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Abstract

Reiter's default logic has proven to be an enduring and versatile approach to non-

monotonic reasoning. Subsequent work in default logic has concentrated in two major

areas. First, modi�cations have been developed to extend and augment the approach.

Second, there has been ongoing interest in semantic foundations for default logic. In

this paper, a number of variants of default logic are developed to address di�ering in-

tuitions arising from the original and subsequent formulations. First, we modify the

manner in which consistency is used in the de�nition of a default extension. The idea is

that a global rather than local notion of consistency is employed in the formation of a

default extension. Second, we argue that in some situations the requirement of proving

the antecedent of a default is too strong. A second variant of default logic is developed

where this requirement is dropped; subsequently these approaches are combined, lead-

ing to a �nal variant. These variants then lead to default systems which conform to

alternative intuitions regarding default reasoning. For all of these approaches, a �xed-

point and a pseudo-iterative de�nition are given; as well a semantic characterisation of

these approaches is provided. In the combined approach we argue also that one can now

reason about a set of defaults and can determine, for example, if a particular default

in a set is redundant. We show the relation of this work to that of  Lukaszewicz and

Brewka, and to the Theorist system.

�

Current address: IRISA, Campus de Beaulieu, 35042 Rennes cedex, France
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1 Introduction

Reiter's default logic

[

Reiter, 1980

]

is one of the best known approaches to nonmonotonic

reasoning. In this approach, domain-speci�c rules of inference or defaults are added to

classical propositional or �rst-order logic to capture patterns of inference of the form \in

the absence of information to the contrary, conclude that : : :". An example of a default

representing the assertion \Birds y" is

Bird(x) :F ly(x)

F ly(x)

. This rule is roughly interpreted as

\if something can be inferred to be a bird, and if that thing can be consistently assumed to

y, then infer that it does y". The meaning of a rule then rests on notions of provability

and consistency with respect to a given set of beliefs. A set of beliefs sanctioned by a set

of defaults, with respect to an initial set of facts, is called an extension of this set of facts.

However, as discussed in the next section, this formalism lacks several important prop-

erties, including existence of extensions and semi-monotonicity

[

Reiter, 1980

]

, and cumula-

tivity

[

Makinson, 1989

]

. In addition, di�ering intuitions concerning the role of default rules

lead to di�ering opinions concerning other properties, most notably that of \commitment

to assumptions"

[

Poole, 1989

]

. With regard to commitment to assumptions, the general

idea is that the notion of consistency can be employed in either a broad or \global" fashion,

or in a more limited or \local" fashion. Various proposals have been put forward to address

these issues and di�culties; as we show however, none of these proposals consider the full

set of issues.

Section 3 describes a variant of default logic, called constrained default logic. This

variant essentially marries and extends the work found in

[

Delgrande and Jackson, 1991

]

and

[

Schaub, 1991b

]

. In this variant, a default extension is characterised by a set of formulas

(as before) giving the set of default conclusions, and a second set of formulas giving the

\context of reasoning", determined by the justi�cations and conclusions of applied defaults.

Consistency is treated in a \global" fashion, and the justi�cations of default rules are taken

as expressing underlying assumptions, rather than a notion of possibility. As a result,

this variant conforms with the notion of commitment to assumptions. Furthermore, the

problems of semi-monotonicity and existence of extensions are addressed, and in a simpler

framework than other proposals.

It may also be argued that in certain situations default logic is overly weak, in that

desirable conclusions are not forthcoming. We argue that in such cases the requirement that

the antecedent be provable is too strong, and in Section 4 present a variant where defaults

are replaced by prerequisite-free counterparts. The omission of prerequisite conditions

leads to a simpler formulation, wherein one may reason by modus tollens and by cases.

This variant is referred to as prerequisite-free default logic. This section also examines the

system obtained by joining constrained default logic with prerequisite-free default logic. In

this variant, problems that arise in the original formulation are fully addressed, including

that of cumulativity, and in a simpler system than other variants. We also show how one

can now reason about a default in the metatheory to determine, for example, if it may

never be applicable in the formation of an extension.

For each of these variants, �xed-point, iterative, and semantic characterisations are

given and shown to be equivalent. As well, in Section 5, the relation to previous work by

 Lukaszewicz

[

1988

]

and Brewka

[

1991a

]

is given; in addition we demonstrate the relation of
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our modi�cations to the Theorist system

[

Poole, 1988

]

. Hence the results reported in this

paper provide links among these systems.

The �rst appendix contains two tables summarising the systems discussed here. The

�rst table lists the names and abbreviations of these systems, together with the sections

in which they are discussed. The second table contains a summary of properties of the

variants of default logic. The second appendix contains the proofs of the results stated in

the body of the paper.

2 Default Logic

2.1 Introduction to Default Logic

Default logic (or DL) extends classical �rst-order logic by the addition of domain-speci�c

rules of inference of the form

�(~x) :�(~x)

!(~x)

. A rule may be informally interpreted as: \If, for

some set of instances ~c, �(~c) is provable from what is known and �(~c) is consistent, then

conclude by default that !(~c)." �(~x) is called the prerequisite; �(~x) is the justi�cation;

and !(~x) is the consequent. For convenience, we denote the prerequisite of a default � by

Prereq(�), its justi�cation by Justif (�) and its consequent by Conseq(�). These projections

extend to sets of defaults in the obvious way. A normal default is one where the justi�cation

and consequent are equivalent. A semi-normal default is one where the consequent is

a logical consequence of the justi�cation. Almost all \naturally occurring" defaults are

normal

[

Etherington, 1988

]

, although semi-normal defaults are required for \interacting"

defaults

[

Reiter and Criscuolo, 1981

]

. A default theory is a pair (D;W ) where D is a set of

defaults and W is a set of closed �rst-order (or propositional) formulas.

1

A closed default

theory is one where none of the formulas in the defaults contains a free variable.

2

Also, a

default theory is said to be normal or semi-normal if it contains only normal or semi-normal

defaults, respectively,

The set of defaults is intended to capture hypothetical or non-strict inferences. However

defaults di�er markedly from standard rules of inference in an axiomatic speci�cation of a

logic. First, they are \domain-speci�c" in that a rule makes reference to speci�c formulas.

Second, these rules allow for inferences based not only on what can be proven from the

facts, W (as given in a rule's prerequisite), but also from what cannot be proven (as given

in the justi�cation). A set of defaults induces one or more extensions of the formulas in

W . An extension can be viewed as a maximal acceptable set of beliefs that one may hold

about the world W , suitably augmented by the defaults D. Reiter speci�es three properties

which should hold for an extension: it should contain the initial set of facts W ; it should

be deductively closed; and for each default rule, if the prerequisite is in an extension, but

the negation of the justi�cation is not, then the consequent is in the extension. If Th(S) is

used to denote the deductive closure of S, we obtain:

1

In what follows, we simply say formula instead of closed �rst-order formula.

2

For simplicity we deal only with closed default theories; open theories are described in

[

Reiter, 1980

]

.

Also we restrict ourselves to default rules with only a single justi�cation. In the systems we develop, multiple

justi�cations correspond to their conjunction.
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De�nition 2.1

[

Reiter, 1980

]

Let (D;W ) be a default theory. For any set S of formulas,

let �(S) be the smallest set satisfying the following properties:

1. W � �(S),

2. �(S) = Th(�(S)),

3. If

� :�

!

2 D and � 2 �(S) and :� 62 S then ! 2 �(S),

then E is an extension of the default theory (D;W ) i� �(E) = E.

That is, E is a �xed point of �. A pseudo-iterative speci�cation of an extension is also

given:

Theorem 2.1

[

Reiter, 1980

]

Let (D;W ) be a default theory and let E be a set of formulas.

De�ne:

E

0

= W

and for i � 0

E

i+1

= Th(E

i

) [

n

!

�

�

�

� :�

!

2 D;� 2 E

i

;:� 62 E

o

:

Then E is an extension for (D;W ) i� E =

S

1

i=0

E

i

.

The above procedure is not strictly iterative since E appears in the speci�cation of E

i+1

.

If we had for example that Quakers are typically paci�sts while Republicans typically

are not (i.e. D =

n

Q(x) :P (x)

P (x)

;

R(x) ::P (x)

:P (x)

o

) then, for W = fQ(sue); R(sue)g, there are

two extensions, one in which P (sue) is true and one in which :P (sue) is true. If D

0

=

D [

n

Q(x) :G(x)

G(x)

;

A(x) :E(x)

E(x)

o

(say, Quakers are typically generous and adults are typically

employed) then again we obtain two extensions where P (sue) is true in one and :P (sue)

is true in the other, and where additionally G(sue) is true in both, and E(sue) is true in

neither.

While these characterisations of a default theory are clear and intuitive, they nonetheless

are essentially syntactic in nature. As a �rst step in developing semantic underpinnings

for DL,

[

 Lukaszewicz, 1985

]

provides a semantic characterisation of normal default theories.

The general idea is that every normal default can be regarded as a mapping from sets

of models into sets of models, such that the range of the mapping is the subset of the

domain where the consequent is true. In

[

Etherington, 1987; Etherington, 1988

]

semantic

characterisations of general default theories are given, based on a notion of preference

between sets of models. A default � prefers a set of models �

1

in which the consequent

of the default holds, over a superset of models �

2

where the prerequisite is true and the

justi�cation is consistent but the consequent is not necessarily satis�ed. If we let MOD(W )

denote the set of all models of W , the preference relation �

�

is de�ned as follows:

De�nition 2.2

[

Etherington, 1988

]

Let � =

� :�



be a default rule, � a set of models and

�

1

;�

2

2 2

�

. The relation corresponding to �, �

�

, is de�ned as follows:

�

1

�

�

�

2

i�
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1. for every � 2 �

2

we have � j= �,

2. there is � 2 �

2

such that � j= �,

3. �

1

= f� 2 �

2

j � j= !g.

This order is easily extended to a set of defaults D:

De�nition 2.3

[

Etherington, 1988

]

Let D be a set of default rules, � a set of models and

�

1

;�

2

2 2

�

. The relation corresponding to D, �

D

, is the transitive closure of the union of

the relations �

�

for every � 2 D:

�

1

�

D

�

2

i�

1. there exists � 2 D, such that �

1

�

�

�

2

or else

2. there is a �

3

2 2

�

such that �

1

�

�

�

3

and �

3

�

�

�

2

.

For normal default theories, we need only consider the �

D

-maximal elements of 2

MOD(W )

[

 Lukaszewicz, 1985

]

. However for general default theories, we need to ensure that the

justi�cation of each default is consistent with the �nal extension. Etherington de�nes a

property which he calls stability that ensures this condition:

De�nition 2.4

[

Etherington, 1988

]

Let (D;W ) be a default theory and � 2 2

MOD(W )

. �

is stable for (D;W ) i� there is a set of default rules D

0

� D such that

1. � �

D

0

MOD(W ), and

2. for every

� :�



2 D

0

, we have for some � 2 � that � j= �.

Stable, maximal sets of models for a default theory are shown to correspond to ex-

tensions in a default theory, thus providing an analogue to soundness and completeness

results.

2.2 Properties of Default Logic

There are a number of properties which are not present in DL. These may be roughly

divided into, �rst, limitations of the formalism itself, and, second, properties that arise

due to di�ering intuitions concerning the nature of a default rule. This division is in some

sense an arbitrary one, and some properties that may be problematic to one person or

application may appear to be quite reasonable to another. Since the examples illustrating

these properties are used throughout the paper, they are developed in some detail here.

First, it is not always the case that a default theory has an extension.

Example 2.1 (Existence of Extensions)

The default theory

�n

:A

:A

o

; ;

�

has no extension.
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Normal default theories guarantee the existence of extensions, which is not the case for

semi-normal default theories.

The next example illustrates the property of semi-monotonicity and thus concerns in-

creasing the set of defaults in a theory. Intuitively, we would want that if D

0

� D for two

sets of defaults, then if E

0

is an extension of D

0

then there is an extension E of D where

E

0

� E. While this indeed is the case for normal defaults

[

Reiter, 1980, p. 96

]

, the next

example, adapted from

[

 Lukaszewicz, 1988

]

, illustrates that it is not so in general.

Example 2.2 (Semi-monotonicity)

The default theory

�n

A :B^:C

B

o

; fAg

�

has a unique extension: Th(fA;Bg).

The default theory

�n

A :B^:C

B

;

A :C

C

o

; fAg

�

has a unique extension: Th(fA;Cg).

As

[

Reiter, 1980

]

discusses, semi-monotonicity has the important practical consequence

that it allows for local proof procedures that may discard some of the defaults. Moreover,

if we interpret justi�cations as supplying tentative assumptions (or working hypotheses)

then the fact that we obtain only one extension, Th(fA;Cg), in the second part of the

preceding example is arguably unintuitive: if we know only W = fAg originally, then

informally it seems that the �rst default should be \applicable". The argument might

run: \Initially I know nothing at all; hence B ^ :C is consistent and I can conclude that

B. However, C is inconsistent with my original assumption of B ^ :C, and so I cannot

apply the second default." Thus we obtain an extension Th(fA;Bg) by committing to

B ^ :C. Similar reasoning beginning with the second default yields the second extension

Th(fA;Cg). Under this argument, we would obtain semi-monotonicity, since adding a de-

fault would only enlarge or preserve existing extensions. Note that this interpretation of

justi�cations as constituting \working hypotheses" is just that underlying the failure to

commit to assumptions, discussed below.

However if we don't treat justi�cations as constituting working hypotheses, but take

them simply as consistency conditions (as in the original formulations), then in other cases

this behaviour can be seen to be quite reasonable. Consider an interpretation of Example

2.2 expressing the information that, wherever I am, if a television picks up Channel 19 and

it is possible to turn to the theatre programme and the reception is not poor, then I will

turn to the theatre programme. That is,

A is \The television receives channel 19";

B is \I turn to the theatre programme";

C is \The reception is poor".

Given the �rst default theory I will turn to the programme by default. However if we also

knew that Channel 19 typically gets poor reception (i.e.

A :C

C

), then arguably this default

overrides the previous, and by default I don't attempt to watch the programme.

Since extensions are intended to represent maximal consistent sets of beliefs, one would

expect that distinct extensions would be inconsistent. In a normal default theory this

indeed is the case; however, it is not the case for semi-normal default theories.
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Example 2.3 (Orthogonality of Extensions)

The default theory

�n

:A^:B

:B

;

::A^B

:A

o

; ;

�

has two extensions: Th(f:Bg) and Th(f:Ag).

In Section 3 we suggest that a more appropriate property is weak orthogonality where, if a

theory has distinct extensions, then the extensions together with a \context of reasoning",

supplied by the set of justi�cations of applied defaults, are inconsistent.

The next example, dealing with cumulativity, is due to David Makinson

[

1989

]

. The

intuitive idea is that if a theorem is added to the set of premises from which the theorem

was derived, then the set of derivable formulas should remain unchanged. Unfortunately

this is not the case for DL:

Example 2.4

[

Makinson, 1989

]

(Cumulativity)

The default theory

�n

:A

A

;

A_B ::A

:A

o

; ;

�

has one extension: Th(fAg).

Consequently the extension contains A _ B.

The default theory

�n

:A

A

;

A_B ::A

:A

o

; fA_ Bg

�

has two extensions:

Th(fAg) and Th(f:A;Bg).

This example suggests that the failure of cumulativity is caused by changing the way in

which a default's prerequisite has been derived. In the �rst part of the example, the

prerequisite A _ B is derived by default from the application of the rule

:A

A

: Here the

second default is inapplicable. In the second part, A _ B constitutes the world knowledge

W , so that now we obtain a second extension generated by the second default.

However, the failure of cumulativity can also be caused by changing the way in which

a justi�cation of a default is refuted, as the next example illustrates.

Example 2.5 (Cumulativity)

The default theory

�n

A :B

B

;

A ::B

:B

;

::C

C

o

; fA;B � C g

�

has one extension: Th(fA;B ;C g):

Consequently the extension contains C.

The default theory

�n

A :B

B

;

A ::B

:B

;

::C

C

o

; fA;C ;B � C g

�

has two extensions:

Th(fA;B ;C g) and Th(fA;:B ;C g):

In the case of the �rst default theory, the third default is only blocked whenever the �rst

default applies. This is because the consequent of the �rst default

A :B

B

implies C, which

contradicts the justi�cation of the third default

::C

C

: As a consequence, there is no extension

generated by the second default. This changes when the default conclusion C is added to

the set of facts, as done in the second default theory. Now, we additionally obtain a second

extension generated by the second default.

Another issue is commitment to assumptions

[

Poole, 1989

]

:

Example 2.6 (Commitment to Assumptions)

The default theory

�n

:B

C

;

::B

D

o

; ;

�

has one extension: Th(fC;Dg).

If we take justi�cations as specifying strict consistency conditions (as De�nition 2.1 sug-

gests) then this is �ne. However, an alternative view takes justi�cations as providing

\implicit assumptions" or \working hypotheses". Thus one might argue that the default
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conclusion C ^ D is implausible, since both default rules are applicable even though they

have contradictory justi�cations. That is, the default conclusion C relies on B being as-

sumed as the consistency condition, whereas D relies on :B. The implausibility arises from

the fact that B and :B cannot jointly hold, and so it would seem that C and D should

not jointly hold.

This may have further e�ects, as the following shows:

Example 2.6 (cont'd)

The default theory

�n

:B

C

;

::B

D

;

::C

E

;

::D

F

o

; ;

�

has one extension: Th(fC;Dg).

Thus, a family may decide to do one of two things, go to the beach or to a movie (C or

D) on the weekend, depending on whether it is sunny (B) or not. Of the two children one

doesn't like the beach, the other doesn't like going to movies. So Chris will be happy (E)

by default if they don't go to the beach, and Leslie will be happy (F ) if they don't go to

a movie. We would expect to have three extensions, one in which fC; Fg are true; one in

which fD;Eg are true; and one in which fE; Fg are true. Thus in the �rst case, assuming

that it is sunny, the family goes to the beach and Leslie is happy; in the second case the

family goes to a movie and Chris is happy; in the last case, based on the assumption that

the family goes to neither the beach nor to a movie, both children are happy. However

in DL we conclude only that fC;Dg, and the family goes to both the beach and a movie.

The situation is even worse if we assert that going to the beach and going to a movie are

mutually exclusive, and so W = f:C _ :Dg. In this case in DL we have no extensions.

This phenomenon shows up more subtly in the \broken arms" example:

Example 2.7

[

Poole, 1989

]

(Commitment to Assumptions)

The default theory

�n

:A^B

A

;

:C^D

C

o

; f:B _ :Dg

�

has one extension: Th(fA;Cg).

Since one of B or D must be false, one of the default conditions, it would seem, cannot

hold, and so both default conclusions should not jointly hold. Consider, concretely, where

we assert that by default a person's left arm is usable (A) unless it is broken (:B); similarly

a person's right arm is usable (C) unless it is broken (:D). The preceding theory then

directs us to conclude that both arms are usable, even if one of them is known to be broken

(:B _ :D). The di�culty, from a technical point of view, is that in De�nition 2.1 (and in

Theorem 2.1) justi�cations need only be individually consistent with an extension.

However the above line of argument relies on the view that justi�cations in default rules

are intended to function as underlying assumptions. The original formulation of DL though

took justi�cations as straightforward consistency conditions. Consider the interpretation

of Example 2.6, where we wish to use the default rules to help us decide what to take on

a trip: if it is consistent (i.e. possible) that it will be hot (B) then take a T-shirt (C); if

it is consistent that it will not be hot then take a sweater (D). So now if I know nothing

about the weather I take a T-shirt and sweater. In this case our intended interpretation of

the justi�cations in the rules is closer to \is possible". Hence it makes sense to conclude by

default fC;Dg, even though the justi�cations are jointly inconsistent.

The failure of DL to commit to assumptions then may be seen not as a \bug", but

rather as reecting an alternative intuition concerning default rules. In this paper, as
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mentioned, we primarily explore alternative formulations in which we obtain commitment

to assumptions.

There are a number of further properties that one might expect of default inferences

that are not present in DL. These, like commitment to assumptions, are a matter of one's

intuitions, but here the intuitions concern the intended interpretation of a default rule as

a whole, rather than the justi�cation alone. First, DL provides a notion akin to defeasible

modus ponens, in that from W = fAg and

A :B

B

if B is consistent with A we can infer by

default that B. However this does not extend to modus tollens, or reasoning by cases.

Example 2.8 (Modus Tollens)

The default theory

�n

B :F

F

o

; f:Fg

�

has one extension: Th(f:Fg).

Hence, for example, if birds y by default

3

and we know that a given individual does not

y, then we cannot conclude by default that the individual is not a bird.

Example 2.9 (Reasoning by Cases)

The default theory

�n

A :B

B

;

:A :B

B

o

; ;

�

has one extension: Th(;).

While A _ :A is a theorem, neither A nor :A alone are provable, and so neither default

can be applied. This situation also arises where more than one class may have the same

default property:

Example 2.9 (cont'd)

The default theory

�n

Q :P

P

;

V :P

P

o

; fQ_ V g

�

has one extension: Th(fQ _ V g).

Thus if Quakers and vegetarians are both paci�sts by default, and if someone is either

Quaker or vegetarian, we still conclude nothing about paci�sm.

These examples rely on the implicit assumption that a default rule should behave like

classical implication, except that it is defeasible. Such an assumption also seems to underly

the work of

[

Reiter and Criscuolo, 1981

]

. There, for example, it is assumed that defaults

of the form

A :B

B

and

B :C

C

should be transitive unless explicitly blocked. Consequently if

W = fAg we would conclude C by default, unless the transitivity was explicitly blocked

according to the recipe given in that paper.

