
Conflict-Driven Answer Set Solving:
From Theory to Practice∗

Martin Gebser Benjamin Kaufmann
Torsten Schaub†

Universität Potsdam, Institut für Informatik,
August-Bebel-Str. 89, D-14482 Potsdam, Germany

{gebser,kaufmann,torsten}@cs.uni-potsdam.de

May 4, 2012

Abstract

We introduce an approach to computing answer sets of logic programs, based on con-
cepts successfully applied in Satisfiability (SAT) checking. The idea is to view inferences in
Answer Set Programming (ASP) as unit propagation on nogoods. This provides us with a
uniform constraint-based framework capturing diverse inferences encountered in ASP solv-
ing. Moreover, our approach allows us to apply advanced solving techniques from the area of
SAT. As a result, we present the first full-fledged algorithmic framework for native conflict-
driven ASP solving. Our approach is implemented in the ASP solver clasp that has demon-
strated its competitiveness and versatility by winning first places at various solver contests.

1 Introduction
Answer Set Programming (ASP; [67, 94, 102, 66, 87, 6, 65]) has become an attractive paradigm
for knowledge representation and reasoning, due to its appealing combination of rich yet simple
modeling languages1 with powerful solving engines. Albeit specialized ASP solvers have been
highly optimized (cf. [119, 83, 15]), their performance has so far not matched the one of modern
solvers for Satisfiability (SAT; [12]) checking. However, computational mechanisms of SAT
and ASP solvers are not far-off, as witnessed by the SAT-based ASP solvers assat [90] and
cmodels [71]. Nonetheless, state-of-the-art look-back techniques from SAT, or more generally,

∗This paper combines and extends the work presented in [2, 54, 52, 56].
†Corresponding author: phone: (+49) 331 977 3080/3081, fax: (+49) 331 977 3122. Torsten Schaub is also

affiliated with the School of Computing Science at Simon Fraser University, Burnaby, Canada, and the Institute for
Integrated and Intelligent Systems at Griffith University, Brisbane, Australia.

1The interested reader is referred to [120, 45, 83] for detailed accounts of ASP’s modeling languages.

1

Constraint Programming (CP; [26, 113]), such as backjumping and conflict-driven learning, were
not yet established in native ASP solvers. In fact, previous approaches to adopt such techniques
[126, 112, 91] are rather implementation-specific, i.e., they focus on describing modifications of
existing ASP solving approaches, and thus lack generality.

We address this deficiency by introducing a novel computational approach to ASP solving,
building on Boolean constraints. Apart from the fact that this allows us to easily integrate solv-
ing techniques from related areas like SAT, e.g., backjumping, conflict-driven learning, restarts,
etc., it also provides us with a uniform characterization of inferences from logic program rules,
unfounded sets, and conflict conditions. As major results, we show that all inferences in ASP
solving can be reduced to unit propagation on nogoods, and we devise the first self-contained al-
gorithmic framework for native conflict-driven ASP solving. While the general outline of search
is the same as in Conflict-Driven Clause Learning (CDCL; [97, 127, 23, 96]), the state-of-the-art
algorithm for industrial SAT solving, the integration of unfounded set checking is particular to
ASP and owed to its elevated expressiveness (cf. [117, 76, 88]). However, our approach favors
“local” unit propagation over unfounded set checks, i.e., tests whether inherent (loop) nogoods
are unit or violated. We elaborate upon the formal properties of our conflict-driven algorithmic
framework, and we demonstrate its soundness and completeness for ASP solving.

Our approach has led to the implementation of the award-winning ASP solver clasp, tak-
ing first places at the ASP, CASC, MISC, PB, and SAT contests in 2011 (see [110] for more
details). We discuss the major features of clasp and provide an empirical evaluation of its per-
formance by comparing it to other state-of-the-art ASP solvers, using the class of NP decision
problems from the second ASP competition [28]. Generally, clasp has become a powerful na-
tive ASP solver, offering various reasoning modes that make it an attractive tool for knowledge
representation and reasoning.2 This is witnessed by an increasing number of applications rely-
ing on clasp (or derivatives) as reasoning engine, e.g., [99, 13, 80, 122, 75, 64]. Along with
the grounder gringo [51], clasp constitutes a central component of Potassco [44], the Potsdam
Answer Set Solving Collection bundling tools for ASP developed at the University of Potsdam.

The outline of this paper is as follows. After establishing the formal background, we provide
in Section 3 a constraint-based specification of answer sets in terms of nogoods. Based on this
uniform characterization, we develop in Section 4 algorithms for ASP solving that incorporate
advanced look-back techniques. In Section 5, we describe the award-winning ASP solver clasp,
implementing our approach. Section 6 provides a systematic empirical evaluation demonstrating
the competitiveness of clasp. We conclude with related work and summary. Proofs for formal
results are provided in the appendix.

2 Background
Given an alphabet P , a (propositional normal) logic program is a finite set of rules of the form

2Beyond search for one answer set of a propositional normal logic program, detailed in this paper, clasp supports
so-called extended rules [47], solution enumeration [53, 57], and optimization [48]. Due to its versatile core engine,
clasp can be run as a solver for ASP, SAT, Maximum Satisfiability (MaxSAT; [85]), and Pseudo-Boolean (PB; [114])
constraint satisfaction/optimization, incorporating dedicated front-ends for diverse input formats.

2

p0 ← p1, . . . , pm, not pm+1, . . . , not pn (1)

where 0 ≤ m ≤ n and each pi ∈ P is an atom for 0 ≤ i ≤ n. A body literal is an atom
p or its (default) negation not p. For a rule r as in (1), let head(r) = p0 be the head of r and
body(r) = {p1, . . . , pm, not pm+1, . . . , not pn} be the body of r. The intuitive reading of r is that
head(r) must be true if body(r) holds, i.e., if p1, . . . , pm are (provably) true and if pm+1, . . . , pn
are (assumed to be) false. Given a set β of body literals, let β+ = {p ∈ P | p ∈ β} and
β− = {p ∈ P | not p ∈ β}. For body(r), we then have that body(r)+ = {p1, . . . , pm} and
body(r)− = {pm+1, . . . , pn}. The set of atoms occurring in a logic program Π is denoted by
atom(Π), and body(Π) = {body(r) | r ∈ Π} is the set of bodies of rules in Π. For regrouping
rule bodies sharing the same head p, we define bodyΠ(p) = {body(r) | r ∈ Π, head(r) = p}.

A set X ⊆ P of atoms is a model of a logic program Π, if head(r) ∈ X , body(r)+ 6⊆ X ,
or body(r)− ∩X 6= ∅ holds for every r ∈ Π. In ASP, the semantics of Π is given by its answer
sets [67]. The reduct, ΠX , of Π relative toX is defined by ΠX = {head(r)← body(r)+ | r ∈ Π,
body(r)− ∩ X = ∅}. Note that ΠX is a Horn program possessing a unique ⊆-minimal model
(cf. [30]). Given this, X is an answer set of Π, if X itself is the ⊆-minimal model of ΠX . Note
that any answer set of Π is a model of Π as well, while the converse does not hold in general.

The positive dependency graph of a program Π is given by (atom(Π),≤+), where atom(Π)
and ≤+ = {(p, head(r)) | r ∈ Π, p ∈ body(r)+} are the set of vertices and directed edges,
respectively. This graph allows us to identify circular positive dependencies among atoms. Ac-
cording to [90], a non-empty L ⊆ atom(Π) is a loop of Π, if for every pair p ∈ L, q ∈ L (includ-
ing p = q), there is a path of non-zero length from p to q in (atom(Π),≤+) such that all vertices
in the path belong to L. We denote the set of all loops of Π by loop(Π); if loop(Π) = ∅ (or
loop(Π) 6= ∅), Π is a tight (or non-tight) program. As shown in [40] and exploited in Section 3,
the answer sets of a tight program Π coincide with models of the Clark completion of Π [21], also
referred to as the supported models of Π [3]. A strongly connected component of (atom(Π),≤+)
is a maximal subgraph such that any pair of vertices is connected by some path; it is non-trivial,
if it contains some edge. Note that, for any loop L of Π, the atoms in L belong to the same
non-trivial strongly connected component of (atom(Π),≤+). Moreover, we have that Π is tight
iff (atom(Π),≤+) does not include any non-trivial strongly connected component.

Example 2.1. Consider the following logic program:3

Π2 =

{
a← c← a, not d e← b
b← not a d← not c, not e e← e

}
(2)

This program has two answer sets: {a, c} and {a, d}. Note that Π2 is non-tight because its posi-
tive dependency graph contains the non-trivial strongly connected component ({e}, {(e, e)}).

In practice, propositional logic programs are usually obtained from inputs in some first-order
language (cf. [120, 45, 83]) via grounding. We do not detail grounding here, but only men-
tion that off-the-shelf grounders, such as dlv’s grounding component [105], gringo [51], and
lparse [120], are available to accomplish this task. Moreover, particular classes of logic programs

3Our enumeration scheme for particular logic programs Π follows that of equations.

3

admit language extensions like classical negation and disjunctions [68], nested expressions [89],
propositional formulas [106, 41], cardinality and weight constraints [119], or aggregates [39], to
name some of them. In this paper, we focus mainly on normal propositional logic programs and,
in particular, on solving the decision problem of answer set existence. For further details and
broader overviews about the area of ASP, we refer the interested reader to [6, 65].

The concepts introduced next are central in the context of conflict-driven answer set compu-
tation. A Boolean assignment A over a domain, dom(A), is a sequence (σ1, . . . , σn) of signed
literals σi of the form Tvi or Fvi, where vi ∈ dom(A) for 1 ≤ i ≤ n and vi 6= vj for i < j ≤ n.
A literal Tv expresses that v is true, and Fv that it is false. (We omit the attribute signed for
literals whenever clear from the context.) We denote the complement of a literal σ by σ, that is,
Tv = Fv and Fv = Tv. The sequence obtained by appending a literal σ to A is denoted by
A ◦ σ. We sometimes abuse notation and identify an assignment with the set of its contained
literals. Given this, we access the true and the false members of A via AT = {v ∈ dom(A) |
Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}. For A = (σ1, . . . , σi−1, σi, . . . , σn), let
A[σi] = (σ1, . . . , σi−1) be the prefix of A relative to σi, and define A[σ] = A for any σ /∈ A.

For a canonical representation of Boolean constraints, we rely on the concept of a nogood (cf.
[26, 113]), reflecting (partial) assignments that cannot be extended to a solution. In our setting,
a nogood is a set {σ1, . . . , σm} of signed literals, expressing that any assignment containing
σ1, . . . , σm is unintended.4 Accordingly, a nogood {σ1, . . . , σm} is violated by an assignment A,
if {σ1, . . . , σm} ⊆ A. In turn, an assignment A such that AT ∪AF = dom(A) is a solution for
a set ∆ of nogoods, if no nogood in ∆ is violated by A.

Given a nogood δ and an assignment A, we say that a literal σ /∈ A is unit-resulting for δ
wrt A, if δ \ A = {σ}. This designates σ as the single literal of δ not contained in A, so that
σ must necessarily be added to A for avoiding the violation of δ. Note that a violated nogood
does not have any unit-resulting literal, while the prerequisite σ /∈ A precludes duplicates: if A
already contains σ, it cannot be unit-resulting.5 For example, Fq is unit-resulting for nogood
{Fp,Tq} wrt assignment (Fp), but neither wrt (Fp,Fq) nor (Fp,Tq). Along the lines of SAT,
for a set ∆ of nogoods, we refer to the iterated process of extending A by unit-resulting literals
as unit propagation. We call a nogood δ an antecedent of σ wrt A, if σ is unit-resulting for δ wrt
prefix A[σ]. In turn, σ ∈ A is implied by ∆ wrt A, if there is some antecedent of σ wrt A in ∆.

3 Nogoods of Logic Programs
Inferences in ASP solving rely on truth values of atoms and applicability of program rules, which
can be expressed by assignments over atoms and bodies. Given a program Π, we thus fix the
domain of assignments A to dom(A) = atom(Π) ∪ body(Π). Such a hybrid approach may
result in exponentially smaller search space traversals than a purely either atom- or body-based

4Any nogood {σ1, . . . , σm} can be syntactically represented by a clause σ1∨· · ·∨σm (dropping T and replacing
F with ¬ in σ1, . . . , σm to stay in the syntax of propositional logic), while other representations like logic program
rules, PB constraints, and Boolean circuit gates are possible as well.

5The concept of a unit-resulting literal is closely related to unit clauses considered in SAT (cf. [12]): a clause is
unit iff the nogood it represents has some unit-resulting literal.

4

approach [63, 62]; it moreover allows for a succinct representation of nogoods, as we show in
this section. While syntactic translations of logic programs to clauses (cf. [5, 70, 86]) primarily
aim at reducing ASP to SAT solving, the nogoods provided below describe semantic conditions
under which an assignment over atom(Π) ∪ body(Π) represents an answer set of Π.

Our approach is guided by the idea of Lin and Zhao [90] and decomposes ASP solving into
“local” inferences obtainable from the Clark completion [21] of a program and those obtainable
from loop formulas [90]. While Clark completion captures the answer sets of tight programs
compactly in terms of theories in propositional logic [40], exponentially many loop formulas may
be required in addition to extend this characterization of answer sets to non-tight programs [88].

3.1 Completion Nogoods
We begin with nogoods capturing constraints induced by the Clark completion of a program,
where we use ¬, ∧, ∨, →, and↔ for denoting the classical connectives in propositional logic.
Then, the Clark completion of a program Π can be defined as follows:

{ pβ ↔ p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn | (3)
β ∈ body(Π), β = {p1, . . . , pm, not pm+1, . . . , not pn} }

∪ { p↔ pβ1 ∨ · · · ∨ pβk | p ∈ atom(Π), bodyΠ(p) = {β1, . . . , βk} } . (4)

This formulation relies on atoms p as well as auxiliary propositions pβ representing bodies β.
Such propositions are also introduced in Conjunctive Normal Form (CNF) transformations as
abbreviations avoiding an exponential blow-up [123]. The models of the Clark completion of a
program are called supported models [3]; on tight programs, they coincide with answer sets [40].

The equivalences in (3) define propositions standing for bodies, while those in (4) define
atoms in terms of their supporting bodies. For identifying the underlying constraints, we begin
with the body-oriented equivalences in (3). In fact, they can be decomposed into two kinds of
implications considered next.

On the one hand, we obtain (p1∧· · ·∧pm∧¬pm+1∧· · ·∧¬pn → pβ). That is, the body β of
a rule holds if all its body literals are true. Conversely, some literal of β must be false if β does
not hold. So, given a body β = {p1, . . . , pm, not pm+1, . . . , not pn}, the previous implication
expresses the nogood:

δ(β) = {Fβ,Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn} .

Note that nogoods treat atoms and bodies as equitable objects. In terms of unit propagation, δ(β)
is a constraint enforcing the truth of β or the falsity of a contained literal. For instance, for body
{a, not d} in Program Π2, we obtain δ({a, not d}) = {F{a, not d},Ta,Fd} (see also Table 1).

On the other hand, a body β must be false if some of its literals is false, or all literals of β must
be true if β holds. This is expressed by the second implication obtained from (3), viz., (pβ →
p1∧ · · ·∧pm∧¬pm+1∧ · · ·∧¬pn). It is equivalent to the conjunction of clauses (¬pβ ∨p1), . . . ,
(¬pβ ∨ pm), (¬pβ ∨ ¬pm+1), . . . , (¬pβ ∨ ¬pn). For β = {p1, . . . , pm, not pm+1, . . . , not pn},
such clauses induce the following set of nogoods:

∆(β) = { {Tβ,Fp1}, . . . , {Tβ,Fpm}, {Tβ,Tpm+1}, . . . , {Tβ,Tpn} } .

5

Body β δ(β) ∆(β)

∅ {F∅}
{not a} {F{not a},Fa} {T{not a},Ta}
{a, not d} {F{a, not d},Ta,Fd} {T{a, not d},Fa}

{T{a, not d},Td}
{not c, not e} {F{not c, not e},Fc,Fe} {T{not c, not e},Tc}

{T{not c, not e},Te}
{b} {F{b},Tb} {T{b},Fb}
{e} {F{e},Te} {T{e},Fe}

Table 1: Body-oriented nogoods in ∆body(Π2).

Taking again body {a, not d} gives ∆({a, not d}) = { {T{a, not d},Fa}, {T{a, not d},Td} }.
We now come to constraints primarily aiming at atoms. In analogy to the above, we derive

the corresponding nogoods from the equivalences in (4).
To begin with, the implication (pβ1 ∨ · · · ∨ pβk → p) tells us that an atom p must be true if

some element of bodyΠ(p) holds and, conversely, that all elements of bodyΠ(p) must be false if
p is false. For bodyΠ(p) = {β1, . . . , βk}, we thus get the set of nogoods:6

∆(p) = { {Fp,Tβ1}, . . . , {Fp,Tβk} } .

For example, for atom e in Program Π2 with bodyΠ2
(e) = {{b}, {e}}, we obtain ∆(e) =

{ {Fe,T{b}}, {Fe,T{e}} } (see also Table 2).
Finally, according to the implication (p → pβ1 ∨ · · · ∨ pβk), some element of bodyΠ(p)

must hold if p is true, or p must be false if all elements of bodyΠ(p) are false. For bodyΠ(p) =
{β1, . . . , βk}, this is reflected by the following nogood:

δ(p) = {Tp,Fβ1, . . . ,Fβk} .

Taking once more atom e with bodyΠ2
(e) = {{b}, {e}}, we get δ(e) = {Te,F{b},F{e}}.

Combining the four types of nogoods stemming from the Clark completion of a program Π,
we obtain the following sets of nogoods:

∆body(Π) = {δ(β) | β ∈ body(Π)} ∪ {δ ∈ ∆(β) | β ∈ body(Π)} (5)
∆atom(Π) = {δ(p) | p ∈ atom(Π)} ∪ {δ ∈ ∆(p) | p ∈ atom(Π)} (6)

∆Π = ∆body(Π) ∪∆atom(Π) .

For illustration, in Table 1 and 2, we provide the set ∆Π2 of nogoods stemming from the
Clark completion of Program Π2. While Table 1 shows the body-oriented nogoods in ∆body(Π2),
Table 2 comprises the atom-oriented ones in ∆atom(Π2).

In what follows, we develop the result of this section that solutions for ∆Π coincide with
supported models, and if Π is tight, also with answer sets of Π. As an auxiliary property, we
have that the truth values of bodies are uniquely determined by those of atoms.

6For the sake of simplicity, we leave an underlying program Π implicit in the notations ∆(p) and δ(p).

6

Atom p ∆(p) δ(p)

a {Fa,T∅} {Ta,F∅}
b {Fb,T{not a}} {Tb,F{not a}}
c {Fc,T{a, not d}} {Tc,F{a, not d}}
d {Fd,T{not c, not e}} {Td,F{not c, not e}}
e {Fe,T{b}} {Te,F{b},F{e}}

{Fe,T{e}}

Table 2: Atom-oriented nogoods in ∆atom(Π2).

Lemma 3.1. Let Π be a logic program and X ⊆ atom(Π).
Then, we have that

A = {Tp | p ∈ X} ∪ {Fp | p ∈ atom(Π) \X}
∪ {Tβ | β ∈ body(Π), β+ ⊆ X, β− ∩X = ∅}
∪ {Fβ | β ∈ body(Π), (β+ ∩ (atom(Π) \X)) ∪ (β− ∩X) 6= ∅}

is the unique solution for ∆body(Π) such that AT ∩ atom(Π) = X .

Observe that, for a given X ⊆ atom(Π), the unique solution A for ∆body(Π) must assign T or F
to β ∈ body(Π) according to the semantics of conjunction, as it is expected.

The next auxiliary result establishes one-to-one correspondence between supported models
of Π, satisfying the equivalences in (3) and (4), and solutions for ∆Π.

Lemma 3.2. Let Π be a logic program and X ⊆ atom(Π) ∪ body(Π).
Then, we have that (X ∩ atom(Π))∪ {pβ | β ∈ X ∩ body(Π)} is a supported model of Π iff

{Tv | v ∈ X} ∪ {Fv | v ∈ (atom(Π) ∪ body(Π)) \X} is a solution for ∆Π.

Since supported models and answer sets coincide on tight programs Π, we further obtain the
following correspondence between answer sets of Π and solutions for ∆Π.

Theorem 3.3. Let Π be a tight logic program and X ⊆ atom(Π).
Then, we have that X is an answer set of Π iff

A = {Tp | p ∈ X} ∪ {Fp | p ∈ atom(Π) \X}
∪ {Tβ | β ∈ body(Π), β+ ⊆ X, β− ∩X = ∅}
∪ {Fβ | β ∈ body(Π), (β+ ∩ (atom(Π) \X)) ∪ (β− ∩X) 6= ∅}

is the unique solution for ∆Π such that AT ∩ atom(Π) = X .

Example 3.1. For illustration, let us inspect the supported models and answer sets of Π2 from
Example 2.1, which is non-tight because of rule (e← e). The equivalences of the Clark comple-
tion of Π2 are:

a↔ p∅ b↔ p{not a} c↔ p{a,not d} d↔ p{not c,not e} e↔ p{b}∨ p{e}
p∅ ↔ > p{not a}↔ ¬a p{a,not d}↔ a ∧ ¬d p{not c,not e}↔ ¬c ∧ ¬e p{b}↔ b p{e}↔ e .

