must be shell-bearers. N ) S

This results in the following generic world description:

R

D

= fM ! S; C ! :Sg

R

N

= fC )M; N ) C; N ) Sg

We obtain a single minimal conflicting set C , here expressed as a Z-order:

C

0

= fM ! Sg

C

1

= fC ! :S; C )Mg

The minimal conflicting set contains the conflicting core:

(fM ! Sg; fC ! :Sg):

As a result, we get: R
M!S

= fC ! :Sg:

Now, given the contingent fact N , we obtain the following default theory:
�n

M :S^(C�:S)

S

;

C ::S

:S

o

; fNg [ fC �M; N � C; N � Sg

�

(16)

The semi-normal default can be simplified to: M :S^:C

S

. The default theory in (16) has a unique extension

in which a Nautilus N is also a Cephalopod C , a Mollusc M , and a shell-bearer S.

Interestingly, default theory (16) is not equivalent to that obtained in [Etherington and Reiter,1983].

Where they have the semi-normal default
C ::S^(N�S)

:S

we have the normal default C ::S

:S

. However, due to

the necessary knowledge N � S, which is present in all initial sets of facts W , these defaults are equivalent

in that one is applicable whenever the other is. Hence our approach avoids the introduction of a redundant

semi-normal default. Of course if we replaced the necessary implication N ) S with its default counterpart

N ! S we would obtain a second minimal conflicting set and a second conflicting core, and so in this case

obtain the semi-normal default. Observe too that there is a second minimal conflicting set, given by the rules

C ! :S; N ) C; and N ) S; which is ruled out, however, due to its lack of a conflicting core.

Etherington and Reiter start from a network representation comprising “hard”, “default” and “exception

links”. That is, while their network contains “default links” corresponding to M ! S and C ! :S;

both require so-called “exception links” indicating that Cephalopods, C , are exceptions to the first default

while Nautili, N , are exceptions to the second. These “default links” along with their “exception links”

are translated into semi-normal default rules. In this way, the exceptional cases are encoded in the network

representation “by hand” in advance. In contrast, we start from a rule-based representation distinguishing

strict and defeasible rules; no exceptions are specified. Conflicting default rules are automatically detected

by the techniques developed in Section 3 and then mapped onto a semi-normal default theory.

Consider next example (8/9), where we have a minimal conflicting set with more than one minimal

conflicting rule.

R

0

= fA! :B;C ! :Dg (17)

R

1

= fA ^ C ! B _Dg (18)
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If we were to represent this as a normal default theory, as described in Section 4.1, then with W = fA;Cg

we would obtain three extensions, containing f:B;Dg, fB;:Dg, f:B;:Dg. The last extension is unin-

tuitive since it prefers the two less specific rules over the more specific one in R
1

.

The rules in R
0

[ R

1

form a minimal conflicting set with two minimal conflicting rules. This minimal

conflicting set comprises two less specific conflicting rules, a situation frequently encountered in multiple

inheritance networks. Our approach yields two semi-normal defaults

A ::B^(A^C�B_D)

:B

or
A ::B^(C�D)

:B

and
C ::D^(A^C�B_D)

:D

or
C ::D^(A�B)

:D

along with the normal default rule A^C :B_D

B_D

: Given fA;Cg, we obtain only the two more specific exten-

sions, containing f:B;Dg and fB;:Dg. In both cases, we apply the most specific rule, along with one of

the less specific rules.

Note that if we add either only the negated antecedent of the maximal conflicting rule (viz. :A _ :C) or

all remaining rules (e.g. C � :D and A ^ C � B _D in the case of the first default) to the justification of

the two semi-normal defaults, then in both cases we obtain justifications that are too strong. For instance,

for A! :B we would obtain either

A ::B^(:A_:C)

:B

or
A ::B^(A^C�B_D)^(C�:D)

:B

;

both of which simplify to A ::B^:C

:B

. Given fA;C;Dg there is, however, no reason why the rule A ! :B

should not apply. In contrast, our construction yields the default

A ::B^(C�D)

:B

;

which blocks the second semi-normal default rule in a more subtle way, and additionally allows us to con-

clude :B from fA;C;Dg.

We now examine the formal properties of Z-default theories. In regular default logic, many appealing

properties are only enjoyed by restricted subclasses. For instance, normal default theories guarantee the

existence of extensions and enjoy the property of semi-monotonicity whereas semi-normal default theories

do not. Transposed to our case, semi-monotonicity stipulates that if R0 � R for two sets of rules, then if

E

0 is an extension of (D
R

0

;W ) then there is an extension E of (D
R

;W ) where E0 � E. Arguably, this

property is not desirable if we want to block less specific defaults in the presence of more specific defaults.

In fact, this property does not hold for Z-default theories. For instance, from the rules B ! F; P ! B; we

obtain the defaults B :F

F

;

P :B

B

: Given P; we conclude B and F . However, adding the rule P ! :F makes

us add default P ::F

:F

and replace default B :F

F

by B :F^:P

F

: Obviously, the resulting theory does not support

our initial conclusions. Rather we conclude now B and :F , which violates the aforementioned notion of

semi-monotonicity.8

The existence of extensions is not guaranteed for Z-default theories. Consider the rules:

A ^Q ! :P; B ^R ! :Q; C ^ P ! :R;

A ! P; B ! Q; C ! R:

Each column gives a minimal conflicting set in which the upper rule is more specific than the lower rule.

We obtain the rules

A^Q ::P

:P

;

B^R ::Q

:Q

;

C^P ::R

:R

;

A :P^:Q

P

;

B :Q^:R

Q

;

C :R^:P

R

:

Given A;B;C; we get no extension.

8This differs from the notion of semi-monotonicity described in [Reiter,1980]. The latter is obtained by replacing R and D
R

by

D and R0 and D
R

0 by D0.
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Arguably, the non-existence of extensions indicates certain problems in the underlying set of rules. [Zhang

and Marek,1990] shows that a default theory has no extension iff it contains certain “abnormal” defaults;

these can be detected automatically. However, we can also avoid the non-existence of extensions by trans-

lating rules into variants of default logic that guarantee the existence of extensions, as discussed in Sec-

tion 4.5.2.

Another important property is cumulativity. The intuitive idea is that if a theorem is added to the premises

from which it was derived, then the set of derivable formulas should remain unchanged. This property is only

enjoyed by prerequisite-free normal default theories in regular default logic. It does not hold for Z-default

theories, as the next example illustrates. Consider the rules fD ! A;A! B;B ! :Ag: The last two rules

form a minimal conflicting set. Transforming these rules into defaults, yields D :A

A

;

A :B

B

;

B ::A^(A�B)

:A

; or

in the last case B ::A

:A

: Given D, there is one extension containing fD;A;Bg: Hence this extension contains

B. Now, given D and B, we obtain a second extension containing fD;:A;Bg: This violates cumulativity.

(Note in passing that in this case we obtained a normal default theory from the original set of rules. This

is intuitively plausible, since the two conflicting defaults are mutually canceling, i.e. if one applies then the

other does not.)

Lastly we show that the translation to obtain Z-default theories does not simply reduce the number of

extensions obtained in the corresponding normal default theory but may also provide different conclusions.

Consider the following world description, where P ! S stands for “penguins swim”.