If one accepts the argument that defaults behave like defeasible implications then it

makes sense that one be able to reason using the \contrapositive" of a default, unless it

is explicitly blocked. However, again, this argument is not universally applicable. For

example, in a diagnostic program, we might want to express that people are normally

not diabetic, (i.e.

person ::diabetic

:diabetic

); clearly in this case we would not want to employ the

contrapositive to conclude that a diabetic was by default not a person. In Section 4 we

address the issues raised by the last two examples.

Finally, while one can draw default conclusions in DL one cannot reason about defaults.

In classical logic, for example, if � � ! and � � ! are true, then � _ � � ! must also be

3

For simplicity we use a propositional \gloss" in some of the examples, rather than the more appropriate

B(x) :F (x)

F (x)

.
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true. In DL, there is no explicit connection between

� :!

!

,

� :!

!

and

�_� :!

!

, even though we

know intuitively that the third default can be applied whenever either of the �rst two can.

That is, in DL, in order to determine whether a default is applicable (for some extension)

in a given default theory, we must e�ectively compute the extensions of the theory. In

Section 4.3 we address the issue of reasoning about defaults. In particular, we show that, in

the �nal variant of default logic that we develop, it is possible to deductively reason about

defaults in the metatheory to determine, for example, whether the applicability conditions

of one default is subsumed by others.

2.3 Related Work

This section introduces subsequent work in default logic. The major approaches described

here are discussed in detail in Section 5, where they are compared to the presented frame-

work.

Lukaszewicz

[

1988

]

presents a variant of DL that addresses the issues of semi-monotonicity

and existence of extensions. In this approach, a two-place �xed-point operator is used in

the de�nition of an extension. The �rst argument accumulates the consequents of applied

defaults, while the second accumulates the justi�cations. For a default to be applicable,

 Lukaszewicz requires that a consequent be consistent with the consequents of applied de-

faults, and also consistent with the individual justi�cations of the other applied defaults.

The approach guarantees semi-monotonicity and the existence of extensions. It does not

address cumulativity or commitment.

These last two properties are considered in

[

Brewka, 1991a

]

, where a variant called

cumulative default logic is described. Two modi�cations to the original formulation are

introduced. First, the applicability condition for a default is strengthened so that a justi�-

cation must be consistent with both the set of consequents and the set of justi�cations of the

applied defaults. The set of justi�cations is kept track of by introducing assertions, where

an assertion is a �rst-order formula (the asserted formula) together with a set of reasons

(or support) for believing the formula. An extension consists of a set of assertions, where

the �rst element of each assertion consists of either world knowledge or the consequent of

an applied default; in the latter case, the second element is the set of justi�cations and

consequents of the other defaults that enabled the default to be applied. This approach

yields a variant that makes explicit the notion that justi�cations are to be employed as

tentative assumptions. This variant is cumulative and commits to assumptions. As well it

is semi-monotonic and guarantees the existence of extensions. Brewka et al.

[

1991

]

identify

a di�culty with this approach called the \oating conclusions" problem. The di�culty

essentially is that, since extensions are no longer sets of �rst-order formulas but are sets

of assertions, it is unclear (at best) how the extensions can be joined to yield conclusions

common to every extension.

While

[

Brewka, 1991a

]

provides a �xed-point and pseudo-iterative speci�cation of an

extension in cumulative default logic, it does not provide a semantic characterisation. This

omission is addressed in

[

Schaub, 1991a

]

where an extension of Etherington's semantics is

presented, along with a semantical appraisal of the approach.

[

Delgrande and Jackson, 1991

]

presents a series of syntactic variants of DL. One of these variants essentially combines the

10



approaches of  Lukaszewicz and Brewka, and corresponds to the system described in

[

Schaub,

1991b

]

. In this approach, justi�cations of applied defaults must be consistent as a group;

extensions are as in the original formulation and so the oating conclusions problem does

not arise. This approach is further elaborated in

[

Schaub, 1992b

]

, where the relationship

to the Brewka and  Lukaszewicz variants are also investigated.

Examples 2.8 and 2.9 illustrate that there are arguably-useful situations where default

rules cannot be applied.

[

Besnard, 1989

]

describes a transformation of normal default rules

which permits modus tollens and reasoning by cases with default rules.

[

Delgrande and

Jackson, 1991

]

independently proposes the same transformation, but extended to semi-

normal defaults.

3 Constrained Default Logic

The \broken arms" example (Example 2.7) illustrates that, depending on one's intuitions,

DL may produce conclusions that are stronger than desired. The example suggests that the

set of justi�cations used in the speci�cation of an extension should be consistent, rather

than each individual justi�cation. In this section we develop and explore this intuition. We

introduce the notion of a constrained extension and call the resulting system constrained

default logic or ConDL. A constrained extension is composed of two sets of formulas E and

C, where E � C: The extension E contains all formulas which are assumed to be true and

the set of constraints C consists of E and the justi�cations of all applied defaults. In this

approach, we regard the consistency assumptions (i.e. the justi�cations) as constraints on

a given extension. This is illustrated in Figure 1. The �gure illustrates the natural set

inclusion between the facts W , their deductive closure Th(W ), the extension E, and its

constraints C. In this respect Th(W ) constitutes a lower bound whereas the constraints C

constitute an upper bound for our set of beliefs given by E.

W Th(W ) E C

Figure 1: A constrained extension (E,C ) of a default theory (D;W ).

For a default

� :�

!

to apply in DL its prerequisite � must be in E and its justi�cation �

must be consistent with E. In ConDL, however, the prerequisite � must be in extension E

11



whereas the consistency of the justi�cation � is checked with respect to the set of constraints

C. The constraints can be regarded as a context established by the premises given in

W , the nonmonotonic theorems (i.e. conclusions derived by means of defaults), and the

underlying consistency assumptions. In this sense, ConDL naturally extends the intrinsic

context-sensitive character of defaults by distinguishing between our set of beliefs given

in the extension, and the underlying constraints that form a context guiding our beliefs.

While this slightly complicates the de�nition of an extension, it also means that rules and

extensions are now represented uniformly, in that both consist of a consistency condition

along with conclusions based on the consistency conditions.

De�nition 3.1 Let (D;W ) be a default theory. For any set of formulas T let �(T ) be the

pair of smallest sets of formulas (S

0

; T

0

) such that

1. W � S

0

� T

0

,

2. S

0

= Th(S

0

) and T

0

= Th(T

0

),

3. For any

� :�

!

2 D, if � 2 S

0

and T [ f�g [ f!g 6` ? then ! 2 S

0

and � ^ ! 2 T

0

.

A pair of sets of formulas (E,C ) is a constrained extension of (D;W ) i� �(C) = (E,C ):

The set of constraints is generated by accumulating the justi�cations from the applied de-

faults along with the conclusions. Thus, each justi�cation is jointly consistent with the

extension and all other justi�cations of applied defaults. Compared with De�nition 2.1,

the �xed-point condition relies only on the constraints (T ). Intuitively, this means that

our context of reasoning has to coincide with our set of accumulated constraints. An

immediate consequence of this de�nition is that semi-normal and general default theories

are equivalent. This is seen by noting that the de�nition coincides for defaults of the form

� :�

!

and

� :�^!

!

.

For the default theory

�n

A :B

C

o

; fAg

�

; instead of a \at" extension Th(fA;C g) as in

DL, we obtain in ConDL an extension that is embedded in a context, viz. the constrained

extension (Th(fA;C g); Th(fA;B ;Cg)):

For the broken arms example (Example 2.7), we now obtain two constrained extensions.

Example 3.1

The default theory

�n

:A^B

A

;

:C^D

C

o

; f:B _ :Dg

�

has two constrained extensions:

(Th(fA;:B _ :Dg); Th(fA ^ B ;:Dg)) and (Th(fC ;:B _ :Dg); Th(fC ^D ;:Bg)):

We obtain one constrained extension in which A is true and the value of C is unspeci�ed,

and another in which C is true and the value of A is unspeci�ed. In the �rst constrained

extension, the constraints consist of the justi�cation A ^ B from the �rst default and :D

from the world knowledge. In the second constrained extension, the constraints contain the

justi�cation C ^ D from the second default and :B from the world knowledge.

In Example 2.2 we now also obtain two constrained extensions. This reects the fact

that ConDL is semi-monotonic (cf. Theorem 3.3 below).

Example 3.2 The default theory

�n

A :B^:C

B

;

A :C

C

o

; fAg

�

has two constrained extensions:

(Th(fA;Bg); Th(fA;B ^ :Cg)) and (Th(fA;Cg); Th(fA;Cg)):

12



Thus, in a constrained extension (E;C), the extension E represents what we believe about

the world whereas the constraints C tell us what assumptions we have made in order to

adopt our beliefs. Hence, an extension is our envisioning of how things are, whereas the

constraints represent our assumptions in drawing these conclusions.

Similar to

[

Reiter, 1980

]

, we are able to provide a more intuitive but still \pseudo-

iterative" characterisation of constrained extensions:

Theorem 3.1 Let (D;W ) be a default theory and let E;C be sets of formulas. De�ne

E

0

= W and C

0

= W

and for i � 0

E

i+1

= Th(E

i

) [

n

!

�

�

�

� :�

!

2 D;� 2 E

i

; C [ f�g [ f!g 6` ?

o

C

i+1

= Th(C

i

) [

n

� ^ !

�

�

�

� :�

!

2 D;� 2 E

i

; C [ f�g [ f!g 6` ?

o

:

(E,C ) is a constrained extension of (D;W ) i� (E,C ) = (

S

1

i=0

E

i

;

S

1

i=0

C

i

):

When computing an extension, reference is made to the previous partial extension E

i

whereas the consistency is checked with respect to all constraints. Thus, we obtain that

constrained extensions are uniquely determined by their sets of constraints, in that if (E;C)

and (E

0

; C

0

) are constrained extensions where C = C

0

, then E = E

0

.

3.1 Properties of Constrained Default Logic

The preceding discussion demonstrates that ConDL commits to assumptions. Constrained

extensions are maximal, i.e. for constrained extensions (E,C ) and (E

0

; C

0

) of (D;W ) we have

that if E � E

0

and C � C

0

then E = E

0

and C = C

0

:

4

However, the example demonstrating

the failure of cumulativity given for DL carries over to ConDL as well, and so the system is

not cumulative. Also, the set of beliefs in an extension alone is not necessarily maximal, as

the next example illustrates

[

 Lukaszewicz, 1988

]

.

Example 3.3 The default theory

�n

:B

A

;

:D

:B

o

; fAg

�

has two constrained extensions:

(Th(fAg); Th(fA;Bg)) and (Th(fA;:Bg); Th(fA;:B ;Dg)):

So the actual extension of the �rst constrained extension is included in the extension of the

second constrained extension.

Notably, ConDL guarantees the existence of extensions and possesses the property of

semi-monotonicity.

Theorem 3.2 (Existence of extensions) Every default theory has a constrained exten-

sion.

Consider the default theory of Example 2.1, which illustrates that DL does not guarantee

the existence of extensions:

4

Cf.

[

Schaub, 1992a, Theorem 4.3.4

]

.
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Example 3.4 The default theory

�n

::A

A

o

; ;

�

has one constrained extension: (Th(;); Th(;)):

The default

::A

A

is not applicable since, according to De�nition 3.1, its justi�cation and its

consequent must be consistent.

Theorem 3.3 (Semi-monotonicity) Let (D;W ) be a default theory and D

0

a set of de-

faults such that D � D

0

: If (E,C ) is a constrained extension of (D;W ), then there is a

constrained extension (E

0

; C

0

) of (D

0

;W ) such that E � E

0

and C � C

0

:

That is, ConDL is monotonic with respect to the defaults. Consider again Example 2.2.

Example 3.5

The default theory

�n

A :B^:C

B

o

; fAg

�

has one constrained extension:

(Th(fA;Bg); Th(fA;B ^ :Cg)).

The default theory

�n

A :B^:C

B

;

A :C

C

o

; fAg

�

has two constrained extensions:

(Th(fA;Bg); Th(fA;B ^ :Cg)) and (Th(fA;Cg); Th(fA;Cg)).

Semi-monotonicity and compactness imply that constrained extensions are constructible in

a truly iterative way by applying one applicable default after another. Then, in the case of

a �nite number of closed defaults, the consistency of each justi�cation can be checked with

respect to the previous partial set of constraints induced by the facts and all previously-

applied defaults. In the in�nite case, one has to employ some sort of diagonalization

method.

Another property which holds for constrained extensions, we refer to as weak orthogo-

nality. This is analogous to the property of orthogonality in DL, which holds for normal

default theories, and states that distinct extensions are mutually contradictory.

Theorem 3.4 (Weak orthogonality) Let (D;W ) be a default theory. If (E,C ) and

(E

0

; C

0

) are distinct constrained extensions of (D;W ), then C [ C

0

is inconsistent.

That is, given two di�erent constrained extensions the constraints of the extensions are

mutually contradictory. Note that weak orthogonality is inapplicable for DL, since no

mention is made of the set of constraints used in constructing an extension.

Example 3.6 The default theory

�n

::B

C

;

::C

B

o

; ;

�

has two constrained extensions:

(Th(fC g); Th(fC ;:Bg)) and (Th(fBg); Th(fB ;:C g)):

The two constrained extensions result from incompatible sets of constraints. Thus, and in

contrast to standard extensions which hide their underlying consistency assumptions and

therefore lack transparency, constrained extensions exhibit their consistency assumptions.

3.2 Constrained versus Standard Default Logic

We discuss here the relationship between DL and ConDL. In DL, the properties discussed

in the previous subsection (for example, semi-monotonicity and existence of extensions)

actually hold for normal default theories. Thus one view of ConDL is of a variant of DL

14



that extends the properties found in normal default theories to general default theories.

The tight relationship between DL and ConDL in the case of normal default theories is

shown by the fact that the approaches coincide in this case.

5

Theorem 3.5 Let (D;W ) be a normal default theory and E a set of formulas. Then, E

is a standard extension of (D;W ) i� (E;E) is a constrained extension of (D;W ).

At �rst glance, it seems that ConDL is strictly weaker than its classical counterpart and

that every constrained extension is \subsumed" by a standard one. To see that this is not

the case consider again the family-beach-movie situation of Example 2.6.

Example 3.7 The default theory

�n

:B

C

;

::B

D

;

::C

E

;

::D

F

o

; ;

�

has one standard extension:

Th(fC ;Dg); but three constrained extensions:

1. (Th(fC ;Fg); Th(fB ;C ;:D ;Fg));

2. (Th(fD ;Eg); Th(f:B ;:C ;D ;Eg));

3. (Th(fE ;Fg); Th(f:C ;:D ;E ;Fg)):

Hence, ConDL is neither stronger nor weaker than its classical counterpart. In particular,

the only standard extension is neither a superset nor a subset of the extensions obtained

in ConDL.

We can describe the relationship between DL and ConDL by using the justi�cations of

the generating defaults, that is, for a standard extension E,

C

E

=

n

�

�

�

�

� :�

!

2 D; � 2 E;:� 62 E

o

:

Theorem 3.6 Let (D;W ) be a default theory and let E be a standard extension of (D;W ).

If E [ C

E

is consistent, then (E; Th(E [ C

E

)) is a constrained extension of (D;W ).

Observe that the converse of the above theorem does not hold since DL does not guarantee

the existence of extensions. However, if the extensions coincide we have:

Theorem 3.7 Let (D;W ) be a default theory. If (E,C ) is a constrained extension of

(D;W ) and E is a standard extension of (D;W ), then C � Th(E [ C

E

) :

Finally, it is interesting to observe how the speci�cation of a problem in ConDL can be

represented in DL.

6

The idea is to shift the information given by the constraints C in a con-

strained extension (E,C ) to the justi�cations of the defaults. Then, each such justi�cation

is supplied with an additional but �xed consistency condition representing the constraints

in C. Again, this is done by using the set of generating defaults

7

of a constrained extension:

GD((E ;C); D) =

n

� :�

!

2 D

�

�

�
� 2 E;C [ f�g [ f!g 6` ?

o

:

5

We refer to extensions in Reiter's approach as standard extensions, in order to distinguish them from

others.

6

We would like to thank the anonymous referees for bringing this relationship to our attention.

7

See De�nition B.1 for a formal de�nition of the set of generating defaults.
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Theorem 3.8 Let (D;W ) be a default theory and E and C sets of formulas. Let

^

C =

V

�2GD((E ;C);D)

Conseq(�) ^ Justif (�) with �nite GD((E ;C); D) and

D

0

=

n

� :�^!^

^

C

!

�

�

�

� :�

!

2 D

o

Then, if (E,C ) is a constrained extension of (D;W ) then E is a standard extension of

(D

0

;W ):

3.3 The Focussed Models Semantics

In order to characterise constrained extensions semantically, we de�ne a preference relation

similar to that given in

[

Etherington, 1988

]

. Instead of sets of models, we consider pairs

(�;

�

�) of sets of models. These pairs admit more structure; we refer to them as focused

models structures.

The intuition behind a focused models structure is as follows. If we view the justi�-

cations of defaults as \working assumptions", then the consistency condition of DL is no

longer adequate. A primary di�culty that arises is non-commitment to assumptions (cf.

Example 2.6 and 2.7). Semantically, we also need to consider those models satisfying our

implicit assumptions, given in the totality of the justi�cations of the applied defaults. Since

we do not require that the justi�cations be valid, there may exist models that falsify them.

Consequently, we impose more structure on the sets of models under consideration, viewing

the second component

�

�, which is a subset of �, as our focused set of models. We illustrate

the corresponding structure of focused models structures in Figure 2. The set of models

� represents the set of models in which the set of consequents of applied defaults is true,

while

�

� additionally includes those models where the justi�cations are true.

Models �

Focused

Models

�

�

Figure 2: A focused models structure (�;

�

�).

In order to illustrate this, consider again the default theory

�n

A :B

C

o

; fAg

�

: Etherington

[

1988

]

characterises the standard extension Th(fA;C g) by means of a \at" set of models

� = f� j � j= A ^ C g:
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Hence, for example, if B and C are logically independent then there are as many models

satisfying our \working assumption" B as there are models falsifying it. The approach

taken by the focused models semantics yields a pair

(�;

�

�) = (f� j � j= A ^ C g; f� j � j= A ^ B ^ C g)

that corresponds to a structured set of models including a focus which additionally satis�es

our implicit assumptions. This is the set of models satisfying A, C, and B. In other words,

we admit more structured sets of models by focusing on those models that satisfy our

assumptions.

Semantically, a default

� :�

!

prefers a focused models structure (�

1

;

�

�

1

) to another

(�

2

;

�

�

2

) if its prerequisite � is valid in �

2

and the conjunction of its justi�cation and

consequent � ^ ! is satis�able in some focused model in

�

�

2

, and lastly if �

1

and

�

�

1

entail

the consequent ! (in addition to the previous requirements). Formally, we achieve all this

by de�ning an order relating the consistency of the justi�cations with their satis�ability in

the focused models.

De�nition 3.2 Let � =

� :�

!

and let � be a set of models, and (�

1

;

�

�

1

); (�

2

;

�

�

2

) 2 2

�

� 2

�

:

The relation corresponding to �, �

�

; is de�ned as follows:

(�

1

;

�

�

1

) �

�

(�

2

;

�

�

2

) i�

1. for every � 2 �

2

we have � j= �,

2. there is � 2

�

�

2

such that � j= � ^ !,

3. �

1

= f� 2 �

2

j � j= !g;

4.

�

�

1

= f� 2

�

�

2

j � j= � ^ !g:

The induced order �

D

is de�ned as the transitive closure of all orders �

�

such that � 2 D:

De�nition 3.3 Let D be a set of defaults, � a set of models, and (�

1

;

�

�

1

); (�

2

;

�

�

2

) 2

2

�

� 2

�

: The relation corresponding to D, �

D

; is the transitive closure of the union of the

relations �

�

for every � 2 D:

(�

1

;

�

�

1

) �

D

(�

2

;

�

�

2

) i�

1. there exists � 2 D such that (�

1

;

�

�

1

) �

�

(�

2

;

�

�

2

) or else

2. there is (�

3

;

�

�

3

) 2 2

�

� 2

�

such that (�

1

;

�

�

1

) �

D

(�

3

;

�

�

3

) and (�

3

;

�

�

3

) �

D

(�

2

;

�

�

2

):

We will refer to the �

D

-maximal sets above (MOD(W );MOD(W )) as the preferred focused

models structures for a default theory (D;W ).

Given a preferred focused models structure (�;

�

�); an extension is formed by all formu-

las that are valid in �, whereas the focused models

�

� express the constraints surrounding

the extension. Accordingly, we have the following correctness and completeness theorem es-

tablishing the correspondence between constrained extensions and preferred focused models

structure for a default theory (D;W ).
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Theorem 3.9 Let (D;W ) be a default theory. Let (�;

�

�) be a pair of sets of models and

E;C deductively closed sets of formulas such that � = f� j � j= Eg and

�

� = f� j � j= Cg:

Then, (E,C ) is a constrained extension of (D;W ) i� (�;

�

�) is a �

D

-maximal element

above (MOD(W );MOD(W )):

As in

[

Etherington, 1988

]

, we obtain a simpler semantical characterisation in the case of

normal default theories

8

. The larger set of models � collapses to the focussed models

�

�

since normal defaults require their justi�cations to be valid after they have been shown to

be satis�able

9

.