7

Supported Model Assignment
{ a, d } ∪ {Ta,Td,Fc,Fe,Fb } ∪
{ p∅, p{not c,not e} } {T∅,T{not c, not e},F{a, not d},F{e},F{not a},F{b} }
{ a, c } ∪ {Ta,Fd,Tc,Fe,Fb } ∪
{ p∅, p{a,not d} } {T∅,F{not c, not e},T{a, not d},F{e},F{not a},F{b} }
{ a, c, e } ∪ {Ta,Fd,Tc,Te,Fb } ∪
{ p∅, p{a,not d}, p{e} } {T∅,F{not c, not e},T{a, not d},T{e},F{not a},F{b} }

Table 3: Supported models of Π2 and corresponding solutions for ∆Π2 .

The supported models of Π2 and corresponding solutions for ∆Π2 are shown in Table 3. Note
that the atoms belonging to the first two supported models correspond to answer sets of Π2, but
not those in the third one. The reason for this mismatch is rule (e ← e), which makes Π2 non-
tight. When dropping this rule from Π2, the first two supported models remain valid, while e in
the third one is no longer supported. By Lemma 3.2, this allows us to conclude that the first two
assignments (without F{e}) are solutions for ∆Π2\{e←e}. Since Π2 \ {e ← e} is tight, we can
further use Theorem 3.3 to see that {a, d} and {a, c} are the two answer sets of Π2 \ {e← e}.

As pointed out at the beginning of this section, the nogoods contributing to ∆body(Π) in (5) and
∆atom(Π) in (6) are directly linked to the clauses obtained when decomposing the equivalences
in the Clark completion of a program Π in the straightforward way. Hence, the nogoods in ∆Π

essentially characterize supported models in terms of assignments over atoms as well as rule
bodies. Note that each atom and each body is defined by some equivalence, given implicitly
through (the semantics of) Π or written explicitly in the Clark completion of Π. In a sense, one
can view Π as a shorthand representation for the conditions that all rules must be fulfilled and
that any true atom must be supported via some rule whose body holds.

3.2 Loop Nogoods
Every answer set of a program Π is also a supported model of Π, while the converse does not
hold in general. In fact, the mismatch on non-tight programs is due to the potential of circular
support (or positive recursion) among true atoms, which is admissible with supported models, but
not with answer sets. Hence, such improper support must be suppressed to distinguish supported
models that are answer sets from the rest, and there are several approaches to accomplish this. On
the one hand, well-founded semantics is based on unfounded sets [124], viz., sets of atoms that
cannot be non-circularly supported and must thus be false. While unfounded sets are traditionally
determined wrt partial interpretations over atoms, an alternative approach identifying unfounded
sets wrt (false) rule bodies is described in [2]. On the other hand, loop formulas can be utilized to
characterize answer sets by classical models of propositional theories. Here, the main focus is on
restricting the consideration of unfounded sets to particular (syntactic) classes of sets of atoms,
namely, loops [90, 82] or elementary sets [61, 58]. In this section, we introduce the concept
of an unfounded set in our setting and relate it to traditional approaches [124, 84]. We further
exploit unfounded sets to extend our constraint-based characterization of answer sets to non-tight

8

programs, which yields a close relationship to loop formulas.
To begin with, for a program Π and some U ⊆ atom(Π), we define the external bodies of U

for Π as
EBΠ(U) = {body(r) | r ∈ Π, head(r) ∈ U, body(r)+ ∩ U = ∅} .

A body in EBΠ(U) can provide non-circular support for U , as it does not (positively) contain
any atom of U . Then, U is unfounded, if all its external bodies are false, that is, if there is no
non-circular support left for U . In our setting, this amounts to the following definition.

Definition 3.1. Let Π be a logic program, A an assignment, and U ⊆ atom(Π).
Then, we define U as an unfounded set of Π wrt A, if EBΠ(U) ⊆ AF.

In more detail, this definition determines U as unfounded for Π wrt A, if for every r ∈ Π, we
have that head(r) /∈ U , body(r)+ ∩ U 6= ∅, or body(r) ∈ AF. For comparison, the tradi-
tional unfounded set definition by Van Gelder, Ross, and Schlipf [124] can be reformulated wrt
assignments as follows.

Definition 3.2. Let Π be a logic program, A an assignment, and U ⊆ atom(Π).
Then, we define U as a GRS-unfounded set of Π wrt A, if

EBΠ(U) ⊆ {β ∈ body(Π) | (β+ ∩AF) ∪ (β− ∩AT) 6= ∅} .

Note that this definition requires an external body to contain a false literal in order to witness the
unavailability of non-circular support.

For comparing our concept of an unfounded set to the traditional one, we define the following
properties for a program along with an assignment.

Definition 3.3. Let Π be a logic program and A an assignment.
Then, we define A as

1. body-saturated for Π, if

{β ∈ body(Π) | (β+ ∩AF) ∪ (β− ∩AT) 6= ∅} ⊆ AF ;

2. body-synchronized for Π, if

{β ∈ body(Π) | (β+ ∩AF) ∪ (β− ∩AT) 6= ∅} = AF ∩ body(Π) .

In words, body-saturation requires that bodies containing false literals must likewise be assigned
to false; if the converse holds as well, we have body-synchronization.

Based on these properties, we now formalize the relationships between GRS-unfounded sets
and our unfounded set notion.

Proposition 3.4. Let Π be a logic program, A an assignment, and U ⊆ atom(Π).
If A is body-saturated for Π, then we have that U is an unfounded set of Π wrt A if U is a

GRS-unfounded set of Π wrt A.

9

c eda

b

q
i

q
i 1

-

�
���

����

H
HHH

HHHj?

Figure 1: The positive dependency graph of Π7.

Proposition 3.5. Let Π be a logic program, A an assignment, and U ⊆ atom(Π).
If A is body-synchronized for Π, then we have that U is an unfounded set of Π wrt A iff U

is a GRS-unfounded set of Π wrt A.

These results show that any GRS-unfounded set can be turned into an unfounded set by as-
signing bodies containing false literals to false as well, in this way establishing body-saturation.
For a body β, the nogoods in ∆(β) enable such forwarding of falsity by unit propagation (cf.
Section 2). As the following example illustrates, there is no straightforward converse “transfor-
mation” to turn unfounded sets into GRS-unfounded sets.

Example 3.2. Consider the following (non-tight) program:

Π7 =

{
a← not b c← a d← b, c e← b, not a
b← not a c← b, d d← e e← c, d

}
(7)

The positive dependency graph of Π7 is shown in Figure 1. Observe that {c, d}, {d, e}, and
{c, d, e} are all non-empty sets of atoms such that their elements reach one another via (loop-
internal) paths of non-zero length, i.e., loop(Π7) = {{c, d}, {d, e}, {c, d, e}}. In particular,
U = {d, e} is unfounded for Π7 wrt A = (F{b, c},F{b, not a}) in view of EBΠ7(U) = {{b, c},
{b, not a}}. This tells us that any answer set of Π7 such that rules (d← b, c) and (e← b, not a)
are inapplicable (i.e., their bodies {b, c} and {b, not a} do not hold) must not contain d or e. In
fact, the remaining rules supporting d and e, (d← e) and (e← c, d), are circular and do thus not
provide external support for U . However, U is not a GRS-unfounded set of Π7 wrt A, and neither
nogood δ({b, c}) = {F{b, c},Tb,Tc} nor δ({b, not a}) = {F{b, not a},Tb,Fa} allows for
deriving the falsity of any body literal by unit propagation wrt A. That is, the fact that the
remaining supports for d and e are circular is not reflected by GRS-unfounded sets. On the other
hand, we have that U is a GRS-unfounded set of Π7 wrt B = (Fb) because positive body literal b
in {b, c} and {b, not a} is false wrt B. The mismatch thatU is not an unfounded set of Π7 wrt B is
due to B not being body-saturated for Π7. Yet a body-saturated assignment B′ containing F{b, c}
and F{b, not a} is easily derived from B by unit propagation, in view of nogoods {T{b, c},Fb}
and {T{b, not a},Fb} belonging to ∆({b, c}) and ∆({b, not a}), respectively. Then, we have
that U is an unfounded set of Π7 wrt B′.

In order to identify constraints induced by unfounded sets, we inspect loop formulas. Reusing
auxiliary propositions for rule bodies, as given in (3), for a program Π and U ⊆ atom(Π), the
(disjunctive) loop formula can be written as follows:(∨

p∈U p
)
→
(∨

β∈EBΠ(U) pβ
)
.

10

Such a loop formula stipulates at least one body in EBΠ(U) to hold whenever some atom of U
is true. An alternative reading is that all elements of U must be false if U is unfounded. For
Program Π7 and U = {d, e}, we get loop formula (d∨ e→ p{b,c} ∨ p{b,not a}); the corresponding
clauses are (¬d ∨ p{b,c} ∨ p{b,not a}) and (¬e ∨ p{b,c} ∨ p{b,not a}).

To capture unit propagation on loop formulas, for a program Π, a non-empty U ⊆ atom(Π),
and some p ∈ U , we define a loop nogood by

λ(p, U) = {Tp,Fβ1, . . . ,Fβk}

where EBΠ(U) = {β1, . . . , βk}. For Program Π7 and U = {d, e}, we obtain λ(d, U) =
{Td,F{b, c},F{b, not a}} and λ(e, U) = {Te,F{b, c},F{b, not a}}. Notice that literals of
the form Fβ, where β ∈ EBΠ(U), are the same in λ(p, U) for all p ∈ U .

Overall, we get the following set of loop nogoods for a program Π:

ΛΠ =
⋃
∅⊂U⊆atom(Π){λ(p, U) | p ∈ U} .

The next result describes the relationship between loop nogoods and unfounded sets.

Proposition 3.6. Let Π be a logic program and A an assignment such that AT ∪ AF =
atom(Π) ∪ body(Π).

Then, we have that A is a solution for ΛΠ iff U ⊆ AF for every unfounded set U of Π wrt A.

In combination with Proposition 3.5, the previous result tells us that a body-synchronized
total assignment A is unfounded-free [84] iff A is a solution for ΛΠ. Along with Lemma 3.1,
which establishes that any solution for ∆Π is body-synchronized, this now allows us to extend
Theorem 3.3 to non-tight programs.

Theorem 3.7. Let Π be a logic program and X ⊆ atom(Π).
Then, we have that X is an answer set of Π iff

A = {Tp | p ∈ X} ∪ {Fp | p ∈ atom(Π) \X}
∪ {Tβ | β ∈ body(Π), β+ ⊆ X, β− ∩X = ∅}
∪ {Fβ | β ∈ body(Π), (β+ ∩ (atom(Π) \X)) ∪ (β− ∩X) 6= ∅}

is the unique solution for ∆Π ∪ ΛΠ such that AT ∩ atom(Π) = X .

We have thus established that the nogoods in ∆Π ∪ΛΠ describe a set of constraints that need
to be checked for identifying answer sets. However, while the size of ∆Π is linear in the size
of Π, the one of ΛΠ is, in general, exponential. As shown by Lifschitz and Razborov [88], the
latter is not a defect in the construction of ΛΠ, but an implication of widely accepted assumptions
in complexity theory. Hence, most answer set solvers work on logic programs as succinct repre-
sentations of loop nogoods (or formulas, respectively) and check them efficiently by determining
unfounded sets relative to assignments. To this end, program structure, viz., loops or elementary
sets, can be used to confine unfounded set checking to necessary parts.

In the remainder of this section, we detail the theoretical foundations for the completeness
of our loop-oriented unfounded set detection algorithm, presented in Section 4.3. To begin with,
we note that, under the assumption of body-saturation, we may eliminate false atoms from an
unfounded set in order to obtain an unfounded set of non-false atoms only.

11

Proposition 3.8. Let Π be a logic program, A an assignment, and U an unfounded set of Π
wrt A.

If A is body-saturated for Π, then we have that U \AF is an unfounded set of Π wrt A.

For instance, U = {b, d, e} is an unfounded set of Π7 wrt body-saturated assignment A =
(F{not a},Fb,F{b, d},F{b, c},F{b, not a}), and Proposition 3.8 tells us that U \AF = {d, e}
remains unfounded for Π7 wrt A. That is, we may limit the attention to unfounded sets containing
exclusively non-false atoms.

In what follows, we exploit loops to confine the consideration of unfounded sets, essentially
reproducing results similar to those in [90, 2] in our setting. To accomplish this, we introduce
atom-saturation as a property dual to body-saturation.

Definition 3.4. Let Π be a logic program and A an assignment.
Then, we define A as atom-saturated for Π, if

{p ∈ atom(Π) | bodyΠ(p) ⊆ AF} ⊆ AF .

This definition requires that atoms p without support must be assigned to false, as it is also
stipulated by nogood δ(p) = {Tp,Fβ1, . . . ,Fβk} (where bodyΠ(p) = {β1, . . . , βk}).

Given an atom-saturated assignment, we have that every non-empty unfounded set of non-
false atoms contains some unfounded loop.

Proposition 3.9. Let Π be a logic program, A an assignment, and U ⊆ atom(Π) \AF a non-
empty unfounded set of Π wrt A.

If A is atom-saturated for Π, then there is some unfounded set L ⊆ U of Π wrt A such that
L ∈ loop(Π).

For illustration, note that U = {d, e} is an unfounded loop of Π7 wrt atom- and body-
saturated assignment A = (F{not a},Fb,F{b, d},F{b, c},F{b, not a}). Moreover, {a} is the
only non-empty unfounded set of Π7 wrt B = (F{not b}), which is not atom-saturated because
a /∈ BF. The fact that a must be false when given B is expressed by δ(a) = {Ta,F{not b}},
and λ(a, {a}) = δ(a) does not provide additional information for the “non-loop” {a}.

Given that a program may yield exponentially many loops, which can be unfounded sepa-
rately wrt different assignments, it is impractical to identify (arbitrary) loops a priori. However,
the non-trivial strongly connected components of a positive dependency graph limit the atoms
that can jointly belong to (unfounded) loops, and the scope of unfounded set checking proce-
dures [119, 17, 2, 31, 47] can thus be restricted to them. In our setting, the fact that the con-
sideration of unfounded sets can be confined to non-trivial strongly connected components is an
immediate consequence of Proposition 3.9.

Corollary 3.10. Let Π be a logic program, A an assignment, and U ⊆ atom(Π) \ AF a non-
empty unfounded set of Π wrt A.

If A is atom-saturated for Π, then there is some non-empty unfounded set U ′ ⊆ U of Π
wrt A such that all p ∈ U ′ belong to the same non-trivial strongly connected component of
(atom(Π),≤+).

12

Finally, we can combine Proposition 3.8 and 3.9 to establish the formal basis for the com-
pleteness of our unfounded set detection algorithm in Section 4.3.

Theorem 3.11. Let Π be a logic program and A an assignment.
If A is both atom- and body-saturated for Π and if there is some unfounded set U of Π

wrt A such that U 6⊆ AF, then there is some unfounded set L ⊆ U \AF of Π wrt A such that
L ∈ loop(Π).

Since fixpoints of unit propagation on ∆Π are both atom- and body-saturated for Π, The-
orem 3.11 tells us that unfounded set checking can focus on loops (of non-false atoms). For
Program Π7, where loop(Π7) = {{c, d}, {d, e}, {c, d, e}} (cf. Figure 1), we can thus in principle
restrict unfounded set checking to its three loops in order to test all nogoods in ΛΠ7 .

As mentioned above, it is impractical to consider (arbitrary) loops as long as they are not
unfounded, while strongly connected components can easily be determined statically [121]. The
role of such components as a means to limit the scope of unfounded set checks is summarized in
the following immediate consequence of Theorem 3.11.

Corollary 3.12. Let Π be a logic program and A an assignment.
If A is both atom- and body-saturated for Π and if there is some unfounded set U of Π wrt A

such that U 6⊆ AF, then there is some non-empty unfounded set U ′ ⊆ U \AF of Π wrt A such
that all p ∈ U ′ belong to the same non-trivial strongly connected component of (atom(Π),≤+).

With the characterization of answer sets in terms of nogoods along with relevant background
knowledge on unfounded sets at hand, the next section provides our conflict-driven approach to
the computation of solutions representing answer sets.

4 Conflict-Driven ASP Solving
Given the specification of answer sets in terms of nogoods, we can now make use of advanced
search techniques from SAT for developing equally advanced ASP solving procedures. But while
SAT deals with plain nogoods, represented by clauses, our algorithms work on logic programs,
inducing several kinds of nogoods. In particular, the exponentially many nogoods stemming from
unfounded sets are succinctly given by a program, and the algorithms devised below determine
individual ones only when used for unfounded set falsification. The main purpose of associating
nogoods with a logic program is to provide reasons for literals derived by (unit) propagation.
This puts ASP solving on the same logical fundament as SAT solving, so that similar reasoning
strategies can be applied without relying on translation to SAT or proprietary techniques (apart
from unfounded set checking).

In what follows, we first present our main conflict-driven ASP solving procedure. We then
detail its subroutines for propagation and unfounded set checking, which is the main particularity
of ASP (compared to SAT). Furthermore, we describe resolution-based conflict analysis in our
setting. Finally, we outline the derivation of soundness and completeness results.

13

Algorithm 1: CDNL-ASP

Input : A logic program Π.
Output: An answer set of Π or “no answer set”.

A := ∅ // assignment over atom(Π) ∪ body(Π)1

∇ := ∅ // set of (dynamic) nogoods2

dl := 0 // decision level3

loop4

(A,∇) := NOGOODPROPAGATION(dl ,Π,∇,A)5

if ε ⊆ A for some ε ∈ ∆Π ∪∇ then // conflict6

if dl = 0 then return no answer set7

(δ, dl) := CONFLICTANALYSIS(ε,Π,∇,A)8

∇ := ∇∪ {δ} // learning9

A := A \ {σ ∈ A | dl < dl(σ)} // backjumping10

else if AT ∪AF = atom(Π) ∪ body(Π) then // answer set11

return AT ∩ atom(Π)12

else13

σd := SELECT(Π,∇,A) // decision14

dl := dl + 115

dl(σd) := dl16

A := A ◦ σd17

4.1 Conflict-Driven Nogood Learning
Our main procedure for deciding whether a program has an answer set is similar to CDCL with
First-UIP scheme [97, 127, 23, 96]. In fact, clauses can be viewed as particular syntactic repre-
sentations of nogoods, but other representations (e.g., gates, inequalities, rules, etc.) can be used
as well. Hence, to abstract from syntax, we present our conflict-driven algorithm for ASP solving
in terms of nogoods and call it Conflict-Driven Nogood Learning for ASP (CDNL-ASP).

Given a program Π, CDNL-ASP, shown in Algorithm 1, starts from an empty assignment A
and an empty set ∇ of recorded nogoods. The latter include nogoods derived from conflicts
encountered during search, and if Π is non-tight, also loop nogoods explaining inferences due
to unfounded sets. Moreover, the decision level dl , initialized with 0, is used to count decision
literals, that is, literals in A that are heuristically selected (cf. Line 14–17), while literals derived
via propagation in Line 5 are implied. For any literal σ ∈ A, we access via dl(σ) the decision
level of σ, that is, the value dl had when σ was added to A; such values are relevant for conflict
analysis in Line 8 and backjumping in Line 10.

Algorithm 1 follows the standard proceeding of CDCL. First, NOGOODPROPAGATION (de-
tailed in Section 4.2) deterministically extends A, and possibly also records loop nogoods
from ΛΠ in ∇. Afterwards, one of the following three cases applies:

14

Conflict If propagation led to a conflict, as checked in Line 6, there are two possibilities. If the
current decision level is 0, it means that the conflict occurred independently of any heuristic
decision; that is, the input program Π has no answer set. Otherwise, CONFLICTANALYSIS

(detailed in Section 4.4) is performed in Line 8 to determine a conflict nogood δ, recorded
in ∇ in Line 9, and a decision level to jump back to.

Note that we assume δ to be asserting, i.e., some literal must be unit-resulting for δ wrt A
after backjumping in Line 10. This condition, which is guaranteed by CONFLICTANA-
LYSIS, makes sure that, after backjumping, CDNL-ASP traverses the search space differ-
ently from before (without explicitly flipping any decision literal).

Solution If A is not conflicting (ε 6⊆ A for all ε ∈ ∆Π ∪∇) and total (AT ∪AF = atom(Π) ∪
body(Π)), as checked in Line 11, the atoms that are true in A form an answer set of Π.

Decision Finally, if A is neither conflicting nor total, a decision literal σd is selected according
to some heuristic (see Section 5 for further details) and added to A. We assume that
σd = Tv or σd = Fv for some v ∈ (atom(Π) ∪ body(Π)) \ (AT ∪ AF), i.e., v must
belong to dom(A) and be yet unassigned. Then, σd becomes assigned at the new decision
level dl + 1.

Example 4.1. Although we have not yet detailed the subroutines used in Algorithm 1, let us
consider a full-fledged computation of answer set {b, c, d, e} of Program Π7. To this end, Table 4
shows the current assignment A at different stages of CDNL-ASP(Π7), where columns provide
the value of dl , viz., the current decision level, and the line of Algorithm 1 at which particular
contents of A and/or some nogood δ are inspected. Note that literals added to A in Line 17 of
Algorithm 1 are decision literals, not implied by any nogood. Unlike them, each literal added
to A in Line 5, that is, within an execution of NOGOODPROPAGATION, has some antecedent
δ ∈ ∆Π7 ∪∇. Furthermore, we indicate successes of the test for a violated nogood performed in
Line 6, and we show the nogood δ to be recorded in ∇ along with the decision level dl to jump
back to as returned by CONFLICTANALYSIS when invoked in Line 8.