� = hhfB ! F; B !W; P ! Sg; fP ) B; F ) :Sgi; fP ^ :Sgi:

While naı̈ve transformation (14) yields normal default theory

�n

B :F

F

;

B :W

W

;

P :S

S

o

; fP � B; F � :Sg [ fP ^ :Sg

�

;

transformation (15) results in Z-default theory:

�n

B :F^(P�S)

F

;

B :W

W

;

P :S

S

o

; fP � B; F � :Sg [ fP ^ :Sg

�

:

From the naı̈ve theory, we get an extension containing P;B;W and :S; F . In contrast, our translation

yields an extension including P;B;W and :S only; no mention is made of F . This shows that Z-theories

do not simply eliminate extensions obtained through the naı̈ve transformation; they may even supply us

with different conclusions. Intuitively, our Z-theories have a conservative attitude towards inheritance over

conflicting properties. While there is inheritance of the uncontroversial property W , this is not the case for

the controversial property F , which is usually not enjoyed by penguins regardless of swimming ability.

4.4 An Alternative Translation into Default Logic

In Reiter’s default logic, a default rule �! � is informally interpreted as “if � then by default �”. However

we can also interpret a rule as “by default, if � then �”. In this case it is the conditional that is concluded

by default, and not the consequent in the presence of the antecedent. In this second interpretation, we turn

rules like � ! � into prerequisite-free default rules: For translating rules along with their specificity into

prerequisite-free default theories, we replace the definition of �
r

in Definition 6 by

�

r

=

: (�

r

� �

r

) ^

V

r

0

2R

r

(�

r

0

� �

r

0

)

(�

r

� �

r

)

(19)

With this transformation, our birds example in (1) together with the knowledge that P is true yields default

theory:

�n

: (B�F )^(P�:F )

B�F

;

:B�W

B�W

;

:P�:F

P�:F

:

o

; fPg [ fP � Bg

�
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From this theory, we obtain a single extension containing fP;:F;B;Wg:

As discussed in [Delgrande et al.,1994], the problem of controlling interactions among such prerequisite-

free default rules is more acute than in the regular case. Consider our initial example (1) and turn the impli-

cation P ) B into its default counterpart P ! B: The usual translation, ignoring specificity information,

translates this into the following prerequisite-free default rules:

:B�F

B�F

;

:B�W

B�W

;

:P�B

P�B

;

:P�:F

P�:F

(20)

Given P , we obtain three extensions, containing fP;:F;B;Wg; fP; F;B;Wg; and fP;:F;:Bg:9 In the

regular default theory (with prerequisites) we obtain just the first two extensions. Clearly, transformation

(19) eliminates the second extension. The third extension however remains; moreover this extension hinders

property inheritance, since we cannot conclude that birds have wings. This is caused by the contrapositive

of B ! F: That is, once we have derived :F , we derive :B by contraposition, which prevents us from

concluding W .

This problem can be addressed in two ways: by strengthening the blocking conditions for minimal con-

flicting rules or by blocking the contrapositive of minimal conflicting rules. In the first case, we could turn

B ! F into
: (B�F )^:P

B�F

by adding the negated antecedents of the maximal conflicting rules, here :P .

While this looks appealing, we have already seen in Section 4.3 that this is too strong in the presence of

multiple minimal conflicting rules. To see this, consider the rules given in (8/9). For A ! :B; we obtain
: (A�:B)^(:A_:C)

A�:B

or
:A�(:B^:C)

A�:B

: As argued in Section 4.3, there is no reason why A ! :B should not

be applied given the facts fA;C;Dg. Also, in general it does not make sense to address a problem stemming

from contrapositives by altering the way specificity is enforced. Rather we should address an independent

problem by means of other measures.

So, in the second case, we turnB ! F into
: (B�F )^F^(P�:F )

B�F

or :F^:P

B�F

: That is, we add the consequent

of B ! F in order to block its contraposition. As before, we add the strict counterparts of the maximal

conflicting rules, here P � :F . In the birds example, the resulting justification is strengthened as above.

In particular, we block the contribution of the rule B � F to the final extension if either :F or P is

derivable. For A ! :B in (8/9), we now obtain,
: (A�:B)^:B^(A^C�B_D))

A�:B

or
::B^(A^C�D)

A�:B

: In contrast

to the previous proposal, this rule is applicable to the facts fA;C;Dg. Moreover, this approach is in accord

with System Z, where rules are classified according to their “forward chaining” behaviour.

So for translating rules along with their specificity into prerequisite-free default theories, we can alterna-

tively replace the definition of �
r

in Definition 6 by10

�

0

r

=

: (�

r

� �

r

) ^ �

r

^

V

r

0

2R

r

(�

r

0

� �

r

0

)

(�

r

� �

r

)

: (21)

Applying this transformation to the set of rules in (20), we obtain:

:F^:P

B�F

;

:B�W

B�W

;

:P�B

P�B

;

:P�:F

P�:F

Now, given P , we obtain a single extension containing fP;:F;B;Wg:

Note that blocking the contrapositive of minimal conflicting rules is an option outside the presented

framework. The purpose of the above transformation is to preserve inheritance over default statements

such as P ! B: Inheritance over strict statements, like P ) B, however can be done without blocking

contrapositives. In this case, of course, transformation (19) is sufficient.

Transformations (19/21) offer some interesting benefits, since prerequisite-free defaults allow for rea-

soning by cases and reasoning by contraposition (apart from minimal conflicting rules). That is, such

defaults behave like classical conditionals unless explicitly blocked. However, the counterexamples for

semi-monotonicity, cumulativity, and the existence of extensions carry over to prerequisite-free Z-default

theories.
9The third extension would not be present if P ! B were a strict rule.

10Observe that (�
r

� �

r

) ^ �

r

is equivalent to �
r

:
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4.5 Further Translations and Comparison with Related Approaches

In a manner similar to the approach described in the previous sections, we can compile prioritised rules into

variants of default logic, including those of [Baader and Hollunder,1993a; Brewka,1993; Boutilier,1992b],

as well as Theorist [Poole,1988] and autoepistemic logic [Moore,1985]. This is described in the remainder

of this section.

4.5.1 Ordered Variants of Default Logic

At the start of this section we described how to extract a strict partial order from a family of minimal con-

flicting sets for using other approaches (such as [Baader and Hollunder,1993a; Brewka,1993]) to compute

extensions of ordered default theories, i.e. theories with a strict partial order < on the defaults. In fact,

one can view partial orders on rules as a general interface between approaches, in that we can also use our

approach for compiling ordered normal default theories into semi-normal default theories. To this end, we

have to incorporate the order < into the specification of R
r

in Definition 6. We do this by associating with

each normal default � :�

�

a rule �! � and define for each such rule r that R<

r

= fr

0

j r < r

0

g; where < is

a strict partial order on the set of rules. Then, we can use transformation (15) to turn ordered normal default

theories into semi-normal theories.

We can now compare how priorities are dealt with in our and the aforementioned approaches. In both

[Baader and Hollunder,1993a] and [Brewka,1993] the iterative specification of an extension in default logic

is modified. In brief, a default is only applicable at an iteration step (in the sense of Definition 5) if no more

specific (or <-greater) default is applicable.11 The difference between both approaches (roughly) rests on

the number of defaults applicable at each step. While Brewka allows only for applying a single default that

is maximal with respect to a total extension of <, Baader and Hollunder allow for applying all <-maximal

defaults at each step.