Compared with

[

Etherington, 1988

]

, we have strengthened the notion of consistency in

extensions, by requiring that all justi�cations and consequents be jointly satis�able by the

focused models. In particular, we do not require a stability condition (cf. De�nition 2.4).

Technically, this is due to the fact that we are dealing with a semi-monotonic default logic.

From the viewpoint of the focused models semantics, however, we ensure the continued

consistency of the justi�cations of applying defaults by allowing only those defaults to be

applied that are compatible with the established focus.

Figure 3 illustrates why we obtain two constrained extensions in Example 3.1. Once we

have \applied" one of the defaults the other default is no longer applicable: the focus does

not satisfy its justi�cation. Applying one of the defaults does not just require the validity

of its consequent; it also makes us focus on its underlying assumption (i.e. its justi�cation)

in order to preserve its satis�ability. For example, adding A under the assumption that

A^B is consistent (by applying the default

:A^B

A

) prohibits us from assuming that C ^D

is consistent together with the knowledge that :B _ :D ; and vice versa.

�

�

�

�

�

�	

@

@

@

@

@

@R

:B _ :D

A

:B _ :D

B ^ :D

C

:B _ :D

:B ^D

:A^B

A

:C^D

C

Figure 3: Commitment to assumptions in ConDL.

The above example shows how the focused models structures semantically accounts for

8

Recall Theorem 3.5.

9

We will see in Section 5.2 that the focus plays a fundamental role in the case of normal assertional

default theories in order to capture semantically the notion of cumulativity.
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commitment to assumptions. In view of the fact that the focused models semantics also

captures Brewka's cumulative default logic (cf. Section 5.2), and the fact that Brewka's

variant commits to assumptions as well, we may regard the focused models semantics as a

general approach to commitment to assumptions in default logics.

In addition, the semantics supplies us with several insights into the properties of ConDL.

The existence of focused models structures and so the existence of constrained extensions,

is guaranteed since De�nition 3.2 ensures that

�

� never becomes the empty set. The same

de�nition also takes care of semi-monotonicity, since there has to exist a focused model

satisfying the prerequisite, consequent, and justi�cation of an added default before it is

applied. Weak orthogonality is mirrored by the fact that there never exists a focused model

which is common to two di�erent preferred sets of focused models. We will see in Section 5.2

that the focused models semantics captures also the property of cumulativity.

An alternative semantics for ConDL has been proposed in

[

Besnard and Schaub, 1993

]

.

The basic idea is to employ Kripke structures such that a focused models structure (�;

�

�)

corresponds to a set M of Kripke structures, where � is captured by the actual worlds in

M and

�

� by the accessible worlds in M. Then, a \preferred" set of Kripke structures M

characterises a constrained extension (E,C ) such that E = f� non-modal j M j= �g and

C = f� non-modal j M j= 2�g.

4 Prerequisite-Free Approaches

This section discusses variants of DL and ConDL, wherein defaults are replaced by prerequisite-

free counterparts. This transformation allows for reasoning by cases and default inferences

involving the contrapositive. For DL, the resultant system di�ers little formally from the

original system; the major di�erence is that one no longer needs to prove the antecedent.

This variant is discussed in Subsection 4.1. Surprisingly, the prerequisite-free variant of

ConDL has quite di�erent formal properties from regular ConDL. First, the resultant sys-

tem is cumulative. Second, in a limited, but non-trivial manner, one can now reason about a

set of defaults to determine, for example, whether the applicability condition of one default

is subsumed by others. This variant is discussed in Subsections 4.2 and 4.3.

For clarity, we assume throughout this section that normal and semi-normal defaults

constitute distinct classes of defaults. This is to say, for instance, that a semi-normal de-

fault is one where the consequent is a logical consequence of the justi�cation but not vice

versa.

4.1 Prerequisite-Free Default Logic

This subsection deals with the translation of normal and semi-normal defaults into their

prerequisite-free counterparts in DL. We have noted that in default reasoning it would be

useful to be able to reason by cases or reason by modus tollens, unless such properties are

explicitly blocked. A rationale is that a default conditional should retain properties of the

classical conditional, unless explicitly blocked. The emphasis then shifts to the conditional

itself, rather than a rule involving a prerequisite and justi�cation for a conclusion.
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Consider �rst normal defaults. The default

� :�

�

is read as \if � is provably true and

� is consistent, then � is true". The reading we propose is \if it is consistent that � � �

then conclude that � � �". Thus � � � is concluded (when consistent) regardless of the

provability of �. \Birds y" then is expressed propositionally as

:B�F

B�F

. To be precise,

we transform normal defaults into prerequisite-free normal defaults in regular DL in the

following way.

� :�

�

7!

: (���)

���

The resulting subsystem of DL, namely prerequisite-free default logic, is referred to as PfDL.

As a �rst example, suppose that we have that, implausibly, A's are normally B's and

A's are normally not B's:

Example 4.1

The default theory

�n

A :B

B

;

A ::B

:B

o

; ;

�

has one extension: Th(;).

The default theory

�n

:A�B

A�B

;

:A�:B

A�:B

o

; ;

�

has one extension: Th(f:Ag).

Hence in the translated theory we obtain a reductio result: if A's are normally B's and A's

are also normally not B's, then by default we can conclude that :A.

Consider next what this translation means for reasoning by cases. For Example 2.9 we

obtain:

Example 4.2

The default theory

�n

Q :P

P

;

V :P

P

o

; fQ_ V g

�

has one extension: Th(fQ _ V g).

The default theory

�n

:Q�P

Q�P

;

:V�P

V�P

o

; fQ_ V g

�

has one extension: Th(fQ _ V; Pg).

Thus if Quakers are normally paci�sts, and vegetarians are normally paci�sts, then if some-

one is either a Quaker or vegetarian then, since neither Q nor V are provable, in DL neither

rule is applicable and we conclude nothing about P . However, intuitively, we know that

one of Q or V must be true, and that P follows by default from either Q or V ; so arguably

it should follow by default that P . This indeed is the case for the translated defaults.

A similar argument applies to the contrapositive. Given that birds normally y, then

if something is known to not y then it seems reasonable to conclude by default that this

thing is not a bird. Again, we can accomplish this if the conditional itself is concluded

whenever consistent.

Example 4.3

The default theory

�n

B :F

F

o

; f:Fg

�

has one extension: Th(f:Fg).

The default theory

�n

:B�F

B�F

o

; f:Fg

�

has one extension: Th(f:B;:Fg).

There are however times when we want to block the contrapositive; this issue is addressed

using semi-normal defaults.

The primary use of semi-normal defaults is to specify that one default takes precedence

over others

[

Reiter and Criscuolo, 1981

]

. For example, consider the statements \university

students are typically adults", \adults are typically employed", and \students are typically

not employed".
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Example 4.4 The default theory

�n

S :A

A

;

A :E

E

;

S ::E

:E

o

; fSg

�

has two extensions:

Th(fA;:E; Sg) and Th(fA;E; Sg).

The �rst extension is obtained by applying the �rst and last default; the second by applying

the �rst two defaults. Intuitively we want only one extension, where :E is true: the more

speci�c default that students are not employed should take precedence over the less speci�c

default that adults are employed. One possible �x is to assert that adults are not normally

students (viz.

A ::S

:S

) and then replace the second default by

A^:S :E

E

. This results in a

normal default theory, but requires that we be able to assume that adults are not normally

students. In addition, it forces us to conclude that an adult is a non-student, unless we

can prove otherwise; it may well be that we would want to remain agnostic about the fact

of a person's studenthood. If we are unwilling or unable to make such an assumption,

semi-normal defaults appear to be required.

Example 4.4 (cont'd)

The default theory

�n

S :A

A

;

A ::S^E

E

;

S ::E

:E

o

; fSg

�

has one extension: Th(fA; S;:Eg).

The same considerations apply for PfDL. Since PfDL extensions are generalisations of

extensions in regular DL (see Theorem 4.1 below), the problem of controlling interactions

is more acute. Consider the preceding example, translated into PfDL:

Example 4.4 (cont'd)

The default theory

�n

:S�A

S�A

;

:A�E

A�E

;

:S�:E

S�:E

o

; fSg

�

has three extensions:

Th(fA; S;:Eg), Th(fA; S;Eg), and Th(f:A; S;:Eg).

The third extension results from applying the third and second defaults. We would like

to block the transitivities implicit in the second and third extensions. The approach here is

to extend that of

[

Reiter and Criscuolo, 1981

]

to prerequisite-free defaults. There are two

possible translations:

replace

� :�^

�

with

: (���)^

(���)

; or replace

� :�^

�

with

:��(�^)

���

:

The �rst possibility carries  as a \global" consistency condition, while the second uses

 as a \local" consistency condition, under the assumption of �. However the second alter-

native fails to block the third extension in the example above. In addition, this alternative

cannot be used to satisfactorily block the contrapositive (see below). Hence we adopt the

�rst alternative. That is, we transform semi-normal defaults into prerequisite-free normal

defaults in DL in the following way.

� :�^

�

7!

: (���)^

���

In the preceding example, the default \adults are typically employed" is not applicable

for students and so we have:

Example 4.4 (cont'd)

The default theory

�n

:S�A

S�A

;

: (A�E)^:S

(A�E)

;

:S�:E

S�:E

o

; fSg

�

has one extension: Th(fA; S;:Eg).
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Blocking the contrapositive of a conditional,

:��!

��!

, is a special case of this where  is !.

For example, the contrapositive of the default, \A's are typically B's" is blocked by writing

the rule as

: (A�B)^B

A�B

. If we are given W = f:Bg then clearly the default is inapplicable

and so we cannot conclude A � B or, consequently, :A. Note that the default

: (A�B)^B

A�B

is equivalent to

:B

A�B

. This last form was suggested in

[

Brewka, 1991b

]

, and so the above

translation may be regarded as a generalisation of Brewka's.

The following theorem shows that this translation gives a system in which more con-

clusions are forthcoming than in the standard approach.

Theorem 4.1 Let (D;W ) be a semi-normal default theory and let (D

0

;W ) be the theory

where

� : (�^)

�

2 D i�

: (���)^

(���)

2 D

0

. If E is an extension of (D;W ) then there is an

extension of (D

0

;W ), E

0

, such that E � E

0

.

However we may also get more extensions from (D

0

;W ).

Example 4.5

The default theory

�n

A :B^C

B

;

B ::A^D

:A

o

; fAg

�

has one extension: Th(fA;Bg).

The default theory

�n

: (A�B)^C

(A�B)

;

: (B�:A)^D

(B�:A)

o

; fAg

�

has two extensions:

Th(fA;Bg), Th(fA;:Bg).

Of course, the same result holds for normal default theories. As an example, consider the

previous one, where the last conjunct in the justi�cations of each default is dropped.

At �rst sight, the above distinction between normal and semi-normal seems to be re-

dundant. However, notice that the preceding translations are syntax-dependent. This is

why we distinguish between normal and semi-normal defaults.

10

As an example, consider

the default

A :B^B

B

: This is clearly a normal default. However, one could be tempted to

transform this default according to the recipe given for semi-normal defaults. However, this

yields a di�erent result than transforming the default

A :B

B

according to the recipe given for

normal defaults, as can be easily veri�ed.

11

As regards general defaults, we follow

[

Etherington, 1988;  Lukaszewicz, 1990

]

in arguing

that it is reasonable to replace general defaults by semi-normal ones by conjoining the

consequent to the justi�cation. In all, this amounts to the following translation in the case

of general defaults in Reiter's DL:

� :�

!

7!

� :�^!

!

7!

: (��!)^�

��!

Finally, let us summarize the di�erences between Reiter's DL and its fragment PfDL.

In general, prerequisite-free normal default theories enjoy the same advantages as standard

normal default theories, and general prerequisite-free default theories su�er from the same

drawbacks as standard default theories. Apart from cumulativity, both types of normal

default theories have none of the di�culties discussed in Section 2.2, while both types of

general default theories have all of these di�culties.

10

Recall that according to the de�nition given at start of this section, normal and semi-normal defaults

are mutually exclusive.

11

We thank one of the referees for this example.
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As we will see in Subsection 4.2, cumulativity holds for normal default theories in

PfDL

12

while this is not the case for normal default theories in DL, as we have seen in

Example 2.4. However, transforming defaults into their prerequisite-free counterparts elim-

inates one source of the failure of cumulativity, that of changing the way prerequisites of

defaults are derivable (cf. Example 2.4). However, the transformation from DL into PfDL

does not avoid the other source for this failure, that of changing the way justi�cations

are refuted (cf. Example 2.5). Consider the prerequisite-free counterparts of the default

theories given in Example 2.5, which shows that PfDL is not cumulative.

Example 4.6

The default theory

�n

:A�B

A�B

;

:A�:B

A�:B

;

::C

C

o

; fA;B � C g

�

has one extension:

Th(fA;B ;C g):

Consequently the extension contains C.

The default theory

�n

:A�B

A�B

;

:A�:B

A�:B

;

::C

C

o

; fA;C ;B � C g

�

has two extensions:

Th(fA;B ;C g) and Th(fA;:B ;C g)

As in Example 2.5, the second default becomes applicable after adding C to the facts,

resulting in an additional extension.

For prerequisite-free theories, we do have reasoning by modus tollens and reasoning by

cases. The de�nition for constructing an extension is marginally simpler, since we do not

have a prerequisite condition to prove. However, it still relies on a �xed-point construction.

Without a �xed-point construction, we could apply one default after another by checking

the consistency of each default with respect to the extension obtained so far. This amounts

to the formal property of semi-monotonicity, which does not hold for PfDL, as a prerequisite-

free variant of Example 2.2 demonstrates.

Example 4.7

The default theory

�n

: (A�B)^:C

A�B

o

; fAg

�

has one extension: Th(fA;Bg).

The default theory

�n

: (A�B)^:C

A�B

;

:A�C

A�C

o

; fAg

�

has one extension: Th(fA;Cg).

4.2 Prerequisite-Free Constrained Default Logic

This subsection discusses the variant of DL obtained by joining ConDL with PfDL. We refer

to this variant as PfConDL. Clearly we obtain all of the properties discussed in Section 3,

as well as those covered in the previous subsection. In addition, we can give a simpler spec-

i�cation of an extension in the combined system. Also the resultant system is cumulative.

Lastly, in the next subsection, we show how one can now reason about a set of defaults.

The �xed-point de�nition of an extension for the prerequisite-free version of ConDL,

PfConDL, is clearly just that of De�nition 3.1, but without the necessity of ensuring that

the prerequisite of an applied default is in an extension. The speci�cation corresponding to

the pseudo-iterative characterisation is a modi�cation of Theorem 2.1. In this de�nition,

again an extension is composed of two sets of formulas: E, the set of formulas assumed

12

This is obtained as a corollary of Theorem 3.5 and Theorem 4.3. The cumulativity of prerequisite-free

normal default theories has independently been shown in

[

Dix, 1992

]

.
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by default to be true, and C, the superset of constraints. Again, as in ConDL, rules and

extensions are represented uniformly, in that both consist of a consistency condition along

with conclusions based on the consistency conditions.

Theorem 4.2 Let (D;W ) be a prerequisite-free default theory. Then (E;C) is a con-

strained extension of (D;W ) i� there exists some D

0

� D such that:

E = Th(W [ Conseq(D

0

));

C = Th(W [ Conseq(D

0

) [ Justif (D

0

));

and C 6` ?, but for every D

0

� D

00

, C [ fConseq(D

00

)g [ fJustif (D

00

)g ` ?.

The set C in an extension is again used to accumulate the justi�cations from the applied

defaults. There is clearly no circular reference made in the de�nition to either E or C. This

de�nition leads easily and immediately to a procedure for forming an extension. Such a

procedure is not generally computable though, since it still appeals to nonprovability. It

is computable, however, in some restricted cases, notably for propositional theories and in

inheritance hierarchies. Moreover, a procedure for inheritance reasoning would obviously

be substantially simpler than that given in

[

Etherington and Reiter, 1983

]

.

For this variant, clearly the broken arms example is handled in the same manner as in

ConDL. Also, PfConDL guarantees the existence of extensions and is semi-monotonic. Again,

we can reason by cases and with the contrapositive (unless explicitly blocked). Transitive

defaults are blocked using semi-normal defaults if necessary. On the other hand, arguably

the system isn't so strong that undesirable results are forthcoming. Also, importantly, we

obtain that the resulting system is cumulative:

Theorem 4.3 Let (D;W ) be a prerequisite-free default theory and let � 2 E

0

for all

constrained extensions (E

0

; C

0

) of (D;W ). Then,

(E;C) is a constrained extension of (D;W ) i� (E;C) is a constrained extension of

(D;W [ f�g).

Consequently this variant fully addresses the set of issues identi�ed in Section 2. It

immediately follows from Theorem 3.5 that PfDL and PfConDL coincide for normal de-

fault theories, and so in this case PfDL also addresses the di�culties discussed in Section

2. Notably, PfDL is cumulative for normal default theories. Lastly the focussed models

semantics clearly carries over to this variant, with the simpli�cation that again we don't

have to worry about the provability of the prerequisite. Clearly PfConDL can be obtained

from ConDL according to the recipes given in the preceding subsection for DL. However the

translation proposed for semi-normal defaults in DL extends to general ones in ConDL since

semi-normal and general defaults are equivalent in ConDL.

4.3 Metatheoretic Considerations

A consequence of this last variant is that we can now reason about a set of defaults in a

straightforward manner. So, given a default theory in PfConDL, we can determine whether

there exists an extension for which a default

:�

!

is applicable: If W [f�g[f!g is consistent,
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then there must exist such an extension.

13

Similarly, if we have a partial extension, say

E

0

, we can determine also whether a default is applicable in the further construction of

that extension. Consequently, we do not need to compute extensions in order to determine

whether a default is applicable. This clearly is not the case in DL or ConDL, since to deter-

mine whether a default is applicable (for some extension), we have to e�ectively compute

the extensions of the theory. This in turn is a result of the fact that the �xed-point and

pseudo-iterative characterisations of an extension necessarily refer to the �nal extension.

A second consequence of this variant is that, given a default theory in PfConDL, we can

determine in the metatheory whether a default � =

:�

!

is \subsumed" by other defaults.

That is we can determine that, if � has been applied in the formation of an extension,

whether other defaults must necessarily have been applied in that extension. Thus as a

simple example, any time that

:A^B

A^B

may be used in forming an extension, so may

:A

A

and

:B

B

. However, the converse of this last relation does not necessarily hold:

:A

A

and

::A

:A

may individually be applied in forming extensions, but

: (A^:A)

(A^:A)

certainly cannot.

It is also possible that one may be able to completely determine such subsumption

relations in DL. For example, if W j= �

1

� �

2

, W j= �

2

� �

1

, and W j= !

2

� !

1

then the

default

�

1

:�

1

!

1

can be applied any time that

�

2

:�

2

!

2

can.

14

However it is unclear whether this

is the only relation that is required for determining subsumption relations in DL or, if not,

how one might determine a complete set of such relations.

These various notions are made more precise as follows. For simplicity we restrict our-

selves to semi-normal defaults, although the extension to general prerequisite-free defaults

is straightforward.

15

A default � =

:�

!

will be identi�ed with its justi�cation �. The goal is

to determine, for default with justi�cation �, what other defaults are necessarily applicable,

given that the default represented by � is. We use the notation applic(�) to assert that a

default with justi�cation � is applicable.

De�nition 4.1 A default � =

:�

!

is applicable, written applic(�), if its justi�cation is

applicable. � is applicable with respect to a set of formulas S if S [ f�g is consistent.

Given a set of �rst-order formulae S, the set of applicable defaults is the subset of D that

may be applied to S. We obtain:

Theorem 4.4

1. ` applic(�^ �) � applic(�)^ applic(�).

2. ` applic(�_ �) � applic(�)_ applic(�).

3. ` applic(�) � applic(::�).

4. ` :applic(�) � applic(:�).

5. ` � � applic(�).

13

Since consistency is undecidable in �rst-order logic, this is not to say that such a determination is in

any sense \easy".

14

We thank one of the referees for pointing this out to us.

15

Recall that general and semi-normal defaults are equivalent in ConDL; hence, also in PfConDL.
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6. From ` � � � infer ` applic(�) � applic(�).

7. From ` :� infer ` :applic(�).

We obtain two straightforward characterisation results, the �rst with classical implica-

tion, the second with the modal logic KT

[

Chellas, 1980

]

.

Theorem 4.5

1. ` applic(�) � applic(�) i� ` � � �.

2. ` applic(�) i� `

KT

3�.

For example, the default

:A^B�C

A^B�C

can be employed in the speci�cation of an extension

i� one of

:A�C

A�C

or

:B�C

B�C

can. That is, from Theorem 4.4 we can show that

` applic(A^B � C) � applic(A � C) _ applic(B � C):

This is clearly not to say that the corresponding default theories are equivalent: if W =

fA;:Bg then even though we can apply

:A^B�C

A^B�C

, we can conclude nothing of interest by

default. However applying

:A�C

A�C

allows us to conclude C.

What this does allow is the development of strategies (again, in the metatheory) for

re�ning or modifying default theories. For example, the default \Quakers are normally

paci�st and devout" could be represented as

:Q�(P^D)

Q�(P^D)

. This in turn is equivalent to

: (Q�P )^(Q�D)

(Q�P )^(Q�D)

. It may be more useful (given domain-speci�c considerations) to replace

the default by the strictly stronger defaults

:Q�P

Q�P

and

:Q�D

Q�D

.