In detail, a computation of CDNL-ASP(Π7) can start by successively picking decision lit-
erals Td, F{b, not a}, Tc, and F{not a} at levels 1, 2, 3, and 4, respectively. Observe that
there is exactly one decision literal per level, and each decision is immediately followed by a
propagation step, performed before making the next decision. At the start, propagation cannot
derive any literals at decision levels 1 and 2, and thus assignment A stays partial. After the third
decision, the literals shown below the horizontal (single) line are unit-resulting for respective
nogoods δ ∈ ∆Π7 wrt A. Hence, they are added to A at decision level 3. Since A is still partial,
decision literal F{not a} is picked at level 4. The following propagation step yields a total as-
signment, whose true atoms, viz., a, c, d, and e, belong to a supported model of Π7. However, we
have that {d, e} is unfounded for Π7 wrt A, that is, the corresponding loop nogoods λ(d, {d, e})
and λ(e, {d, e}) are violated. Such violations are detected by NOGOODPROPAGATION and, for
some unfounded atom, lead to the recording of an associated loop nogood in ∇. In Table 4, we
assume that λ(d, {d, e}) = {Td,F{b, c},F{b, not a}} is recorded, so that a conflict is encoun-
tered in Line 6 of Algorithm 1. Note that F{b, c} is the single literal in λ(d, {d, e}) assigned at

15

dl A δ Line
1 Td 17
2 F{b, not a} 17
3 Tc 17

T{c, d} {F{c, d},Tc,Td} = δ({c, d}) 5
Te {Fe,T{c, d}} ∈ ∆(e) 5
T{e} {F{e},Te} = δ({e}) 5

4 F{not a} 17
Ta {F{not a},Fa} = δ({not a}) 5
T{a} {F{a},Ta} = δ({a}) 5
T{not b} {Ta,F{not b}} = δ(a) 5
Fb {Tb,F{not a}} = δ(b) 5
F{b, c} {T{b, c},Fb} ∈ ∆({b, c}) 5
F{b, d} {T{b, d},Fb} ∈ ∆({b, d}) 5

{Td,F{b, c},F{b, not a}} = λ(d, {d, e}) 6
{Td,F{b, c},F{b, not a}} dl = 2 8

2 F{b, not a}
T{b, c} {Td,F{b, c},F{b, not a}} ∈ ∇ 5
Tb {T{b, c},Fb} ∈ ∆({b, c}) 5
Ta {F{b, not a},Tb,Fa} = δ({b, not a}) 5
T{not a} {Tb,F{not a}} = δ(b) 5

{T{not a},Ta} ∈ ∆({not a}) 6
{F{b, not a},Td} dl = 1 8

1 Td
T{b, not a} {F{b, not a},Td} ∈ ∇ 5
Tb {T{b, not a},Fb} ∈ ∆({b, not a}) 5
Fa {T{b, not a},Ta} ∈ ∆({b, not a}) 5
T{not a} {Tb,F{not a}} = δ(b) 5
F{not b} {T{not b},Tb} ∈ ∆({not b}) 5
F{a} {T{a},Fa} ∈ ∆({a}) 5
Te {Fe,T{b, not a}} ∈ ∆(e) 5
T{e} {F{e},Te} = δ({e}) 5
T{b, d} {F{b, d},Tb,Td} = δ({b, d}) 5
Tc {Fc,T{b, d}} ∈ ∆(c) 5
T{b, c} {F{b, c},Tb,Tc} = δ({b, c}) 5
T{c, d} {F{c, d},Tc,Td} = δ({c, d}) 5

Table 4: A computation of answer set {b, c, d, e} with CDNL-ASP(Π7).

16

decision level 4. Hence, λ(d, {d, e}) is instantly asserting and returned by CONFLICTANALYSIS

in Line 8; the smallest decision level such that, after backjumping, T{b, c} is unit-resulting for
λ(d, {d, e}) is 2. The peculiarity that CONFLICTANALYSIS may be launched with an asserting
(loop) nogood results from the “unidirectional” propagation of loop nogoods in current ASP
solvers (cf. [63, 62]). (We further comment on this phenomenon in Section 4.4.)

Given dl = 2 as level to jump back to, computation proceeds by retracting all literals added
to A at levels 3 and 4, while retaining the (decision) literals Td and F{b, not a} assigned at lev-
els 1 and 2. In contrast to the previous visit of decision level 2, the asserting nogood λ(d, {d, e})
in ∇ enables the derivation of further literals by unit propagation, which results in another
conflict, this time on the completion nogood {T{not a},Ta}. Starting from it, CONFLICTANA-
LYSIS determines the asserting nogood {F{b, not a},Td}. As a consequence, CDNL-ASP(Π7)
returns to decision level 1, where T{b, not a} is unit-resulting for {F{b, not a},Td}. A final
propagation step leads to a total assignment not violating any nogood in ∆Π7 ∪ ∇. (Notably,
nogoods in ΛΠ7 are left implicit and tested within NOGOODPROPAGATION via an unfounded set
checking subroutine.) The true atoms of the obtained solution are underlined in Table 4; the
associated answer set of Program Π7, {b, c, d, e}, is returned as the result of CDNL-ASP(Π7).

After the general outline, we below detail the subroutines used in CDNL-ASP computations.

4.2 Nogood Propagation
Our subroutine for deterministically extending an assignment A is shown in Algorithm 2. It
combines unit propagation on completion nogoods in ∆Π and recorded nogoods in∇ (Line 3–9)
with unfounded set checking (Line 10–14). While unit propagation is always run to a fixpoint
(or a conflict), sophisticated unfounded set checks are performed only if the input program Π is
non-tight. In fact, when finishing the loop in Line 3–9, an assignment A at hand is both atom-
and body-saturated for Π, so that the results in Section 3.2 serve as a basis for demand-driven
unfounded set checking. In particular, if Π is tight, Theorem 3.11 tells us that all unfounded
sets U are already falsified, i.e., U ⊆ AF holds, and thus unit propagation on ∆Π is sufficient to
falsify unfounded atoms.

Example 4.2. The central idea of integrating unfounded set checking with unit propagation is to
make loop nogoods from ΛΠ explicit in∇ in order to trigger the falsification of unfounded atoms
by unit propagation. To see this, consider a program Π containing the following rules:

x← y, z
y ← x
z ← y .

Let A be an atom-saturated assignment such that U = {x, y, z} is unfounded for Π wrt A and
U ∩ (AT ∪ AF) = ∅. Then, we have that EBΠ(U) ⊆ AF, so that Fx, Fy, and Fz are unit-
resulting for λ(x, U), λ(y, U), and λ(z, U), respectively. While neither of these literals may
be unit-resulting for any completion nogood in ∆Π, all of them (along with F{x}, F{y}, and
F{y, z}) are derived by unit propagation when given ∆Π ∪ {λ(x, U)}. That is, when adding

17

Algorithm 2: NOGOODPROPAGATION

Input : A decision level dl , a logic program Π, a set∇ of nogoods, and an assignment A.
Output: An extended assignment and set of nogoods.

U := ∅ // unfounded set1

loop2

repeat3

if δ ⊆ A for some δ ∈ ∆Π ∪∇ then return (A,∇) // conflict4

Σ := {δ ∈ ∆Π ∪∇ | δ \A = {σ}, σ /∈ A} // unit-resulting nogoods5

if Σ 6= ∅ then let σ ∈ δ \A for some δ ∈ Σ in6

dl(σ) := dl7

A := A ◦ σ8

until Σ = ∅9

if loop(Π) = ∅ then return (A,∇) // no unfounded set ∅ ⊂ U ⊆ atom(Π) \AF10

U := U \AF11

if U = ∅ then U := UNFOUNDEDSET(Π,A)12

if U = ∅ then return (A,∇) // no unfounded set ∅ ⊂ U ⊆ atom(Π) \AF13

let p ∈ U in ∇ := ∇∪ {λ(p, U)} // record loop nogood14

only λ(x, U) to∇, the whole unfounded set U is falsified by unit propagation. However, whether
the addition of a single loop nogood is sufficient to falsify a whole unfounded set depends on
the structure of Π. For instance, when we augment Π with (y ← z), the derivation of Fy and
Fz by unit propagation is no longer certain because (circular) supports (y ← z) and (z ← y)
may not be eliminated by assigning x to false. We still derive F{x}, i.e., rule (y ← x) becomes
inapplicable, so that EBΠ({y, z}) ⊆ (A∪{Fx,F{x}})F. This shows that U \AF = {x, y, z}\
{x} = {y, z} remains as a smaller unfounded set.

The observations made in Example 4.2 motivate the strategy of Algorithm 2 to successively
falsify the elements of an unfounded set U . At the start, no (non-empty) unfounded set has been
determined, and so U is initialized to be empty in Line 1. Provided that unit propagation in
Line 3–9 finishes without conflict and that Π is non-tight, we remove all false atoms from U in
Line 11. In the first iteration of the outer loop in Line 2–14, U stays empty, and the subroutine for
unfounded set detection (detailed in Section 4.3) is queried in Line 12. The crucial assumption
made here is that UNFOUNDEDSET(Π,A) returns an unfounded set U ⊆ atom(Π) \ AF such
that U is non-empty if some non-empty subset of atom(Π) \AF is unfounded. Then, we have
that EBΠ(U) ⊆ AF, so that λ(p, U) \ A ⊆ {Tp} for every p ∈ U . Hence, if a non-empty U
is returned, the addition of λ(p, U) to ∇ for an arbitrary p ∈ U , done in Line 14, yields either
a conflict or unit-resulting literal Fp in the next iteration of the loop in Line 2–14. In the latter
case, further literals may be derived and elements of U falsified upon computing the next fixpoint
of unit propagation. When we afterwards reconsider the previously determined unfounded set U ,
the removal of false atoms in Line 11 is guaranteed to result in another (smaller) unfounded

18

set U \AF. Hence, if U \AF is non-empty (checked in Line 12 before computing any further
unfounded set), NOGOODPROPAGATION proceeds by adding the next loop nogood to ∇, which
as before yields either a conflict or a unit-resulting literal. Thus, once a non-empty unfounded
set U has been detected, it is falsified element by element; only after expending all elements
of U , a new unfounded set is to be computed. Overall, NOGOODPROPAGATION terminates as
soon as a conflict is encountered (in Line 4) or with a fixpoint of unit propagation on ∆Π∪∇ such
that no non-empty subset of atom(Π) \AF is unfounded. If Π is tight, the latter is immediately
verified in Line 10. Otherwise, the UNFOUNDEDSET subroutine, queried in Line 12, could not
detect any non-empty unfounded set (of non-false atoms) before finishing in Line 13.

Example 4.3. To illustrate how NOGOODPROPAGATION utilizes nogoods, reconsider the com-
putation of CDNL-ASP(Π7) shown in Table 4. All implied literals, that is, the ones assigned
below any (single) line at a decision level dl , are unit-resulting for nogoods in ∆Π7 ∪ ∇ and
successively derived by unit propagation. In particular, at decision level 4, the implied literals σ
have antecedents δ ∈ ∆Π7 such that all literals of δ except for σ are already contained in A
when σ is assigned. The impact of loop nogoods in ΛΠ7 can be observed on the conflict encoun-
tered at decision level 4. Here, we have that U = {d, e} ⊆ AT is unfounded, so that A violates
both λ(d, U) and λ(e, U). After detecting the unfounded set U and recording λ(d, U) in ∇, its
violation gives rise to leaving NOGOODPROPAGATION in Line 4 of Algorithm 2.

In summary, our subroutine for propagation interleaves unit propagation with the recording
of loop nogoods. The latter is done only if the input program is non-tight and if the falsity of
unfounded atoms cannot be derived by unit propagation on other available nogoods. Clearly, our
approach favors unit propagation over unfounded set computations, which can be motivated as
follows. For one, unit propagation does not contribute new dynamic nogoods to ∇, so that it is
more “economic” than unfounded set checking. For another, although unfounded set detection
algorithms (like the one described below) are of linear time complexity, they analyze a logic pro-
gram in a more global fashion than unit propagation. While the latter investigates only the rules
(or nogoods) directly related to literals becoming assigned, unfounded set computations may in-
spect significant parts of a program (or its positive dependency graph) without eventually detect-
ing any non-empty unfounded set. But given that unfounded set checking (wrt total assignments)
is mandatory for soundness and (wrt partial assignments) also helps to detect inherent conflicts
early, the respective subroutine is nonetheless an integral part of NOGOODPROPAGATION.

4.3 Unfounded Set Checking
Our unfounded set checking procedure is invoked on a non-tight program Π whenever unit prop-
agation reaches a fixpoint without any conflict or formerly computed but yet unfalsified un-
founded atoms (cf. Algorithm 2). As a matter of fact, a fixpoint of unit propagation is both
atom- and body-saturated for Π. Hence, Corollary 3.12 applies and allows us to focus on un-
founded sets of non-false atoms contained in non-trivial strongly connected components of the
positive dependency graph of Π. To this end, for any p ∈ atom(Π), let scc(p) denote the set
of atoms belonging to the same strongly connected component as p in (atom(Π),≤+). We say
that p is cyclic, if ≤+ ∩ (scc(p) × scc(p)) 6= ∅ (that is, if there is some rule r ∈ Π such that

19

head(r) ∈ scc(p) and body(r)+ ∩ scc(p) 6= ∅), and acyclic otherwise. As a consequence of
Proposition 3.9, we immediately get that unfounded set checking can concentrate exclusively on
cyclic atoms, since only they can belong to (unfounded) loops.7

Beyond static information about strongly connected components, our unfounded set detection
algorithm makes use of source pointers [119] to indicate non-circular supports of atoms. Given
a program Π, the idea is to associate every (cyclic) p ∈ atom(Π) with an element of bodyΠ(p)
(or one of the special-purpose symbols ⊥ and >), denoted by source(p), pointing to a chain of
rules witnessing that p cannot be unfounded. Hence, as long as source(p) remains “intact”, p can
be excluded from unfounded set checks. In this way, source pointers enable lazy, incremental
unfounded set checking relative to recent changes of an assignment. To make sure that still no
unfounded set is missed, the following invariants need to be guaranteed:

1. For every cyclic p ∈ atom(Π), we require that source(p) ∈ bodyΠ(p) ∪ {⊥}.

2. The subgraph of (atom(Π),≤+) containing every cyclic p ∈ atom(Π) along with edges
(q, p) for all q ∈ source(p)+ ∩ scc(p) must be acyclic.8

For a program Π, we call the collection of links source(p) for all p ∈ atom(Π) a source
pointer configuration. We say that a source pointer configuration is valid, if it satisfies the afore-
mentioned invariants. For an appropriate initialization, we define the initial source pointer con-
figuration for Π by:

source(p) =

{
⊥ if p ∈ atom(Π) is cyclic
> if p ∈ atom(Π) is acyclic

While> expresses that an acyclic atom p does not need to be linked to any element of bodyΠ(p),
⊥ indicates that a non-circular support for a cyclic atom p still needs to be determined. We
assume that the initial source pointer configuration for Π, which is valid by definition, is in place
upon an invocation of CDNL-ASP(Π).

Given a program Π and an assignment A, UNFOUNDEDSET, shown in Algorithm 3, starts
by collecting non-false (cyclic) atoms p whose source pointers are false (source(p) ∈ AF) or
yet undetermined (source(p) = ⊥) in Line 1, as the possibility of non-circularly supporting such
atoms is in question. In Line 2–5, this set is successively extended by adding atoms whose source
pointers (positively) rely on it, thus providing the scope S for the second part of unfounded set
checking. In fact, the loop in Line 6–17 aims at re-establishing source pointers for the atoms in S
via rules whose bodies do not (positively) rely on S, so that these rules can provide non-circular
support. Conversely, if source pointers cannot be re-established, an unfounded set is detected.

In more detail, as long as scope S is non-empty, an arbitrary atom p ∈ S is picked in
Line 6 of Algorithm 3 as starting point for the construction of a non-empty unfounded set U .
If EBΠ(U) ⊆ AF holds in Line 9, the unfounded set U is immediately returned, so that NO-
GOODPROPAGATION can successively falsify its atoms by unit propagation (cf. Algorithm 2).

7Strongly connected components of positive dependency graphs are also exploited by unfounded set checking
procedures [119, 17, 2] of native ASP solvers other than clasp. We further discuss relationships to them in Section 7.

8Recall that source(p)
+

= {p1, . . . , pm} for a rule body source(p) = {p1, . . . , pm,not pm+1, . . . ,not pn}.
For special-purpose symbols ⊥ and >, we let ⊥+ = >+ = ∅.

20

Algorithm 3: UNFOUNDEDSET

Input : A logic program Π and an assignment A.
Output: An unfounded set of Π wrt A.

S := {p ∈ atom(Π) \AF | source(p) ∈ AF ∪ {⊥}} // initialize scope S1

repeat2

T := {p ∈ atom(Π) \ (AF ∪ S) | source(p)+ ∩ (scc(p) ∩ S) 6= ∅}3

S := S ∪ T // extend scope S4

until T = ∅5

while S 6= ∅ do let p ∈ S in // select starting point6

U := {p}7

repeat8

if EBΠ(U) ⊆ AF then return U // unfounded set ∅ ⊂ U ⊆ atom(Π) \AF9

let β ∈ EBΠ(U) \AF in10

if β+ ∩ (scc(p) ∩ S) = ∅ then // shrink U11

foreach q ∈ U such that β ∈ bodyΠ(q) do12

source(q) := β13

U := U \ {q}14

S := S \ {q}15

else U := U ∪ (β+ ∩ (scc(p) ∩ S)) // extend U16

until U = ∅17

return ∅ // no unfounded set ∅ ⊂ U ⊆ atom(Π) \AF18

Otherwise, some external body β ∈ EBΠ(U) \AF is selected in Line 10 for further investiga-
tion. If β+ contains atoms in scope S that belong to the same strongly connected component of
(atom(Π),≤+) as the starting point p (checked in Line 11), we add them to U in Line 16, which
makes β non-external wrt the extended set U . On the other hand, if such atoms do not exist
in β+, it means that β can non-circularly support all of its associated head atoms q ∈ U . Then, in
Line 12–15, the source pointers of such atoms q are set to β, and the atoms q are removed from
both the unfounded set U under construction and scope S. The described process continues until
either U becomes empty (checked in Line 17), in which case the remaining atoms of S are inves-
tigated, or a (non-empty) unfounded set U is detected and returned in Line 9. Finally, if scope S
runs empty, source pointers could be re-established for all atoms that had been contained in S,
and UNFOUNDEDSET returns the empty unfounded set in Line 18.

In order to provide further intuitions, let us stress some major design principles of our un-
founded set detection algorithm:

1. At each stage of the loop in Line 6–17, all atoms of U belong to scc(p), where p is an
atom added first to U (in Line 7). This is because further atoms, added to U in Line 16,
are elements of scc(p). (However, U ⊆ scc(p) does not necessarily imply p ∈ U for a
(non-empty) unfounded set U returned in Line 9.)

21

2. At each stage of the loop in Line 6–17, we have that U ⊆ S, as all atoms added to U in
either Line 7 or 16 belong to S. Hence, it holds that q ∈ S whenever source(q) is set to an
(external) body β ∈ bodyΠ(q) in Line 13, while β+ ∩ (scc(p) ∩ S) = ∅ has been checked
before (in Line 11). This makes sure that setting source(q) to β does not introduce any
cycle via source pointers.

3. Once detected, a (non-empty) unfounded set U is immediately returned in Line 9, and
NOGOODPROPAGATION takes care of falsifying all atoms of U before checking for any
further unfounded set (cf. Algorithm 2). This reduces overlaps with unit propagation on
the completion nogoods in ∆Π, as it already handles unsupported atoms, i.e., singleton
unfounded sets (and bodies relying on them).

4. The source pointer of an atom q in some unfounded set U returned in Line 9 needs not and
is not reset to ⊥. (In fact, source(q) is only set in Line 13 when re-establishing a potential
non-circular support for q.) Rather, we admit source(q) ∈ AF as long as q ∈ AF, derived
within NOGOODPROPAGATION upon falsifying U . Thus, when Fq becomes unassigned
later on (after backjumping), source(q) still allows for lazy unfounded set checking.

Example 4.4. Let us illustrate Algorithm 3 on some invocations of UNFOUNDEDSET(Π7,A)
made upon the computation of answer set {b, c, d, e} of Program Π7 described in Example 4.1.
To this end, in Table 5, we indicate stages of UNFOUNDEDSET(Π7,A) when queried wrt fix-
points A of unit propagation at decision levels 0, 2, and 4, respectively. Beforehand, note that
scc(c) = scc(d) = scc(e) = {c, d, e}, while a and b are acyclic. Hence, before the first invoca-
tion of UNFOUNDEDSET(Π7,A) at decision level 0, we have that source(a) = source(b) = >
and source(c) = source(d) = source(e) = ⊥. In view of Line 1 of Algorithm 3, we thus ob-
tain scope S = {c, d, e}. Then, assume that e is picked in Line 6 and added to U in Line 7,
and that {c, d} ∈ EBΠ7({e}) is selected in Line 10. Since {c, d} ∩ (scc(e) ∩ S) = {c, d}, this
makes us augment U with both c and d in Line 16, resulting in an intermediate stage such that
U = {c, d, e}. Further assume that {b, not a} ∈ EBΠ7({c, d, e}) is selected next in Line 10,
for which {b} ∩ (scc(e) ∩ S) = ∅ holds in Line 11. Hence, source(e) is set to {b, not a} in
Line 13, and e is removed from U and S in Line 14 and 15, respectively. In the same manner,
source(d) and source(c) can in the following iterations of the loop in Line 8–17 be set to {e}
and {b, d}, respectively. Afterwards, we have that U = S = ∅, so that the empty unfounded set
is returned (in Line 18). Given that there is no non-empty unfounded set, no literal is derived by
unit propagation at decision level 0, as also indicated by omitting this level in Table 4.