As a first example, consider the normal default rules

:A

A

;

:B

B

;

B :C

C

;

A ::C

:C

(for short �
1

; �

2

; �

3

; �

4

), along with �
4

< �

3

; taken from [Baader and Hollunder,1993b]. With no facts Baader

and Hollunder obtain in their approach one extension containing fA;B;Cg: Curiously, Brewka obtains an

additional extension containing fA;B;:Cg: In our approach, we generate from < a single nonempty set

R

<

�

4

= f�

3

g; all other such sets are empty. Consequently we replace �
4

by

A ::C^(B�C)

:C

or A ::C^:B

:C

:

In regular default logic, the resultant default theory yields only the first extension containing fA;B;Cg: So

here our approach yields the same result as Baader and Hollunder’s approach.

As a second example, again from [Baader and Hollunder,1993b], consider the rules

:A

A

;

B ::A

:A

;

:B

B

;

A ::B

:B

(for short �
1

; �

2

; �

3

; �

4

), along with �

1

< �

2

; �

3

< �

4

: Baader and Hollunder show that in Brewka’s ap-

proach two extensions are obtained, one containing fA;:Bg and another containing f:A;Bg: However an

additional extension is obtained in Baader and Hollunder’s approach, containing fA;Bg: In our approach,

we produce from < the nonempty sets R<

�

1

= f�

2

g; and R<

�

3

= f�

4

g; all other such sets are empty. Then,

we replace �
1

and �
3

by

:A^(B�:A)

A

or :A^:B

A

and
:B^(A�:B)

B

or :B^:A

B

;

11In [Baader and Hollunder,1993a; Brewka,1993]
< is used in the reverse order.
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which yields only the first two extensions in default logic. Thus, as opposed to the previous example, our

approach yields here the same result as Brewka’s approach. Even though these examples appear to be

artificial, they can be extended to express reasonable specificity orderings. In all, we observe that in both

examples our approach yields the fewer and, in terms of specificity, more intuitive extensions.

Our approach to compiling partial orders into semi-normal default theories assumes that priorities are

determined by specificity conflicts between rules. Consider where we might extract priorities directly from

subsumption relations, as is done in [Baader and Hollunder,1993a]. Consider terms stating that “birds fly”,

B ! F; and “young birds need special care”, B ^ Y ! C; along with the subsumption relation between

“birds” and “young birds”. This subsumption amounts to a priority between the two rules even though there

is no conflict: (B ! F ) < (B ^ Y ! C): This priority would not be detected in our approach, since

we rely on there being a conflict between rules to determine priorities. In this example there is no minimal

conflicting set and so in our approach we would obtain the two normal rules B :F

F

and B^Y :C

C

:

The preceding exposition assumed that a rule �! � was associated with a default having prerequisite �

and consequent �. This view underlies [Baader and Hollunder,1993a] and [Brewka,1993], in that they rely

on the existence of prerequisites. In contrast, we can treat rules also as strict implications, and so compile

them into a prerequisite-free defaults, as we showed in the last subsection. [Boutilier,1992b] proposes an

approach based on these intuitions, where a ranking on defaults is obtained from the Z-ordering of the

defaults. Boutilier uses the correspondence between a conditional �
r

! �

r

of System Z and defaults of the

form :�

r

��

r

�

r

��

r

to produce partitioned sets of default rules. For rules in System Z, there is a corresponding set

of prerequisite-free normal defaults. One can reason in default logic by applying the rules in the highest set,

and working down. However this means that for reasoning, one again steps outside the machinery of default

logic. Moreover, since the order in which defaults are applied depends on the original Z-ordering, this order

may be “upset” by the addition of irrelevant conditionals. This in turn may introduce unwanted priorities.

For this last point, consider again example (8/9), but where we also have that A is exceptional with respect

to E for some property A0. We had originally

(R

0

; R

1

) = (fA! :B;C ! :Dg; fA ^ C ! B _Dg) and to this we add

fA! :E; A! A

0

; A

0

! Eg:

This yields the Z-ordering, expressed as a union of sets to clarify the structure:

R

0

= fC ! :Dg [ fA

0

! Eg

R

1

= fA ^ C ! B _D; A! :Bg [ fA! :E; A! A

0

g

Intuitively A0 and E have nothing to do with the original theory, yet their addition has “moved” A! :B

from R

0

to R
1

. In Boutilier’s approach we would conclude :B and D from fA;Cg, and would not get the

second extension as in the original case. Hence adding irrelevant defaults leads to different extensions wrt

applying the original three defaults. This phenomenon clearly is avoided in the present approach, due to our

use of minimal conflicting set and not the full Z-ordering.

4.5.2 Other Variants of Default Logic

Another alternative is the translation into variants of default logic that guarantee the existence of extensions

[Łukaszewicz,1988; Brewka,1991; Delgrande et al.,1994]. This can be accomplished by means of both

translation (15) and (19/21). Moreover, the resulting Z-default theories enjoy cumulativity when applying

translation (15) and (19/21) in the case of cumulative default logic and when applying translation (19/21) in

the case of constrained default logic. The corresponding results can be found in [Brewka,1991; Delgrande

et al.,1994]. Although none of these variants enjoys semi-monotonicity with respect to the underlying

conditionals, they all enjoy this property with respect to the default rules. As shown in [Brewka,1991], this
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may lead to problems in blocking a rule, like B :F^:P

F

; in the case :P is a default conclusion. For details

see [Brewka,1991].

For the translation into Theorist, we refer the reader to [Delgrande et al.,1994], where it is shown that

Theorist systems correspond to prerequisite-free default theories in constrained default logic and vice versa.

Accordingly, we may obtain a Theorist system from a set of prioritised rules by first applying transformation

(19/21) and then that given in [Delgrande et al.,1994] for translating prerequisite-free default theories in

constrained default logic into Theorist.

4.5.3 Autoepistemic Logic

Autoepistemic logic [Moore,1985] aims at formalizing an agent’s reasoning about her own beliefs. To this

end, the logical language is augmented by a modal operator Lwhere a formula L� is read as “� is believed”.

For a set W of such formulas, an autoepistemic extension E is defined as

Th(W [ fL� j � 2 Eg [ f:L� j � 62 Eg):

As discussed in [Konolige,1988], we can express “birds fly” either as B^:L:F � F or LB^:L:F � F:

Given B and one of these rules, we obtain in both cases an extension containing F . Roughly speaking, the

former sentence corresponds to the default :B�F

B�F

while the latter is close to B :F

F

:

This motivates the following translations into autoepistemic logic. Let R be a set of rules and let R
r

� R

(as given in Definition 6); for each r 2 R we define:

�

r

= �

r

^ :L:

�

�

r

^

V

r

0

2R

r

(�

r

0

� �

r

0

)

�

� �

r

;

%

r

= L�

r

^ :L:

�

�

r

^

V

r

0

2R

r

(�

r

0

� �

r

0

)

�

� �

r

:

Applying the first transformation to our initial example, we obtain for B ! F the modal sentence

B ^ :L:(F ^ (P � :F )) � F or B ^ :L:(F ^ :P ) � F;

along with B ^ :L:W � W;P ^ :L:B � B; and P ^ :LF � :F for B ! W;P ! B; and P ! :F:

Now, given P along with the four modal defaults, we obtain a single autoepistemic extension containing

:F and W . In this way, we have added specificity to autoepistemic logic while preserving inheritance.