We have not pursued this line of enquiry, but note that it may prove to be a useful

means of reasoning about defaults in the metatheory. This means too that in PfConDL

we can now regard default reasoning as being composed of two distinct and disjoint parts.

First, we have the notion of using the defaults to construct an extension, or acceptable set

of beliefs that hold by default. Now in addition we have a means of reasoning about a set

of formulas and a set of defaults to determine, for example, whether or not a particular

default may be replaced by others.

5 Relationship to other approaches

This section deals with two well-known variants of DL as well as the Theorist system

[

Poole, 1988

]

. The approaches to DL that we discuss are justi�ed default logic or simply

JDL

[

 Lukaszewicz, 1988

]

and cumulative default logic or CumDL

[

Brewka, 1991a

]

. Histor-

ically,  Lukaszewicz' approach can be regarded as an ancestor of Brewka's. Also, CumDL

shares most of the properties of JDL. That is, both variants enjoy the property of semi-

monotonicity and guarantee the existence of extensions. In addition, CumDL commits to

assumptions and is cumulative. However, they di�er in the way they enforce their results.

 Lukaszewicz attaches sets of formulas to extensions whereas Brewka labels formulas with

sets of formulas. Thus, both employ constraints but di�er basically in the location they
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[Reiter, 80]

JDL

[ Lukaszewicz, 88]
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Figure 4: From DL towards ConDL.

put them. In some sense, ConDL can be regarded as an amalgamation of these approaches.

Hence, it is well suited as an instrument for comparing the descendents of DL. See Figure 4

for an illustration of this evolution.

In order to facilitate the treatment of the various approaches, we concentrate in this

section on how far each approach commits to assumptions. The following default theory will

serve as an indicator of how far each variant of DL commits to assumptions. We will use the

term \commitment to assumptions" in a broader sense so that it also subsumes the notion

of semi-monotonicity which may be interpreted as \weak commitment to assumptions".

Consider the following example

[

Besnard and Schaub, 1993

]

.

Example 5.1

The default theory

�n

:B

C

;

::B

D

;

::C^:D

E

o

; ;

�

has one standard extension:

Th(fC ;Dg),

but three constrained extensions:

(Th(fC g); Th(fC ;Bg)), (Th(fDg); Th(fD ;:Bg)), and (Th(fEg); Th(fE ;:C ^ :Dg)).

The above default theory, which combines several potential conicts, will be used to reveal

the degree of \commitment to assumptions" for each considered default logic. As we have

observed in Example 2.6, the �rst two defaults indicate whether a system \strongly commits

to assumptions", i.e. whether it detects inconsistencies among the set of justi�cations. The

third default indicates whether or not the considered variant is semi-monotonic; or in other

words whether it \weakly commits to assumptions".

As we have already seen, and as the preceding example illustrates, DL does not commit

to assumptions, nor does it weakly commit to assumptions. In contrast, ConDL commits

to assumptions and we obtain three extensions.
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5.1 Justi�ed Default Logic

 Lukaszewicz

[

1988

]

modi�es DL in order to guarantee the existence of extensions and semi-

monotonicity for general default theories. He attaches constraints to extensions in order

to strengthen the applicability condition of defaults. Formally, a justi�ed extension

16

is

de�ned as follows.

De�nition 5.1

[

 Lukaszewicz, 1988

]

Let (D;W ) be a default theory. For any pair of sets

of formulas (S; T ) let �(S; T ) be the pair of smallest sets of formulas S

0

; T

0

such that

1. W � S

0

,

2. Th(S

0

) = S

0

,

3. For any

� :�

!

2 D, if � 2 S

0

and S [ f!g [ fg 6` ? whenever 8 2 T [ f�g then

! 2 S

0

and � 2 T

0

.

A set of formulas E is a justi�ed extension of (D;W ) with respect to a set of formulas J

i� �(E; J) = (E; J):

We observe two major di�erences from De�nition 3.1. First,  Lukaszewicz employs a weaker

consistency check than ConDL. A default

� :�

!

applies if all justi�cations of other applying

defaults are consistent with the considered extension E and !, and if additionally ! and

� are consistent with E (observe, that omitting ! in the last part of the condition meets

exactly the consistency requirement of DL). Second, the set of constraints J merely consists

of the justi�cations of applied defaults. The constraints have neither to be deductively

closed nor consistent. All this prevents JDL from committing to assumptions, as is shown

below.

Example 5.1 (cont'd)

The default theory

�n

:B

C

;

::B

D

;

::C^:D

E

o

; ;

�

has two justi�ed extension:

(Th(fC ;Dg); fB ;:Bg) and (Th(fEg); f:C ^ :Dg).

As in DL, the �rst justi�ed extension is generated by the defaults

:B

C

and

::B

D

; and so the

extension is justi�ed by an inconsistent set of constraints. The second justi�ed extension

stems from the fact that JDL is semi-monotonic. Assume we have applied the default

::C^:D

E

; in order to apply the default

:B

C

say, its consequent C must be consistent with

:C ^ :D : Obviously, this is not the case and the default is inapplicable. For the same

reason the default

::B

D

is inapplicable.

While  Lukaszewicz avoids inconsistencies between justi�cations and consequents of in-

dividual defaults, he neglects inconsistencies among the justi�cations. So, even though the

set of constraints, J , is consistent, it might be inconsistent together with the extension, E,

or even the set of premises, W . Consider again the broken arms example, Example 2.7.

Example 5.2

The default theory

�n

:A^B

A

;

:C^D

C

o

; f:B _ :Dg

�

has one justi�ed extension:

(Th(f:B _ :D;A;Cg); fA^B;C ^Dg):

16

 Lukaszewicz calls his extensions modi�ed extensions.
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Obviously, the set of constraints fA^B;C ^Dg is inconsistent with the set of facts f:B _

:Dg:

However, we have the following relationship between the two approaches in the case of

no such inconsistencies.

Theorem 5.1 Let (D;W ) be a default theory and E a justi�ed extension of (D;W )

with respect to J. If E [ J is consistent then (E; Th(E [ J)) is a constrained extension

of (D;W ).

Thus, if the set of justi�cations J is consistent we obtain the same extension in JDL and

ConDL.

At �rst sight, Example 5.1 suggests that the stronger the consistency check of each

default logic the more extensions are obtained. However, this is not the case; consider the

default theory given in Example 2.6.

Example 5.3

The default theory

�n

:B

C

;

::B

D

;

::C

E

;

::D

F

o

; ;

�

has four justi�ed extensions:

(Th(fC ;Dg); fB ;:Bg); (Th(fC ;Fg); fB ;:Dg); (Th(fD ;Eg); f:B ;:C g);

and (Th(fE ;Fg); f:C ;:Dg):

In Section 3.2, we used this example to show that ConDL is neither stronger nor weaker than

DL. Also, for this example we obtained one standard and three constrained extensions. How-

ever, we obtain four justi�ed extensions for this example. The reason for this phenomenon

is as follows. Since JDL is semi-monotonic (or \weakly commits to assumptions"), it allows

for the application of each default. However, since it discards inconsistencies among the

justi�cations of applying defaults it is not strong enough to exclude the combination of

:B

C

and

::B

D

: In other words, although \weak commitment" guarantees the consistency of

the justi�cations of each default, it is not strong enough to prevent inconsistent sets of

justi�cations.

JDL allows for the application of more defaults than ConDL, as is shown next.

Theorem 5.2 Let (D;W ) be a default theory and (E,C ) be a constrained extension of

(D;W ). Then, there is a justi�ed extension (E

0

; J

0

) of (D;W ) such that E � E

0

and

C � Th(E

0

[ J

0

):

Semantically,  Lukaszewicz characterises justi�ed extensions by means of pairs (�; J);

where � is a set of �rst-order interpretations and J is a set of formulas. Then, such a

\preferred" pair characterises a justi�ed extension E with respect to J i� � is the set of

all models of E: Clearly, the occurrence of a set of formulas inside a semantical structure

is unfortunate. However, this is required since justi�ed extensions admit inconsistent sets

of constraints; this fact also prevents us from applying the focused models semantics to

capture JDL semantically. However, a purely model theoretical semantics for JDL has been

given in

[

Besnard and Schaub, 1993

]

using Kripke structures.
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5.2 Cumulative Default Logic

Brewka

[

1991a

]

describes a variant of DL that commits to assumptions and that is cumula-

tive. This is accomplished by strengthening the applicability condition for defaults and by

making the justi�cation for adopting a default conclusion explicit. In order to keep track of

implicit assumptions, Brewka introduces assertions, or formulas labeled with the set of jus-

ti�cations and consequents of the defaults which were used for deriving them. Intuitively,

assertions represent formulas along with the reasons for believing them.

De�nition 5.2

[

Brewka, 1991a

]

Let �; 

1

; : : : ; 

m

be formulas. An assertion � is any

expression of the form h�; f

1

; : : : ; 

m

gi; where � = Form(�) is called the asserted formula

and the set f

1

; : : : ; 

m

g = Supp(�) is called the support of �.

17

To guarantee the proper propagation of the supports, Brewka extends the classical inference

relation as follows.

De�nition 5.3

[

Brewka, 1991a

]

Let S be a set of assertions. Then

c

Th(S), the assertional

consequence closure operator, is the smallest set of assertions such that

1. S �

c

Th(S);

2. if �

1

; : : : ; �

n

2

c

Th(S) and Form(�

1

); : : : ;Form(�

n

) ` ;

then h; Supp(�

1

) [ : : :[ Supp(�

n

)i 2

c

Th(S):

An assertional default theory is a pair (D;W), where D is a set of defaults and W is a set

of assertions. An assertional default theory (D;W) is well-based if Form(W) [ Supp(W) is

consistent. An assertional extension is de�ned as follows.

De�nition 5.4

[

Brewka, 1991a

]

Let (D;W) be an assertional default theory. For any set

of assertions S let �(S) be the smallest set of assertions S

0

such that

1. W � S

0

;

2.

c

Th(S

0

) = S

0

;

3. For any

� :�

!

2 D; if h�; Supp(�)i 2 S

0

and Form(S) [ Supp(S) [ f�g [ f!g 6` ?

then h!; Supp(�) [ f�g [ f!gi 2 S

0

:

A set of assertions E is an assertional extension for (D;W) i� �(E) = E :

Comparing the last de�nition with that of constrained extensions, we see that the justi�-

cations and consequents of applied defaults are recorded locally to the default conclusions.

However, a closer look reveals that the applicability condition for a default

� :�

!

in ConDL

and CumDL require both the joint consistency of its justi�cation � and its consequent !

with the set of justi�cations and consequents of all other applying defaults. Therefore,

assertional extensions share the notion of \global" consistency with constrained extensions,

but in a distributed way. Thus, while ConDL deals with constrained extensions, CumDL

deals with \formulas with constraints".

CumDL commits to assumptions:

17

The two projections extend to sets of assertions in the obvious way. We sometimes misuse Supp for

denoting the support of an asserted formula, e.g. h�;Supp(�)i:
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Example 5.1 (cont'd)

The default theory

�n

:B

C

;

::B

D

;

::C^:D

E

o

; ;

�

has three assertional extensions:

c

Th(fhC ; fB ;Cgig);

c

Th(fhD ; f:B ;Dgig); and

c

Th(fhE ; f:C ^ :D ;Egig):

Let us examine the extension containing the assertion hD ; f:B ;Dgi: This assertion is de-

rived by applying the default

::B

D

: In order to apply another default the corresponding

justi�cation and consequent have to be consistent with fDg [ f:B ;Dg; the asserted for-

mula and the support of the assertion. As can be easily veri�ed, neither of the two other

defaults is applicable. So, once we have derived a conclusion, we are aware of its underly-

ing assumptions. Therefore, CumDL prevents the derivation of conclusions that contradict

previously derived conclusions or their underlying consistency assumption.

In all, CumDL and ConDL are quite similar. To characterise this relation directly, we

give a kind of equivalence result between our formulation and that of

[

Brewka, 1991a

]

.

Theorem 5.3 Let (D;W ) be a default theory and (D;W) the assertional default the-

ory, where W = fh�; ;i j � 2 Wg: Then, if (E,C ) is a constrained extension of (D;W )

then there is an assertional extension E of (D;W) such that E = Form(E) and C =

Th(Form(E) [ Supp(E)); and, conversely if E is an assertional extension of (D;W) then

(Form(E); Th(Form(E) [ Supp(E))) is a constrained extension of (D;W ).

Observe, that we get a one-to-one correspondence between the \real" extensions, E =

Form(E). However, the constraints of a constrained extension correspond to the deductive

closure of the supports and the asserted formulas of the extension. Thus, we can map

assertional extensions onto constrained extensions only modulo equivalent sets of supports.

CumDL shares several properties with ConDL: the existence of assertional extensions is

guaranteed, CumDL is semi-monotonic and all assertional extensions of a given assertional

default theory are weakly orthogonal to each other. Also, as its name indicates, CumDL

is cumulative

[

Brewka, 1991a, Prop. 2.13

]

. This is illustrated by means of the following

example (cf. Example 2.4).

Example 5.4 (Cumulativity)

The assertional default theory

�n

:A

A

;

A_B ::A

:A

o

; ;

�

has one assertional extension:

c

Th(fhA; fAgig).

Consequently the assertional extension contains hA_ B; fAgi.

The assertional default theory

�n

:A

A

;

A_B ::A

:A

o

; fhA_ B; fAgig

�

has one assertional exten-

sion:

c

Th(fhA; fAgig).

However, the model theoretic semantics developed for DL

[

Etherington, 1988

]

is not

applicable here. Fortunately, CumDL can be captured by means of the focused models

semantics.

18

An assertional extension E is characterised by a preferred focused models

structure (�;

�

�) such that all asserted formulas of E (i.e. Form(E)) are valid in � and addi-

tionally all supports (i.e. Supp(E)) are valid in

�

�: Then we can characterise the relationship

between assertional extensions and preferred focused models structures as follows.

18

In fact the focused models semantics was originally proposed to capture CumDL

[

Schaub, 1991b

]

.
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Theorem 5.4 (Correctness & Completeness) Let (D;W) be an assertional default

theory and let (�;

�

�) be a pair of sets of models.

If E is an assertional extension of (D;W) then (MOD(Form(E));MOD(Form(E) [ Supp(E)))

is a �

D

-maximal element above (MOD(Form(W));MOD(Form(W) [ Supp(W))):

If (�;

�

�) is a �

D

-maximal element above (MOD(Form(W));MOD(Form(W) [ Supp(W)))

then there is an assertional extension E of (D;W) such that � = f� j � j= Form(E)g and

�

� = f� j � j= Form(E) [ Supp(E)g:

Notably, we do not obtain a simpler semantical characterisation for normal assertional de-

fault theories in general, in contrast with ConDL. The focus is necessary in the case of

normal assertional default theories wherein Supp(W) is non-empty. In particular, this will

be the case whenever derived assertions are added to the assertional facts.

CumDL runs into the \oating conclusions" problem

[

Brewka et al., 1991

]

; this di�culty

involves reasoning skeptically by intersecting several extensions.

Example 5.5

The assertional default theory

�n

::B

A

;

::A

B

o

; fhA � C ; ;i; hB � C ; ;ig

�

has two assertional

extensions:

c

Th(fhA; f:B ;Agi; hC ; f:B ;Agig) and

c

Th(fhB ; f:A;Bgi; hC ; f:A;Bgig).

Reasoning skeptically, we cannot draw any conclusion about C. Although C is asserted in

both extensions, the corresponding supports di�er and so the assertions as such are di�erent

and do not belong to the intersection.

Since constrained extensions consist of �rst-order formulas they do not run into this

problem; consider the corresponding default theory and its constrained extensions:

Example 5.5 (cont'd)

The default theory

�n

::B

A

;

::A

B

o

; fA � C ;B � C g

�

has two constrained extensions:

(Th(fA;C g); Th(fA;C ;:Bg)) and (Th(fB ;C g); Th(fB ;C ;:Ag)):

Reasoning skeptically by intersecting the above extensions and sets of constraints yields the

set of skeptical conclusions: Th(fA _ B ;C g) in the context of Th(fC ;:(A � B)g): Hence,

we obtain C as a skeptical conclusion.

The crux of the previous example lies in the proper introduction of the exclusive disjunc-

tion :(A � B): Using assertions we cannot apply any kind of deduction to the supports,

apart from considering them when checking consistency. But by encoding the underly-

ing consistency assumptions as a context guiding our beliefs, we have the whole deductive

machinery of classical logic at hand.

To conclude, observe that ConDL is closer to CumDL than to JDL. Although  Lukaszewicz

attaches constraints to an extension, he employs a weaker consistency check. Similar to

DL, justi�cations need only to be separately consistent with an extension at hand. This

is mirrored by the notion of commitment, since CumDL and ConDL (strongly) commit to

assumptions, whereas DL and JDL do not. Since additionally every standard extension is

also a justi�ed extension (cf.

[

 Lukaszewicz, 1988

]

), JDL seems to be closer to DL than to its

two constrained descendents.
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5.3 Theorist

Poole

[

1988

]

describes a system, called Theorist, for default reasoning based on theory

formation from a �xed set of hypotheses. There is a close relationship between PfConDL and

the Theorist system. We briey review Theorist and then show how a Theorist system can

be translated to/from a prerequisite-free default theory in ConDL such that the extensions of

the Theorist system correspond exactly to the constrained extensions of the corresponding

default theory.

A Theorist system is a triple (F ;�; C) where F is a set of closed formulas called the

facts, � is a set of formulas called the possible hypotheses, and C is a set of closed formulas

called the constraints. Default reasoning is e�ectively reduced to hypothetical reasoning:

any ground instance of a possible hypothesis may be assumed as long as it is consistent

with the facts and the constraints.

De�nition 5.5

[

Poole, 1988

]

A scenario of (F ;�; C) is a set F [ S where S is a set of

ground instances of � such that F [ S [ C is consistent.

De�nition 5.6

[

Poole, 1988

]

A closed formula � is explainable from (F ;�; C) i� there is

a scenario F [ S such that F [ S ` �.

We assume that F [ C is consistent since otherwise there are no scenarios. For default

reasoning, � contains conditionals similar to prerequisite-free defaults. For example, the

following Theorist system corresponds to the Quaker-Republican example:

F = fQ(sue); R(sue)g

� = fQ(x) � P (x); R(x) � :P (x)g

C = fg

P (sue) is explainable from the hypothesis Q(sue) � P (sue) while :P (sue) is explainable

from the hypothesis R(sue) � :P (sue).

For practical reasons, such as printing explanations and the implementation of Theorist,

Poole argues for the \naming" of defaults. If !(~x) is a formula intended as a default with

free variables ~x = x

1

; x

2

; : : : ; x

n

then !(~x) can be named with n

!

where n

!

is a n-ary

predicate symbol not appearing in F ;�; or C. With named defaults, � contains only the

names of defaults and F contains formulas of the form 8~x (n

!

(~x) � !(~x)), for each name

n

!

. The above example may be written as,

F = fQ(sue); R(sue);

8x (n

QP

(x) � (Q(x) � P (x)));

8x (n

RP

(x) � (R(x) � :P (x)))g

� = fn

QP

(x); n

RP

(x)g

C = fg

using the names n

QP

and n

RP

for the two defaults.

Constraints are often used to state when a default is not applicable and are used to

deal with interacting defaults by blocking unwanted transitivities and contrapositives. A

constraint of the form  � :n states that the default named n is not applicable when  is

true. For example, the constraint,
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Without Naming With Naming

F B � A B � A

B � F B � F

n

B

� B

n

A

� A

� B n

B

A n

A

C F � :A F � :n

A

Scenarios F [ fAg F [ fn

A

g and F [ fn

B

g

Figure 5: A Theorist Example With and Without Named Defaults

8x (P (x) � :n

RP

(x))

blocks the contrapositive of the Republican-not-Paci�st default by stating that this default

is not applicable when P (x) is true.

Poole has shown that when there are no constraints, naming defaults does not a�ect

what is explainable. However, the example in Figure 5 demonstrates that when there are

constraints, naming defaults does a�ect what is explainable. Without naming, F [ fBg is

not a scenario because F [ fBg ` :(F � :A): With naming, however, B is explainable

using the hypothesis n

B

. We have assumed that when a default ! is named by n

!

then any

constraints of the form  � :! are replaced by  � :n

!

. This translation is not explicitly

stated in

[

Poole, 1988

]

but seems obvious from the examples given there. Our translation

of PfConDL to Theorist produces a system with named defaults.

Relation to PfConDL

This section describes the correspondence between Theorist with constraints and con-

strained extensions of semi-normal prerequisite-free default theories. Poole has previously

shown that Theorist without constraints is equivalent to prerequisite-free normal default

theories, that is normal default theories in PfDL. This equivalence carries over to PfConDL

since DL and ConDL are equivalent for normal default theories. The interesting case is

Theorist with constraints. For simplicity, the following assumes that all the formulas in �

are closed (otherwise, some formula in � contains a free variable and it would be necessary

to use open default theories).

Independently,

[

Brewka, 1991b

]

and

[

Dix, 1992

]

have shown that a Theorist system,

(F ;�; C) is equivalent to a prerequisite-free default theory of the following form,

�n

:�^C

�

�

�

�
� 2 �

o

;F

�

;

and vice versa

19

.