The invocation of UNFOUNDEDSET(Π7, (Td)) at decision level 1 is not shown in Table 5,
as it yields an empty scope S. Unlike this, with UNFOUNDEDSET(Π7, (Td,F{b, not a})) at
decision level 2, we have that source(e) = {b, not a} ∈ AF, so that S = {e} is obtained in
Line 1 of Algorithm 3. In Line 2–5, we successively add d and c to S because source(d)+ ∩ S =
{e} ∩ {e} 6= ∅ and source(c)+ ∩ (S ∪ {d}) = {b, d} ∩ {d, e} 6= ∅. Afterwards, assume
that d is added first to U in Line 7, and that selecting {b, c} ∈ EBΠ7({d}) in Line 10 leads
to U = {d} ∪ ({b, c} ∩ (scc(d) ∩ S)) = {c, d}. When investigating {a} ∈ EBΠ7({c, d}) and
again {b, c} ∈ EBΠ7({d}) in the next two iterations of the loop in Line 8–17, we set source(c)
to {a} and source(d) to {b, c}, while obtaining U = ∅ and S = {e}. Since S 6= ∅, another

22

dl source(p) S U β ∈ EBΠ7(U) \AF Line
0 {c, d, e} 1

{c, d, e} {e} 7
{c, d, e} {c, d, e} {c, d} 16

source(e) {c, d} {c, d} {b, not a} 13
source(d) {c} {c} {e} 13
source(c) ∅ ∅ {b, d} 13

2 F{b, not a} {e} 1
{e} {d, e} 4
{b, d} {c, d, e} 4

{c, d, e} {d} 7
{c, d, e} {c, d} {b, c} 16

source(c) {d, e} {d} {a} 13
source(d) {e} ∅ {b, c} 13

{e} {e} 7
source(e) ∅ ∅ {c, d} 13

4 F{b, c} {d} 1
{c, d} {d, e} 4

{d, e} {e} 7
{d, e} {d, e} {c, d} 16

Table 5: Runs of UNFOUNDEDSET(Π7,A) upon a computation of answer set {b, c, d, e}.

iteration of the loop in Line 6–17 adds e to U and then removes it from U and S along with
setting source(e) to {c, d}. Given U = S = ∅, we again get the empty unfounded set as result.

At decision level 3, unfounded set checking is without effect because, as shown in Table 4, no
rule body and, in particular, no source pointer is falsified. However, at decision level 4, we have
that source(d) = {b, c} ∈ AF, and thus we get S = {d} in Line 1 of Algorithm 3. In an iteration
of the loop in Line 2–5, we further add e to S because source(e)+∩S = {c, d}∩{d} 6= ∅, while c
stays unaffected in view of source(c) = {a} /∈ AF. After adding e to U in Line 7, U is further
extended to {d, e} in Line 16, given that {c, d} ∈ EBΠ7({e}) and {c, d} ∩ (scc(e) ∩ S) = {d}.
We have now obtained U = {d, e}, and it holds that EBΠ7({d, e}) = {{b, c}, {b, not a}} ⊆ AF.
That is, the termination condition in Line 9 applies, and UNFOUNDEDSET(Π7,A) returns the
(non-empty) unfounded set {d, e}.

To conclude the example, in Table 4, we observe that adding loop nogood λ(d, {d, e}) =
{Td,F{b, c},F{b, not a}} to ∇ leads to a conflict at decision level 4. After backjumping to
decision level 2, NOGOODPROPAGATION encounters a conflict before invoking UNFOUNDED-
SET(Π7,A). Hence, UNFOUNDEDSET(Π7,A) is only queried again wrt the total assignment A
derived by unit propagation after returning to decision level 1. In view of source(c) = {a} ∈
AF, this final invocation (not shown in Table 5) makes us reset source pointers as follows:
source(e) = {b, not a}, source(d) = {e}, and source(c) = {b, d} (like at decision level 0).

23

Algorithm 4: CONFLICTANALYSIS

Input : A violated nogood δ, a logic program Π, a set∇ of nogoods, and an assignment A.
Output: A derived nogood and a decision level.

loop1

let σ ∈ δ such that δ \A[σ] = {σ} in2

k := max ({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0})3

if k = dl(σ) then4

let ε ∈ ∆Π ∪∇ such that ε \A[σ] = {σ} in5

δ := (δ \ {σ}) ∪ (ε \ {σ}) // resolution6

else return (δ, k)7

As this yields only the empty unfounded set (of non-false atoms), NOGOODPROPAGATION termi-
nates without conflict, and CDNL-ASP(Π7) returns answer set {b, c, d, e} of Π7.

Note that a non-empty unfounded set U returned in Line 9 of Algorithm 3 is, in general, not
guaranteed to be a loop in the sense of [90]. However, Theorem 3.11 tells us that U contains some
loop L that is unfounded. One or several such loops L could a posteriori be extracted from U ,
for which purpose any of the approaches in [90, 71, 91, 2, 59] can in principle be applied.

4.4 Conflict Analysis
Finally, we turn to the subroutine for conflict analysis, whose purpose is to determine an asserting
nogood, so that some literal is unit-resulting after backjumping. To this end, it resolves a violated
nogood δ ⊆ A against some antecedent ε of an implied literal σ ∈ δ (that is, a nogood ε such that
ε \A[σ] = {σ}) for obtaining a new violated nogood (δ \ {σ}) ∪ (ε \ {σ}). Iterated resolution
proceeds in inverse order of assigned literals, resolving first over the literal σ ∈ δ assigned last
in A, viz., δ \ A[σ] = {σ}, and stops as soon as δ contains exactly one literal, called Unique
Implication Point (UIP; [97]), that has been assigned at the decision level where the conflict is en-
countered. The effectiveness of this approach, referred to as First-UIP scheme (cf. [127, 35, 96]),
has in the area of SAT been demonstrated both empirically [127, 115, 29] and analytically [109].
Despite small peculiarities (discussed below Example 4.5), the First-UIP scheme can be applied
unaltered in conflict-driven ASP solving. However, identifying antecedents of implied literals
is less straightforward than with clauses. For instance, note that our subroutine for propagation
in Algorithm 2 records a priori implicit loop nogoods from ΛΠ to make sure that every implied
literal has some antecedent in ∆Π ∪∇.

Conflict resolution according to the First-UIP scheme is performed by CONFLICTANALYSIS,
shown in Algorithm 4. In fact, the loop in Line 1–7 proceeds by resolving over the literal σ of
the violated nogood δ assigned last in A (given that δ \A[σ] = {σ} is required in Line 2) until
the assertion level [23], that is, the greatest level dl(ρ) associated with literals ρ ∈ δ \ {σ}, is
different from and actually smaller than dl(σ). If so, nogood δ and assertion level k (determined

24

δ ε{
T{not a} ,Ta

} {
Tb, F{not a}

}
{
Ta ,Tb

} {
F{b, not a},Tb, Fa

}
{
Tb ,F{b, not a}

} {
T{b, c}, Fb

}
{
T{b, c} ,F{b, not a}

} {
Td, F{b, c} ,F{b, not a}

}
{
F{b, not a} ,Td

}
Table 6: Run of CONFLICTANALYSIS({T{not a},Ta},Π7,∇,A) at decision level 2.

in Line 3) are returned in Line 7; since δ ⊆ A, we have that σ is unit-resulting for δ after
backjumping to decision level k. Otherwise, if k = dl(σ), σ is an implied literal, so that some
antecedent ε ∈ ∆Π ∪∇ of σ can be chosen in Line 5 and used for resolution against δ in Line 6.
Note that there may be several antecedents of σ in ∆Π ∪ ∇, and thus the choice of ε in Line 5
is, in general, non-deterministic (cf. [32]). Regarding the termination of Algorithm 4, note that a
decision literal σd (cf. Algorithm 1) is the first literal in A at its (positive) level dl(σd), and σd is
also the only literal at dl(σd) that is not implied. Given that CONFLICTANALYSIS is only applied
to nogoods violated at decision levels beyond 0, all conflict resolution steps are well-defined and
stop at latest at a decision literal σd. However, resolving up to σd can be regarded as worst case
because the First-UIP scheme aims at few resolution steps to obtain a nogood that is “close” to a
conflict at hand.

Example 4.5. To illustrate Algorithm 4, let us inspect the resolution steps shown in Table 6.
They are applied when resolving the violated nogood {T{not a},Ta} against the antecedents
shown in Table 4 upon analyzing the conflict encountered at decision level 2 in the computation
of CDNL-ASP(Π7) described in Example 4.1. The literal σ of a violated nogood δ assigned
last in A as well as its complement σ in an antecedent ε of σ are surrounded by a box in Table 6,
and further literals assigned at decision level 2 are underlined. The result of iterated resolution,
{F{b, not a},Td}, contains F{b, not a} as the single literal assigned at decision level 2, while
Td has been assigned at assertion level 1. In this example, the first UIP F{b, not a} happens to
be the decision literal at level 2.

In general, a first UIP is not necessarily a decision literal, as it can for instance be observed on
UIP F{b, c} in the asserting nogood {Td,F{b, c},F{b, not a}} returned by CONFLICTANALY-
SIS at decision level 4 in Example 4.1. Also recall that λ(d, {d, e}) = {Td,F{b, c},F{b, not a}}
served as starting point for CONFLICTANALYSIS, containing a (first) UIP without requiring any
resolution step. This phenomenon is due to “unidirectional” propagation of loop nogoods, given
that unfounded set checks (cf. Algorithm 3) merely identify unfounded atoms, but not rule bodies
that must necessarily hold for (non-circularly) supporting some true atom. In Example 4.1, the
fact that T{b, c} is required from decision level 2 on is only recognized at level 4, where assigning
F{b, c} leads to a conflict. In view of this, Algorithm 3 can be understood as a checking routine

25

guaranteeing the soundness of CDNL-ASP, while its inference capabilities do not match (full)
unit propagation on loop nogoods. Similar observations have already been made in [63, 62], but
more powerful yet efficient reasoning mechanisms for unfounded set handling seem to be difficult
to develop; for instance, the approach suggested in [18, 19] is computationally too complex
(quadratic) to be beneficial in practice.

Despite of the fact that conflict resolution in ASP can be done in the same fashion as in
SAT, the input format of logic programs makes it less predetermined. For one, the completion
nogoods in ∆Π contain rule bodies as structural variables for the sake of succinct representation.
For another, the number of (relevant) inherent loop nogoods in ΛΠ may be exponential [88].
Fortunately, the satisfaction of ΛΠ can be checked in linear time (e.g., via Algorithm 3), so that
an explicit representation of its elements is not required. However, NOGOODPROPAGATION (cf.
Algorithm 2) records loop nogoods from ΛΠ that are antecedents to make them easily accessible
in CONFLICTANALYSIS.

Alternatives in the representation of constraints induced by a logic program become apparent
when considering traditional ASP solvers, such as dlv [83] and smodels [119], where assign-
ments are (logically) identified with interpretations over atoms. In order to augment smodels with
conflict-driven learning, smodelscc [126] pursues an algorithmic approach to extract antecedents
(over atoms) relative to smodels’ inference rules. In our setting, one may restrict heuristic deci-
sions in Line 14 of Algorithm 1 to atoms for mimicking an “atom-only” approach where truth
values of rule bodies are determined by their literals. However, when CONFLICTANALYSIS

remains unaltered, its asserting nogoods may still enable unit propagation to derive the falsity
of bodies without (known) false body literals (or associated false head atoms), which cannot
occur with atom-based approaches. To ultimately avoid such inferences, one would need to
unconditionally eliminate literals over bodies from conflict nogoods by resolution against their
antecedents, which is possible when heuristic decisions are restricted to atoms. This idea comes
close to the learning technique of smodelscc, breaking derivations relying on bodies down to their
contained literals. Although such “body elimination” may enable learning on top of atom-based
approaches, it still goes along with exponentially increased (best-case) complexity, independent
of and thus irreparable by conflict-driven nogood learning [62].

4.5 Soundness and Completeness of CDNL-ASP Algorithm
In what follows, we elaborate upon the formal properties of the provided algorithms. Gener-
ally speaking, soundness wrt the decision problem of answer set existence is obtained from the
fact that NOGOODPROPAGATION and CONFLICTANALYSIS exploit and possibly tighten avail-
able knowledge, but do not draw incorrect conclusions. In the course of this, UNFOUNDEDSET

performs a sufficient amount of work to distinguish answer sets from (inadmissible) circularly
supported models. The completeness of CDNL-ASP follows from the observation that its sub-
routines cannot loop infinitely along with the fact that conflict-driven assertions relocate variables
to smaller decision levels than before, which guarantees termination (cf. [128, 115]).

To begin with, we consider crucial properties of UNFOUNDEDSET in Algorithm 3. First, we
have that (positive) dependencies through source pointers are inherently acyclic.

26

Lemma 4.1. Let Π be a logic program and A an assignment that is body-saturated for Π.
If UNFOUNDEDSET(Π,A) is invoked on a valid source pointer configuration, then

we have that the source pointer configuration remains valid throughout the execution of
UNFOUNDEDSET(Π,A).

The above property holds because potential non-circular supports for atoms in β+ must al-
ready be established before a source pointer can be set to a body β in Line 13 of Algorithm 3.
In particular, the atoms of β+ contained in an investigated strongly connected component of
(atom(Π),≤+) must not belong to scope S, comprising potentially unfounded atoms. In fact,
the following result shows that all “interesting” unfounded sets, namely, unfounded loops, are
part of S; conversely, atoms outside S cannot belong to an unfounded loop.

Lemma 4.2. Let Π be a logic program and A an assignment that is atom-saturated for Π.
If UNFOUNDEDSET(Π,A) is invoked on a valid source pointer configuration, then we have

that every unfounded set U ⊆ atom(Π) \ AF of Π wrt A such that all p ∈ U belong to the
same strongly connected component of (atom(Π),≤+) is contained in S whenever Line 6 of
Algorithm 3 is entered.

The previous lemmas along with Corollary 3.12 can now be combined to, essentially, estab-
lish the completeness of Algorithm 3.9

Theorem 4.3. Let Π be a logic program and A an assignment that is both atom- and body-
saturated for Π.

If UNFOUNDEDSET(Π,A) is invoked on a valid source pointer configuration, then we have
that UNFOUNDEDSET(Π,A) returns an unfounded set U ⊆ atom(Π) \AF of Π wrt A, where
U = ∅ iff there is no unfounded set U ′ of Π wrt A such that U ′ 6⊆ AF.

After considering unfounded set detection, we now turn to NOGOODPROPAGATION in Al-
gorithm 2. The next lemma is straightforward yet helpful, as it assures the prerequisites of
demand-driven unfounded set checking, mainly focusing on unfounded loops.

Lemma 4.4. Let Π be a logic program,∇′ a set of nogoods, dl ∈ N, and A′ an assignment.
Then, we have that A is both atom- and body-saturated for Π whenever Line 10 of Algo-

rithm 2 is entered in an execution of NOGOODPROPAGATION(dl ,Π,∇′,A′).

The following properties are essential for CONFLICTANALYSIS to be well-defined as well as
the soundness and completeness of CDNL-ASP.

Lemma 4.5. Let Π be a logic program,∇′ a set of nogoods, dl ∈ N, and A′ an assignment.
If NOGOODPROPAGATION(dl ,Π,∇′,A′) is invoked on a valid source pointer configuration,

then we have that NOGOODPROPAGATION(dl ,Π,∇′,A′) returns a pair (A,∇) such that

1. ∇′ ⊆ ∇ ⊆ ∇′ ∪ ΛΠ;
9Soundness, viz., the property that any set U returned by UNFOUNDEDSET is indeed unfounded, is obvious in

view of the test in Line 9 of Algorithm 3 and the fact that ∅, which can be returned in Line 18, is trivially unfounded.

27

2. A is an assignment such that A′ ⊆ A and every σ ∈ A \A′ is implied by ∆Π ∪∇ wrt A;

3. δ ⊆ A for some δ ∈ ∆Π ∪∇ if λ(p, U) ⊆ A for some λ(p, U) ∈ ΛΠ.

The first item expresses that only loop nogoods can possibly be added by NOGOODPROPAGA-
TION, viz., in Line 14 of Algorithm 2 (provided that Π is non-tight). In view of Theorem 3.7,
this makes sure that the recorded nogoods do not eliminate any answer set of Π. The second
item states that any literal assigned within NOGOODPROPAGATION has some antecedent, which
can (later on) be used for conflict resolution. Finally, the third item exploits Theorem 4.3 and
Lemma 4.4 to establish that violations of (loop) nogoods cannot stay undetected.

Regarding CONFLICTANALYSIS in Algorithm 4, the next lemma states that its derived no-
goods are asserting and entailed by the nogoods that are already given.

Lemma 4.6. Let Π be a logic program,∇ a set of nogoods, A an assignment such that {σ ∈ A |
ρ ∈ A[σ], dl(σ) < dl(ρ)} = ∅ and {σ ∈ A | ρ ∈ A[σ], dl(ρ) = dl(σ)} ⊆ {σ ∈ A | ε ∈
∆Π ∪∇, ε \A[σ] = {σ}}, and δ′ ⊆ A such that m = max({dl(σ) | σ ∈ δ′} ∪ {0}) 6= 0.

Then, we have that CONFLICTANALYSIS(δ′,Π,∇,A) returns a pair (δ, k) such that

1. δ ⊆ A;

2. |{σ ∈ δ | k < dl(σ)}| = 1;

3. δ 6⊆ B for any solution B for ∆Π ∪∇ ∪ {δ′}.

The above prerequisites regarding ∇, A, and δ′ stipulate the existence of antecedents for all but
the first literal assigned at decision level m > 0. These conditions are guaranteed by CDNL-
ASP, as it increments dl in Line 15 of Algorithm 1 before assigning a decision literal (without
antecedent) in Line 17, and as conflicts are analyzed only if encountered beyond decision level 0.

After inspecting the subroutines of CDNL-ASP, important invariants of assignments and
nogoods generated by CDNL-ASP can be summarized as follows.

Lemma 4.7. Let Π be a logic program.
Then, we have that the following holds whenever Line 5 of Algorithm 1 is entered in an

execution of CDNL-ASP(Π):

1. ∇ is a set of nogoods such that δ 6⊆ B for every δ ∈ ∇ and any solution B for ∆Π ∪ ΛΠ;

2. A is an assignment such that {σ ∈ A | ρ ∈ A[σ], dl(σ) < dl(ρ)} = ∅ and {σ ∈ A |
dl(σ) ≤ max({dl(ρ) | ρ ∈ A[σ]} ∪ {0})} ⊆ {σ ∈ A | ε ∈ ∆Π ∪∇, ε \A[σ] = {σ}};

3. dl ∈ N is such that δ 6⊆ {σ ∈ A | dl(σ) < dl} for every δ ∈ ∆Π ∪ ΛΠ ∪∇.

Given that only the (implied) literals belonging to the current assignment A require antecedents
for the second invariant to hold, dynamic nogoods in ∇ that are not antecedents may option-
ally be deleted. This yields polynomial space complexity of CDNL-ASP because the num-
ber of (required) antecedents is bounded by the maximum number of assigned literals, viz.,
|atom(Π) ∪ body(Π)|. In practice, nogood deletion (cf. [72, 35]) is an important technique pre-
venting conflict-driven learning solvers from blowing up in space.

Finally, the above results allow for deriving the soundness and completeness of CDNL-ASP.

28

Theorem 4.8. Let Π be a logic program.
Then, we have that CDNL-ASP(Π) terminates, and it returns an answer set of Π iff Π has

some answer set.

Soundness wrt the decision problem of answer set existence follows from the observations made
above, namely, that violated loop nogoods are detected and that nogoods added by NOGOOD-
PROPAGATION or derived by CONFLICTANALYSIS are entailed. The completeness of CDNL-
ASP, viz., the fact that it is a decision procedure, is due to its termination. Notably, arguments
for the termination of CDCL (cf. [128, 115]) also apply to CDNL-ASP, given that both search
procedures make use of conflict-driven assertions to exclude repetitions of assignments.

5 The clasp System
Our approach to conflict-driven ASP solving is implemented in clasp [54, 52, 56], combining
the high-level modeling capacities of ASP with state-of-the-art Boolean constraint solving tech-
niques. The solver clasp is freely available as an open source package at [110] and distributed
under GNU general public license.

The clasp system is originally designed and optimized for conflict-driven ASP solving, as
described in Section 4. To this end, it features a number of sophisticated reasoning and imple-
mentation techniques, some specific to ASP and others borrowed from CDCL-based SAT solvers.
Moreover, clasp can be used as a full-fledged SAT, MaxSAT, or PB solver, accepting proposi-
tional CNF formulas in (extended) dimacs format as well as PB formulas in opb format. The
flexibility of input formats, reasoning modes (cf. Section 5.2), and tuning parameters (cf. Sec-
tion 5.4) supported by clasp goes well beyond the margins of typical ASP or SAT solvers. This
section, however, is primarily devoted to ASP solving, describing the main features of clasp.
Albeit the theoretical considerations in Section 4 concentrated on normal logic programs, one
such feature is clasp’s ability to treat extended rules [119] intrinsically (without a priori compi-
lation), supporting choice constructs in rule heads as well as cardinality and weight constraints
in rule bodies. While the nogoods stemming from normal programs, described in Section 3, can
be represented by clauses, clasp also includes dedicated data structures for dealing with linear
inequalities obtained from extended programs or PB formulas. In order to give a comprehensive
overview about the functionalities provided by clasp, we below discuss also such features.