5 Compiling Specificity into Minimization-Based Approaches

5.1 Circumscription

Circumscription was introduced by John McCarthy in [1980; 1986] as an approach to formalizing diverse

nonmonotonic aspects of commonsense reasoning. The idea behind circumscription is that of “logical mini-

mization”. A formula � follows from a theory W by circumscription if � is true in all models of W that are

minimal in a certain sense. In applications to default reasoning, circumscription is used to minimise “abnor-

malities” of default rules. For this purpose, the language is enriched by abnormality propositions designated

ab

1

; ab

2

; : : : These propositions address cases exceptional to a default rule at hand. In this way, a default

statement like “birds fly” is represented as a classical implication of the form B ^ :ab � F: Following

this general principle, we transform a set of default rules into a set of implications. For a generic world

description hR
D

; R

N

i, we define

R

ab

D

= f�

r

^ :ab

r

� �

r

j �

r

! �

r

2 R

D

g; (22)

R

�

N

= f�

r

� �

r

j �

r

) �

r

2 R

N

g: (23)

As an example, consider the following simplification of our initial example in (2):

hR

D

; R

N

i = hfB ! F; P ! :Fg; fP ) Bgi: (24)
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For R
D

, we obtain:

R

ab

D

= fB ^ :ab

1

� F; P ^ :ab

2

� :Fg:

The strict rule in R

N

becomes R�
N

= fP � Bg: Now, the set of rules in R

ab

D

[ R

�

N

can be seen as a

description of our birds scenario in (24) in standard propositional logic. However, we also want to express

that things are considered as normal as possible—provided that there is no evidence to the contrary. This

assumption is formally accomplished by circumscribing a world description: Let W be a propositional

formula, and P

_

[Z a partition of all atoms in W . The circumscription of P in W while varying Z is

defined as (cf. [McCarthy,1980; Lifschitz,1985])

Circum(W ;P ;Z) = W ^

�

8P

0

; Z

0

�

W [P=P

0

; Z=Z

0

] ^ (P

0

� P ) � (P � P

0

)

��

:

In this formula, P 0 and Z 0 are disjoint sets of new propositional variables corresponding to those in P and Z .

That is, P 0 = fp

0

j p 2 Pg and Z 0 = fz

0

j z 2 Zg: The formula W [P=P

0

; Z=Z

0

] denotes the result obtained

by replacing inW all occurrences of variables in P [Z by their counterparts in P 0[Z 0: (P 0 � P ) and (P �

P

0

) abbreviate
V

p2P

(p

0

� p) and
V

p2P

(p � p

0

), respectively. The net result is that the circumscription

axiom asserts that the number of atoms in P that are true is as small as possible. Furthermore, in achieving

this minimisation, the truth values of atoms in Z are allowed to vary. The semantical underpinnings for

circumscription are given by minimal models. For interpretations12 M and N; we define M �

(P ;Z)

N if

M \P � N \P: Then, according to [Lifschitz,1985], M is a model of Circum(W ;P ;Z) iff M is minimal

among all models of W with respect to �
(P ;Z)

:

Consider our birds example in (24) along with fact P . The models of fPg, R�
N

, and Rab

D

, where we just

list the positive literals, are the following:

fP;B; F; ab

1

; ab

2

g; fP;B; ab

1

; ab

2

g; fP;B; F; ab

2

g; fP;B; ab

1

g (25)

Circumscribing propositions ab

1

and ab

2

while varying B;F; P amounts to reasoning with respect to

those models in (25) that have the fewest abnormality propositions. There are two such minimal models,

fP;B; ab

1

g and fP;B; F; ab
2

g: As a consequence, we cannot conclude much more than from the original

world description in (24). That is, we have

Circum(fPg [R

�

N

[R

ab

D

; fab

1

; ab

2

g ; fB;F; Pg) j= B ^ P ^ (ab

1

� :ab

2

):

In particular, we cannot derive ab
1

; ab

2

; or F , nor their negation. This shows that circumscription does

not respect the principle of specificity. This shortcoming was observed in [McCarthy,1986]. For fixing

this problem, McCarthy introduced a prioritised version of circumscription by assuming that abnormality

propositions are a priori assigned different priorities. However, in this approach specificity is handled on

the metalevel by iterating circumscription on certain priority layers (and so by extrasystematic means). We

examine this approach in Section 5.3.

5.2 Z-Circumscription Theories

We address the lack of specificity by providing axioms reflecting the precedence of more specific rules over

less specific rules. We accomplish this, again, by taking advantage of the specificity information provided by

minimal conflicting sets. This information is encoded by means of axioms that express precedences among

default rules conflicting because of differing specificity.13

12We represent interpretations as sets of atoms.
13Compare Definition 6.
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Definition 7 Let R = hR

D

; R

N

i be a generic world description. Let (Ci

)

i2I

be the family of all minimal

conflicting sets in R. We define

R

sp

D

= f:

V

r

0

2R

r

(�

r

0

� �

r

0

) � ab

r

j r 2 R

D

g (26)

where R
r

= fr

0

2 max (C

i

) j r 2 min(C

i

) for i 2 I g:

This definition provides a circumscription policy for specificity using standard circumscription, rather than

prioritised circumscription [McCarthy,1986]. Observe that rules like :
V

r

0

2R

r

(�

r

0

� �

r

0

) � ab

r

have the

form of inheritance cancellation axioms as described in [McCarthy,1986]. Note that necessary rules are

discarded in the formation of antecedents of specificity axioms, since they constitute true sentences in the

world description obtained by adding R�
N

. Consequently, a specificity axiom is tautological if R
r

consists

of necessary rules only. We detail the effect of specificity axioms below.

Consider our birds example in (24). As required in Definition 7, we associate with each default rule a set

of more specific, conflicting default rules extracted from the minimal conflicting sets. For the default rules

R

D

in (24), this yields the following sets of default rules according to the specification of R
r

in Definition 7:

R

B!F

= fP ! :Fg R

P!:F

= ;

Recall that the first set expresses the fact that P ! :F is more specific thanB ! F , while the second equa-

tion tells us that there is no more specific (conflicting) default rule than P ! :F: According to Definition 7,

we obtain for the default rules R
D

in (24) the following specificity axiom:

R

sp

D

= f:(P � :F ) � ab

1

g: (27)

We have omitted the tautology obtained in the case of r = P ! :F :

Finally, our construction yields the following classical theory in propositional logic when applied to our

generic world description in (24):

R

ab

D

[R

sp

D

[R

�

N

= fB ^ :ab

1

� F; P ^ :ab

2

� :Fg [ f:(P � :F ) � ab

1

g [ fP � Bg: (28)

Together with the contingent fact P , these rules have the following models:

fP;B; F; ab

1

; ab

2

g; fP;B; ab

1

; ab

2

g; fP;B; ab

1

g (29)

In contrast to the models in (25), we now have only a single minimal model, namely fP;B; ab
1

g: Hence,

circumscription allows for concluding P; B; ab

1

; and :F; :ab
2

from the transformed world description.