19

The C in the default rules is the conjunction of all formulas in the corresponding (�nite) set of constraints.
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Theorist PfConDL

F Q W Q

R R

n

QP

� (Q � P )

n

RP

� (R � :P )

� n

QP

D

:Q�P

Q�P

n

RP

: (R�:P )^:P

(R�:P )

C P � :n

RP

Figure 6: An Example Translated from Theorist to PfConDL

The above translation also provides a correspondence between a Theorist system and a

PfConDL theory as demonstrated by the following theorem.

Theorem 5.5 A formula � is explainable from (F ;�; C) i� there exists a constrained

extension (E;C) of

�n

:�^C

�

�

�

�
� 2 �

o

;F

�

such that � 2 E.

It is somewhat unsatisfying to duplicate all the constraints at each default. However

this duplication can be avoided by considering a restricted form of a Theorist system that

arises frequently in practice. The methodology for naming defaults and using constraints

to block defaults often yields Theorist systems that have the following form:

1. � contains only of the names of defaults.

2. For each default name, n, there is exactly one formula in F of the form n � �.

3. For each default name, n, there is exactly one formula in C of the form : � :n.

20

All of the examples in

[

Poole, 1988

]

have this form. For Theorist systems in this form there

is a translation to PfConDL that avoids duplicating the set of constraints at each default.

In addition, the translation eliminates all default names found in the original Theorist

system. The function Tr, de�ned below, translates a Theorist system in the above form to

a prerequisite-free default theory.

Tr(F;�; C) = (D;W )

where

W = f� j � 2 F and � does not contain any default nameg

D =

n

:�^

�

�

�

�
n 2 �; n � � 2 F and : � :n 2 C

o

Figure 6 shows a simple Theorist system along with its translation. Anything explainable

from the Theorist system will occur in some constrained extension of the corresponding

default theory.

20

? � :n or >� :n can be used for defaults that are always/never applicable.
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Theorem 5.6 A formula � is explainable from (F ;�; C) i� there exists a constrained

extension (E;C) of Tr(F;�; C) such that � 2 E.

This relationship between Theorist and constrained extensions implies that the focused

models semantics developed for ConDL can be used for Theorist. In addition, the method

for reasoning about defaults, developed in section 4.3, can be applied to Theorist.

A prerequisite-free default theory can also be translated into a Theorist system such

that the constrained extensions are equivalent to what is explainable. The function Tr

�1

maps a prerequisite-free default theory to a Theorist system in the above form.

Tr

�1

(D;W ) = (F ;�; C)

where

F = W [

n

n

�

� �

�

�

�

:�^

�

2 D

o

� =

n

n

�

�

�

�

:�^

�

2 D

o

C =

n

: � :n

�

�

�

�

:�^

�

2 D

o

where each n

�

is a new name for a default.

Theorem 5.7 Let (D;W ) be a semi-normal prerequisite-free default theory. A formula �

is in E for some constrained extension (E;C) of (D;W ) i� � is explainable from Tr

�1

(D;W ).

21

Therefore, the implementations for Theorist can be used to determine if a formula is in

some constrained extension of a (semi-normal) prerequisite-free default theory.

6 Conclusions

We have developed variants of default logic that address situations not dealt with in the

original system, that formalise di�ering intuitions in approaches to default reasoning, and

that rectify di�culties in the original system. In all these variants, �xed-point, iterative,

and model-based characterisations of default extensions are given.

In DL a default rule is applicable when the prerequisite is provable and the justi�cation

is consistent with the �nal extension. Section 3 develops the major variant, ConDL. In this

formulation the justi�cation must be consistent with the �nal extension together with the

set of justi�cations of all the other applied rules. Consequently, the set of justi�cations

forms a context of which the default conclusions are a subset. While slightly more com-

plex than the original formulation, ConDL arguably better conforms to intuitions regarding

assumption-based default reasoning. This variant commits to assumptions, and possesses

the properties of semi-monotonicity and weak orthogonality; as well it guarantees the ex-

istence of extensions. With regards to a model-based characterisation of extensions, the

stability property, required in Etherington's semantics, is not required here.

21

The Theorist system contains new predicate symbols for the names of defaults so there are formulas,

containing default names, that are explainable but are not in any extension. We consider such formulas to

be non-explainable.
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The variants examined in Section 4 weaken the requirement that the prerequisite be

provable. In these variants, the reading of a conditional \typically if � then �" is such that

\typically" applies to the conditional as a whole. Thus the conditional is a component of

the justi�cation, as well as constituting the conclusion. In the �rst modi�cation, PfDL, if

the conditional can be concluded then one can reason using the conditional, without the

need to prove the antecedent true. Thus one obtains contrapositive defeasible inferences,

as well as reasoning by cases. Interacting defaults are dealt with by incorporating semi-

normal defaults where necessary, in the manner described in

[

Reiter and Criscuolo, 1981

]

.

Semi-normal defaults are also used to block other possibly-unwanted inferences, such as

those involving contrapositives.

In the combination of these approaches, PfConDL, we retain the properties of ConDL

and PfDL. Thus this variant fully addresses the set of issues identi�ed in Section 2. From

a technical standpoint, several bene�ts are obtained. First, the formulation is conceptually

cleaner and simpler. The modi�cations result in a uniformity of notation, in that both

rules and extensions in a default theory are composed of two parts: a justi�cation and

a conclusion. The de�nition of an extension is simpli�ed and, in particular, we can now

give a non-�xed-point characterisation of a default extension. While the overall complexity

remains the same for default inferencing, a number of heuristic bene�ts obtain, including the

fact that there are no prerequisites to be proven; and, in the construction of an extension, if

a default is inapplicable at some point, it is always inapplicable. Lastly, we can now reason

about the defaults. Thus for example we can deductively determine in the metatheory that,

given the knowledge that :B_:D, the defaults

:A^B

A

and

:C^D

C

cannot be jointly applied.

That the suggested changes are indeed reasonable is justi�ed by appealing to the in-

tuitions motivating these changes. As well, numerous examples are cited, and di�culties

identi�ed in the literature are addressed in these variants.

Lastly these variants are extensively compared to the major alternative approaches to

default logic, those of  Lukaszewicz and Brewka. We have also shown that the resulting

system is closely related to the Theorist system of

[

Poole, 1988

]

and so provide a link

between Theorist and default logics. The discussed default systems and their properties

are summarized in the tables given in the following appendix.
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A Summary of Systems

The �rst table lists the names and abbreviations used for the default systems dealt with in

the paper, together with the sections in which these systems are discussed.

Name Abbreviation Section(s)

Default Logic DL 2.1, 2.2

Constrained Default Logic ConDL 3

Prerequisite-Free Default Logic PfDL 4.1

Prerequisite-Free Constrained Default Logic PfConDL 4.2

Justi�ed Default Logic JDL 2.3, 5.1

Cumulative Default Logic CumDL 2.3, 5.2

Theorist 5.3

In the following table, for completeness we have included results which were not explic-

itly stated here (cf.

[

Schaub, 1992a

]

). Others were omitted since they do not refer to entire

subsystems of DL. For instance, we have suppressed the fact that semi-normal default theo-

ries which are ordered in a certain way guarantee the existence of extensions

[

Etherington,

1988

]

. The properties of normal default theories extend to normal default theories having

an additional but �xed consistency condition, as given in Theorem 5.5 (cf.

[

Dix, 1992

]

). A

dash indicates that the considered property is meaningless for the respective default logic.

Items in parentheses indicate yet unproven conjectures.

DL ConDL JDL CumDL

Maximality G N N N

Pairwise maximality | G G G

Existence N G G G

Semi-monotonicity N G G G

Orthogonality N N N N

Weak orthogonality | G N G

Cumulativity PfN Pf (Pf) G

Commitment N G N G

Reasoning by cases Pf Pf Pf Pf

Reasoning by contraposition Pf Pf Pf Pf

Reasoning about defaults PfN Pf (PfN) (Pf)

Skeptical reasoning G G G W

G

�

=

general default theories

N

�

=

normal default theories

Pf

�

=

prerequisite-free default theories

PfN

�

=

prerequisite-free normal default theories

W

�

=

default theories without defaults
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B Proofs of Theorems

B.1 Proofs of Theorems in Section 3

Theorem 3.1 Let (D;W ) be a default theory and let E;C be sets of sentences. De�ne

E

0

= W and C

0

= W

and for i � 0

E

i+1

= Th(E

i

) [

n

!

�

�

�

� :�

!

2 D;� 2 E

i

; C [ f�g [ f!g 6` ?

o

C

i+1

= Th(C

i

) [

n

� ^ !

�

�

�

� :�

!

2 D;� 2 E

i

; C [ f�g [ f!g 6` ?

o

:

(E,C ) is a constrained extension of (D;W ) i� (E,C ) = (

S

1

i=0

E

i

;

S

1

i=0

C

i

):

Proof 3.1 First, observe that we have the following properties

1. W �

S

1

i=0

E

i

�

S

1

i=0

C

i

2.

S

1

i=0

E

i

= Th(

S

1

i=0

E

i

) and

S

1

i=0

C

i

= Th(

S

1

i=0

C

i

):

3. For any

� :�

!

2 D, if � 2

S

1

i=0

E

i

and C [ f�g [ f!g 6` ? then ! 2

S

1

i=0

E

i

and

� ^ ! 2

S

1

i=0

C

i

.

By the minimality of �(C), we have

22

�

1

(C) �

S

1

i=0

E

i

and �

2

(C) �

S

1

i=0

C

i

; (1)

regardless of whether (E,C ) is a constrained extension or not.

only{if part Assume (E,C ) is a constrained extension.

\�" We have to show that E

i

� E and C

i

� C for i � 0

Base Clearly, E

0

= W � E and C

0

= W � C:

Step Assume E

i

� E and C

i

� C and consider � 2 E

i+1

[ C

i+1

:

1. � 2 Th(E

i

): Since E

i

� E and E = Th(E) we obtain � 2 Th(E

i

) � Th(E) =

E:

2. � 2 Th(C

i

): Analogous to 1.

3. � 2 f�; !g: for some

� :�

!

such that � 2 E

i

and C [ f�g [ f!g 6` ?:

Since E

i

� E we have � 2 E: Together, � 2 E and C [f�g[f!g 6` ? imply

! 2 E and � ^ ! � C; and both cases for � are covered.

Thus, we have E

i+1

� E and C

i+1

� C; respectively.

\�" From (1) and the fact that (E,C ) = �(C) we obtain E �

S

1

i=0

E

i

and C �

S

1

i=0

C

i

;

respectively.

We obtain (E,C ) = (

S

1

i=0

E

i

;

S

1

i=0

C

i

).

22

We refer to the components of � as �

1

and �

2

, respectively.
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if part Assume (E,C ) = (

S

1

i=0

E

i

;

S

1

i=0

C

i

).

\�" Now, we have to show that E

i

� �

1

(C) and C

i

� �

2

(C) for i � 0:

Base Clearly, E

0

= W � �

1

(C) and C

0

= W � �

2

(C):

Step Assume E

i

� �

1

(C) and C

i

� �

2

(C) and consider � 2 E

i+1

[ C

i+1

:

1. � 2 Th(E

i

): Since E

i

� �

1

(C) and �

1

(C) = Th(�

1

(C)) we obtain � 2

Th(E

i

) � Th(�

1

(C)) = �

1

(C):

2. � 2 Th(C

i

): Analogous to 1.

3. � 2 f�; !g for some

� :�

!

such that � 2 E

i

and C [ f�g [ f!g 6` ?:

Since E

i

� �

1

(C) we have � 2 �

1

(C): Together, � 2 �

1

(C) and C [ f�g [

f!g 6` ? imply ! 2 �

1

(C) and � ^ ! 2 �

2

(C) and both cases for � are

covered.

Accordingly, we have E

i+1

� �

1

(C) and C

i+1

� �

2

(C); respectively.

\�" Follows from (1).

We have shown that (

S

1

i=0

E

i

;

S

1

i=0

C

i

) = �(C). Together with the assumption (E,C ) =

(

S

1

i=0

E

i

;

S

1

i=0

C

i

), we obtain that (E,C ) is a constrained extension of (D;W ).

In the sequel, we frequently use the following de�nition and results.

De�nition B.1 Let (D;W ) be a default theory and S and T sets of formulas. The set of

generating defaults for (S;T) wrt D is de�ned as follows.

GD((S; T ); D) =

n

� :�

!

2 D

�

�

�
� 2 S; T [ f�g [ f!g 6` ?

o

:

Theorem B.2 Let (E,C ) be a constrained extension of a default theory (D;W ). We have

E = Th(W [ Conseq(GD((E ;C); D)))

C = Th(W [ Conseq(GD((E ;C); D)) [ Justif (GD((E ;C); D))):

Proof B.2

[

Schaub, 1992a

]

Theorem B.3 (Groundedness) Let (E,C ) be a constrained extension of (D;W ). Then,

there exists an enumeration h�

i

i

i2I

of GD((E ;C); D) such that for i 2 I

W [ Conseq(f�

0

; : : : ; �

i�1

g) ` Prereq(�

i

):

Proof B.3

[

Schaub, 1992a

]

Theorem 3.3 (Semi-monotonicity) Let (D;W ) be a default theory and D

0

a set of de-

faults such that D � D

0

: If (E,C ) is a constrained extension of (D;W ), then there is a

constrained extension (E

0

; C

0

) of (D

0

;W ) such that E � E

0

and C � C

0

:
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Proof 3.3 The inconsistent case is easily dealt with, so that we prove below the theorem

for E and C being consistent.

We de�ne a sequence h�

�

i of subsets of D

0

as follows. For the sake of simplicity, let us

abbreviate Th(W [ Conseq(�

�

)) by E

�

and Th(W [ Conseq(�

�

) [ Justif (�

�

)) by C

�

.

�

�

=

8

>

>

>

<

>

>

>

:

GD((E ;C ); D) if � = 0

S

�<�

�

�

if � is a limit ordinal

�

�

[ f�g if � = � + 1 is a successor ordinal in the case there exists

� =

� :�

!

2 D

0

n�

�

such that � 2 E

�

and C

�

[ f�g [ f!g 6` ?

Since the sequence � is strictly increasing, the process eventually stops. Let � be the

greatest ordinal such that �

�

is de�ned. De�ne

E

0

= Th(E [ Conseq(�

�

)) and C

0

= Th(C [ Conseq(�

�

) [ Justif (�

�

)):

By de�nition, E � E

0

and C � C

0

: Thus, it remains to be shown that (E

0

; C

0

) is a con-

strained extension of (D

0

;W ). First, observe the following properties.

1. By de�nition of E

0

and C

0

, and since W � E � C; we have also W � E

0

� C

0

:

2. By de�nition, E

0

= Th(E

0

) and C

0

= Th(C

0

):

3. If

� :�

!

2 D

0

; and � 2 E

0

and C

0

[ f�g [ f!g 6` ?, we obtain ! 2 E

0

and � ^ ! 2 C

0

because

� :�

!

2 �

�

(otherwise �

�+1

could be de�ned).

Then, by the minimality of �(C

0

), we have

23

�

1

(C

0

) � E

0

and �

2

(C

0

) � C

0

:

Now, assume �

1

(C

0

) � E

0

and �

2

(C

0

) � C

0

; i.e. none of the former inclusions are proper.

Then (provided that E � �

1

(C

0

) and C � �

2

(C

0

)), there exists a least ordinal � such that

�

�

= �

��1

[ f�g where � =

� :�

!

2 D

0

; such that � 2 E

0

and C

0

[ f�g [ f!g 6` ?; and

! 2 E

0

and �^! 2 C

0

but either ! 62 �

1

(C

0

) or �^! 62 �

2

(C

0

): By de�nition of �, we have

� 2 E

��1

: Since � is the least such ordinal, it follows that � 2 �

1

(C

0

): But by de�nition,

� 2 �

1

(C

0

) and C

0

[ f�g [ f!g 6` ?; implies ! 2 �

1

(C

0

) and � ^! 2 �

2

(C

0

): Contradiction.

To show, that E � �

1

(C

0

) and C � �

2

(C

0

) recall that (E,C ) is a constrained extension

of (D;W ). Thus, (E,C ) = (

S

1

i=0

E

i

;

S

1

i=0

C

i

) such that E

0

= W and C

0

= W; and for i � 0

E

i+1

= Th(E

i

) [

n

!

�

�

�

� :�

!

2 D;� 2 E

i

; C [ f�g [ f!g 6` ?

o

C

i+1

= Th(C

i

) [

n

� ^ !

�

�

�

� :�

!

2 D;� 2 E

i

; C [ f�g [ f!g 6` ?

o

Proof by induction on i.

Base By de�nition.

Step The induction hypothesis is: E

i

� �

1

(C

0

) and C

i

� �

2

(C

0

):

Consider � 2 E

i+1

[ C

i+1

: Then, one of the three following cases holds.

23

We refer to the components of � as �

1

and �

2

, respectively.
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1. � 2 Th(E

i

): By the induction hypothesis and the fact that �

1

(C

0

) is deductively

closed, we have � 2 E

i+1

:

2. � 2 Th(C

i

): By the induction hypothesis and the fact that �

2

(C

0

) is deductively

closed, we have � 2 C

i+1

:

3. � 2

n

� ^ !

�

�

�

� :�

!

2 D;� 2 E

i

; C [ f�g [ f!g 6` ?

o

: That is, � is either ! or �

such that there is a default

� :�

!

2 D with � 2 E

i

and C [ f�g [ f!g 6` ?: By

the induction hypothesis, � 2 �

1

(C

0

): By de�nition, � ^! 2 C � C

0

: Since C

0

is

consistent, we have C

0

[ f�g [ f!g 6` ? and we obtain together with � 2 �

1

(C

0

)

that ! 2 �

1

(C

0

) and � ^ ! 2 �

2

(C

0

) and both cases for � are covered.

From the three cases, we obtain E

i+1

� �

1

(C

0

) and C

i+1

� �

2

(C

0

):

Hence, we have shown that E

i

� �

1

(C

0

) and C

i

� �

2

(C

0

) for i � 0:

Theorem 3.2 (Existence of extensions) Every default theory has a constrained exten-

sion.

Proof 3.2 Let (D;W ) be a default theory. Then, there is a default theory (;;W ) which

has a unique constrained extension (Th(W ); Th(W )): From this and Theorem 3.3 the result

follows immediately.

Theorem 3.4 (Weak orthogonality) Let (D;W ) be a default theory. If (E,C ) and

(E

0

; C

0

) are distinct constrained extensionsof (D;W ), then C [ C

0

is inconsistent.

Proof 3.4 The case where W is unsatis�able is trivial.

According to Theorem 3.1, (E,C ) = (

S

1

i=0

E

i

;

S

1

i=0

C

i

) such that E

0

= W and C

0

= W;

and for i � 0

E

i+1

= Th(E

i

) [

n

!

�

�

�

� :�

!

2 D;� 2 E

i

; C [ f�g [ f!g 6` ?

o

C

i+1

= Th(C

i

) [

n

� ^ !

�

�

�

� :�

!

2 D;� 2 E

i

; C [ f�g [ f!g 6` ?

o

Also (E

0

; C

0

) = (

S

1

i=0

E

0

i

;

S

1

i=0

C

0

i

) where E

0

i

and C

0

i

are de�ned analogously. Without loss

of generality, we can assume that C and C

0

are distinct. Then, there exists a least k such

that C

k+1

6= C

0

k+1

in which case C

k

= C

0

k

(and E

k

= E

0

k

). Then, there is a default

� :�

!

2 D

such that � 2 E

k

= E

0

k

and C [ f�g [ f!g 6` ? and � ^ ! 2 C

k+1

but � ^ ! 62 C

0

k+1

: But

� 2 E

0

k

and � ^ ! 62 C

0

k+1

implies C

0

[ f�g [ f!g ` ?: Since � ^ ! 2 C and C and C

0

are

consistent, we have by monotonicity that C [ C

0

` ?: That is, C [ C

0

is inconsistent.

Theorem 3.5 Let (D;W ) be a normal default theory and E a set of sentences. Then, E

is a standard extension of (D;W ) i� (E;E) is a constrained extension of (D;W ).
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Proof 3.5 In order to prove the claim we reduce the characterization of constrained ex-

tensions given in Theorem 3.1 in the case of normal default theories. By de�nition, for any

normal default

� :�

!

we have � $ !:

Now, according to Theorem 3.1 (E,C ) is a constrained extension of the normal default

theory (D;W ) i� (E,C ) = (

S

1

i=0

E

i

;

S

1

i=0

C

i

) and E

0

= W and C

0

= W and for i � 0

E

i+1

= Th(E

i

) [

n

!

�

�

�

� :�

!

2 D;� 2 E

i

; C [ f�g [ f!g 6` ?

o

C

i+1

= Th(C

i

) [

n

� ^ !

�

�

�

� :�

!

2 D;� 2 E

i

; C [ f�g [ f!g 6` ?

o

Clearly, since � $ ! we have Th(E

i

) = Th(C

i

): So, since

S

1

i=0

E

i

and

S

1

i=0

C

i

are deduc-

tively closed we also have

S

1

i=0

E

i

=

S

1

i=0

C

i

: Notice also, that due to the equivalence of �

and ! the condition C [ f�g [ f!g 6` ? reduces to C [ f�g 6` ?; and furthermore, since C

is deductively closed, we obtain :� 62 C:

Therefore, (E;E) is a constrained extension of a normal default theory (D;W ) i�

(E;E) = (

S

1

i=0

E

i

;

S

1

i=0

E

i

) such that E

0

= W and for i � 0

E

i+1

= Th(E

i

) [

n

!

�

�

�

� :�

!

2 D;� 2 E

i

;:� 62 E

o

Obviously, this amounts to the same characterization of standard extensions given in The-

orem 2.1 for standard extensions.