5.1 Interfaces and Preprocessing
For ASP solving, clasp reads propositional logic programs (without proper disjunctions in rule
heads) in lparse format [120], provided by either lparse [120] or gringo [51]. Choice rules as
well as cardinality and weight constraints (cf. [119, 120]) are either compiled into normal rules
during parsing, configurable via option --trans-ext, or dealt with in an intrinsic fashion (by
default; see Section 5.3 for details).

At the beginning, a logic program is subject to extensive preprocessing [55]. The idea is
to simplify the program while identifying equivalences among its relevant constituents. These

29

equivalences are then used for building a compact program representation (in terms of Boolean
constraints). Logic program preprocessing is configured via option --eq, taking an integer value
fixing the number of iterations. Once a program has been transformed into Boolean constraints,
they can be subject to further preprocessing, primarily based on resolution [33]. Such SatELite-
like preprocessing is invoked with option --sat-prepro and further parameters. However,
care must be taken when adapting techniques from SAT because preprocessing must not elim-
inate variables that are relevant to unfounded set checking or that occur in extended rules and
optimization statements.

A major yet internal feature of clasp is that it can be used in a stateful way. That is, clasp may
keep its state, involving program representation, recorded nogoods, heuristic values, etc., and be
invoked under additional (temporary) assumptions and/or by adding new atoms and rules. The
corresponding interfaces are fundamental for supporting incremental ASP solving as realized in
iclingo [46], a combination of gringo and clasp for incremental grounding and solving. Further-
more, solving under assumptions [34] is used in our parallel ASP solver claspar [37, 118, 50].

5.2 Reasoning Modes
Although clasp’s primary use case is the computation of answer sets, it also allows for computing
supported models of a logic program via option --supp-models.10 In addition, clasp provides
a number of reasoning modes, determining how to proceed when a model is found.

Enumeration Solution enumeration is non-trivial in the context of backjumping and conflict-
driven learning. A simple approach relies on recording solutions as nogoods and exempting
them from deletion. Although clasp supports this via option --solution-recording, it
is prone to blow up in space in view of an exponential number of solutions (in the worst case).
Unlike this, the default enumeration algorithm of clasp runs in polynomial space [53]. Both
enumeration approaches also allow for projecting models to a subset of atoms [57], invoked with
--project and configured via the well-known directives #hide and #show of lparse and
gringo. This option is of great practical value whenever one faces overwhelmingly many models,
involving solution-irrelevant variables having proper combinatorics. For example, the program
consisting of the choice rule {a,b,c}. has eight (obvious) answer sets. When augmented with
directive #hide c., still eight solutions are obtained, yet including four duplicates. Unlike
this, invoking clasp with --project yields only four answer sets differing on a and/or b.

As regards implementation, it is interesting to note that clasp offers a dedicated interface for
enumeration. This allows for abstracting from how to proceed once a model is found and thus
makes the search algorithm independent of the concrete enumeration strategy. Further reason-
ing modes implemented via the enumeration interface admit computing the intersection or union
of all answer sets of a program (via --cautious and --brave, respectively). Rather than
computing the whole collection of (possibly) exponentially many answer sets, the idea is to com-
pute a first answer set, record a constraint eliminating it from further solutions, then compute a

10To be more precise, option --supp-models disables unfounded set checking. Sometimes, the grounder or
preprocessing may already eliminate some supported models such that they cannot be recovered later on.

30

second answer set, strengthen the constraint to represent the intersection (or union) of the first
two answer sets, and to continue like this until no more answer set is obtained. This process in-
volves computing at most as many answer sets as there are atoms in an input program. Either the
cautious or the brave consequences are then given by the atoms captured by the final constraint.

Optimization As common in lparse-like languages, an objective function is specified via a
sequence of #minimize or #maximize statements. For finding optimal solutions, clasp of-
fers several options. First, the objective function can be initialized via --opt-value. Second,
clasp allows for computing one or all (via --opt-all) optimal solutions. Such options are
useful when one is interested in computing consequences belonging to all optimal solutions (in
combination with --cautious). To this end, one starts with searching for an (arbitrary) op-
timal answer set and then re-launches clasp by bounding its search with the obtained optimum.
Doing the latter with --cautious yields the atoms that belong to all optimal answer sets. On
application problems, option --restart-on-model, making clasp restart after each (puta-
tively optimal) solution, turned out to be effective for ameliorating convergence to an optimum.
Particular strategies for lexicographic optimization [48], available in clasp series 2, serve the
same purpose, especially on large and underconstrained multi-criteria optimization problems.
Moreover, option --opt-heu can be used to alter sign selection (see below) towards a bet-
ter objective function value. Optimization is implemented via the aforementioned enumeration
interface. When a solution is found, an optimization constraint is updated with the correspond-
ing objective function value. Then, the decision level violating the constraint is identified and
retracted, or if the constraint is violated at decision level 0, search terminates. It is also worth
mentioning that clasp propagates optimization constraints, that is, they can imply (and provide
reasons for) literals upon unit propagation. Finally, when optimization is actually undesired and
all solutions ought to be inspected instead, option --opt-ignore is available to make modi-
fying the input (by removing optimization statements) obsolete.

5.3 Propagation and Search
Propagation in clasp relies on an interface called Boolean constraint; it is thus not limited to
(clausal representations of) nogoods (cf. [35]). However, dedicated data structures are used for
binary and ternary nogoods (cf. [115]), accounting for the many short nogoods stemming from
Clark completion. More complex constraints are accessed via two watch lists for each variable,
storing the Boolean constraints that need to be updated when the variable becomes true or false,
respectively. While unit propagation of long nogoods is based on the well-known two-watched-
literal data structure [101], a counter-based approach is used for propagating cardinality and
weight constraints [47]. A literal implied by a Boolean constraint upon unit propagation stores a
reference to that constraint, which in turn can be queried for an antecedent.

During unit propagation, binary nogoods are handled before ternary ones, which are in turn
inspected before other Boolean constraints. As detailed in Algorithm 2, our propagation proce-
dure is distinct in giving a clear preference to unit propagation over unfounded set computations.
Unfounded set detection follows Algorithm 3 and aims at small, rather than greatest, unfounded

31

sets. As detailed in [47], intrinsic treatment of cardinality and weight constraints augments un-
founded set detection by means of source pointers, still aiming at lazy unfounded set checking.
The representation of loop nogoods is controlled via option --loops. In the default setting,
loop nogoods are generated for individual unfounded atoms, as shown in Algorithm 2. Like no-
goods derived from conflicts, they are subject to unit propagation and deletion. However, when
--loops=no is specified, loop nogoods are stored only as long as they serve as antecedents of
falsified unfounded atoms.

Decision Heuristics The primary decision heuristics of clasp use look-back strategies de-
rived from corresponding CDCL-based approaches in SAT, viz., vsids [101], berkmin [72], and
vmtf [115]. Such heuristics privilege variables involved in recent conflicts. To this end, they
maintain an activity score for each variable, increased upon conflict resolution and decayed peri-
odically. The major difference between the approaches of vsids and berkmin lies in the scope of
variables considered during decision making. While vsids selects a free variable that is globally
most active, berkmin restricts the selection to variables belonging to the most recently recorded
yet undispelled dynamic nogood. Although the look-back heuristics implemented in clasp are
modeled after the corresponding CDCL-based approaches, clasp optionally also scores variables
contained in loop nogoods. In case of berkmin, it may also select a free variable belonging to
a recently recorded loop nogood. Finally, we note that clasp’s heuristic can also be based upon
look-ahead strategies extending unit propagation by failed-literal detection [42]. This makes
sense when running clasp without conflict-driven nogood learning, operating similar to smodels.

Once a decision variable has been selected, a sign heuristic decides about its truth value. The
main criterion for look-back heuristics is to satisfy the greatest number of conflict nogoods, that
is, to pick the literal that occurs in fewer of them. Initially and also for tie-breaking, clasp does
sign selection based on the type of a variable: atoms are preferably set to false, while bodies are
made true. This aims at maximizing the number of resulting implications. Another sign heuristic
implemented in clasp is progress saving [107]. The idea is to remember truth values of retracted
variables upon backjumping (or restarting), except for those assigned at the last decision level.
These saved values are then used for sign selection. The intuition behind this strategy is that the
literals assigned prior to the last decision level did not lead to a conflict and may have satisfied
some subproblem. Hence, re-establishing them may help to avoid solving subproblems multiple
times. Progress saving is invoked with option --save-progress; its computational impact,
however, depends heavily on the structure of an application at hand (cf. Section 5.4).

Restart Policies The robustness of clasp is boosted by multiple restart strategies (cf. [74]),
namely, geometric, fixed-interval, Luby-style, or a nested policy. The first two start with an
initial number of conflicts after which clasp restarts; this threshold can then be increased after
each restart. The third policy, going back to Luby, Sinclair, and Zuckerman [92], schedules
restarts according to a recurrent and progressively growing sequence of numbers of conflicts,
e.g., 32 32 64 32 32 64 128 32 . . . for unit 32. In addition, the nested policy first used in
picosat [11] is also offered by clasp. This policy takes three parameters, x, y, and z, and makes
restarts follow a two-dimensional pattern that increases geometrically in both dimensions. The

32

geometric restart sequence x ∗ y i is repeated when it reaches an outer limit z ∗ y j , where i counts
the number of performed restarts and j how often the outer limit was hit so far. Usually, restart
strategies are based on the total number of encountered conflicts. Beyond that, clasp features
local restarts [116]. Here, one counts the number of conflicts per decision level in order to
measure the difficulty of subproblems locally. Furthermore, a bounded approach to restarting
(and backjumping) is used when enumerating answer sets as described in [53]. To complement
its more determined search, clasp also allows for initial randomized runs [35], typically with a
small restart threshold, in the hope to extract putatively interesting nogoods. Finally, it is worth
noting that, despite of the fact that recent SAT solvers use rather aggressive restart strategies (cf.
Section 5.4), clasp still defaults to a more conservative geometric policy (cf. [35]) because it
performs better on ASP-specific benchmarks.

Nogood Deletion To limit the number of nogoods stored simultaneously, dynamic nogoods are
periodically subject to deletion. Complementing look-back heuristics, clasp’s nogood deletion
strategy associates an activity with each recorded nogood, which is incremented whenever the
nogood is used for conflict resolution. Borrowing ideas from minisat [35] and berkmin [72], the
initial threshold on the number of stored nogoods is calculated from the size of an input program
and increased by a certain factor upon each restart. As soon as the current threshold is exceeded,
deletion is initiated and removes up to 75% of the recorded nogoods. Nogoods that are currently
locked (because they serve as antecedents) or whose activities significantly exceed the average
activity are exempt from deletion. However, the nogoods that are not deleted have their activities
decayed in order to account for recency of usage. All in all, clasp’s nogood deletion strategy
aims at limiting the overall number of stored nogoods, while keeping the relevant and recently
recorded ones. This likewise applies to conflict and loop nogoods.

5.4 Fine-Tuning
Advanced Boolean constraint solving technology adds a multitude of degrees of freedom to
ASP solving. Currently, clasp has about 40 options, half of which control the search strategy.
Although considerable efforts were taken to find default parameters jointly boosting robustness
and speed, the default setting still leaves room for drastic improvements on specific benchmarks
by fine-tuning the parameters. The question then arises how to deal with this vast “configuration
space” and how to conciliate it with the idea of declarative problem solving. Currently, there
seems to be no alternative to manual fine-tuning when addressing highly demanding applications.

As rules of thumb, we usually start by investigating the following options:

--heuristic: Try vsids instead of clasp’s default berkmin-style heuristic.

--trans-ext: Applicable if a program contains extended rules, that is, rules including car-
dinality and weight constraints. Try at least the dynamic transformation.

--sat-prepro: Resolution-based preprocessing (as in SatELite [33]) works best on tight
programs with few cardinality and weight constraints. It should almost always be used
when extended rules are transformed into normal ones (via --trans-ext).

33

--restarts: Try aggressive restart policies, like Luby-256 or the nested policy, or try dis-
abling restarts whenever a problem is deemed to be unsatisfiable.

--save-progress: Progress saving typically works nicely when the average backjump
length (or the #choices/#conflicts ratio) is high (≥10). It usually performs best in combi-
nation with aggressive restarts.

The impact of fine-tuning can be seen on the following examples. As observed in [78], clasp
times out on satisfiable 4-coloring problems. However, with --save-progress, clasp solves
each instance in about a second (the average backjump length is >60). For another example,
consider the benchmark class WeightBoundedDomSet from the second ASP competition [28].
The default configuration of clasp results in timeouts (see next section), all of which vanish once
aggressive restarts are used. Similar effects can be observed on application problems featuring
yet different characteristics.

Although fine-tuning may greatly improve the efficiency of clasp, it is hard to accomplish for
an unpracticed user, and after all it takes us away from the ideals of declarative problem solving.
To this end, we advocate an extension of clasp, called claspfolio [49], that maps benchmark
features to solver configurations (via machine learning techniques). It is part of our ongoing
work to investigate how far the selection of effective parameter settings can be automated.

6 Experimental Results
We conducted experiments on NP decision problems of the second ASP competition [28], us-
ing encodings by the Potassco team.11 Our comparison considers clasp (version 1.3.1) in its
default setting as well as a setting suited better for the benchmarks in focus. The latter, de-
noted by clasp+, invokes clasp with options --sat-prepro and --trans-ext=dynamic,
using SatELite-like preprocessing [33] on nogoods as well as a context-dependent handling of
extended rules, excluding “small” extended rules from an intrinsic treatment (cf. [47]) and rather
transforming them into normal rules. For comparison, we also consider cmodels (version 3.79
with minisat 2.0), smodels (version 2.34 with option -restart), and lp2sat (version 1.13 with
minisat 2.0 or clasp 1.3.1).12 For cmodels and lp2sat, we below indicate the use of either min-
isat or clasp as underlying SAT solver by adding “[m]” or “[c]”, respectively. The experiments
were run sequentially under Linux on an Intel Quad-Core Xeon E5520 machine equipped with
2.27GHz processors. Every benchmark instance (in lparse output format [120], generated offline
with gringo) was run three times per solver, each run restricted to 600 seconds time and 2GB
RAM. A run finished when the solver found an answer set, reported unsatisfiability (no answer
set), or was aborted due to time or memory exhaustion.

SAT-based solver cmodels converts a logic program into propositional clauses via Clark com-
pletion and delegates the search for supported models to minisat. Except for the treatment of

11See http://dtai.cs.kuleuven.be/events/ASP-competition/SubmittedBenchmarks.
shtml for detailed descriptions of benchmark classes as well as http://dtai.cs.kuleuven.be/events/
ASP-competition/encodings.shtml for benchmark instances and encodings.

12Additional results for cmodels with zchaff 2007.3.12 and smodels without restarts are available at [22].

34

extended rules, this approach is comparable to clasp on tight programs. In the non-tight case,
cmodels delays (sophisticated) unfounded set checks until an assignment is total, while clasp and
smodels integrate them into propagation. In fact, smodels is a “traditional” ASP solver using a
search pattern based on systematic backtracking along with an unfounded set checking proce-
dure computing greatest unfounded sets. Finally, lp2sat like cmodels converts a logic program
into propositional clauses and delegates the search for a model to some SAT solver. On tight
programs, lp2sat’s translation amounts to Clark completion, while level mappings [76, 103] are
used to capture non-circular derivability of atoms from non-tight programs. Among the solvers
accepting lparse output format, our experiments include the ones that were leading in the NP de-
cision category of the second ASP competition (cf. [28]).13 In particular, lp2sat has an edge on
lp2diff [78], which applies a translation to difference logic and solvers for Satisfiability Modulo
Theories (SMT; [10]) as search back-ends, on the investigated benchmarks [77].

Our experimental results are summarized in Table 7–9, giving average runtimes in seconds
and numbers of aborted runs (in parentheses) for every solver on each benchmark class, with time
or memory exhaustions taken as 600 seconds. More detailed benchmark results, including indi-
vidual times for all instances as well as further solver configurations, are provided at [22]. While
Table 7 considers all benchmarks, divided into tight and non-tight ones, Table 8 and 9 analo-
gously report results restricted to satisfiable and unsatisfiable instances, respectively. Each table
gives the number of instances per benchmark class in the column headed by “#”. In addition,
Table 7 provides the respective partition into satisfiable and unsatisfiable instances (in parenthe-
ses). The last column amounts to the virtual best solver, composed of the smallest runtime and
the smallest number of aborts observed on each benchmark class. The rows marked with “∅(∅)”
average runtimes and time or memory exhaustions over a collection of benchmark classes under
consideration.14 The following row gives the Euclidean distance (in an n-dimensional space,
where n is the number of benchmark classes and a point is a column of n average runtimes)
of each solver to the virtual best one on the respective collection in focus; the quadratic dis-
tance calculation scheme punishes imbalanced and rewards consistent performance more than
averaging. Some benchmark classes make heavy use of extended rules, so that their different
treatments, e.g., in clasp+ and cmodels, have significant impact on the observed performances;
such benchmark classes are marked with “∗” in Table 7–9.

Considering the results on tight benchmarks in the upper part of Table 7, we note that the tra-
ditional ASP solver smodels is consistently outperformed by systems exploiting conflict-driven
learning. For instance, smodels times out on all satisfiable instances of 15Puzzle, which are
rather unproblematic for the other solvers. In fact, occasional varying performances of the latter
on tight programs are due to different treatments of extended rules and/or determinizations of
inherent non-determinisms in minisat and clasp, respectively. Any such differences may turn out
to be advantageous the one or the other way around; e.g., clasp+ and lp2sat[c] have an edge on
other solvers on GraphColouring, clasp in its default setting is fastest on SchurNumbers, while

13Some non-participating solvers, e.g., assat, sag [91], and smodelscc, are no longer maintained and thus not
incorporated here. Although original smodels did not participate either (but its close derivative smodels-ie [15] did),
we still consider it for reference. At the time of running the experiments, the solver minisat(id) [95], supporting
“inductive definitions” on top of propositional theories, did not accept lparse output format.

14We provide averages (rather than sums) for balancing diverse numbers of instances per benchmark class.

35

B
en

ch
m

ar
k

#
cl

as
p

cl
as

p+
cm

od
el

s[
m

]
sm

od
el

s
lp

2s
at

[m
]

lp
2s

at
[c

]
vi

rt
ua

lb
es

t
15

P
uz

zl
e

16
(1

6/
0)

33
.0

1
(0

)
20

.1
8

(0
)

31
.3

6
(0

)
60

0.
00

(4
8)

22
.2

1
(0

)
15

.1
3

(0
)

15
.1

3
(0

)
B

lo
ck

ed
N

Q
ue

en
s

29
(1

5/
14

)
5.

09
(0

)
4.

91
(0

)
9.

04
(0

)
29

.3
7

(0
)

13
.1

9
(0

)
5.

22
(0

)
4.

91
(0

)
C

ha
nn

el
R

ou
tin

g
10

(6
/4

)
12

0.
13

(6
)

12
0.

14
(6

)
12

0.
58

(6
)

12
0.

90
(6

)
12

1.
34

(6
)

12
1.

08
(6

)
12

0.
13

(6
)

E
dg

eM
at

ch
in

g
29

(2
9/

0)
0.

23
(0

)
0.

41
(0

)
59

.3
2

(0
)

60
.3

2
(0

)
13

.0
5

(0
)

5.
58

(0
)

0.
23

(0
)

Fa
st

fo
od

∗
29

(1
0/

19
)

1.
17

(0
)

0.
90

(0
)

29
.2

2
(0

)
83

.9
3

(3
)

46
.8

5
(0

)
24

.9
5

(0
)

0.
90

(0
)

G
ra

ph
C

ol
ou

ri
ng

29
(9

/2
0)

42
1.

55
(6

0)
35

7.
88

(3
9)

42
2.

66
(5

7)
45

3.
77

(6
3)

40
9.

70
(5

1)
35

7.
57

(3
9)

35
7.

57
(3

9)
H

an
oi

15
(1

5/
0)

11
.7

6
(0

)
3.

97
(0

)
2.

92
(0

)
52

3.
77

(3
9)

3.
81

(0
)

5.
36

(0
)

2.
92

(0
)

H
ie

ra
rc

hi
ca

lC
lu

st
er

in
g∗

12
(8

/4
)

0.
16

(0
)

0.
17

(0
)

0.
76

(0
)

1.
56

(0
)

0.
94

(0
)

0.
86

(0
)

0.
16

(0
)

Sc
hu

rN
um

be
rs

29
(1

3/
16

)
17

.4
4

(0
)

49
.6

0
(0

)
75

.7
0

(0
)

50
4.

17
(7

2)
90

.8
8

(6
)

36
.9

3
(0

)
17

.4
4

(0
)

So
lit

ai
re

27
(2

2/
5)

20
4.

78
(2

7)
16

2.
82

(2
1)

17
5.

69
(2

1)
31

6.
96

(3
6)

22
2.

60
(2

7)
21

0.
14

(2
7)

16
2.

82
(2

1)
Su

do
ku

10
(1

0/
0)

0.
15

(0
)

0.
16

(0
)

2.
55

(0
)

0.
25

(0
)

0.
87

(0
)

0.
82

(0
)

0.
15

(0
)

W
ei

gh
tB

ou
nd

ed
D

om
Se

t∗
29

(2
9/

0)
12

3.
13

(1
5)

10
2.