That is,

Circum(fPg [R

ab

D

[R

sp

D

[R

�

N

; fab

1

; ab

2

g ; fB;F; Pg) j= P ^B ^ :F:

One might wonder why we compose specificity axioms by taking entire rules and not merely their an-

tecedents. This would amount to considering the rule P � ab

1

instead of the one given in (27). Interestingly,

P � ab

1

is the inheritance cancellation axiom suggested in [McCarthy,1986]. Let us illustrate this by re-

garding again theory (8/9), constituting a minimal conflicting set with two less specific conflicting rules:

C

0

= fA! :B;C ! :Dg C

1

= fA ^ C ! B _Dg:

Applying the transformations in (22) and (26) yields:

R

ab

D

= f(A ^ :ab

1

) � :B; (C ^ :ab

2

) � :D; (A ^C ^ :ab

3

) � B _Dg

R

sp

D

= f:(A ^C � B _D) � ab

1

; :(A ^ C � B _D) � ab

2

g: (30)
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Given fA;C;Dg, we observe a single “abnormality minimal” model of the resulting world description,

namely fA;C;D; ab
2

g: In this way, circumscription allows us to conclude :B. This amounts to applying

the first default A! :B: Now, let us replace the specificity axioms in (30) by

R

ic

D

= fA ^ C � ab

1

; A ^C � ab

2

g

according to the putative recipe described above. We obtain for the world description built on the facts

fA;C;Dg two “abnormality minimal” models, fA;C;D; ab
1

; ab

2

g and fA;B;C;D; ab

1

; ab

2

g: Conse-

quently, we cannot derive :B. Given fA;C;Dg there is, however, no reason why the default A ! :B

should not apply. This shows that our approach is advantageous over plain blocking conditions. Another

advantage of our construction is that it allows for an elegant alternative formulation for incorporating speci-

ficity, as we will see next.

Observe that the two implications involving P and :F in (28) can be put together to:

P ^ (:ab

2

_ :ab

1

) � :F : (31)

This indicates that we can alternatively modify the more specific rules instead of adding axioms referring

to the least specific ones. As a general result, the next definition provides us with an alternative but more

compact translation of default rules, along with their specificity information, into classical logic:

Definition 8 Let R = hR

D

; R

N

i be a generic world description. Let (Ci

)

i2I

be the family of all minimal

conflicting sets in R. We define

R

?

D

= f�

r

^

�

:ab

r

_

W

r

0

2R

0

r

:ab

r

0

�

� �

r

j r 2 R

D

g

where R0
r

= fr

0

2 min(C

i

) j r 2 max (C

i

) for i 2 I g:

This transformation unifies those given in (22) and (26). This is accomplished by slightly extending trans-

formation (22) in the case of more specific conflicting default rules. To this end, we extend the abnormality

condition of more specific default rules by disjoining the abnormality propositions of the less specific default

rules. This yields for our generic world description in (24) the following set of strict rules:

R

?

D

[R

�

N

= fB ^ :ab

1

� F; P ^ (:ab

2

_ :ab

1

) � :Fg [ fP � Bg:

This result should be compared with that obtained in (28). Note furthermore that R0
r

reverses the roles of

min(C

i

) and max (C

i

) in the specification of R
r

in Definition 7.

The next theorem tells us that the constructions are in fact equivalent:

Theorem 12 Let hR
D

; R

N

i be a generic world description. Then, Rab

D

[R

sp

D

[R

�

N

is logically equivalent

to R?

D

[R

�

N

.

We further study the effect of our approach by means of a general but simple example. Consider a generic

world description comprising two conflicting rules r and r

0 and suppose that r is more specific than r

0.

Hence, we have R0
r

= fr

0

g and we obtain in turn

�

r

^ (:ab

r

_ :ab

r

0

) � �

r

and �

r

0

^ :ab

r

0

� �

r

0

:

Our intended interpretation is that r is preferable over r0 (because of specificity) whenever r and r0 are both

potentially “applicable”. Assume that �
r

and �
r

0 are not jointly satisfiable, since r and r0 conflict. Then, the

first default takes precedence over the second whenever both antecedents, �
r

and �
r

0

; are derivable. This is

so because of the following reasons: Clearly, f�
r

; �

r

0

; �

r

; �

r

0

g is no “abnormality minimal” model, since

�

r

and �
r

0 are not jointly satisfiable. Also,

f�

r

; �

r

0

; ab

r

; �

r

0

g; f�

r

; �

r

0

; ab

r

; �

r

g; f�

r

; �

r

0

; ab

r

g; f�

r

; �

r

0

; ab

r

0

; �

r

0

g; f�

r

; �

r

0

; ab

r

0

g
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are not “abnormality minimal” models, since they either falsify �
r

^ (:ab

r

_:ab

r

0

) � �

r

or �
r

0

^:ab

r

0

�

�

r

0

: Finally, there remain three candidates satisfying a single abnormality proposition:

f�

r

; �

r

0

; ab

r

; �

r

; �

r

0

g; f�

r

; �

r

0

; ab

r

0

; �

r

; �

r

0

g; f�

r

; �

r

0

; ab

r

0

; �

r

g:

In fact, these three models are “abnormality minimal”. Since all of them satisfy �

r

; they prefer the more

specific default r over r0.

In analogy to Theorems 8 and 9, we have the following general results. Theorem 13 is with respect to

the general theory of minimal conflicting sets while Theorem 14 is with respect to the specific development

involving conflicting cores.

Theorem 13 Let hhR
D

; R

N

i;W i be a world description with R = hR

D

; R

N

i. Let C be a minimal con-

flicting set in R. Then,

1. if Circum(W [R

?

D

[R

�

N

; fab

r

j r 2 R

D

g ; Z) j= inf (C)

�

^

�

V

r2max (C)

�

r

^ :ab

r

�

then Circum(W [R

?

D

[R

�

N

; fab

r

j r 2 R

D

g ; Z) 6j=

�

V

r2min(C)

�

r

�

2. if Circum(W [R

?

D

[R

�

N

; fab

r

j r 2 R

D

g ; Z) j= inf (C)

�

^

�

V

r2min(C)

�

r

�

then Circum(W [R

?

D

[R

�

N

; fab

r

j r 2 R

D

g ; Z) 6j=

�

V

r2max(C)

�

r

^ :ab

r

�

where Z is the set of all propositional variables in W;R

D

; R

N

:

In the first case, we have that

Circum(W [R

?

D

[R

�

N

; fab

r

j r 2 R

D

g ; Z) j=

�

V

r2min(C)

�

r

�

by Theorem 3. So though the prerequisites of the minimal conflicting defaults are derivable, the correspond-

ing rules do not apply. This is so because some of the abnormality propositions ab corresponding to the

minimal conflicting defaults must hold. In this way, the more specific defaults from max (C) take prece-

dence over the less specific defaults in min(C): Conversely, in the second case, the less specific defaults

apply only if the more specific defaults do not contribute to the given extension.

We also obtain the following result.

Theorem 14 Let hhR
D

; R

N

i;W i be a world description with R = hR

D

; R

N

i. Let (min(C);max (C)) be

the conflicting core of some minimal conflicting set C in R. Then,

1. if Circum(W [R

?

D

[R

�

N

; fab

r

j r 2 R

D

g ; Z) j=

�

V

r2max(C)

�

r

^ :ab

r

�

then Circum(W [R

?

D

[R

�

N

; fab

r

j r 2 R

D

g ; Z) 6j=

�

V

r2min(C)

�

r

^ �

r

�

2. if Circum(W [R

?