Theorem 3.6 Let (D;W ) be a default theory and let E be a standard extension of (D;W ).

If E [ C

E

is consistent, then (E; Th(E [ C

E

)) is a constrained extension of (D;W ).

Proof 3.6 Let E be a standard extension of (D;W ) and C

E

=

n

�

�

�

�

� :�

!

2 D; � 2 E;:� 62 E

o

:

De�ne C = Th(E [ C

E

) : We show that (E;C) is a constrained extension of (D;W ).

First, observe the following properties.

1. By de�nition, W � E � C:

2. Also, by de�nition, E = Th(E) and C = Th(C):

3. For any

� :�

!

2 D, if � 2 E and C[f�g[f!g 6` ? then ! 2 E and �^! 2 C. Because,

by monotonicity and the fact that E is deductively closed, C [f�g[f!g 6` ? implies

:� 62 E (since E � C).

Then, by the minimality of �(C), we have

24

�

1

(C) � E and �

2

(C) � C: That is, �(C) �

2

(E,C ):

25

Since E is a standard extension of (D;W ) we have according to Theorem 2.1 that

E =

S

1

i=0

E

i

such that E

0

= W and for i � 0

E

i+1

= Th(E

i

) [

n

!

�

�

�

� :�

!

2 D;� 2 E

i

;:� 62 E

o

:

De�ne C

0

= ;; and for i � 0

24

We refer to the components of � as �

1

and �

2

, respectively.

25

We sometimes abbreviate �

1

(C) � E and �

2

(C) � C by �

2

(C) �

2

(E,C ):
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C

i+1

=

n

�

�

�

�

� :�

!

2 D;� 2 E

i

;:� 62 E

o

:

Clearly, C

E

=

S

1

i=0

C

i

: We will show that

S

1

i=0

E

i

� �

1

(C) and

S

1

i=0

C

i

� �

2

(C); in order

to show that E � �

1

(C) and C � �

2

(C):

Therefore, we show by induction E

i

� �

1

(C) and C

i

� �

2

(C) for i � 0.

Base Clearly, E

0

= W � �

1

(C) and C

0

= ; � �

2

(C):

Step Assume E

i

� �

1

(C) and C

i

� �

2

(C) and consider � 2 E

i+1

[ C

i+1

:

1. If � 2 Th(E

i

) then, by the induction hypothesis and the fact that �

1

(C) is

deducticely closed, we obtain � 2 �

1

(C):

2. If � 2 C

i

then, by the induction hypothesis, also � 2 �

2

(C):

3. Otherwise, there exists a default

� :�

!

2 D such that � 2 E

i

and :� 62 E:

By the induction hypothesis, � 2 �

1

(C): By assumption, C is consistent. Since

E is a standard extension of (D;W ), � 2 E

i

and :� 62 E implies ! 2 E: Also,

by de�nition of C

E

, we have � 2 C

E

: Therefore, C [ f�g [ f!g 6` ? (since

C = Th(E [ C

E

)). From � 2 �

1

(C) and C [ f�g [ f!g 6` ? we conclude, by

De�nition 3.1, that ! 2 �

1

(C) and � ^ ! 2 �

2

(C): Since �

2

(C) is deductively

closed the last membership implies � 2 �

2

(C): Clearly, both cases for � are

covered.

Accordingly, E

i+1

� �

1

(C) and C

i+1

� �

2

(C):

With this, we have shown that

S

1

i=0

E

i

� �

1

(C) and

S

1

i=0

C

i

� �

2

(C): Since

S

1

i=0

E

i

= E

and

S

1

i=0

C

i

= C

E

; that is E � �

1

(C) and C

E

� �

2

(C): Since �

1

(C) � �

2

(C) we have

E[C

E

� �

2

(C): So, since �

2

(C) is deductively closed, C � �

2

(C): Hence, (E,C ) �

2

�(C):

Theorem 3.7 Let (D;W ) be a default theory and let E and C be sets of sentences. If

(E,C ) is a constrained extension of (D;W ) and E is a standard extension of (D;W ), then

C � Th(E [ C

E

) :

Proof 3.7 Let (E,C ) be a constrained extension of (D;W ) and let E be a standard exten-

sion of (D;W ) and C

E

=

n

�

�

�

�

� :�

!

2 D; � 2 E;:� 62 E

o

: Then, according to Theorem 3.1

E = (

S

1

i=0

E

i

;

S

1

i=0

C

i

) such that E

0

= W and C

0

= W and for i � 0

E

i+1

= Th(E

i

) [

n

!

�

�

�

� :�

!

2 D;� 2 E

i

; C [ f�g [ f!g 6` ?

o

C

i+1

= Th(C

i

) [

n

� ^ !

�

�

�

� :�

!

2 D;� 2 E

i

; C [ f�g [ f!g 6` ?

o

We will show

S

1

i=0

C

i

� Th(E [ C

E

); in order to show C � Th(E [ C

E

):

Therefore, we show by induction C

i

� Th(E [ C

E

) for i � 0.

Base Clearly, C

0

= W � E � Th(E [ C

E

):
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Step Assume C

i

� Th(E [ C

E

) and consider � 2 C

i+1

:

1. If � 2 Th(C

i

) then, by the induction hypothesis, � 2 Th(E [ C

E

):

2. Otherwise, � 2 f�; !g for some default

� :�

!

2 D such that � 2 E

i

and C [f�g[

f!g 6` ?:

Clearly, ! 2 E: According to the de�nition of C

E

we have � 2 C

E

only if � 2 E

and :� 62 E: Clearly, � 2 E since � 2 E

i

and E

i

� E: Since C [ f�g [ f!g 6` ?

by monotonicity, E [ f�g 6` ?: That is, since E is deductively closed :� 62 E:

Thus, both cases for � are covered.

From the two cases, we obtain C

i+1

� Th(E [ C

E

):

Therefore, we have shown that

S

1

i=0

C

i

� Th(E [ C

E

):

Theorem 3.8 Let (D;W ) be a default theory and E and C sets of formulas. Let

^

C =

V

�2GD((E ;C);D)

Conseq(�) ^ Justif (�) with �nite GD((E ;C); D) and

D

0

=

n

� :�^!^

^

C

!

�

�

�

� :�

!

2 D

o

Then, if (E,C ) is a constrained extension of (D;W ) then E is a standard extension of

(D

0

;W ):

Proof 3.8 Since (E,C ) is a constrained extension of (D;W ) we have according to Theo-

rem 3.1 that (E,C ) = (

S

1

i=0

E

i

;

S

1

i=0

C

i

); where E

0

= W and C

0

= W and for i � 0

E

i+1

= Th(E

i

) [

n

!

�

�

�

� :�

!

2 D;� 2 E

i

; C [ f�g [ f!g 6` ?

o

C

i+1

= Th(C

i

) [

n

� ^ !

�

�

�

� :�

!

2 D;� 2 E

i

; C [ f�g [ f!g 6` ?

o

Since (according to Theorem B.2)

E = Th(W [ Conseq(GD((E ;C); D)));

C = Th(W [ Conseq(GD((E ;C); D)) [ Justif (GD((E ;C); D))):

we have

C = Th

�

E [ f

^

Cg

�

:

by de�nition of

^

C: Consequently, we have

C [ f�g [ f!g 6` ? i� E [ f� ^ ! ^

^

Cg 6` ?: (2)

Consider E

0

0

= W and

E

0

i+1

= Th(E

0

i

) [

n

!

�

�

�

� :�^!^

^

C

!

2 D

0

; � 2 E

0

i

; E [ f� ^ ! ^

^

Cg 6` ?

o

for i � 0. Now, Condition (2) implies that E

i

= E

0

i

for i � 0. Since E =

S

1

i=0

E

i

this

implies according to Theorem 2.1 that E is a standard extension of (D

0

;W ):
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Theorem 3.9 Let (D;W ) be a default theory. Let (�;

�

�) be a pair of sets of models and

E;C deductively closed sets of sentences such that � = f� j � j= Eg and

�

� = f� j � j= Cg:

Then, (E,C ) is a constrained extension of (D;W ) i� (�;

�

�) is a �

D

-maximal element

above (MOD(W );MOD(W )):

Proof 3.9 First, we need the following de�nition.

De�nition B.2 Let (D;W ) be a default theory. Given a possibly in�nite sequence of

defaults � = h�

0

; �

1

; �

2

; : : :i in D, also denoted h�

i

i

i2I

where I is the index set for �, we

de�ne a sequence of focused models structures h(�

i

;

�

�

i

)i

i2I

as follows:

(�

0

;

�

�

0

) = (MOD(W );MOD(W ))

(�

i+1

;

�

�

i+1

) = (f� 2 �

i

j � j= !

i

g; f� 2

�

�

i

j � j= �

i

^ !

i

g); where �

i

=

�

i

:�

i

!

i

:

The unsatis�able case is easily dealt with, so that we prove below the theorem for E and

C being satis�able.

Proof 3.9 (Correctness) Assume (E,C ) is a consistent constrained extension of (D;W ).

Then according to Theorem B.3, there exists an enumeration h�

i

i

i2I

of the set of generating

defaults GD((E ;C); D) such that for i 2 I

W [ Conseq(f�

0

; : : : ; �

i�1

g) ` Prereq(�

i

): (3)

Let h(�

i

;

�

�

i

)i

i2I

be a sequence of focused models structures obtained from the enumeration

h�

i

i

i2I

according to De�nition B.2. We will show that (�;

�

�) coincides with

T

i2I

(�

i

;

�

�

i

)

and is �

D

{maximal above (MOD(W );MOD(W )):

Since (E,C ) is a constrained extension, we have according to Theorem B.2 that

E = Th(W [ Conseq(GD((E ;C); D)));

C = Th(W [ Justif (GD((E ;C); D)) [ Conseq(GD((E ;C); D))):

Then, since (�;

�

�) = (MOD(E);MOD(C )) we have obviously that (�;

�

�) =

T

i2I

(�

i

;

�

�

i

):

Firstly, let us show that (�

i+1

;

�

�

i+1

) �

�

i

(�

i

;

�

�

i

) for i 2 I:

� Since �

i

� MOD(W ) and MOD(W ) j= W; then by de�nition of �

i

we have �

i

j=

W [ Conseq(�

i�1

) for i 2 I: Now, �

i+1

� �

i

for i 2 I implies that �

i

j= W [

Conseq(f�

0

; : : : ; �

i�1

g): By (3), it follows that �

i

j= Prereq(�

i

) for i 2 I:

� Let us assume that (�

i+1

;

�

�

i+1

) �

�

i

(�

i

;

�

�

i

) fails for some k 2 I: By de�nition

of h(�

i

;

�

�

i

)i

i2I

and the fact that we have just proven that �

i

j= Prereq(�

i

) for

i 2 I; this means that

�

�

k

j= :(!

k

^ �

k

) for �

k

=

�

k

:�

k

!

k

: Let us abbreviate W [

Conseq(f�

0

; : : : ; �

k�1

g)[Justif (f�

0

; : : : ; �

k�1

g) by C

k

. By de�nition,

�

�

k

= MOD(C

k

):

Then, C

k

j= :(!

k

^ �

k

): That is, C

k

[f!

k

g[f�

k

g ` ?: By monotonicity, C [f!

k

g[

f�

k

g ` ?; contradictory to the fact that �

k

2 GD((E ;C ); D):

Therefore, (�

i+1

;

�

�

i+1

) �

�

i

(�

i

;

�

�

i

) for i 2 I: As a consequence,

T

i2I

(�

i

;

�

�

i

) �

GD((E ;C);D)

(MOD(W );MOD(W )): That is, (�;

�

�) �

D

(MOD(W );MOD(W )):

46



Secondly, assume (�;

�

�) is not �

D

{maximal. Then, there exists a default

� :�

!

2 D n

GD((E ;C); D) such that � j= � and

�

� 6j= :(! ^ �):

26

First, since � j= E we have

E j= �: Second, since

�

� = MOD(C ); we also have C 6j= :(! ^ �): Of course, E j= � and

C 6j= :(! ^ �) implies

� :�

!

2 GD((E ;C); D); a contradiction.

Proof 3.9 (Completeness)Let (�;

�

�) be a�

D

{maximal element above (MOD(W );MOD(W ))

such that � = f� j � j= Eg and

�

� = f� j � j= Cg:

According to Theorem 3.1, (E,C ) is a constrained extension i� (E,C ) = (

S

1

i=0

E

i

;

S

1

i=0

C

i

)

such that E

0

= W and C

0

= W; and for i � 0

E

i+1

= Th(E

i

) [

n

!

�

�

�

� :�

!

2 D;� 2 E

i

; C [ f�g [ f!g 6` ?

o

C

i+1

= Th(C

i

) [

n

� ^ !

�

�

�

� :�

!

2 D;� 2 E

i

; C [ f�g [ f!g 6` ?

o

We will show that (E,C ) = (

S

1

i=0

E

i

;

S

1

i=0

C

i

): Therefore, we consider the following two

cases.

1.

S

1

i=0

E

i

� E;

S

1

i=0

C

i

� C:

We show by induction that E

i

� E and C

i

� C for i � 0.

Base By de�nition, MOD(W ) j= E

0

: Since � � MOD(W ); we have E j= E

0

: That

is, E

0

� E:

Analogously, we obtain C

0

� C:

Step Let E

i

� E and C

i

� C: Consider � 2 E

i+1

[ C

i+1

:

(a) If � 2 Th(E

i

) then, by the induction hypothesis and the fact that E is

deducticely closed, we obtain � 2 E:

(b) Similarly, if � 2 Th(C

i

) we obtain � 2 C:

(c) Otherwise, � 2 f�; !g such that there is a default

� :�

!

2 D where � 2 E

i

and C [ f�g [ f!g 6` ?:

By the induction hypothesis � 2 E: That is, � j= �: Also, by de�nition of

C, we have

�

� 6j= :(! ^ �): Since (�;

�

�) is �

D

{maximal we also have � j= !

and

�

� j= � ^ ! That is, ! 2 E and � ^ ! 2 C and both cases for � are

covered.

From the three cases, we obtain E

i+1

� E and C

i+1

� C:

2. E �

S

1

i=0

E

i

; C �

S

1

i=0

C

i

:

Since (�;

�

�) is a �

D

{maximal element above (MOD(W );MOD(W )) for (D;W ), we

have that (�;

�

�) = (

T

1

i=0

�

i

;

T

1

i=0

�

�

i

) where h(�

i

;

�

�

i

)i

i2I

is a sequence of focused

models structures de�ned for some h�

i

i

i2I

according to De�nition B.2 such that

(�

i+1

;

�

�

i+1

) �

�

i

(�

i

;

�

�

i

) for i 2 I: Then, we de�ne E

�

i

= f� j �

i

j= �g and

C

�

�

i

= f� j

�

�

i

j= �g to be the sets of �

i

{valid and

�

�

i

{valid sentences, respectively.

Clearly, E =

S

1

i=0

E

�

i

and C =

S

1

i=0

C

�

�

i

:

Hence, we show inductively that E

�

i

�

S

1

i=0

E

i

and C

�

�

i

�

S

1

i=0

C

i

for i � 0.

26

For readablity, we abbreviate 9� 2

�

�:� j= � ^ ! by

�

� 6j= � ^ !:
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Base Since E

�

0

= C

�

�

0

= MOD(W ) and E

0

= C

0

= W; the result is obvious.

Step According to the induction hypothesis, E

�

i

�

S

1

i=0

E

i

and C

�

�

i

�

S

1

i=0

C

i

:

Because (�

i+1

;

�

�

i+1

) �

�

i

(�

i

;

�

�

i

) we have �

i

j= �

i

and

�

�

i

6j= :(�

i

^ !

i

); and

(�

i+1

;

�

�

i+1

) = (f� 2 �

i

j � j= !

i

g; f� 2

�

�

i

j � j= �

i

^ !

i

g); where �

i

=

�

i

:�

i

!

i

:

By the induction hypothesis and the fact that �

i

j= �

i

we obtain �

i

2

S

1

i=0

E

i

:

By compactness and monotonicity, there exists a k such that �

i

2 E

k

: By def-

inition,

�

�

i+1

j= �

i

^ !

i

: Therefore,

�

� j= �

i

^ !

i

since

�

� =

T

1

i=0

�

�

i

: Thus,

!

i

^ �

i

2 C: Since C is satis�able, C [ f�

i

g [ f!

i

g 6` ?: Then, E

k

j= �

i

and

C [ f�

i

g [ f!

i

g 6` ?; implies !

i

2 E

k+1

and !

i

^�

i

2 C

k+1

: Hence, !

i

2

S

1

i=0

E

i

and !

i

^ �

i

2

S

1

i=0

C

i

:

By the de�nition of �

i+1

and

�

�

i+1

; (or E

�

i+1

and C

�

�

i+1

; respectively) and the fact

that

S

1

i=0

E

i

and

S

1

i=0

C

i

are deductively closed, we obtain E

�

i+1

�

S

1

i=0

E

i

and

C

�

�

i+1

�

S

1

i=0

C

i

:

B.2 Proofs of Theorems in Section 4

Theorem 4.1 Let (D;W ) be a semi-normal default theory and let (D

0

;W ) be the theory

where

� :�^

�

2 D i�

: (���)^

���

2 D

0

. If E is an extension of (D;W ) then there is an

extension of (D

0

;W ), E

0

, such that E � E

0

.

Proof 4.1

Let E be an extension of (D;W ).

Let E

0

be a maximum (under containment) consistent set such that E

0

= Th(E [ �),

where

� = f� � �j� 62 E; and

: (���)^

���

2 D

0

g:

We show that E

0

is an extension of (D

0

;W ).

Clearly

1. W � E

0

, since W � E and E � E

0

.

2. Th(E

0

) = E

0

.

We need then to show that

3. If

: (���)^

���

2 D

0

and :((� � �) ^ ) 62 E

0

then � � � 2 E

0

.

This is done as follows. Assume that

: (���)^

���

2 D

0

and :((� � �) ^ ) 62 E

0

.

Now :((� � �) ^ ) 62 E

0

i� (� ^ :�) _ : 62 E

0

i� (� ^ :�) 62 E

0

and : 62 E

0

.

Since (� ^ :�) 62 E

0

we have that � 62 E

0

or :� 62 E

0

.
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1. If � 2 E

0

then :� 62 E

0

and so :� 62 E.

If � 2 E also, then by the de�nition of E, � 2 E,

consequently � � � 2 E

and so � � � 2 E

0

.

2. If � 62 E then � � � 2 E

0

by the de�nition of E

0

.

Theorem 4.2 Let (D;W ) be a prerequisite-free default theory. Then (E;C) is a con-

strained extension of (D;W ) i� there exists some D

0

� D such that:

E = Th(W [ Conseq(D

0

));

C = Th(W [ Conseq(D

0

) [ Justif (D

0

));

and C 6` ?, but for every D

0

� D

00

, C [ fConseq(D

00

)g [ fJustif (D

00

)g ` ?.

Proof 4.2 From Theorem 3.1 we have that (E;C) is a constrained extension of a prerequisite-

free (D;W ) i� (E;C) = (

S

1

i=0

E

i

;

S

1

i=0

C

i

); where E

0

= W and C

0

= W and for i � 0

E

i+1

= Th(E

i

) [

n

!

�

�

�

:�

!

2 D;C [ f�g [ f!g 6` ?

o

C

i+1

= Th(C

i

) [

n

� ^ !

�

�

�

:�

!

2 D;C [ f�g [ f!g 6` ?

o

Consequently,

E

1

= Th(W ) [

n

!

�

�

�

:�

!

2 D;C [ f�g [ f!g 6` ?

o

C

1

= Th(W ) [

n

� ^ !

�

�

�

:�

!

2 D;C [ f�g [ f!g 6` ?

o

For E

2

and C

2

, and for E

i

and C

i

in general, we have conditions identical to those for E

1

and C

1

respectively, and so since (E;C) = (

S

1

i=0

E

i

;

S

1

i=0

C

i

); we obtain that

E = Th

�

W [

n

!

�

�

�

:�

!

2 D;C [ f�g [ f!g 6` ?

o�

C = Th

�

W [

n

� ^ !

�

�

�

:�

!

2 D;C [ f�g [ f!g 6` ?

o�

Clearly E and C are consistent and maximal in the set of applicable defaults. Clearly also

C = Th

�

W [

n

� ^ !

�

�

�

:�

!

2 D

o�

where C [ f�g [ f!g 6` ?:

But W [

n

� ^ !

�

�

�

:�

!

2 D

o

is just W [ Conseq(D

0

) [ Justif (D

0

) for maximal D

0

� D.

An analogous argument for E gives the desired result.
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Theorem 4.3 Let (D;W ) be a prerequisite-free default theory and let � 2 E

0

for all

constrained extensions (E

0

; C

0

) of (D;W ). Then,

(E;C) is a constrained extension of (D;W ) i� (E;C) is a constrained extension of

(D;W [ f�g).

Proof 4.3

Assume that for every constrained extension (E

0

; C

0

) of (D;W ) that � 2 E

0

.

only-if part

If (E;C) is a constrained extension of (D;W ), then there is a maximum D

0

� D,

E = Th(W [ Conseq(D

0

));

C = Th(W [ Conseq(D

0

) [ Justif (D

0

));

and C is consistent.

Since E ` �, � 2 Th(W [ Conseq(D

0

)),

so Th(W [ Conseq(D

0

)) = Th((W [ f�g) [ Conseq(D

0

)).

Since � 2 E and E � C, so � 2 C.