18
(1

2)
30

0.
26

(3
6)

40
0.

84
(5

1)
17

9.
56

(9
)

14
3.

87
(1

2)
10

2.
18

(9
)

∅
(∅

)
(t

ig
ht

)
26

4
(1

82
/8

2)
78

.2
2

(9
.0

0)
68

.6
1

(6
.5

0)
10

2.
50

(1
0.

00
)

25
7.

99
(2

6.
50

)
93

.7
5

(8
.2

5)
77

.2
9

(7
.0

0)
65

.3
8

(6
.2

5)
E

uc
l.

di
st

.
(t

ig
ht

)
81

.8
0

32
.5

8
22

7.
19

99
1.

76
14

1.
67

70
.5

1
0.

00
C

on
ne

ct
ed

D
om

Se
t∗

21
(1

0/
11

)
40

.4
2

(3
)

36
.1

1
(3

)
7.

46
(0

)
18

3.
76

(1
5)

13
.4

3
(0

)
13

.6
2

(0
)

7.
46

(0
)

G
en

er
al

iz
ed

Sl
ith

er
lin

k∗
29

(2
9/

0)
0.

10
(0

)
0.

22
(0

)
1.

92
(0

)
0.

16
(0

)
5.

05
(0

)
12

.9
0

(0
)

0.
10

(0
)

G
ra

ph
Pa

rt
iti

on
in

g∗
13

(6
/7

)
9.

27
(0

)
7.

98
(0

)
20

.1
9

(0
)

92
.1

0
(3

)
36

5.
18

(2
1)

34
4.

39
(2

1)
7.

98
(0

)
H

am
ilt

on
ia

nP
at

h
29

(2
9/

0)
0.

07
(0

)
0.

06
(0

)
0.

21
(0

)
2.

22
(0

)
3.

45
(0

)
15

.6
8

(0
)

0.
06

(0
)

K
ni

gh
tT

ou
r

10
(1

0/
0)

12
4.

29
(6

)
91

.8
0

(3
)

24
2.

48
(1

2)
15

0.
55

(3
)

54
5.

42
(2

7)
48

7.
61

(2
4)

91
.8

0
(3

)
La

by
ri

nt
h

29
(2

9/
0)

12
3.

82
(1

2)
82

.9
2

(6
)

14
2.

24
(6

)
59

4.
10

(8
1)

28
2.

23
(2

7)
53

4.
62

(7
5)

82
.9

2
(6

)
M

az
eG

en
er

at
io

n
29

(1
0/

19
)

91
.1

7
(1

2)
89

.8
9

(1
2)

90
.4

1
(1

2)
29

3.
62

(4
2)

12
5.

94
(9

)
85

.5
7

(6
)

85
.5

7
(6

)
So

ko
ba

n
29

(9
/2

0)
0.

73
(0

)
0.

80
(0

)
3.

39
(0

)
17

6.
01

(1
5)

6.
11

(0
)

3.
99

(0
)

0.
73

(0
)

Tr
av

el
lin

gS
al

es
pe

rs
on

∗
29

(2
9/

0)
0.

05
(0

)
0.

06
(0

)
31

7.
82

(7
)

0.
22

(0
)

44
1.

68
(5

5)
19

8.
34

(9
)

0.
05

(0
)

W
ir

eR
ou

tin
g

23
(1

2/
11

)
42

.8
1

(3
)

36
.3

6
(3

)
17

5.
73

(1
2)

44
8.

32
(4

5)
46

0.
89

(4
8)

45
9.

97
(5

1)
36

.3
6

(3
)

∅
(∅

)
(n

on
-t

ig
ht

)
24

1
(1

73
/6

8)
43

.2
7

(3
.6

0)
34

.6
2

(2
.7

0)
10

0.
19

(4
.9

0)
19

4.
11

(2
0.

40
)

22
4.

94
(1

8.
70

)
21

5.
67

(1
8.

60
)

31
.3

0
(1

.8
0)

E
uc

l.
di

st
.

(n
on

-t
ig

ht
)

62
.3

7
28

.9
7

38
3.

16
73

9.
35

86
6.

08
83

2.
52

0.
00

∅
(∅

)
50

5
(3

55
/1

50
)

62
.3

3
(6

.5
5)

53
.1

6
(4

.7
7)

10
1.

45
(7

.6
8)

22
8.

95
(2

3.
73

)
15

3.
38

(1
3.

00
)

14
0.

19
(1

2.
27

)
49

.8
9

(4
.2

3)
E

uc
l.

di
st

.
10

2.
86

43
.5

9
44

5.
45

12
37

.0
2

87
7.

59
83

5.
50

0.
00

Table 7: Average runtimes on benchmarks of the second ASP competition.

36

B
en

ch
m

ar
k

#
cl

as
p

cl
as

p+
cm

od
el

s[
m

]
sm

od
el

s
lp

2s
at

[m
]

lp
2s

at
[c

]
vi

rt
ua

lb
es

t
15

P
uz

zl
e

16
33

.0
1

(0
)

20
.1

8
(0

)
31

.3
6

(0
)

60
0.

00
(4

8)
22

.2
1

(0
)

15
.1

3
(0

)
15

.1
3

(0
)

B
lo

ck
ed

N
Q

ue
en

s
15

3.
48

(0
)

4.
93

(0
)

7.
52

(0
)

22
.1

3
(0

)
13

.9
9

(0
)

4.
16

(0
)

3.
48

(0
)

C
ha

nn
el

R
ou

tin
g

6
0.

16
(0

)
0.

17
(0

)
0.

67
(0

)
1.

35
(0

)
1.

63
(0

)
1.

37
(0

)
0.

16
(0

)
E

dg
eM

at
ch

in
g

29
0.

23
(0

)
0.

41
(0

)
59

.3
2

(0
)

60
.3

2
(0

)
13

.0
5

(0
)

5.
58

(0
)

0.
23

(0
)

Fa
st

fo
od

∗
10

0.
12

(0
)

0.
49

(0
)

9.
26

(0
)

82
.4

4
(0

)
45

.3
3

(0
)

18
.5

4
(0

)
0.

12
(0

)
G

ra
ph

C
ol

ou
ri

ng
9

24
.9

9
(0

)
32

.6
6

(0
)

98
.6

4
(3

)
12

8.
80

(3
)

57
.9

3
(0

)
31

.2
7

(0
)

24
.9

9
(0

)
H

an
oi

15
11

.7
6

(0
)

3.
97

(0
)

2.
92

(0
)

52
3.

77
(3

9)
3.

81
(0

)
5.

36
(0

)
2.

92
(0

)
H

ie
ra

rc
hi

ca
lC

lu
st

er
in

g∗
8

0.
14

(0
)

0.
13

(0
)

1.
02

(0
)

1.
52

(0
)

1.
20

(0
)

1.
03

(0
)

0.
13

(0
)

Sc
hu

rN
um

be
rs

13
37

.2
5

(0
)

10
9.

13
(0

)
16

6.
77

(0
)

60
0.

00
(3

9)
20

0.
49

(6
)

80
.4

0
(0

)
37

.2
5

(0
)

So
lit

ai
re

22
11

4.
96

(1
2)

63
.4

6
(6

)
79

.2
5

(6
)

25
2.

63
(2

1)
13

6.
82

(1
2)

12
1.

54
(1

2)
63

.4
6

(6
)

Su
do

ku
10

0.
15

(0
)

0.
16

(0
)

2.
55

(0
)

0.
25

(0
)

0.
87

(0
)

0.
82

(0
)

0.
15

(0
)

W
ei

gh
tB

ou
nd

ed
D

om
Se

t∗
29

12
3.

13
(1

5)
10

2.
18

(1
2)

30
0.

26
(3

6)
40

0.
84

(5
1)

17
9.

56
(9

)
14

3.
87

(1
2)

10
2.

18
(9

)
∅

(∅
)

(t
ig

ht
,s

at
)

18
2

29
.1

1
(2

.2
5)

28
.1

6
(1

.5
0)

63
.2

9
(3

.7
5)

22
2.

84
(1

6.
75

)
56

.4
1

(2
.2

5)
35

.7
6

(2
.0

0)
20

.8
5

(1
.2

5)
E

uc
l.

di
st

.
(t

ig
ht

,s
at

)
59

.0
7

72
.4

8
25

6.
02

10
37

.5
6

20
3.

65
85

.9
6

0.
00

C
on

ne
ct

ed
D

om
Se

t∗
10

9.
28

(0
)

1.
74

(0
)

12
.0

6
(0

)
13

5.
10

(6
)

17
.5

7
(0

)
12

.3
6

(0
)

1.
74

(0
)

G
en

er
al

iz
ed

Sl
ith

er
lin

k∗
29

0.
10

(0
)

0.
22

(0
)

1.
92

(0
)

0.
16

(0
)

5.
05

(0
)

12
.9

0
(0

)
0.

10
(0

)
G

ra
ph

Pa
rt

iti
on

in
g∗

6
0.

11
(0

)
0.

14
(0

)
4.

52
(0

)
0.

56
(0

)
11

4.
21

(3
)

11
8.

25
(3

)
0.

11
(0

)
H

am
ilt

on
ia

nP
at

h
29

0.
07

(0
)

0.
06

(0
)

0.
21

(0
)

2.
22

(0
)

3.
45

(0
)

15
.6

8
(0

)
0.

06
(0

)
K

ni
gh

tT
ou

r
10

12
4.

29
(6

)
91

.8
0

(3
)

24
2.

48
(1

2)
15

0.
55

(3
)

54
5.

42
(2

7)
48

7.
61

(2
4)

91
.8

0
(3

)
La

by
ri

nt
h

29
12

3.
82

(1
2)

82
.9

2
(6

)
14

2.
24

(6
)

59
4.

10
(8

1)
28

2.
23

(2
7)

53
4.

62
(7

5)
82

.9
2

(6
)

M
az

eG
en

er
at

io
n

10
0.

07
(0

)
0.

08
(0

)
0.

08
(0

)
0.

15
(0

)
11

4.
32

(0
)

10
.9

2
(0

)
0.

07
(0

)
So

ko
ba

n
9

0.
63

(0
)

0.
78

(0
)

5.
40

(0
)

32
0.

54
(9

)
10

.7
7

(0
)

4.
34

(0
)

0.
63

(0
)

Tr
av

el
lin

gS
al

es
pe

rs
on

∗
29

0.
05

(0
)

0.
06

(0
)

31
7.

82
(7

)
0.

22
(0

)
44

1.
68

(5
5)

19
8.

34
(9

)
0.

05
(0

)
W

ir
eR

ou
tin

g
12

74
.0

0
(3

)
62

.6
3

(3
)

13
4.

94
(3

)
40

7.
44

(1
8)

51
3.

20
(3

0)
51

9.
94

(3
0)

62
.6

3
(3

)
∅

(∅
)

(n
on

-t
ig

ht
,s

at
)

17
3

33
.2

4
(2

.1
0)

24
.0

4
(1

.2
0)

86
.1

7
(2

.8
0)

16
1.

10
(1

1.
70

)
20

4.
79

(1
4.

20
)

19
1.

49
(1

4.
10

)
24

.0
1

(1
.2

0)
E

uc
l.

di
st

.(
no

n-
tig

ht
,s

at
)

53
.9

9
0.

20
36

4.
12

70
9.

78
81

8.
54

78
9.

78
0.

00
∅

(∅
)

(s
at

)
35

5
30

.9
9

(2
.1

8)
26

.2
9

(1
.3

6)
73

.6
9

(3
.3

2)
19

4.
78

(1
4.

45
)

12
3.

85
(7

.6
8)

10
6.

55
(7

.5
0)

22
.2

9
(1

.2
3)

E
uc

l.
di

st
.

(s
at

)
80

.0
2

72
.4

8
44

5.
12

12
57

.1
1

84
3.

49
79

4.
44

0.
00

Table 8: Average runtimes on satisfiable benchmarks of the second ASP competition.

37

B
en

ch
m

ar
k

#
cl

as
p

cl
as

p+
cm

od
el

s[
m

]
sm

od
el

s
lp

2s
at

[m
]

lp
2s

at
[c

]
vi

rt
ua

lb
es

t
B

lo
ck

ed
N

Q
ue

en
s

14
6.

82
(0

)
4.

88
(0

)
10

.6
8

(0
)

37
.1

4
(0

)
12

.3
3

(0
)

6.
35

(0
)

4.
88

(0
)

C
ha

nn
el

R
ou

tin
g

4
30

0.
10

(6
)

30
0.

10
(6

)
30

0.
44

(6
)

30
0.

23
(6

)
30

0.
90

(6
)

30
0.

66
(6

)
30

0.
10

(6
)

Fa
st

fo
od

∗
19

1.
72

(0
)

1.
11

(0
)

39
.7

2
(0

)
84

.7
1

(3
)

47
.6

6
(0

)
28

.3
2

(0
)

1.
11

(0
)

G
ra

ph
C

ol
ou

ri
ng

20
60

0.
00

(6
0)

50
4.

24
(3

9)
56

8.
48

(5
4)

60
0.

00
(6

0)
56

7.
99

(5
1)

50
4.

40
(3

9)
50

4.
24

(3
9)

H
ie

ra
rc

hi
ca

lC
lu

st
er

in
g∗

4
0.

21
(0

)
0.

24
(0

)
0.

24
(0

)
1.

63
(0

)
0.

42
(0

)
0.

50
(0

)
0.

21
(0

)
Sc

hu
rN

um
be

rs
16

1.
34

(0
)

1.
24

(0
)

1.
70

(0
)

42
6.

30
(3

3)
1.

82
(0

)
1.

61
(0

)
1.

24
(0

)
So

lit
ai

re
5

60
0.

00
(1

5)
60

0.
00

(1
5)

60
0.

00
(1

5)
60

0.
00

(1
5)

60
0.

00
(1

5)
60

0.
00

(1
5)

60
0.

00
(1

5)
∅

(∅
)

(t
ig

ht
,u

ns
at

)
82

21
5.

74
(1

1.
57

)
20

1.
69

(8
.5

7)
21

7.
32

(1
0.

71
)

29
2.

86
(1

6.
71

)
21

8.
73

(1
0.

29
)

20
5.

98
(8

.5
7)

20
1.

68
(8

.5
7)

E
uc

l.
di

st
.

(t
ig

ht
,u

ns
at

)
95

.7
9

0.
03

75
.1

8
44

4.
84

79
.3

0
27

.2
6

0.
00

C
on

ne
ct

ed
D

om
Se

t∗
11

68
.7

3
(3

)
67

.3
5

(3
)

3.
28

(0
)

22
7.

99
(9

)
9.

67
(0

)
14

.7
7

(0
)

3.
28

(0
)

G
ra

ph
Pa

rt
iti

on
in

g∗
7

17
.1

2
(0

)
14

.7
0

(0
)

33
.6

2
(0

)
17

0.
56

(3
)

58
0.

29
(1

8)
53

8.
22

(1
8)

14
.7

0
(0

)
M

az
eG

en
er

at
io

n
19

13
9.

12
(1

2)
13

7.
16

(1
2)

13
7.

95
(1

2)
44

8.
09

(4
2)

13
2.

06
(9

)
12

4.
86

(6
)

12
4.

86
(6

)
So

ko
ba

n
20

0.
78

(0
)

0.
81

(0
)

2.
49

(0
)

11
0.

97
(6

)
4.

01
(0

)
3.

83
(0

)
0.

78
(0

)
W

ir
eR

ou
tin

g
11

8.
78

(0
)

7.
70

(0
)

22
0.

23
(9

)
49

2.
92

(2
7)

40
3.

83
(1

8)
39

4.
56

(2
1)

7.
70

(0
)

∅
(∅

)
(n

on
-t

ig
ht

,u
ns

at
)

68
46

.9
1

(3
.0

0)
45

.5
4

(3
.0

0)
79

.5
1

(4
.2

0)
29

0.
10

(1
7.

40
)

22
5.

97
(9

.0
0)

21
5.

25
(9

.0
0)

30
.2

7
(1

.2
0)

E
uc

l.
di

st
.(

no
n-

tig
ht

,u
ns

at
)

67
.0

3
65

.2
4

21
3.

78
65

3.
33

69
0.

59
65

1.
05

0.
00

∅
(∅

)
(u

ns
at

)
15

0
14

5.
39

(8
.0

0)
13

6.
63

(6
.2

5)
15

9.
90

(8
.0

0)
29

1.
71

(1
7.

00
)

22
1.

75
(9

.7
5)

20
9.

84
(8

.7
5)

13
0.

26
(5

.5
0)

E
uc

l.
di

st
.

(u
ns

at
)

11
6.

91
65

.2
4

22
6.

62
79

0.
39

69
5.

13
65

1.
62

0.
00

Table 9: Average runtimes on unsatisfiable benchmarks of the second ASP competition.

38

lp2sat[m] yields the fewest aborts on WeightBoundedDomSet. On non-tight benchmarks, we ob-
serve that the problem representation overhead incurred by lp2sat’s translational approach is a
major handicap, though minisat and clasp may react more or less sensitively (cf. Labyrinth and
TravellingSalesperson). Except for MazeGeneration, the strategy of cmodels to verify candidate
supported models found by minisat already improves on eager translation by lp2sat. However,
integrating unfounded set checking into propagation is usually even more effective, as it can be
observed when comparing clasp and clasp+ to cmodels on KnightTour and WireRouting. Beyond
dealing with (non-)tightness, the treatment of extended rules is a crucial factor on some bench-
mark classes. Their transformation into normal rules, as done by cmodels and lp2sat, turns out
to be helpful on ConnectedDomSet,15 while it drastically blows up problem representations and
thus deteriorates performance on TravellingSalesperson.

Focusing on either satisfiable or unsatisfiable instances in Table 8 and 9, respectively, sheds
some light on the distribution of hardness within benchmark classes, yet without exhibiting any
overwhelming impact regarding relative solver performances. In fact, a look into Table 8, espe-
cially at cmodels and smodels, reveals that the satisfiable instances of ChannelRouting, Graph-
Partitioning, and MazeGeneration are rather easy. Interestingly, both lp2sat variants still have
difficulties with the non-tight benchmarks, viz., GraphPartitioning and MazeGeneration, indi-
cating that an eager translation of logic programs may diminish search performance. On the other
hand, all solvers perform worse on the satisfiable instances of SchurNumbers than on the unsat-
isfiable ones, and the same also applies to clasp, clasp+, and lp2sat on WireRouting. Looking
at these two classes in Table 9, we observe that the unsatisfiable instances of SchurNumbers are
trivial for all solvers but smodels, while only clasp and clasp+ complete all of the unsatisfiable
WireRouting instances. The latter suggests that such instances are not inherently hard but that
lacking either conflict-driven learning (smodels) or native unfounded set checking (cmodels and
lp2sat) renders them more difficult.

Unlike with SchurNumbers and WireRouting, some of the unsatisfiable instances of Channel-
Routing, GraphColouring, Solitaire, and MazeGeneration turn out to be much harder than their
satisfiable counterparts (at least for the considered solvers). Notably, lp2sat[c], running clasp
as SAT solver, completes more unsatisfiable MazeGeneration instances than clasp and clasp+

themselves, which contrasts with the behavior observed on satisfiable instances (cf. MazeGen-
eration in Table 8 and 9). A similar shift of behaviors is due to one unsatisfiable instance of
ConnectedDomSet, which poses a problem to the intrinsic treatment of extended rules in clasp
and clasp+, while cmodels and lp2sat do not encounter such difficulties. In view of this, we be-
lieve that the dynamic selection among possible handlings of extended rules (intrinsic treatment
and/or transformation) is interesting future work.

7 Related Work
Our approach to conflict-driven ASP solving borrows and extends state-of-the-art techniques
from the area of SAT [12]. Its global search pattern is similar to CDCL with First-UIP scheme,

15Interestingly, a single instance of ConnectedDomSet is responsible for the three timeouts of clasp and clasp+.

39

developed more than a decade ago [97, 101, 127] and nowadays quasi standard for industrial SAT
solving (cf. [35, 115, 100, 29, 11, 4, 23, 96]). While traditional search procedures like Davis-
Putnam-Logemann-Loveland (DPLL; [25, 24]) are polynomially equivalent to tree-like resolu-
tion, CDCL (with unlimited restarts) amounts to general resolution [109] and is thus strictly more
powerful (regarding the best-case complexity of unsatisfiability proofs) than DPLL. Several in-
vestigations [62, 79, 70] show that this separation carries forward to (native) ASP solvers under
standard translations between ASP and SAT, viz., Clark completion and the reduction in [102].
The clasp system implements the CDCL search pattern likewise for logic programs under an-
swer set semantics as well as for propositional CNF and PB formulas. In contrast to translational
approaches, as used by minisat+ [36], it offers dedicated data structures for the internal represen-
tation of and reasoning about linear inequalities [47]. This relates clasp to SMT [10] techniques,
applying “theory propagation” (cf. [104]) to concepts available in extended logic programs [119],
viz., unfounded sets (or positive recursion) and linear inequalities (over Boolean variables).