D

[R

�

N

; fab

r

j r 2 R

D

g ; Z) j=

�

V

r2min(C)

�

r

^ �

r

�

then Circum(W [R

?

D

[R

�

N

; fab

r

j r 2 R

D

g ; Z) 6j=

�

V

r2max(C)

�

r

^ :ab

r

�

where Z is the set of all propositional variables in W;R

D

; R

N

:

Thus in this case we obtain that the defaults in a conflicting core are not simultaneously applicable, inde-

pendent of the “linking defaults” from inf (C).

Importantly, both transformations are consistency-preserving.

Theorem 15 Let hR
D

; R

N

i be a generic world description such thatR�
N

[R

�

D

is satisfiable. Then,R?

D

[R

�

N

is satisfiable.
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Clearly, the same result applies to our initial approach using the rules in R

ab

D

[ R

sp

D

[ R

�

N

. Moreover,

consistency is also preserved when applying circumscription to specificity-integrating world descriptions:

Theorem 16 Let hhR
D

; R

N

i;W i be a world description such thatW[R

�

N

is satisfiable. Then, Circum(W[

R

?

D

[ R

�

N

; fab

r

j r 2 R

D

g ; Z) is satisfiable, where Z is the set of all propositional variables in

W;R

D

; R

N

:

Thus, unlike standard default logic (and autoepistemic logic; see Section 4.4) in which one might obtain in-

coherent theories, the transformation given for circumscription cannot render an original theory incoherent.

Finally, Theorem 16 provides us with a compact summary of our approach. That is, we start from knowl-

edge bases of the form hhR

D

; R

N

i;W i: Next, we treat the generic part of such a world description by

means of techniques developed in Section 3 for isolating minimal sets of default rules with specificity con-

flicts. Then, we take the initial world description along with the determined specificity information obtained

in the previous step and translate it into a classical theory in propositional logic, namely W [R

?

D

[R

�

N

: In a

final step, we compute the resulting conclusions by circumscribing the introduced abnormality propositions

while varying all propositions in the original world description.

5.3 Discussion and Related Work

McCarthy [1986] addressed the lack of specificity in circumscription by introducing prioritised circum-

scription. This approach has been further developed in [Lifschitz,1985]. The idea is to partition the cir-

cumscribed propositions into priority layers. For this, a set of propositions P is partitioned into disjoint

subsets P
1

_

[ : : :

_

[P

n

where the propositions in P

i

should take priority over those in P

i+1

. For comput-

ing the result of prioritised circumscription, Lifschitz shows in [1985] that any prioritised circumscription,

written Circum(W ;P

1

> : : : > P

n

;Z); can be expressed as a conjunction of ordinary circumscriptions.

That is, Circum(W ;P

1

> : : : > P

n

;Z) is equivalent to
V

n

i=1

Circum(W ;P

i

;P

i+1

[ : : : [ P

n

[Z): Thus a

prioritised circumscription becomes a sequence of ordinary circumscriptions where propositions in a higher

layer are “minimised” while propositions in a lower layer are varied. This process is iterated over all layers

in the partition of P .

In our simple birds example, we could give the abnormality proposition of the more specific default rule

ab

2

priority over the one of the less specific rule ab
1

: This yields

Circum(fPg [R

ab

D

[R

�

N

; fab

2

g > fab

1

g ; fB;F; Pg) =

Circum(fPg [R

ab

D

[R

�

N

; fab

2

g; fab

1

; B; F; Pg)

^ Circum(fPg [R

ab

D

[R

�

N

; fab

1

g ; fB;F; Pg) j= P ^B ^ :F:

Observe however that such an approach works only if the partial order induced by specificity can be pressed

into a “layered format” without introducing unwanted preference relations. For instance, [Grosof,1991]

gives partial orders that cannot be represented in a “layered format”. For similar reasons one usually refrains

from mapping a full Z-ordering onto “layered structures” in default reasoning systems (see Section 4.5). Fi-

nally, the iterated format used for computing prioritised circumscription amounts to a treatment of specificity

on the metalevel, rather than producing an object level theory, as in our approach.

Grosof [1991] extends prioritised circumscription for dealing with partial orders. In this way, his approach

allows for formalizing partial orders representing specificity information. There are however some important

differences to our approach. First, [Grosof,1991] describes default rules with specificity in terms of an

extended prioritised circumscription, while we deal with the basic approach to circumscription. Second, it

is (to our knowledge) yet unknown how and if Grosof’s extended prioritised circumscription is reducible to

iterated ordinary circumscriptions. Hence his approach remains outside the basic circumscriptive machinery.

Consequently, it is impossible to apply, for instance, techniques for transforming circumscription in first-

order or even propositional logic (see [Lifschitz,1985]). Observe that, in contrast, we deal with a single
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basic circumscriptive theory that allows for applying the aforementioned techniques along with existing

implementations of circumscriptive theorem provers [Ginsberg,1989].

The choice of circumscription as a target formalism rather than, say, default logic or autoepistemic logic,

has several benefits. Foremost, we work largely within classical logic: a classical theory is generated; there

is a circumscriptive step minimising ab sentences, after which one has a classical knowledge base. Circum-

scription itself has several rather nice features: we don’t have the notion of “extension” to be concerned

with; also circumscription is cumulative and consistency-preserving. Furthermore computational properties

of circumscription are well-studied [Lifschitz,1985; Ginsberg,1989].

Circumscription and its variants are by far the best known and best studied minimization-based approach

to nonmonotonic reasoning. Consequently we have little to say about other approaches. Predicate comple-

tion [Clark,1978] for one has seen little application to areas of reasoning with default properties. For the

closed world assumptions, presumably the only appropriate variant of the original approach is the careful

closed world assumption [Eiter and Gottlob,1993], which is subsumed by parameterised circumscription.

Hence here the compilation is the same as that as given for parameterised circumscription. Shoham’s pref-

erential entailment [Shoham,1988], which is based on minimising certain models, in fact it has been shown

to have strong ties with the conditional logic corresponding to S4 and, so in its most general conception,

enforces specificity [Lamarre,1991].

6 Discussion

This paper has addressed the issue of incorporating specificity information into those approaches to non-

monotonic reasoning where specificity conflicts are not handled as part of the basic machinery of the ap-

proach; these approaches have generally been characterised as either “consistency-based” or “minimization-

based”. We begin with a generic world description expressed as a set of strict and defeasible rules. The

end result is a default theory expressed in some (consistency-based or minimization-based) formalism, and

where conflicts involving differing specificities are resolved. By appeal to a theory of defaults, here using

the notion of toleration from System Z, specificity conflicts are isolated into minimal conflicting sets. From

these minimal conflicting sets the conflicting rules are determined, and from the specificity information

intrinsic in these sets, a default theory in a target language in turn is specified. For default logic the end

result is a semi-normal default theory; in circumscription the end result is a set of abnormality propositions

that, when circumscribed, yield a theory in which specificity information is appropriately handled. While

we mainly deal with theories expressed (ultimately) in default logic and circumscription, we also address

variants of these approaches as well as autoepistemic logic and Theorist. Arguably the approach is both

uniform and general, and so is applicable to any sufficiently rich approach to nonmonotonic reasoning that

does not “automatically” deal with specificity conflicts.