So

Th(W [ Conseq(D

0

) [ Justif (D

0

)) = Th((W [ f�g) [ Conseq(D

0

) [ Justif (D

0

));

and so (E;C) is a constrained extension of (D;W [ f�g).

if part

We have that (E;C) is a constrained extension of (D;W [f�g), and need to show that

(E;C) is a constrained extension of (D;W ).

Let D

0

be a subset of defaults such that (E;C) is a constrained extension where

E = Th(W [ f�g [ Conseq(D

0

));

C = Th(W [ f�g [ Conseq(D

0

) [ Justif (D

0

)):

Consider

E

0

= Th(W [ Conseq(D

0

));

C

0

= Th(W [ Conseq(D

0

) [ Justif (D

0

)):

Now E

0

and C

0

are consistent (since E and C are); assume that (E

0

; C

0

) is not a con-

strained extension of (D;W ) (otherwise we are �nished: E

0

` � by assumption, and so

E = E

0

and C = C

0

).

So (E

0

; C

0

) is not maximal with respect to the set of defaults; also clearly E

0

6` � and

C

0

6` � (since again we would have E = E

0

and C = C

0

).

Let D

�

be a subset of D such that D

0

[D

�

results in a constrained extension. That is

(E

�

; C

�

) is a constrained extension, where:

E

�

= Th(W [ Conseq(D

0

[D

�

));

50



C

�

= Th(W [ Conseq(D

0

[D

�

) [ Justif (D

0

[D

�

)):

Now we also have that

1. C

�

= Th(W [ Conseq(D

0

) [ Conseq(D

�

) [ Justif (D

0

) [ Justif (D

�

)):

2. C

�

` � (by assumption, since (E

�

; C

�

) is a constrained extension of (D;W )).

However, (E;C) is a constrained extension of (D;W [ f�g); this means that for every

� 2 D where � 62 D

0

,

Th(W [ f�g [ Conseq(D

0

[ f�g) [ Justif (D

0

[ f�g)) ` ?

or

Th(W [ f�g [ Conseq(D

0

) [ Conseq(f�g) [ Justif (D

0

) [ Conseq(f�g)) ` ?:

Hence Th(W [ Conseq(D

0

) [ Conseq(f�g) [ Justif (D

0

) [ Conseq(f�g)) ` :� for every

� 62 D

0

.

But this contradicts (1.) and (2.) above.

Hence (E;C) is a constrained extension of (D;W ).

Theorem 4.4

1. ` applic(�^ �) � applic(�)^ applic(�).

2. ` applic(�_ �) � applic(�)_ applic(�).

3. ` applic(�) � applic(::�).

4. ` :applic(�) � applic(:�).

5. ` � � applic(�).

6. From ` � � � infer ` applic(�) � applic(�).

7. From ` :� infer ` :applic(�).

Proof 4.4

1. If applic(�^ �) then f� ^ �g [ S is consistent for some given (consistent) S.

Hence f�g [ S and f�g [ S are consistent.

Hence applic(�) and applic(�).

2. applic(�_ �) i�

f� _ �g [ S is consistent i�

f�g [ S or f�g [ S are consistent i�

applic(�)_ applic(�).

51



3. Trivial.

4. If :applic(�) (wrt some given S) then f�g [ S is inconsistent.

Consequently f:�g [ S is consistent, assuming that S is consistent.

Consequently applic(:�).

5. If S ` � then it follows trivially that applic(�).

6. If ` � � � then if f�g [ S is consistent then f�g [ S is consistent.

Consequently ` applic(�) � applic(�).

7. If ` :� then f�g [ S is inconsistent,

and so :applic(�).

Theorem 4.5

1. ` applic(�) � applic(�) i� ` � � �.

2. ` applic(�) i� `

KT

3�.

Proof 4.5

1. S ` � � � i�

S ` :� � :� i�

if S ` :� then S ` :� i�

if f�g [ S is inconsistent then f�g [ S is inconsistent i�

if f�g [ S is consistent then f�g [ S is consistent i�

` applic(�) � applic(�).

2. The proof proceeds by showing that for a proof in KT that there is a proof involving

applic, and vice versa.

We note that the following is adequate as an axiomatisation of KT

[

Chellas, 1980

]

:

`

KT

3(�_ �) � 3�_3�.

From `

KT

:� infer `

KT

:3�.

From `

KT

� � � infer `

KT

3� � 3�.

From this it follows that any proof in KT can be transformed to a proof using applic

(by direct substitution of applic for 3), and vice versa.
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B.3 Proofs of Theorems in Section 5

Theorem 5.1 Let (D;W ) be a default theory and E a justi�ed extension of (D;W )

with respect to J. If E [ J is consistent then (E; Th(E [ J)) is a constrained extension

of (D;W ).

Proof 5.1 Let E be a justi�ed extension of (D;W ) wrt J . De�ne C = Th(E [ J): We

show that (E,C ) is a constrained extension of (D;W ).

At �rst, let us observe the following properties.

1. By de�nition, W � E � C:

2. Also, by de�nition, E = Th(E) and C = Th(C):

3. For any

� :�

!

2 D, if � 2 E and C [ f�g [ f!g 6` ? then ! 2 E and � ^ ! 2 C since,

by monotonicity, C [ f�g [ f!g 6` ? implies 8� 2 J [ f�g: E [ f!g [ f�g 6` ? (since

C = Th(E [ J)).

Then, by the minimality of �(C), we have

27

�

1

(C) � E and �

2

(C) � C: That is, �(C) �

2

(E,C ):

It remains to be shown that (E,C ) �

2

�(C): Since E is a justi�ed extension of (D;W )

wrt J we have according to

[

 Lukaszewicz, 1988, Theorem 4.4

]

that (E; J) = (

S

1

i=0

E

i

;

S

1

i=0

J

i

)

where E

0

= W and J

0

= ;; and for i � 0

E

i+1

= Th(E

i

) [

n

!

�

�

�

� :�

!

2 D;� 2 E

i

; 8� 2 J [ f�g: E [ f!g [ f�g 6` ?

o

J

i+1

= J

i

[

n

�

�

�

�

� :�

!

2 D;� 2 E

i

; 8� 2 J [ f�g: E [ f!g [ f�g 6` ?

o

We will show that

S

1

i=0

E

i

� �

1

(C) and

S

1

i=0

J

i

� �

2

(C); in order to show that E � �

1

(C)

and C � �

2

(C):

We show by induction E

i

� �

1

(C) and J

i

� �

2

(C) for i � 0.

Base Clearly, E

0

= W � �

1

(C) and J

0

= ; � �

2

(C):

Step Assume E

i

� �

1

(C) and J

i

� �

2

(C) and consider � 2 E

i+1

[ J

i+1

:

1. If � 2 Th(E

i

) then, by the induction hypothesis and the fact that �

1

(C) is

deductively closed, we obtain � 2 �

1

(C):

2. If � 2 J

i

then, by the induction hypothesis, also � 2 �

2

(C):

3. Otherwise, � 2 f�; !g for some default

� :�

!

2 D such that � 2 E

i

and 8� 2

J [ f�g: E [ f!g [ f�g 6` ?:

By the induction hypothesis, � 2 �

1

(C): By assumption, E [ J 6` ?: Since E is a

justi�ed extension of (D;W ) wrt J , � 2 E

i

and 8� 2 J [f�g: E[f!g[f�g 6` ?

imply ! 2 E and � 2 J: Therefore, C [ f�g [ f!g 6` ? (since C = Th(E [ J)).

From � 2 �

1

(C) and C [f�g[f!g 6` ? we conclude, by De�nition 3.1, that ! 2

�

1

(C) and �^! 2 �

2

(C): Since �

2

(C) is deductively closed the last membership

implies � 2 �

2

(C): Clearly, both cases for � are covered.

27

We refer to the components of � as �

1

and �

2

, respectively.
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Accordingly, E

i+1

� �

1

(C) and J

i+1

� �

2

(C):

Therefore, we have shown that

S

1

i=0

E

i

� �

1

(C) and

S

1

i=0

J

i

� �

2

(C): Since

S

1

i=0

E

i

= E

and

S

1

i=0

J

i

= J; that is E � �

1

(C) and J � �

2

(C): Since �

1

(C) � �

2

(C) we have

E [ J � �

2

(C): So, since �

2

(C) is deductively closed, C � �

2

(C): Hence, (E,C ) �

2

�(C):

Proposition B.18 Let (E,C ) be a constrained extension of (D;W ). Then,

1. (E; Justif (GD((E ;C); D))) is a justi�ed extension of (GD((E ;C); D); E) and

2. GD((E ;C); D) = GD((E; Justif (GD((E ;C); D))); GD((E ;C); D)):

Proof B.18

1. Obvious.

2. By de�nition, GD((E; Justif (GD((E ;C); D))); GD((E ;C); D)) � GD((E ;C); D): As-

sume, GD((E ;C); D) 6� GD((E; Justif (GD((E ;C); D))); GD((E ;C); D)):

Then, there is a default

� :�

!

2 GD((E ;C); D) but

� :�

!

62 GD((E; Justif (GD((E ;C ); D))); GD((E ;C); D)): By De�nition B.1,

� :�

!

2

GD((E ;C); D) implies � 2 E and C [ f�g [ f!g 6` ?: That is, according to Theo-

rem B.2, Th(E [ Justif (GD((E ;C); D))) [ f�g [ f!g 6` ?:

By monotonicity, we obtain 8� 2 Justif (GD((E ;C); D)) [ f�g: E [ f!g [ f�g 6` ?:

This and � 2 E implies

� :�

!

2 GD((E; Justif (GD((E ;C ); D))); GD((E ;C); D)); a

contradiction.

Theorem 5.2 Let (D;W ) be a default theory and (E,C ) be a constrained extension of

(D;W ). Then, there is a justi�ed extension (E

0

; J

0

) of (D;W ) such that E � E

0

and

C � Th(E

0

[ J

0

):

Proof 5.2 Let (E,C ) be a constrained extension of (D;W ). By Proposition B.18,

(E; Justif (GD((E ;C); D)))

is a justi�ed extension of (GD((E ;C); D); E): By semi{monotonicity, there is a justi�ed

extension (E

0

; J

0

) of (D;E) such that

E � E

0

(4)

Justif (GD((E ;C); D)) � J

0

(5)

As a consequence, C � Th(E

0

[ J

0

) since C = Th(E [ Justif (GD((E ;C); D))):

It remains to be shown that (E

0

; J

0

) is a justi�ed extension of (D;W ): Since (E

0

; J

0

) is

a justi�ed extension of (D;E); E

0

and J

0

are the smallest sets of sentences such that

1. E � E

0
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2. E

0

= Th(E

0

)

3. For any

� :�

!

2 D, if � 2 E

0

and 8� 2 J

0

[ f�g: E

0

[ f!g [ f�g 6` ? then ! 2 E

0

and

� 2 J

0

.

Also the following conditions hold.

1. Clearly, W � E

0

; since W � E and E � E

0

2. By de�nition, E

0

= Th(E

0

)

3. By de�nition, for any

� :�

!

2 D, if � 2 E

0

and 8� 2 J

0

[ f�g: E

0

[ f!g [ f�g 6` ? then

! 2 E

0

and � 2 J

0

.

Then, by the minimality of �(E

0

; J

0

), we have

28

�

1

(E

0

; J

0

) � E

0

and �

2

(E

0

; J

0

) � J

0

: That

is, �(E

0

; J

0

) �

2

(E,C ):

It remains to be shown that (E

0

; J

0

) �

2

�(E

0

; J

0

): Since E

0

is a justi�ed extension

of (D;E) wrt J

0

we have according to

[

 Lukaszewicz, 1988, Theorem 4.4

]

that (E

0

; J

0

) =

(

S

1

i=0

E

i

;

S

1

i=0

J

i

) where E

0

= E and J

0

= ;; and for i � 0

E

i+1

= Th(E

i

) [

n

!

�

�

�

� :�

!

2 D;� 2 E

i

; 8� 2 J

0

[ f�g: E

0

[ f!g [ f�g 6` ?

o

J

i+1

= J

i

[

n

�

�

�

�

� :�

!

2 D;� 2 E

i

; 8� 2 J

0

[ f�g: E

0

[ f!g [ f�g 6` ?

o

We will show that

S

1

i=0

E

i

� �

1

(E

0

; J

0

) and

S

1

i=0

J

i

� �

2

(E

0

; J

0

); in order to show that

E

0

� �

1

(E

0

; J

0

) and J

0

� �

2

(E

0

; J

0

):

We show by induction E

i

� �

1

(E

0

; J

0

) and J

i

� �

2

(E

0

; J

0

) for i � 0.

Base Clearly, J

0

= ; � �

2

(E

0

; J

0

):

By de�nition, E

0

= E: That is, E

0

= Th(W [ Conseq(GD((E ;C); D))): By de�nition,

W � �

1

(E

0

; J

0

):

By Proposition B.18, GD((E ;C); D) = GD((E; Justif (GD((E ;C); D))); GD((E ;C); D)):

Also GD((E; Justif (GD((E ;C); D))); GD((E ;C); D)) � GD((E

0

; J

0

); D); by semi{

monotonicity. Therefore, we have for each

� :�

!

2 GD((E ;C); D)

8� 2 J

0

[ f�g: E

0

[ f!g [ f�g 6` ?: (6)

Since (E,C ) is a constrained extension there exists according to Theorem B.3 an enu-

meration h�

i

i

i2I

of GD((E ;C); D) such that W [ Conseq(f�

0

; : : : ; �

i�1

g) ` Prereq(�

i

)

for i 2 I: We show that Conseq(�

i

) 2 �

1

(E

0

; J

0

) for i 2 I:

Base By de�nition, W ` Prereq(�

0

): Since W � �

1

(E

0

; J

0

) and the fact that

�

1

(E

0

; J

0

) is deductively closed, we have Prereq(�

0

) 2 �

1

(E

0

; J

0

): This and (6)

implies by De�nition 5.1 that Conseq(�

0

) 2 �

1

(E

0

; J

0

)

28

We refer to the components of � as �

1

and �

2

, respectively.
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Step Assume Conseq(f�

0

; : : : ; �

i

g) � �

1

(E

0

; J

0

): By de�nition, W[Conseq(f�

0

; : : : ; �

i

g) `

Prereq(�

i+1

): Since W [ Conseq(f�

0

; : : : ; �

i

g) � �

1

(E

0

; J

0

) by the induction hy-

pothesis, and the fact that �

1

(E

0

; J

0

) is deductively closed, we have Prereq(�

i+1

) 2

�

1

(E

0

; J

0

): This and (6) implies by De�nition 5.1 that Conseq(�

i+1

) 2 �

1

(E

0

; J

0

)

We have shown thatConseq(�

i

) 2 �

1

(E

0

; J

0

) for i 2 I ; hence, Conseq(GD((E ;C); D)) 2

�

1

(E

0

; J

0

):

From W � �

1

(E

0

; J

0

) and Conseq(GD((E ;C); D)) � �

1

(E

0

; J

0

) we conclude that

Th(W [ Conseq(GD((E ;C); D))) � �

1

(E

0

; J

0

); since �

1

(E

0

; J

0

) is deductively closed.

Consequently, E

0

� �

2

(E

0

; J

0

):

Step Assume E

i

� �

1

(E

0

; J

0

) and J

i

� �

2

(E

0

; J

0

) and consider � 2 E

i+1

[ J

i+1

:

1. If � 2 Th(E

i

) then, by the induction hypothesis and the fact that �

1

(E

0

; J

0

) is

deducticely closed, we obtain � 2 �

1

(E

0

; J

0

):

2. If � 2 J

i

then, by the induction hypothesis, also � 2 �

2

(E

0

; J

0

):

3. Otherwise, � 2 f�; !g for some default

� :�

!

2 D such that � 2 E

i

and 8� 2

J

0

[ f�g: E

0

[ f!g [ f�g 6` ?:

By the induction hypothesis, � 2 �

1

(E

0

; J

0

): From � 2 �

1

(E

0

; J

0

) and 8� 2

J

0

[ f�g: E

0

[ f!g [ f�g 6` ? we conclude, by De�nition 5.1, that ! 2 �

1

(E

0

; J

0

)

and � 2 �

2

(E

0

; J

0

): Clearly, both cases for � are covered.

Accordingly, E

i+1

� �

1

(E

0

; J

0

) and J

i+1

� �

2

(E

0

; J

0

):

Therefore, we have shown that

S

1

i=0

E

i

� �

1

(E

0

; J

0

) and

S

1

i=0

J

i

� �

2

(E

0

; J

0

): Since

S

1

i=0

E

i

= E

0

and

S

1

i=0

J

i

= J

0

; that is E

0

� �

1

(E

0

; J

0

) and J

0

� �

2

(E

0

; J

0

): Hence,

(E

0

; J

0

) �

2

�(E

0

; J

0

):

Theorem 5.3 Let (D;W ) be a default theory and (D;W) the assertional default the-

ory, where W = fh�; ;i j � 2 Wg: Then, if (E,C ) is a constrained extension of (D;W )

then there is an assertional extension E of (D;W) such that E = Form(E) and C =

Th(Form(E) [ Supp(E)); and, conversely if E is an assertional extension of (D;W) then

(Form(E); Th(Form(E) [ Supp(E))) is a constrained extension of (D;W ).

Proof 5.3

only{if part Assume (E,C ) is a constrained extension of (D;W ). Let F be a set of

assertions induced by GD((E ;C); D), i.e. F =

S

1

i=0

F

i

such that F

0

= fh�; ;i j � 2 Wg

and for each i � 0

F

i+1

=

c

Th(F

i

) [ fh!; Supp(�) [ f�g [ f!gi j

� :�

!

2 GD((E ;C); D);

h�; Supp(�)i 2 F

i

; C [ f�g [ f!g 6` ?g

Observe that due to our construction of F we have E = Form(F) and also that C =

Th(Form(F) [ Supp(F)); and furthermore F =

c

Th(F):
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It remains to be shown that F is an assertional extension of (D; fh�; ;i j � 2 Wg):

According to

[

Brewka, 1991a, Proposition 1

]

we have that F is an assertional extension i�

F =

S

1

i=0

E

i

such that E

0

= fh�; ;i j � 2 Wg and for each i � 0

E

i+1

=

c

Th(E

i

) [ fh!; Supp(�) [ f�g [ f!gi j

� :�

!

2 D;

h�; Supp(�)i 2 E

i

;Form(F) [ Supp(F) [ f�g [ f!g 6` ?g

We have the following two cases.

1.

S

1

i=0

E

i

� F : Therefore, we show by induction that E

i

� F for i � 0.

Base Clearly, we have E

0

� F since E

0

= F

0

:

Step Let E

i

� F : Regard h!; Supp(!)i 2 E

i+1

:

(a) If h!; Supp(!)i 2

c

Th(E

i

) then by the induction hypothesis and the fact that

F =

c

Th(F) we also have h!; Supp(!)i 2 F :

(b) Otherwise, there is a default

� :�

!

2 D where h�; Supp(�)i 2 E

i

and

Form(F) [ Supp(F) [ f�g [ f!g 6` ?:

By the induction hypothesis h�; Supp(�)i 2 F : By compactness there exists a

k such that h�; Supp(�)i 2 F

k

: By de�nition, C = Th(Form(F) [ Supp(F)):

Hence, Form(F) [ Supp(F) [ f�g [ f!g 6` ? implies C [ f�g [ f!g 6` ?:

From h�; Supp(�)i 2 F

k

and C [ f�g [ f!g 6` ? we conclude

h!; Supp(�) [ f�g [ f!gi 2 F

k+1

:

By monotonicity, h!; Supp(�) [ f�g [ f!gi 2 F :

From the two cases, we obtain E

i+1

� F :

2. F �

S

1

i=0

E

i

: Therefore, we show by induction that F

i

�

S

1

i=0

E

i

for i � 0.

Base Clearly, we have F

0

�

S

1

i=0

E

i

since F

0

= E

0

:

Step Let F

i

�

S

1

i=0

E

i

: Regard h!; Supp(!)i 2 F

i+1

.

(a) If h!; Supp(!)i 2

c

Th(F

i

) then by the induction hypothesis and the fact that

S

1

i=0

E

i

=

c

Th(

S

1

i=0

E

i

) we also have h!; Supp(!)i 2

S

1

i=0

E

i

:

(b) Otherwise, there is a default

� :�

!

2 GD((E ;C); D) where h�; Supp(�)i 2 F

i

and C [ f�g [ f!g 6` ?:

By the induction hypothesis h�; Supp(�)i 2

S

1

i=0

E

i

: By compactness there

exists a k such that h�; Supp(�)i 2 E

k

:

By de�nition, C = Th(Form(F) [ Supp(F)): Hence, C [ f�g [ f!g 6` ?

implies Form(F) [ Supp(F) [ f�g [ f!g 6` ?: From h�; Supp(�)i 2 E

k

and

Form(F) [ Supp(F) [ f�g [ f!g 6` ? we conclude h!; Supp(�) [ f�g [ f!gi 2

E

k+1

: By monotonicity, h!; Supp(�) [ f�g [ f!gi 2 E :

if part Assume E is an assertional extension of (D; fh�; ;i j � 2 Wg): We show that

(Form(E); Th(Form(E) [ Supp(E))) is a constrained extension of (D;W ). Let us abbreviate

Form(E) by E

"

and Th(Form(E) [ Supp(E)) by C

"

: Notice, that E

"

is also deductively

closed, i.e. E

"

= Th(E

"

) since E =

c

Th(E):

According to Theorem 3.1 we have that (E

"

; C

"

) is an constrained extension i� (E

"

; C

"

) =

(

S

1

i=0

E

i

;

S

1

i=0

C

i

) such that E

0

= W and C

0

= W; and for i � 0
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E

i+1

= Th(E

i

) [

n

!