SAT-based ASP solvers like assat [90], cmodels [71], and sag [91] may also exploit conflict-
driven learning in the search for supported models being answer set candidates, accomplished
by underlying SAT solvers. However, their integration of unfounded set checking is much more
loose than in native ASP solvers. To our knowledge, the only native ASP solver other than clasp
that implements conflict-driven learning is smodelscc [126],16 while ASP solvers like dlv [83],
smodels [119], and nomore++ [1] perform DPLL-style search. For enabling conflict analysis,
smodelscc takes an algorithmic approach, monitoring applications of smodels’ inference rules to
on-the-fly build an implication graph [97, 127, 9] as a representation of antecedents. Unlike this,
clasp directly incorporates suitable data structures, designed to accommodate backjumping and
conflict-driven learning: similar to SAT solvers, it merely stores references to antecedents upon
propagation, which incurs only negligible (constant) “overhead”. A prototypical extension [112]
of dlv includes backjumping, but not learning, based on tracking dlv’s inference rules.

Given that answer sets are determined by atoms, native ASP solvers dlv, smodels, and
smodelscc are (logically) restricted to assignments over atoms. As shown in [63, 62], this yields
an exponential separation, already on tight logic programs, to solvers that in addition assign and
make decisions on rule bodies. To our knowledge, clasp and nomore++ are the only ASP solvers
deliberately taking advantage of rule bodies in assignments. Regardless of minor technical differ-
ences, the comparison of smodels’ and nomore++’ inferences in [62] reveals that both are based
on structural propositions for bodies, so that the restricted scope of heuristic decisions is the main
trait of smodels’ atom-oriented approach. In view of similarities to smodels (cf. [70]), this also
applies to dlv and smodelscc. Interestingly, CNF conversions of SAT-based ASP solvers (cf. [5])
also introduce auxiliary propositions for rule bodies to prevent an exponential blow-up. Although
such auxiliary propositions can then be exploited by underlying SAT solvers, their motivation is
more by need than by design. However, as there is not yet a consensus on how to represent
the Boolean constraints induced by logic programs (see, e.g., the proposals in [5, 70, 86]), we
have used nogoods to express conditions for (unit) propagation, thus separating semantics from
syntactic representations.

16The solver minisat(id) [95] supports “inductive definitions” on top of propositional theories. Inductive defini-
tions are closely related to logic programs, yet involve a “totality” condition not shared by the latter.

40

As pointed out in [63, 86], SAT-based and native ASP solvers differ in their “laziness” to
apply unfounded set checks. While the former confine themselves to final tests required for
soundness, in the terminology of [104] investigating SMT, native ASP solvers perform “theory
propagation” via unfounded sets.17 Notably, virtually all ASP solvers exploit strongly connected
components of positive dependency graphs to limit work to necessary parts. Unlike the un-
founded set checking procedures of dlv [17] and smodels [119] computing greatest unfounded
sets, the ones of clasp and nomore++ [2] aim at small unfounded sets and return them as soon as
they are identified. The main motive for this is to reduce overlaps between (unit) propagation and
unfounded set checking. Another difference between unfounded set checking approaches is that
dlv and nomore++ use a flag “must-be-true” to indicate (logically true) atoms whose non-circular
derivability is uncertain, for which purpose smodels and clasp exploit source pointers [119]. The
advantage of source pointers is that they need not be updated upon backtracking or backjumping,
respectively, while “true” may have to be turned back into “must-be-true”. Albeit several ap-
proaches [90, 71, 91, 2, 59] admit restricting the consideration of unfounded sets to loops, clasp
does not guarantee that a detected non-empty unfounded set is a loop (yet it contains one), and
it is an interesting open question whether a strict limitation to loops would be advantageous. We
also note that the “unidirectional” unfounded set handling in native ASP solvers, not realizing
full unit propagation via loop formulas, has already been recognized in [63, 62]. Unfortunately,
the approach to remedy this peculiarity suggested in [18, 19] is computationally too complex
(quadratic) to be beneficial in practice, and it is open whether the intended effect can be achieved
by more economic techniques.

On top of its basic decision procedure, clasp supports various extended functionalities
(cf. [56]). Particular backtracking schemes, applied after finding a solution, admit the repetition-
free enumeration of answer sets [53] as well as projections of them [57] in polynomial space.
Optimization strategies wrt one or multiple (lexicographically ordered) objectives are described
in [48]. Furthermore, clasp offers advanced preprocessing on the level of logic programs [55]
and also their induced constraints [33]. Techniques for the intrinsic treatment of extended rules
have been presented in [47]; in particular, they include an unfounded set checking procedure
extending the one in Algorithm 3. Finally, several systems implement elaborate features on top
of clasp: disjunctive ASP solver claspD [31] internally couples two clasp engines, clingcon [60]
embeds the gecode constraint library18 into clasp’s propagation routine to deal with non-Boolean
variables, iclingo [46] exploits clasp’s incremental interface to solve series of problems over in-
creasing horizons [20, 34], and parallel ASP solver claspar [37, 118, 50] augments clasp with a
communication module to enable message passing between distributed solver instances.

8 Summary
We have provided a uniform approach to conflict-driven ASP solving, allowing for a transparent
technology transfer from (and to) neighboring areas like SAT. The idea is to view inferences

17The approach of lp2diff [78] relies on a reduction to difference logic, so that SMT solvers supporting this logic
can be used to accomplish unfounded set checks and thus to compute answer sets.

18Available at http://www.gecode.org.

41

in ASP solving as unit propagation on nogoods, reflecting constraints from Clark completion,
unfounded sets, and conflicts. We have seen that the inclusion of rule bodies in assignments
allows for a natural extension of unit propagation to ASP, abolishing the pre-existing need for
multiple inference rules.

In contrast to SAT, ASP induces implicit constraints given by loop nogoods. Though in-
herently present, these nogoods need only be expatiated when they serve as antecedents. This
puts sophisticated unfounded set checks on the same logical basis as plain SAT, and we have
provided a conflict-driven algorithmic framework for ASP solving, incorporating state-of-the-art
SAT solving techniques. Notably, our approach favors unit propagation on explicit nogoods over
unfounded set checks, testing for implicit loop nogoods that are unit or violated. In fact, many
of the combinatorially constructable loop nogoods (ΛΠ) might be redundant, that is, entailed by
Clark completion and/or other loop nogoods. (For tight programs, the whole set ΛΠ of loop no-
goods is redundant.) In view of this, our approach makes sure that inspected loop nogoods are
“1-empowering” [108] and supplement the available constraints.

We have implemented our approach in the ASP solver clasp, which has demonstrated its
competitiveness in various settings, for instance, winning first places at the ASP, CASC, MISC,
PB, and SAT contests in 2011. The clasp system implements state-of-the-art techniques from
Boolean constraint solving without deploying or modifying any legacy SAT solver. Rather, clasp
extends the functionalities of plain SAT solvers by unfounded set checking, intrinsic treatment of
cardinality and weight constraints, and optimization. Beyond search for one answer set, clasp can
enumerate them without falling back on solution recording; such techniques are detailed in [53]
and [57]. All in all, clasp has become a powerful native ASP solver, whose reasoning modes [56]
make it an attractive tool for knowledge representation and reasoning. The clasp system consti-
tutes a central component of the Potassco tool suite [44] and has already been used in various
applications from diverse areas like, e.g., assisted living [99], music composition [13], temporal
reasoning [80], general game playing [122], hardware synthesis [75], and systems biology [64].

Acknowledgments
We are grateful to the ASP research and user community as a whole for valuable contributions to
the Potassco project, and to the anonymous reviewers of this paper for many helpful comments.

This work was supported by the German Science Foundation (DFG) under grants SCHA
550/8-1 and -2.

A Proofs
In Appendix A.1 and A.2, we provide proofs for the formal results presented in Section 3 and 4.5,
respectively.

42

A.1 Nogoods of Logic Programs
We begin with Lemma 3.1, establishing that any solution for ∆Π is uniquely determined by its
literals over atoms.

Lemma 3.1. Let Π be a logic program and X ⊆ atom(Π).
Then, we have that

A = {Tp | p ∈ X} ∪ {Fp | p ∈ atom(Π) \X}
∪ {Tβ | β ∈ body(Π), β+ ⊆ X, β− ∩X = ∅}
∪ {Fβ | β ∈ body(Π), (β+ ∩ (atom(Π) \X)) ∪ (β− ∩X) 6= ∅}

is the unique solution for ∆body(Π) such that AT ∩ atom(Π) = X .

Proof. Consider any β = {p1, . . . , pm, not pm+1, . . . , not pn} ∈ body(Π), and recall that
δ(β) = {Fβ,Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn} and ∆(β) = { {Tβ,Fp1}, . . . , {Tβ,Fpm},
{Tβ,Tpm+1}, . . . , {Tβ,Tpn} }. Then, one of the following cases applies:

β+ ⊆ X and β− ∩X = ∅: We have that {Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn} ⊆ A and
{Fp1, . . . ,Fpm,Tpm+1, . . . ,Tpn}∩A = ∅. In view of the latter, δ 6⊆ A for any δ ∈ ∆(β).
Furthermore, Tβ ∈ A and Fβ /∈ A make sure that δ(β) 6⊆ A, where δ(β) \A = {Fβ}.

(β+ ∩ (atom(Π) \X)) ∪ (β− ∩X) 6= ∅: We have that {Fp1, . . . ,Fpm,Tpm+1, . . . ,Tpn} ∩
A 6= ∅ and {Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn} 6⊆ A. The latter yields that δ(β) 6⊆ A.
Furthermore, Fβ ∈ A and Tβ /∈ A make sure that δ 6⊆ A for every δ ∈ ∆(β), where
δ \A = {Tβ} for some δ ∈ ∆(β).

The above cases show that, for every β ∈ body(Π), no nogood from {δ(β)} ∪∆(β) is contained
in A, so that A is a solution for ∆body(Π) = {δ(β) | β ∈ body(Π)}∪{δ ∈ ∆(β) | β ∈ body(Π)}.
On the other hand, for each β ∈ body(Π), either δ(β) \A = {Fβ} or δ \A = {Tβ} for some
δ ∈ ∆(β). Hence, there is no solution B 6= A for ∆body(Π) such that BT ∩ atom(Π) = X .

Theorem 3.3 on the correspondence between answer sets of a tight program Π and solu-
tions for ∆Π can be derived from Lemma 3.2, establishing one-to-one correspondence between
supported models of Π and solutions for ∆Π. Both results are demonstrated next.

Lemma 3.2. Let Π be a logic program and X ⊆ atom(Π) ∪ body(Π).
Then, we have that (X ∩ atom(Π))∪ {pβ | β ∈ X ∩ body(Π)} is a supported model of Π iff

{Tv | v ∈ X} ∪ {Fv | v ∈ (atom(Π) ∪ body(Π)) \X} is a solution for ∆Π.

Proof. Let M = (X ∩ atom(Π)) ∪ {pβ | β ∈ X ∩ body(Π)} and A = {Tv | v ∈ X} ∪ {Fv |
v ∈ (atom(Π) ∪ body(Π)) \ X}. Then, for any p ∈ atom(Π) (or β ∈ body(Π)), we have that
p ∈M (or pβ ∈M) iff Tp ∈ A (or Tβ ∈ A), and p /∈M (or pβ /∈M) iff Fp ∈ A (or Fβ ∈ A).

Considering any β = {p1, . . . , pm, not pm+1, . . . , not pn} ∈ body(Π), it is not difficult to
check that δ ⊆ A for some δ ∈ {δ(β)} ∪ ∆(β) = { {Fβ,Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn},

43

{Tβ,Fp1}, . . . , {Tβ,Fpm}, {Tβ,Tpm+1}, . . . , {Tβ,Tpn} } iff M 6|= (pβ ↔ p1 ∧ · · · ∧ pm ∧
¬pm+1 ∧ · · · ∧ ¬pn).

Likewise, for any p ∈ atom(Π) with bodyΠ(p) = {β1, . . . , βk}, δ ⊆ A for some δ ∈ {δ(p)}∪
∆(p) = { {Tp,Fβ1, . . . ,Fβk}, {Fp,Tβ1}, . . . , {Fp,Tβk} } iff M 6|= (p↔ pβ1 ∨ · · · ∨ pβk).

This shows that M is a supported model of Π iff A is a solution for ∆Π.

Theorem 3.3. Let Π be a tight logic program and X ⊆ atom(Π).
Then, we have that X is an answer set of Π iff

A = {Tp | p ∈ X} ∪ {Fp | p ∈ atom(Π) \X}
∪ {Tβ | β ∈ body(Π), β+ ⊆ X, β− ∩X = ∅}
∪ {Fβ | β ∈ body(Π), (β+ ∩ (atom(Π) \X)) ∪ (β− ∩X) 6= ∅}

is the unique solution for ∆Π such that AT ∩ atom(Π) = X .

Proof. By Lemma 3.1, there is a subset of ∆Π for which A is the unique solution such that
AT ∩ atom(Π) = X . Along with Lemma 3.2, we conclude that M ∩ atom(Π) = X for some
supported model M of Π iff A is the unique solution for ∆Π such that AT ∩ atom(Π) = X .
Finally, by Theorem 3.2 in [40], showing that supported models and answer sets of Π coincide if
Π is tight,19 we conclude that X is an answer set of Π iff A is the unique solution for ∆Π such
that AT ∩ atom(Π) = X .

In order to extend Theorem 3.3 to non-tight programs, we provide some properties of un-
founded sets. To begin with, GRS-unfounded sets are linked to unfounded sets by the fact that,
wrt a body-saturated assignment, every GRS-unfounded set is an unfounded set as well.

Proposition 3.4. Let Π be a logic program, A an assignment, and U ⊆ atom(Π).
If A is body-saturated for Π, then we have that U is an unfounded set of Π wrt A if U is a

GRS-unfounded set of Π wrt A.

Proof. Assume that A is body-saturated for Π. Then, for every β ∈ body(Π), (β+ ∩ AF) ∪
(β− ∩ AT) 6= ∅ implies β ∈ AF. Hence, if U is a GRS-unfounded set of Π wrt A, then
EBΠ(U) ⊆ {β ∈ body(Π) | (β+ ∩AF) ∪ (β− ∩AT) 6= ∅} implies EBΠ(U) ⊆ AF, so that U
is an unfounded set of Π wrt A.

Further considering the relationships between unfounded set concepts, unfounded sets and
GRS-unfounded sets coincide wrt body-synchronized assignments.

Proposition 3.5. Let Π be a logic program, A an assignment, and U ⊆ atom(Π).
If A is body-synchronized for Π, then we have that U is an unfounded set of Π wrt A iff U

is a GRS-unfounded set of Π wrt A.

19Note that the equivalences in (3) define auxiliary propositions for bodies in terms of atoms. Hence, our represen-
tation is a conservative extension of the completion of Π, originally described without propositions for bodies [21].

44

Proof. Assume that A is body-synchronized for Π. Then, A is body-saturated for Π according
to Definition 3.3, and by Proposition 3.4, U is an unfounded set of Π wrt A if U is a GRS-
unfounded set of Π wrt A. It remains to show that the converse holds as well. Since A is body-
synchronized for Π, for every β ∈ body(Π), β ∈ AF implies (β+∩AF)∪(β−∩AT) 6= ∅. Hence,
if U is an unfounded set of Π wrt A, then EBΠ(U) ⊆ AF implies EBΠ(U) ⊆ {β ∈ body(Π) |
(β+ ∩AF) ∪ (β− ∩AT) 6= ∅}, so that U is a GRS-unfounded set of Π wrt A.

The following characterization of solutions for ΛΠ provides an analogy to unfounded-free
interpretations [84], as identified wrt GRS-unfounded sets, in terms of our unfounded set notion.

Proposition 3.6. Let Π be a logic program and A an assignment such that AT ∪ AF =
atom(Π) ∪ body(Π).

Then, we have that A is a solution for ΛΠ iff U ⊆ AF for every unfounded set U of Π wrt A.

Proof. We have that A is not a solution for ΛΠ iff λ(p, U) ⊆ A for some ∅ ⊂ U ⊆ atom(Π)
and p ∈ U iff p ∈ U ∩AT and EBΠ(U) ⊆ AF for some U ⊆ atom(Π) iff U 6⊆ AF for some
unfounded set U of Π wrt A.

We are now ready to extend Theorem 3.3 to non-tight programs.

Theorem 3.7. Let Π be a logic program and X ⊆ atom(Π).
Then, we have that X is an answer set of Π iff

A = {Tp | p ∈ X} ∪ {Fp | p ∈ atom(Π) \X}
∪ {Tβ | β ∈ body(Π), β+ ⊆ X, β− ∩X = ∅}
∪ {Fβ | β ∈ body(Π), (β+ ∩ (atom(Π) \X)) ∪ (β− ∩X) 6= ∅}

is the unique solution for ∆Π ∪ ΛΠ such that AT ∩ atom(Π) = X .

Proof. By Lemma 3.1, there is a subset of ∆Π for which A is the unique solution such that
AT ∩ atom(Π) = X . Along with Lemma 3.2, we conclude that M ∩ atom(Π) = X for some
supported model M of Π iff A is the unique solution for ∆Π such that AT ∩ atom(Π) = X . For
any supported modelM of Π, it is clear thatM∩atom(Π) is a model of Π, that is, head(r) ∈M ,
body(r)+ 6⊆ M , or body(r)− ∩ M 6= ∅ holds for every r ∈ Π. Hence, if A is the unique
solution for ∆Π such that AT ∩ atom(Π) = X , then AT ∩ atom(Π) is a model of Π. In
addition, we have that A is body-synchronized for Π according to Definition 3.3 because AF ∩
body(Π) = {β ∈ body(Π) | (β+ ∩ (atom(Π) \ X)) ∪ (β− ∩ X) 6= ∅} = {β ∈ body(Π) |
(β+∩AF)∪(β−∩AT) 6= ∅}. We use these properties to show the implications of the statement:

⇒: Assume that X is an answer set of Π. Then, by Corollary 1 in [93], we have that M ∩
atom(Π) = X for some supported model M of Π. (See Footnote 19 for remarks on the
role of auxiliary propositions for bodies in the Clark completion of Π.) That is, A is the
unique solution for ∆Π such that AT ∩ atom(Π) = X . Furthermore, by Theorem 4.6
in [84], we have that U ∩X = ∅ holds for every GRS-unfounded set U of Π wrt X . Since
A is body-synchronized for Π, by Proposition 3.5, we conclude that U ∩ AT = ∅ and
U ⊆ AF hold for every unfounded set U of Π wrt A. Hence, by Proposition 3.6, A is a
solution for ΛΠ and the unique solution for ∆Π ∪ ΛΠ such that AT ∩ atom(Π) = X .

45

⇐: Assume that A is the unique solution for ∆Π ∪ ΛΠ such that AT ∩ atom(Π) = X . Then,
by Proposition 3.6, we have that U ∩AT = ∅ holds for every unfounded set U of Π wrt A.
Since A is body-synchronized for Π, Proposition 3.5 yields that U ∩ X = ∅ holds for
every GRS-unfounded set U of Π wrt X . Along with the fact that AT ∩ atom(Π) = X is
a model of Π, by Theorem 4.6 in [84], we conclude that X is an answer set of Π.

We have thus shown that both implications of the statement hold.

In what follows, we show further crucial properties of unfounded sets. To begin with, false
atoms of an unfounded set may be removed, while still maintaining unfoundedness when the
assignment at hand is body-saturated.

Proposition 3.8. Let Π be a logic program, A an assignment, and U an unfounded set of Π
wrt A.

If A is body-saturated for Π, then we have that U \AF is an unfounded set of Π wrt A.

Proof. Assume that A is body-saturated for Π. Then, for every β ∈ EBΠ(U \AF) \ EBΠ(U),
the fact that β+ ∩ (U ∩AF) 6= ∅ implies β ∈ AF. Along with EBΠ(U) ⊆ AF, we conclude that
EBΠ(U \AF) ⊆ AF, so that U \AF is an unfounded set of Π wrt A.

The following auxiliary result shows that, wrt an atom-saturated assignment, any non-empty
unfounded set of non-false atoms that is not a loop contains in turn a non-empty proper subset
that is unfounded.

Lemma A.1. Let Π be a logic program, A an assignment, and U ⊆ atom(Π) \AF a non-empty
unfounded set of Π wrt A.

If A is atom-saturated for Π and if U /∈ loop(Π), then there is some non-empty unfounded
set U ′ ⊂ U of Π wrt A.

Proof. Assume that A is atom-saturated for Π and that U /∈ loop(Π). Then, for every p ∈ U ,
the prerequisite that U ⊆ atom(Π) \AF implies bodyΠ(p) 6⊆ AF, while EBΠ(U) ⊆ AF yields
bodyΠ(p) ∩ EBΠ(U) ⊆ AF. That is, for every p ∈ U , there is some β ∈ bodyΠ(p) \ AF, and
β+ ∩ U 6= ∅ holds for each β ∈ bodyΠ(p) \AF. Hence, every atom of U has some predecessor
belonging to U in (atom(Π),≤+). However, since U /∈ loop(Π), we have that the subgraph
of (atom(Π),≤+) induced by U is not strongly connected. Along with the fact that U is finite,
we conclude that there is some strongly connected component of (U, {(p, head(r)) | r ∈ Π,
head(r) ∈ U, p ∈ body(r)+ ∩ U}) such that its vertices C do not reach atoms in U \ C.20 The
latter means that β+∩C = ∅ holds for every β ∈ EBΠ(U \C), so that EBΠ(U \C) ⊆ EBΠ(U).
Since ∅ ⊂ C ⊂ U and EBΠ(U) ⊆ AF, this shows that U ′ = U \ C is a non-empty unfounded
set of Π wrt A such that U ′ ⊂ U .

The previous lemma allows us to conclude that, wrt an atom-saturated assignment, every
non-empty unfounded set of non-false atoms must contain an unfounded loop.