This approach is modular, in that we separate the determination of conflicts from the resolution of con-

flicts among rules. The approach provides a broadly-applicable framework, subsuming for example that of

[Reiter and Criscuolo,1981]. As well, it generalises related mappings as found for example in [Etherington

and Reiter,1983] and, in circumscription, yields a more comprehensive form of an inheritance cancellation

axiom. This work differs from previous work in specifying priorities among default rules (in both default

logic and circumscription) in that specificity information is obtained from information intrinsic in the rules,

rather than assumed to exist a priori. In contrast to previous work, the approach avoids stepping outside

the machinery of the underlying approach. Thus, we deal with the “standard” version of default logic and

circumscription, and do not need to rely on prioritised versions, as do other approaches.

With respect to implementation, default reasoning is intractable in the worst case in virtually all con-

ceptions. For example there may be an exponential number of specificity conflicts in a default theory.

Nonetheless our approach would appear to be relatively amenable to implementation. First, the fact that we
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deal with the standard versions of default logic and circumscription means that one can make use of existing

theorem provers in implementing this approach. Second, we have that if a default theory contains a minimal

conflicting set, then so does any superset of the theory; this then would allow an incremental computation

of minimal conflicting sets, even in evolving knowledge bases.

7 Proofs of theorems

In what follows, we use the following function providing the set of negated elements. Define for a set of

formulas S,

S = f:� j � 2 Sg:

Let us moreover adopt the convention of using interchangeably a finite set of formulas S and the conjunction

of its elements
V

�2S

� on both sides of the entailment relation j=.

Proof 1 Consider a minimal conflicting set C and assume the converse, that is that C has more than a binary

Z-ordering. Then, there is a rule r 2 C n (C

0

[C

1

) such that

C

�

1

[ f�

r

^ �

r

g

is unsatisfiable. Consider C
0

[ C

1

: Obviously, this set has a non-trivial Z-ordering. This is a contradiction

to the minimality of C .

Proof 2 We have

f�

1

^ �

1

g [C

�

is unsatisfiable for all �
1

! �

1

2 C

1

:

This implies

C

�

j= �

1

� :�

1

for all �
1

! �

1

2 C

1

; since (trivially)

C

�

j= �

1

� �

1

we obtain by reductio ad absurdum that

C

�

j= :�

1

for all �
1

! �

1

2 C

1

:

Proof 3 We have

inf (C)

�

[max (C)

�

j= Prereq(max (C)) � Prereq(min(C))

iff

inf (C)

�

[max (C)

�

[ Prereq(max (C)) [ Prereq(min(C))

is unsatisfiable.

Let us assume the latter set is satisfiable.

We have (trivially)

Prereq(min(C)) j= min(C)

�

:
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This implies

inf (C)

�

[max (C)

�

[ Prereq(max (C)) [ Prereq(min(C)) j= C

�

:

But according to Theorem 2

C

�

j= Prereq(max (C));

a contradiction!

Proof 4 Let us assume the opposite. That is,

(R

0

)

�

j= Prereq(R00) � Prereq(max (C)):

Or, equivalently,

(R

0

)

�

[ Prereq(R00) j= Prereq(max (C)):

According to Theorem 2,

C

�

j= Prereq(max (C)):

By monotonicity,

(R

0

)

�

[ Prereq(R00) j= Prereq(max (C)):

Consequently,

(R

0

)

�

[ Prereq(R00)

is unsatisfiable, a contradiction!

Proof 5 We have

inf (C)

�

[ f�

r

g j= :(Conseq(min(C)) ^ Conseq(max (C)))

iff

inf (C)

�

[ f�

r

g [ Conseq(min(C)) [ Conseq(max (C))

is unsatisfiable.

Let us assume the last set is satisfiable.

Clearly,

Conseq(min(C)) j= min(C)

�

and

Conseq(max (C)) j= max (C)

�

:

This implies

inf (C)

�

[ f�

r

g [ Conseq(min(C)) [ Conseq(max (C)) j= C

�

:

But according to Theorem 2

C

�

j= Prereq(max (C));

a contradiction (since �
r

2 Prereq(max (C)))!
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Proof 6 Given immediately after Theorem 6.

Proof 7 Let (C
0

; C

1

) = C be a minimal conflicting set.

Since

C [ f�

r

^ �

r

g j= ?

for r 2 C

1

, it must be that

f�

r

0

^ �

r

0

j r

0

2 C

0

[ C

1

g [ f�

r

^ �

r

g j= ?

or, since r 2 C

1

, f�
r

0

^ �

r

0

j r

0

2 C

0

[ C

1

g j= ?:

Since by assumption

f�

r

^ �

r

j r 2 C

0

g 6j= ?;

we can essentially begin with f�
r

^ �

r

j r 2 C

0

g and add rules from C

1

until inconsistency is obtained.

Proof 8 Let R be a set of rules and let W be a set of formulas. Let C be a minimal conflicting set in R. Let

E be a consistent extension of (D
R

;W ).

1. Let D
max (C)

[D

inf (C)\R

D

� GD(E;D): By definition of GD(E;D), this implies that

Prereq
�

D

max (C)

[D

inf (C)\R

D

�

[ Conseq
�

D

max(C)

[D

inf (C)\R

D

�

� E:

Since E is deductively closed, we have that

inf (C)

�

[max (C)

�

� E:

Assume that D
min(C)

� GD(E;D): Then, we have that

Prereq
�

D

min(C)

�

[ Conseq
�

D

min(C)

�

� E and min(C)

�

� E

By Theorem 2, we have that

inf (C)

�

[max (C)

�

[min(C)

�

[ Prereq
�

D

max (C)

�

is unsatisfiable. By monotonicity, this implies that E is unsatisfiable, a contradiction.

2. Analogous to 1.

Proof 9 Let R be a set of rules and let W be a set of formulas. Let (min(C);max (C)) be a conflicting

core of some minimal conflicting set C in R. Let E be a consistent extension of (D
R

;W ).

1. Let D
max (C)

� GD(E;D): By the definition of GD(E;D), this means that

Prereq
�

D

max (C)

�

[ Conseq
�

D

max (C)

�

� E:

If D
min(C)

� GD(E;D) then we also have that

Prereq
�

D

min(C)

�

[ Conseq
�

D

min(C)

�

� E:

Since (min(C);max (C)) is a conflicting core, we have

Prereq
�

D

max (C)

�

[ Conseq
�

D

max (C)

�

[ Prereq
�

D

min(C)

�

[ Conseq
�

D

min(C)

�

j= ?:

But this implies that E is unsatisfiable, a contradiction.
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2. Follows analogously to 1.

Proof 10 According to [Reiter,1980], E is an extension of (D;W ) iff E =

S

1

i=0

E

i

; where

E

0

= W

and for i � 0

E

i+1

= Th(E

i

) [

n



�

�

�

� :�

!

2 D;� 2 E

i

;:� 62 E

o

:

Transposing these definitions to Z-default theories of the form (D

R

;W [R

�

N

) yields

E

0

= W [R

�

N

and (substituting general default rule � :�

!

by the one in Definition 6):

E

i+1

= Th(E

i

) [

(

�

r

�

�

�

�

�

�

r

: �

r

^

V

r

0

2R

r

(�

r

0

� �

r

0

)

�

r

2 D

R

;

�

r

2 E

i

;:(�

r

^

^

r

0

2R

r

(�

r

0

� �

r

0

)) 62 E

9

=

;

;

where R
r

is defined as in Definition 6). By relying on the fact that

D

n

R

=

n

�

r

:�

r

�

r

�

�

�

�

r

! �

r

2 R

D

o

;

the last but one equation can be easily transformed into

E

i+1

= Th(E

i

) [

n

�

r

�

�

�

�

r

:�

r

�

r

2 D

n

R

; �

r

2 E

i

; E [ f�

r

g [

S

r

0

2R

r

(�

r

0

� �

r

0

) 6` ?

o

which completes our proof.