�

�

�

� :�

!

2 D;� 2 E

i

; C

"

[ f�g [ f!g 6` ?

o

C

i+1

= Th(C

i

) [

n

� ^ !

�

�

�

� :�

!

2 D;� 2 E

i

; C

"

[ f�g [ f!g 6` ?

o

:

According to

[

Brewka, 1991a, Proposition 1

]

we have that E =

S

1

i=0

E

i

such that E

0

=

fh�; ;i j � 2 Wg and for each i � 0

E

i+1

=

c

Th(E

i

) [ fh!; Supp(�) [ f�g [ f!gi j

� :�

!

2 D;

h�; Supp(�)i 2 E

i

;Form(E) [ Supp(E) [ f�g [ f!g 6` ?g

We have to consider the following two cases.

1.

S

1

i=0

E

i

� E

"

;

S

1

i=0

C

i

� C

"

:

We show by induction that E

i

� E

"

and C

i

� C

"

for i � 0.

Base

(a) Clearly, E

0

= W = Form(fh�; ;i j � 2 Wg) = E

"

0

� E

"

:

(b) Also, C

0

= W � E

"

� C

"

:

Step Let E

i

� E

"

and C

i

� C

"

: Regard � 2 E

i+1

[ C

i+1

:

(a) If � 2 Th(E

i

) then, by the induction hypothesis and the fact that E

"

is

deducticely closed, we obtain � 2 E

"

:

(b) Analogously, if � 2 Th(C

i

) then � 2 C

"

:

(c) Otherwise, � 2 f�; �^!g such that there is a default

� :�

!

2 D where � 2 E

i

and C

"

[ f�g [ f!g 6` ?:

By the induction hypothesis � 2 E

"

:

That is, � 2 Form(E): Hence, h�; Supp(�)i 2 E : Also, C

"

[ f�g [ f!g 6`

? implies Form(E) [ Supp(E) [ f�g [ f!g 6` ?: Since E is an assertional

extension h�; Supp(�)i 2 E and Form(E) [ Supp(E) [ f�g [ f!g 6` ? imply

h!; Supp(�) [ f�g [ f!gi 2 E : Thus, ! 2 E

"

and f!; �g � C

"

: Since C

"

is

deductively closed the latter implies ! ^ � 2 C

"

:

From the three cases, we obtain E

i+1

� E

"

and C

i+1

� C

"

:

2. E

"

�

S

1

i=0

E

i

; C

"

�

S

1

i=0

C

i

:

We show by induction that Form(E

i

) �

S

1

i=0

E

i

and Form(E

i

) [ Supp(E

i

) �

S

1

i=0

C

i

for i � 0.

Base

(a) Clearly, Form(E

0

) = W = E

0

�

S

1

i=0

E

i

:

(b) Similarly, Th(Form(E

0

) [ Supp(E

0

)) = Th(W ) � C

1

�

S

1

i=0

C

i

:

Step Let Form(E

i

) �

S

1

i=0

E

i

and Form(E

i

) [ Supp(E

i

) �

S

1

i=0

C

i

:

Consider h�; Supp(�)i 2 E

i+1

:
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(a) If h�; Supp(�)i 2

c

Th(E

i

) then, by the induction hypothesis and the fact that

S

1

i=0

E

i

and

S

1

i=0

C

i

are deductively closed, we obtain Form(�) 2

S

1

i=0

E

i

and Supp(�) �

S

1

i=0

C

i

:

(b) Otherwise, there exists a default

� :�

!

2 D where h�; Supp(�)i 2 E

i

and

Form(E) [ Supp(E) [ f�g [ f!g 6` ?: Then, Supp(�) = Supp(�)[f�g[f!g:

By the induction hypothesis � 2

S

1

i=0

E

i

: Then, by compactness there exists

a k such that � 2 E

k

: Clearly, Form(E) [ Supp(E) [ f�g [ f!g 6` ? implies

C

"

[ f�g [ f!g 6` ?: From � 2 E

k

and C

"

[ f�g [ f!g 6` ? we conclude

! 2 E

k+1

and � ^ ! 2 C

k+1

: Also, by the induction hypothesis, Supp(�) �

S

1

i=0

C

i

: Therefore, by monotonicity and the fact that Supp(�) = Supp(�)[

f�g [ f!g; we have Form(�) 2

S

1

i=0

E

i

and Supp(�) �

S

1

i=0

C

i

:

Theorem 5.4 (Correctness & Completeness) Let (D;W) be an assertional default

theory and let (�;

�

�) be a pair of sets of models.

If E is an assertional extension of (D;W) then (MOD(Form(E));MOD(Form(E) [ Supp(E)))

is a �

D

-maximal element above (MOD(Form(W));MOD(Form(W) [ Supp(W))):

If (�;

�

�) is a �

D

-maximal element above (MOD(Form(W));MOD(Form(W) [ Supp(W)))

then there is an assertional extension E of (D;W) such that � = f� j � j= Form(E)g and

�

� = f� j � j= Form(E) [ Supp(E)g:

Proof 5.4 In what follows, we abbreviate (MOD(Form(W));MOD(Form(W) [ Supp(W)))

by (�

W

;

�

�

W

):

First, we need the following de�nition.

De�nition 5.4 Let (D;W) be an assertional default theory. Given a possibly in�nite

sequence of defaults � = h�

0

; �

1

; �

2

; : : :i in D, also denoted h�

i

i

i2I

where I is the index set

for �, we de�ne a sequence of focused models structures h(�

i

;

�

�

i

)i

i2I

as follows:

(�

0

;

�

�

0

) = (�

W

;

�

�

W

)

(�

i+1

;

�

�

i+1

) = (f� 2 �

i

j � j= !

i

g; f� 2

�

�

i

j � j= �

i

^ !

i

g); where �

i

=

�

i

:�

i

!

i

:

The case where (D;W) is not well based is easily dealt with, so that we prove below the

theorem for Form(W) [ Supp(W) being satis�able.

Proof 5.4 (Correctness) Let (D;W) be a well based assertional default theory. Assume

E is an assertional extension of (D;W). Then, by assumption, also Form(E) [ Supp(E) is

consistent. Then according to

[

Schaub, 1992a, Theorem A.2.4

]

, there exists an enumeration

h�

i

i

i2I

of the set of generating defaults GD(E ; D) such that for i 2 I

Form(W) [ Conseq(f�

0

; : : : ; �

i�1

g) ` Prereq(�

i

): (7)

Let h(�

i

;

�

�

i

)i

i2I

be a sequence of focused models structures obtained from the enumeration

h�

i

i

i2I

according to De�nition B.2. We will show that (�;

�

�) coincides with

T

i2I

(�

i

;

�

�

i

)

and is �

D

{maximal above (�

W

;

�

�

W

):
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Since E is a assertional extension, we have according to

[

Schaub, 1992a, Theorem A.2.2

]

that

Form(E) = Th(Form(W) [ Conseq(GD(E ; D)));

Supp(E) = Supp(W) [ Conseq(GD(E ; D)) [ Justif (GD(E ; D)):

Then, since (�;

�

�) = (MOD(Form(E));MOD(Form(E) [ Supp(E))) we have that (�;

�

�) =

T

i2I

(�

i

;

�

�

i

):

Firstly, let us show that (�

i+1

;

�

�

i+1

) �

�

i

(�

i

;

�

�

i

) for i 2 I:

� Since �

i

� �

W

and �

W

j= Form(W); then by de�nition of �

i

we have �

i

j=

Form(W) [ Conseq(�

i�1

) for i 2 I: Now, �

i+1

� �

i

for i 2 I implies that �

i

j=

Form(W) [ Conseq(f�

0

; : : : ; �

i�1

g): By (7), it follows that �

i

j= Prereq(�

i

) for i 2 I:

� Let us assume that (�

i+1

;

�

�

i+1

) �

�

i

(�

i

;

�

�

i

) fails for some k 2 I: By de�nition of

h(�

i

;

�

�

i

)i

i2I

and the fact that we have just proven that �

i

j= Prereq(�

i

) for i 2 I;

this means that

�

�

k

j= :(!

k

^ �

k

) for �

k

=

�

k

:�

k

!

k

: Let us abbreviate Form(W) [

Conseq(f�

0

; : : : ; �

k�1

g)[Justif (f�

0

; : : : ; �

k�1

g) by Supp

k

. By de�nition,

�

�

k

= MOD(Supp

k

):

Then, Supp

k

j= :(!

k

^ �

k

): That is, Supp

k

[ f!

k

g [ f�

k

g ` ?: By monotonicity,

Form(E) [ Supp(E)[ f!

k

g [ f�

k

g ` ?; contradictory to the fact that �

k

2 GD(E ; D):

Therefore, (�

i+1

;

�

�

i+1

) �

�

i

(�

i

;

�

�

i

) for i 2 I: As a consequence,

T

i2I

(�

i

;

�

�

i

) �

GD(E ;D)

(�

W

;

�

�

W

): That is, (�;

�

�) �

D

(�

W

;

�

�

W

):

Secondly, assume (�;

�

�) is not �

D

{maximal. Then, there exists a default

� :�

!

2

D n GD(E ; D) such that � j= � and

�

� 6j= :(! ^ �):

29

First, since � j= Form(E) we have

Form(E) j= �: Second, since

�

� = MOD(Form(E) [ Supp(E)); we also have Form(E) [ Supp(E) 6j=

:(! ^ �): Of course, Form(E) j= � and Form(E) [ Supp(E) 6j= :(! ^ �) implies

� :�

!

2

GD(E ; D); a contradiction.

Proof 5.4 (Completeness) Let (�;

�

�) be a �

D

{maximal element above (�

W

;

�

�

W

): for

(D;W). Then, we have that (�;

�

�) = (

T

1

i=0

�

i

;

T

1

i=0

�

�

i

) where h(�

i

;

�

�

i

)i

i2I

is a sequence

of focused models structures de�ned for some h�

i

i

i2I

according to De�nition B.2 such that

(�

i+1

;

�

�

i+1

) �

�

i

(�

i

;

�

�

i

) for i 2 I:

Let F be a set of assertions induced by h�

i

i

i2I

; i.e. F =

S

i2I

F

i

such that F

0

= W and

for each i � 0

F

i+1

=

c

Th(F

i

) [

n

h!; Supp(�) [ f�g [ f!gi

�

�

�

�

i

=

� :�

!

; h�; Supp(�)i 2 F

i

o

Observe that due to our construction of F we have � = f� j � j= Form(F)g and

�

� =

f� j � j= Form(F) [ Supp(F)g: In particular, we have �

i

= f� j � j= Form(F

i

)g and

�

�

i

= f� j � j= Form(F

i

) [ Supp(F

i

)g:

It remains to be shown that F is an assertional extension of (D; fh�; ;i j � 2 Wg):

According to

[

Brewka, 1991a, Proposition 1

]

we have that F is an assertional extension i�

F =

S

1

i=0

E

i

such that E

0

= fh�; ;i j � 2 Wg and for each i � 0

E

i+1

=

c

Th(E

i

) [ fh!; Supp(�) [ f�g [ f!gi j

� :�

!

2 D;

h�; Supp(�)i 2 E

i

;Form(F) [ Supp(F) [ f�g [ f!g 6` ?g

29

For readablity, we abbreviate 9� 2

�

�:� j= � ^ ! by

�

� 6j= � ^ !:
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We have to regard the following two cases.

1.

S

1

i=0

E

i

� F : Therefore, we show by induction that E

i

� F for i � 0.

Base Clearly, we have E

0

� F since E

0

= F

0

:

Step Let E

i

� F : Regard h!; Supp(!)i 2 E

i+1

:

(a) If h!; Supp(!)i 2

c

Th(E

i

) then by the induction hypothesis and the fact that

F =

c

Th(F) we also have h!; Supp(!)i 2 F :

(b) Otherwise, there is a default

� :�

!

2 D where h�; Supp(�)i 2 E

i

and

Form(F) [ Supp(F) [ f�g [ f!g 6` ?:

By the induction hypothesis h�; Supp(�)i 2 F : That is, � j= � Also, by

compactness there exists a k such that h�; Supp(�)i 2 F

k

:

By de�nition,

�

� = MOD(Form(F) [ Supp(F)): Thus, since

�

� is non{empty,

Form(F) [ Supp(F) [ f�g [ f!g 6` ? implies

�

� 6j= :(� ^ !): By the �

D

{

maximality of (�;

�

�) we conclude � j= ! and

�

� j= � ^ !: Hence, there

is a j � k such that (�

j+1

;

�

�

j+1

) �

�

j

(�

j

;

�

�

j

): Therefore, by de�nition,

h!; Supp(�) [ f�g [ f!gi 2 F

j+1

: By monotonicity, h!; Supp(�) [ f�g [ f!gi 2

F :

From the two cases, we obtain E

i+1

� F :

2. F �

S

1

i=0

E

i

: Therefore, we show by induction that F

i

�

S

1

i=0

E

i

for i � 0.

Base Clearly, we have F

0

�

S

1

i=0

E

i

since F

0

= E

0

:

Step Let F

i

�

S

1

i=0

E

i

: Consider h!; Supp(!)i 2 F

i+1

.

(a) If h!; Supp(!)i 2

c

Th(F

i

) then by the induction hypothesis and the fact that

S

1

i=0

E

i

=

c

Th(

S

1

i=0

E

i

) we also have h!; Supp(!)i 2

S

1

i=0

E

i

:

(b) Otherwise, there is a default �

i

=

� :�

!

where h�; Supp(�)i 2 F

i

: Then, by

de�nition (�

i+1

;

�

�

i+1

) �

�

i

(�

i

;

�

�

i

): As a consequence,

�

�

i+1

j= � ^ !:

By the induction hypothesis h�; Supp(�)i 2

S

1

i=0

E

i

: Then, by compact-

ness there exists a k such that h�; Supp(�)i 2 E

k

: By de�nition,

�

�

i+1

j=

� ^ !: Since

�

� =

T

1

i=0

�

�

i

; we have

�

� j= � ^ !: Also, by de�nition,

�

� j=

Form(F) [ Supp(F): Hence, Form(F) [ Supp(F) [ f�g [ f!g 6` ? since

�

� is

non{empty. From h�; Supp(�)i 2 E

k

and Form(F) [ Supp(F) [ f�g [ f!g 6`

? we conclude h!; Supp(�) [ f�g [ f!gi 2 E

k+1

:

By monotonicity, h!; Supp(�) [ f�g [ f!gi 2 E :

B.3.1 Theorist Proofs

The following proofs use a a corollary of Theorem 4.2.
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Corollary B.1 Let (D;W ) be a prerequisite-free default theory of PfConDL. If D

0

� D

such that Th(W [ Conseq(D

0

) [ Justif (D

0

)) 6` ? then there exists a constrained extension

(E;C) of (D;W ) where

E � Th(W [ Conseq(D

0

))

C � Th(W [ Conseq(D

0

) [ Justif (D

0

))

The subset relation (�) occurs because D

0

is not necessarily maximal (cf. Theorem 4.2).

Theorem 5.5 A formula � is explainable from (F ;�; C) i� there exists a constrained

extension (E;C) of

�n

:�^C

�

�

�

�
� 2 �

o

;F

�

such that � 2 E.

Proof 5.5 Let (D;W ) =

�n

:�^C

�

�

�

�
� 2 �

o

;F

�

.

if part Assume � is in E for some constrained extension (E;C) of (D;W ).

Let D

0

be a subset of D such that:

E = Th(W [ Conseq(D

0

))

C = Th(W [ Conseq(D

0

) [ Justif (D

0

))

and C 6` ? (theorem 4.2). The set S = Conseq(D

0

) is a scenario that explains � because:

1. � 2 E and E = Th(W [ Conseq(D

0

)) = Th(F [ S) so F [ S ` �

2. Justif (D

0

) =

n

� ^ C

�

�

�

:�^C

�

2 D

0

o

so Th(F [ S [ C) � C and therefore F [ S [ C is

consistent since C 6` ?.

only{if part Assume � is explainable from (F ;�; C) and let S be a scenario that explains

�.

Let D

0

=

n

:�^C

�

�

�

�

� 2 S

o

Now,

C = Th(W [ Justif (D

0

) [ Conseq(D

0

))

= Th(F [ S [ C)

so C 6` ? because F [ S [ C is consistent. Therefore, there is an extension (E;C) where

Th(W [ Conseq(D

0

)) � E (Corollary B.1) so Th(F [ S) � E and therefore � 2 E.

The main di�culty in proving theorems 5.6 and 5.7 is dealing with the naming of

defaults. We start with two lemmas that show that after we have �xed a scenario, naming

becomes irrelevant. For a Theorist scenario F [S with constraints C, we use F

nn

, S

nn

, and

C

nn

to be the corresponding sets of formulas without names (nn is read \no names"). That

is,

F

nn

= ff j f 2 F and f does not contain any default nameg

S

nn

= f� j n

�

2 Sg

C

nn

= f: � :� j n

�

2 S and : � :n 2 Cg

Note that C

nn

contains only the constraints that are relevant to the defaults in S

nn

.
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Lemma B.2 F [ S ` � i� F

nn

[ S

nn

` �, for any formula � that does not contain any

names.

Proof B.2

if part F [ S ` �.

Assume that F

nn

[ S

nn

6` �. Then there must be an interpretation, call it I

nn

, that is a

model for F

nn

[ S

nn

[ f:�g. We can extend I

nn

to handle names by letting,

I(n

�

) = True; if I

nn

j= �

I(n

�

) = False; if I

nn

6j= �

I(�) = I(�); if � is not a name

So I j= F because I j= n

�

� � for all names n

�

. Also, I j= S and, therefore I is a model

for F [ S [ f:�g. But this contradicts F [ S ` �.

only{if part F

nn

[ S

nn

` �.

Assume F [S 6` �, and let I be an interpretation that models F [S[f:�g. Now, F

nn

� F ,

so I models F

nn

. Also, F [ S ` �, for each � 2 S

nn

so I models S

nn

. Therefore, I models

F

nn

[ S

nn

[ f:�g, but this contradicts F

nn

[ S

nn

` �.

Lemma B.3 F [ S [ C is consistent i� F

nn

[ S

nn

[ C

nn

is consistent.

Proof B.3

if part F [ S [ C is consistent.

Note that Th(F

nn

[ S

nn

[ C

nn

) � Th(F [ S [ C) because F

nn

� F ; for all � 2 S

nn

, F[S ` �;

and for all : � :� 2 C

nn

, F [ S [ C ` : � :�. Therefore F

nn

[ S

nn

[ C

nn

is consistent.

only{if part F

nn

[ S

nn

[ C

nn

is consistent.

Let I

nn

be an interpretation that models F

nn

[ S

nn

[ C

nn

. Extend I

nn

to an interpretation

I that handles names as in the proof for Lemma B.2. It is easy to see that I models F [S.

There are two subsets of C to consider:

1. Consider : � :n

�

where n

�

2 S.

I models n

�

and  so I models : � :n

�

.

2. Consider : � :n

�

where n

�

62 S.

Then I models :n

�

and so I models : � :n

�

.

Therefore, I models F [ S [ C and so F [ S [ C is consistent.

Theorem 5.6 A formula � is explainable from (F ;�; C) i� there exists a constrained

extension (E;C) of Tr(F ;�; C) such that � 2 E.

Proof 5.6 Let (D;W ) = Tr(F ;�; C).
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if part � is in E for some constrained extension (E;C) of (D;W ).

Let D

0

be a subset of D such that:

E = Th(W [ Conseq(D

0

))

C = Th(W [ Conseq(D

0

) [ Justif (D

0

))

and C 6` ? (theorem 4.2).

Now W = F

nn

and Conseq(D

0

) = S

nn

so F

nn

[ S

nn

` �.

Further, F

nn

[ S

nn

[ C

nn

is consistent because: for all : � :� 2 C

nn

, � ^  2 Justif (D

0

),

Justif (D

0

) � C, and C is consistent.

Finally, applying Lemma B.2 and B.3 gives F [S ` � and F [S [C is consistent, so F [S

is a scenario that explains �.

only{if part Let F [ S be a scenario that explains �.

First, F

nn

[ S

nn

` � and F

nn

[ S

nn

[ C

nn

is consistent (Lemma B.2 and B.3).

Let D

0

=

n

:�^

�

�

�

�

:�^

�

2 D and � 2 S

nn

and : � :� 2 C

nn

o

:

Now F

nn

= W and S

nn

= Conseq(D

0

), so � 2 Th(W [ Conseq(D

0

)).

Also, Th(W [ Conseq(D

0

) [ Justif (D

0

)) � Th(F

nn

[ Snn [ C

nn

) because for all � �  2

Justif (D

0

), F

nn

[ S

nn

[ C

nn

` � ^ .

Hence Th(W [ Conseq(D

0

) [ Justif (D

0

)) is consistent. Therefore, there must an extension

(E;C) where E � Th(W [ Conseq(D

0

)) (Corollary B.1) and where � 2 E.

Theorem 5.7 Let (D;W ) be a semi-normal prerequisite-free default theory. A formula �

is in E for some constrained extension (E;C) of (D;W ) i� � is explainable from Tr

�1

(D;W ).

Proof 5.7 The proof of this theorem is same as for theorem 5.6 except that we let

(F ;�; C) = Tr

�1

(D;W ).
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