Proof 11 The proof relies on the following two observations:

1. For fixed world knowledge W , if � 2W , then adding � to the justification of a default will not affect

the resulting extensions.

That is, for any default theory (D;W ) if � =

� :�

!

and �0 = � :�^�

!

then:

E is an extension of (D [ f�g;W ) and � 2 GD(E;D) iff E is an extension of (D [

f�

0

g;W ) and �0 2 GD(E;D)

2. For any �
r

) �

r

2 R

N

, �
r

� �

r

will be part of the world knowledge in the Z-default theory.

There are two cases to consider:

1. �
r

) �

r

2 R

N

, and �
r

) �

r

2 max (C) for conflicting core C .

Let �
m

! �

m

2 min(C) (or �
m

) �

m

2 min(C)). So under the translation we will have a default

of the form
�

m

:�

m

^�^(�

r

��

r

)

�

m

. But by the second observation above, �
r

� �

r

is also in the world

knowledge of the Z-default theory; by the first observation then, the default has precisely the same

effect as �

m

:�

m

^�

�

m

.
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2. �
r

) �

r

2 R

N

, and �
r

) �

r

2 min(C) for conflicting core C .

So under the translation we will have a default of the form �

r

:�

r

^�

�

r

. But by the second observation

above, �
r

� �

r

is also in the world knowledge of the Z-default theory. Hence the default �

r

:�

r

^�

�

r

is only trivially applicable in any extension (in that, if �
r

is true, then since �
r

� �

r

is also true, we

obtain that �
r

is true, without reference to the default.)

The result follows by straightforward induction on jR
N

j.

Proof 12 Let hR
D

; R

N

i be a generic world description. Let us start with Rab

D

[R

sp

D

[R

�

N

: Consider

R

sp

D

= f:

V

r

0

2R

r

(�

r

0

� �

r

0

) � ab

r

j r 2 R

D

g

where R
r

= fr

0

2 max (C

i

) j r 2 min(C

i

) for i 2 I g:

Since (C

i

)

i2I

is the family of all minimal conflicting sets in R this is equivalent to

R

sp

D

= f:

V

r;r

0

(�

r

0

� �

r

0

) � ab

r

j r

0

2 max (C

i

) and r 2 min(C

i

) for i 2 Ig

More transformations yield in turn:

R

sp

D

= f

V

r;r

0

(�

r

0

^ :ab

r

� �

r

0

) j r

0

2 max (C

i

) and r 2 min(C

i

) for i 2 Ig

R

sp

D

= f

V

r2R

r

0

(�

r

0

^ :ab

r

� �

r

0

) j r

0

2 R

D

g

where R
r

0

= fr 2 min(C

i

) j r

0

2 max (C

i

) for i 2 I g:

Switching r and r0 gives us:

R

sp

D

= f�

r

^

�

W

r

0

2R

0

r

:ab

r

0

�

� �

r

j r 2 R

D

g

where R0
r

= fr

0

2 min(C

i

) j r 2 max (C

i

) for i 2 I g:

Recall that

R

ab

D

= f�

r

^ :ab

r

� �

r

j r 2 R

D

g:

Consequently, we may combine all elements in R

ab

D

with those in the latest equation describing R

sp

D

,

which gives us:

R

?

D

= f�

r

^

�

:ab

r

_

W

r

0

2R

0

r

:ab

r

0

�

� �

r

j r 2 R

D

g

where R0
r

= fr

0

2 min(C

i

) j r 2 max (C

i

) for i 2 I g:

As a consequence, we have shown that Rab

D

[R

sp

D

[ R

�

N

is transformable into R?

D

[ R

�

N

by consecutive

application of logical and set-theoretic transformations.

Proof 13 Let R be a set of rules and let W be a set of formulas. Let C be a minimal conflicting set in R.

1. Let M be a model of

Circum(W [R

?

D

[R

�

N

; fab

r

j r 2 R

D

g;Z) [ inf (C)

�

[ f�

r

^ :ab

r

j r 2 max (C)g :

Then, M is also a model of f�
r

j r 2 max (C)g; and therefore it also entails max (C)

�

:

Now, assume M is also a model of

f�

r

j r 2 min(C)g:
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Then, M is also a model of min(C)

�

:

By Theorem 2, we have however that

inf (C)

�

[max (C)

�

[min(C)

�

[ f�

r

j r 2 max (C)g

is unsatisfiable, a contradiction to the fact that M is a model!

2. Analogous to 1.

Proof 14 Let R be a set of rules and let W be a set of formulas. Let C be a minimal conflicting set in R.

1. Let M be a model of

Circum(W [R

?

D

[R

�

N

; fab

r

j r 2 R

D

g;Z) [ f�

r

^ :ab

r

j r 2 max (C)g :

Then, M is also a model of f�
r

j r 2 max (C)g; and therefore it also entails f�
r

^�

r

j r 2 max (C)g:

Now, assume M is also a model of

f�

r

^ �

r

j r 2 min(C)g:

Since (min(C);max (C)) is a conflicting core, we have

By Theorem 2, we have however that

f�

r

^ �

r

j r 2 min(C)g: [ f�

r

^ �

r

j r 2 max (C)g

is unsatisfiable, a contradiction to the fact that M is a model!

2. Analogous to 1.

Proof 15 Let M be a model of R�
N

[ R

�

D

such that M \ fab

r

j r 2 R

D

g = ;: That is, M is a model

falsifying all ab
r

. Clearly, such a model exists, since there is no occurrence of any ab
r

in R�
N

[ R

�

D

. By

definition,

M j= �

r

� �

r

for all r 2 R

D

:

This implies that

M j= �

r

^

�

:ab

r

_

W

r

0

2R

0

r

:ab

r

0

�

� �

r

for all r 2 R

D

because M j= :ab

r

. Hence, M is also a model of R?

D

. This extends clearly to R

�

N

[ R

?

D

since M is a

model of R�
N

by definition.

Proof 16 Let M be a model of W [R

�

N

. Consider M 0

= M [ fab

r

j r 2 R

D

g. Clearly, M 0

j= W [R

�

N

;

since there is no occurrence of any ab
r

in W [R

�

N

. Moreover, we have

M

0

j= �

r

^

�

:ab

r

_

W

r

0

2R

0

r

:ab

r

0

�

� �

r

for all r 2 R

?

D

because M 0

j= ab

r

for all r 2 R

D

.
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Since

M

0

j= W [R

�

N

[R

�

D

we can essentially begin with M 0 and eliminate (non-deterministically) one atom ab

r

after another as long

as the resulting interpretation is a model of W [ R

�

N

[ R

�

D

. While varying our initial model M , we obtain

in this way all minimal models of W [ R

�

N

[ R

�

D

. Such models exist since we deal with a propositional

language over a finite alphabet, so that there is only a finite number of atoms like ab
r

. This shows that the

circumscription results in a satisfiable formula.
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