20Note that the “condensation” of (U, {(p, head(r)) | r ∈ Π, head(r) ∈ U, p ∈ body(r)
+ ∩ U}), obtained by

contracting each strongly connected component to a single vertex, is a directed acyclic graph (cf. [111]).

46

Proposition 3.9. Let Π be a logic program, A an assignment, and U ⊆ atom(Π) \AF a non-
empty unfounded set of Π wrt A.

If A is atom-saturated for Π, then there is some unfounded set L ⊆ U of Π wrt A such that
L ∈ loop(Π).

Proof. Assume that A is atom-saturated for Π. Then, since U ⊆ atom(Π) \AF is a non-empty
unfounded set of Π wrt A, there is some non-empty unfounded set L ⊆ U of Π wrt A such that ∅
and L are all unfounded sets of Π wrt A contained in L. For each such L ⊆ U , by Lemma A.1,
we conclude that L ∈ loop(Π).

Corollary 3.10. Let Π be a logic program, A an assignment, and U ⊆ atom(Π) \ AF a non-
empty unfounded set of Π wrt A.

If A is atom-saturated for Π, then there is some non-empty unfounded set U ′ ⊆ U of Π
wrt A such that all p ∈ U ′ belong to the same non-trivial strongly connected component of
(atom(Π),≤+).

Proof. This result follows immediately from Proposition 3.9, since all atoms of some L ∈
loop(Π) belong to the same strongly connected component of (atom(Π),≤+), which must be
non-trivial by the definition of a loop.

Finally, we combine Proposition 3.8 and 3.9 to show that, wrt an assignment that is both atom-
and body-saturated, any unfounded set that includes non-false atoms must contain an unfounded
loop of non-false atoms.

Theorem 3.11. Let Π be a logic program and A an assignment.
If A is both atom- and body-saturated for Π and if there is some unfounded set U of Π

wrt A such that U 6⊆ AF, then there is some unfounded set L ⊆ U \AF of Π wrt A such that
L ∈ loop(Π).

Proof. Assume that A is both atom- and body-saturated for Π and that there is some unfounded
set U of Π wrt A such that U 6⊆ AF. Then, by Proposition 3.8, we have that U \AF is a non-
empty unfounded set of Π wrt A. Furthermore, by Proposition 3.9, there is some unfounded set
L ⊆ U \AF of Π wrt A such that L ∈ loop(Π).

Corollary 3.12. Let Π be a logic program and A an assignment.
If A is both atom- and body-saturated for Π and if there is some unfounded set U of Π wrt A

such that U 6⊆ AF, then there is some non-empty unfounded set U ′ ⊆ U \AF of Π wrt A such
that all p ∈ U ′ belong to the same non-trivial strongly connected component of (atom(Π),≤+).

Proof. This result follows immediately from Theorem 3.11, since all atoms of someL ∈ loop(Π)
belong to the same strongly connected component of (atom(Π),≤+), which must be non-trivial
by the definition of a loop.

47

A.2 Soundness and Completeness of CDNL-ASP Algorithm
We begin with showing fundamental properties of UNFOUNDEDSET in Algorithm 3, where
Lemma 4.1 and 4.2 establish invariants that are crucial for its soundness and completeness, stated
in Theorem 4.3.

Lemma 4.1. Let Π be a logic program and A an assignment that is body-saturated for Π.
If UNFOUNDEDSET(Π,A) is invoked on a valid source pointer configuration, then

we have that the source pointer configuration remains valid throughout the execution of
UNFOUNDEDSET(Π,A).

Proof. Assume that UNFOUNDEDSET(Π,A) is invoked on a valid source pointer configuration.
Then, an invalid source pointer configuration could in principle be obtained only in Line 13 of
Algorithm 3, where source(q) is set for some (cyclic) q ∈ atom(Π). However, by induction on
executions of Line 13, we show that the source pointer configuration remains valid:

Base case: Since the given source pointer configuration is valid and A is body-saturated
for Π, after finishing the loop in Line 2–5 of Algorithm 3, we have that source(p) ∈
bodyΠ(p) \ AF and source(p)+ ∩ (AF ∪ (scc(p) ∩ S)) = ∅ hold for every cyclic
p ∈ atom(Π) \ (AF ∪ S). For the atoms C of any non-trivial strongly connected compo-
nent of (atom(Π),≤+), this implies that

⋃
p∈C\(AF∪S)(source(p)+ ∩C) ⊆ C \ (AF ∪ S).

In words, the source pointers of atoms in C that are neither false in A nor in scope S do
not contain any atom of C that is false in A or in scope S.

Induction step: Let q ∈ U be any cyclic atom such that the condition in Line 12 of Algorithm 3
applies to q, and let C = scc(q). Then, in view of the choice of some p ∈ S in Line 6
along with Line 7 and 14–16, manipulating the contents of U and S, respectively, we have
that U ⊆ C ∩ S, which yields that q ∈ C ∩ S. Furthermore, assume that the source
pointer configuration is valid and that

⋃
p∈C\(AF∪S)(source(p)+ ∩ C) ⊆ C \ (AF ∪ S)

holds before setting source(q) to some β ∈ bodyΠ(q) in Line 13. In terms of the subgraph
of (atom(Π),≤+) containing every cyclic p ∈ atom(Π) along with edges (p′, p) for all
p′ ∈ source(p)+ ∩ scc(p),

⋃
p∈C\(AF∪S)(source(p)+ ∩ C) ⊆ C \ (AF ∪ S) means that it

does not contain any edge from an atom in C ∩ (AF ∪ S) to an atom in C \ (AF ∪ S).
For β, since A is body-saturated for Π, the condition β ∈ EBΠ(U) \AF in Line 10 makes
sure that β+ ∩AF = ∅, and β+ ∩ (C ∩ S) = ∅ is verified in Line 11. Hence, we have that
β+ ∩C ⊆ C \ (AF ∪ S), so that, for all edges (p, q) from atoms p ∈ β+ ∩C to q, it holds
that p ∈ C \ (AF ∪ S). As we have seen above that q ∈ C ∩ S does not reach atoms in
C \ (AF ∪ S), we conclude that the subgraph of (atom(Π),≤+) containing every cyclic
p ∈ atom(Π) along with edges (p′, p) for all p′ ∈ source(p)+∩scc(p) remains acyclic after
setting source(q) to β in Line 13. This shows that the source pointer configuration obtained
by executing Line 13 is in turn valid. Finally, we have that the induction hypothesis still
holds for S \ {q} constructed in Line 15, that is,

⋃
p∈C\(AF∪(S\{q}))(source(p)+ ∩ C) =(⋃

p∈C\(AF∪S)(source(p)+ ∩ C)
)
∪ (β+ ∩ C) ⊆ C \ (AF ∪ S) ⊆ C \ (AF ∪ (S \ {q})).

We have thus shown that a valid source pointer configuration cannot be invalidated when invok-
ing UNFOUNDEDSET(Π,A) with an assignment A that is body-saturated for Π.

48

Lemma 4.2. Let Π be a logic program and A an assignment that is atom-saturated for Π.
If UNFOUNDEDSET(Π,A) is invoked on a valid source pointer configuration, then we have

that every unfounded set U ⊆ atom(Π) \ AF of Π wrt A such that all p ∈ U belong to the
same strongly connected component of (atom(Π),≤+) is contained in S whenever Line 6 of
Algorithm 3 is entered.

Proof. Assume that UNFOUNDEDSET(Π,A) is invoked on a valid source pointer configuration.
Then, let U ⊆ atom(Π) \ AF be any unfounded set of Π wrt A such that all p ∈ U belong
to the same strongly connected component of (atom(Π),≤+). Since U ∩ AF = ∅ and A is
atom-saturated for Π, we have that bodyΠ(p) 6⊆ AF for every p ∈ U , while EBΠ(U) ⊆ AF

implies that β+ ∩ U 6= ∅ holds for each β ∈ bodyΠ(p) \AF. That is, all p ∈ U are cyclic, and
source(p) ∈ bodyΠ(p) ∪ {⊥} holds because the given source pointer configuration is valid. By
induction on executions of the test in Line 6 of Algorithm 3, we show that U 6⊆ S is impossible
whenever Line 6 is entered:

Base case: For the sake of contradiction, assume that U 6⊆ S after finishing the loop in Line 2–5
of Algorithm 3. Then, in view of Line 1, for each p ∈ U \ S, we have that source(p) /∈
AF∪{⊥}, which further implies that source(p) ∈ bodyΠ(p)\AF and source(p)+∩U 6= ∅.
Moreover, the condition source(p)+ ∩ (scc(p) ∩ S) 6= ∅ in Line 3 does not apply to
source(p), which yields that source(p)+ ∩ (U ∩ S) = ∅ and source(p)+ ∩ (U \ S) 6= ∅.
Since U \ S is finite and each atom of U \ S has some predecessor belonging to U \ S in
the subgraph of (atom(Π),≤+) containing every cyclic p ∈ atom(Π) along with edges
(q, p) for all q ∈ source(p)+ ∩ scc(p), we conclude that this subgraph cannot be acyclic,
which is a contradiction to the assumption that UNFOUNDEDSET(Π,A) is invoked on a
valid source pointer configuration.

Induction step: For the sake of contradiction, assume that U ⊆ S at the beginning of an iteration
of the loop in Line 6–17 of Algorithm 3, but U 6⊆ S when Line 6 is re-entered after
finishing the iteration. In this iteration, the elements of U \ S must have (successively)
been removed from S in Line 15. In particular, some q ∈ U \ S has been removed from S
before any other atom of U . To achieve this, the condition in Line 11 must have applied to
some β ∈ bodyΠ(q) \AF, which yields that β+ ∩ (scc(q) ∩ U ′) = ∅ for some superset U ′

of U . Since U ⊆ scc(q), this implies that β+ ∩ U = ∅, which is a contradiction to the
assumption that U is an unfounded set of Π wrt A.

We have thus shown that, if UNFOUNDEDSET(Π,A) is invoked on a valid source pointer
configuration with an assignment A that is atom-saturated for Π, every unfounded set U ⊆
atom(Π)\AF of Π wrt A such that all p ∈ U belong to the same strongly connected component
of (atom(Π),≤+) must be contained in S whenever Line 6 of Algorithm 3 is entered. If any
such unfounded set U is non-empty, this invariant excludes the termination of Algorithm 3 by
returning ∅ in Line 18.

Theorem 4.3. Let Π be a logic program and A an assignment that is both atom- and body-
saturated for Π.

49

If UNFOUNDEDSET(Π,A) is invoked on a valid source pointer configuration, then we have
that UNFOUNDEDSET(Π,A) returns an unfounded set U ⊆ atom(Π) \AF of Π wrt A, where
U = ∅ iff there is no unfounded set U ′ of Π wrt A such that U ′ 6⊆ AF.

Proof. Assume that UNFOUNDEDSET(Π,A) is invoked on a valid source pointer configura-
tion. Then, in view of the condition EBΠ(U) ⊆ AF in Line 9 of Algorithm 3 and the fact
that ∅, which can be returned in Line 18, is a (trivial) unfounded set of Π wrt A, we have that
UNFOUNDEDSET(Π,A) can only return an unfounded set of Π wrt A. By Corollary 3.12, the
existence of some non-empty unfounded set U ′ of Π wrt A such that U ′ 6⊆ AF implies that
there is a non-empty unfounded set U ⊆ U ′ \ AF such that all p ∈ U belong to the same
strongly connected component of (atom(Π),≤+). Furthermore, by Lemma 4.2, any such un-
founded set U of Π wrt A is contained in scope S whenever Line 6 is entered. This shows that
UNFOUNDEDSET(Π,A) cannot return ∅ in Line 18 if there is some non-empty unfounded set U ′

of Π wrt A such that U ′ 6⊆ AF.
It only remains to show that UNFOUNDEDSET(Π,A) terminates. To this end, note that

scope S is increasing over iterations of the loop in Line 2–5 of Algorithm 3, and strictly de-
creasing over iterations of the loop in Line 6–17. For U handled in the loop in Line 8–17, we
observe that it is strictly increasing when U is extended in Line 16, and strictly decreasing when
an element q is removed from U in Line 14, where q cannot be added back later on because it
is also removed from S in Line 15. Since atom(Π) is finite and U ⊆ S ⊆ atom(Π) \AF, we
conclude that none of the loops in Algorithm 3 can be iterated infinitely. Rather, any atom can
be added to and removed from S and U , respectively, at most once, which yields that the time
complexity of UNFOUNDEDSET(Π,A) is linear in the size of Π.

Next, we show properties of NOGOODPROPAGATION in Algorithm 2. Lemma 4.4 essen-
tially establishes the applicability of Theorem 4.3 whenever an unfounded set check is initiated
in Line 12 of Algorithm 2, and Lemma 4.5 provides properties crucial for the soundness and
completeness of conflict-driven ASP solving.

Lemma 4.4. Let Π be a logic program,∇′ a set of nogoods, dl ∈ N, and A′ an assignment.
Then, we have that A is both atom- and body-saturated for Π whenever Line 10 of Algo-

rithm 2 is entered in an execution of NOGOODPROPAGATION(dl ,Π,∇′,A′).

Proof. For the sake of contradiction, assume that Line 10 of Algorithm 2 is entered in an exe-
cution of NOGOODPROPAGATION(dl ,Π,∇′,A′), while the current assignment A is not atom-
saturated or not body-saturated for Π. Then, some of the following cases applies:

bodyΠ(p) ⊆ AF but Fp /∈ A for some p ∈ atom(Π): The nogood δ(p) = {Tp,Fβ1, . . . ,Fβk},
where bodyΠ(p) = {β1, . . . , βk}, is such that δ(p) \A ⊆ {Tp}. In view of the condition
in Line 4 of Algorithm 2, tested in the previous iteration of the loop in Line 3–9, we have
that Tp /∈ A and δ(p) \ A = {Tp}. But this implies that Fp is unit-resulting for δ(p)
wrt A, so that the condition Σ = ∅ cannot hold in Line 9, which contradicts that Line 10
is entered with A being the current assignment.

50

(β+ ∩AF) ∪ (β− ∩AT) 6= ∅ but Fβ /∈ A for some β ∈ body(Π): Some nogood δ =
{Tβ, ρ} ∈ ∆(β) is such that δ \ A ⊆ {Tβ}. In view of the condition in Line 4
of Algorithm 2, tested in the previous iteration of the loop in Line 3–9, we have that
Tβ /∈ A and δ \A = {Tβ}. But this implies that Fβ is unit-resulting for δ wrt A, so that
the condition Σ = ∅ cannot hold in Line 9, which contradicts that Line 10 is entered with
A being the current assignment.

Since each of the above cases yields a contradiction, we conclude that A is both atom- and
body-saturated for Π whenever Line 10 of Algorithm 2 is entered.

Lemma 4.5. Let Π be a logic program,∇′ a set of nogoods, dl ∈ N, and A′ an assignment.
If NOGOODPROPAGATION(dl ,Π,∇′,A′) is invoked on a valid source pointer configuration,

then we have that NOGOODPROPAGATION(dl ,Π,∇′,A′) returns a pair (A,∇) such that

1. ∇′ ⊆ ∇ ⊆ ∇′ ∪ ΛΠ;

2. A is an assignment such that A′ ⊆ A and every σ ∈ A \A′ is implied by ∆Π ∪∇ wrt A;

3. δ ⊆ A for some δ ∈ ∆Π ∪∇ if λ(p, U) ⊆ A for some λ(p, U) ∈ ΛΠ.

Proof. Assume that NOGOODPROPAGATION(dl ,Π,∇′,A′) is invoked on a valid source pointer
configuration. Then, we begin with showing that the items of the statement hold if NOGOOD-
PROPAGATION(dl ,Π,∇′,A′) returns a pair (A,∇):

1. Since ∇′ can be augmented only with elements of ΛΠ in Line 14 of Algorithm 2, we have
that∇′ ⊆ ∇ ⊆ ∇′ ∪ ΛΠ.

2. In view of Line 5 of Algorithm 2, for each literal σ added to an assignment B such that
A′ ⊆ B ⊂ A, we have that {σ, σ} ∩ B = ∅ and that there is an antecedent δ ∈ ∆Π ∪ ∇
of σ wrt B, so that σ is implied by ∆Π ∪∇ wrt A.

3. For the sake of contradiction, assume that δ 6⊆ A for all δ ∈ ∆Π ∪ ∇ and λ(p, U) ⊆ A
for some λ(p, U) ∈ ΛΠ. Then, U is an unfounded set of Π wrt A such that U 6⊆ AF.
Furthermore, (A,∇) must be returned in Line 10 or 13 of Algorithm 2, and Lemma 4.4
tells us that A is both atom- and body-saturated for Π. By Theorem 3.11, we conclude
that some L ∈ loop(Π) is unfounded for Π wrt A, so that Π is not tight. Hence, (A,∇)
must be returned in Line 13 after obtaining ∅ as the result of UNFOUNDEDSET(Π,A) in
Line 12. However, by Lemma 4.4 and 4.1, we conclude that Theorem 4.3 is applicable,
which contradicts that ∅ is obtained as the result of UNFOUNDEDSET(Π,A) in Line 12.

It remains to show that NOGOODPROPAGATION(dl ,Π,∇′,A′) terminates. To this end, note
that an assignment B such that A′ ⊆ B is increasing over iterations of the loop in Line 3–9 of
Algorithm 2, as shown in the proof of the second item. Furthermore, by Theorem 4.3 (along with
Lemma 4.4 and 4.1), any invocation of UNFOUNDEDSET(Π,B) in Line 12 terminates with an
unfounded setU ⊆ atom(Π)\BF of Π wrt B. Hence, we have thatU = ∅ or λ(p, U)\B ⊆ {Tp}
for each p ∈ U ; by Lemma 4.4 and Proposition 3.8, the same applies to U \ BF determined in

51

Line 11. Thus, any execution of Line 11–12 is followed by the termination of Algorithm 2 in
Line 13, or in view of Line 14, by the termination in Line 4 or the addition of a literal Fp (for
p ∈ atom(Π) \ (BT ∪BF)) to B in Line 8 in the next iteration of the loop in Line 2–14. Since
atom(Π) ∪ body(Π) is finite, there cannot be infinitely many literals added to A′ over iterations
of the loops in Line 2–14 and 3–9, respectively, so that NOGOODPROPAGATION(dl ,Π,∇′,A′)
terminates by returning a pair (A,∇).

The following lemma expresses that CONFLICTANALYSIS in Algorithm 4 returns an assert-
ing nogood when given a nogood violated at a decision level greater than 0.

Lemma 4.6. Let Π be a logic program,∇ a set of nogoods, A an assignment such that {σ ∈ A |
ρ ∈ A[σ], dl(σ) < dl(ρ)} = ∅ and {σ ∈ A | ρ ∈ A[σ], dl(ρ) = dl(σ)} ⊆ {σ ∈ A | ε ∈
∆Π ∪∇, ε \A[σ] = {σ}}, and δ′ ⊆ A such that m = max({dl(σ) | σ ∈ δ′} ∪ {0}) 6= 0.

Then, we have that CONFLICTANALYSIS(δ′,Π,∇,A) returns a pair (δ, k) such that

1. δ ⊆ A;

2. |{σ ∈ δ | k < dl(σ)}| = 1;

3. δ 6⊆ B for any solution B for ∆Π ∪∇ ∪ {δ′}.

Proof. Given that {σ ∈ A | ρ ∈ A[σ], dl(σ) < dl(ρ)} = ∅, every ε′ ⊆ A such that
max({dl(ρ) | ρ ∈ ε′}∪ {0}) = m contains a literal σ such that ε′ \A[σ] = {σ} and dl(σ) = m.
(Such literals σ are determined in Line 2 of Algorithm 4.) Then, by induction on iterations of
the loop in Line 1–7 of Algorithm 4, we show that the items of the statement hold if CONFLICT-
ANALYSIS(δ′,Π,∇,A) returns a pair (δ, k):

Base case: Let δ ⊆ A be some set of literals such that max({dl(ρ) | ρ ∈ δ} ∪ {0}) = m and
δ 6⊆ B for any solution B for ∆Π ∪∇∪ {δ′}. For the literal σ ∈ δ determined in Line 2 of
Algorithm 4, if the test in Line 4 yields that k = max({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0}) 6= m,
then |{ρ ∈ δ | k < dl(ρ)}| = |{σ}| = 1, and (δ, k) is returned in Line 7.

Induction step: Let ε′ ⊆ A be some set of literals such that max({dl(ρ) | ρ ∈ ε′} ∪ {0}) = m
and ε′ 6⊆ B for any solution B for ∆Π∪∇∪{δ′}. For the literal σ ∈ ε′ determined in Line 2
of Algorithm 4, if the test in Line 4 yields that max({dl(ρ) | ρ ∈ ε′ \ {σ}} ∪ {0}) = m,
there is some ρ ∈ A[σ] such that dl(ρ) = dl(σ) = m. Given that {σ ∈ A | ρ ∈ A[σ],
dl(ρ) = dl(σ)} ⊆ {σ ∈ A | ε ∈ ∆Π ∪ ∇, ε \ A[σ] = {σ}}, ∆Π ∪ ∇ contains an
antecedent of σ wrt A, and some such ε is selected in Line 5. Since ε′ \ {σ} ⊆ A[σ] ⊆ A
and ε \ {σ} ⊆ A[σ] ⊆ A, for (ε′ \ {σ}) ∪ (ε \ {σ}) constructed in Line 6, it holds that
(ε′ \{σ})∪ (ε\{σ}) ⊆ A[σ] ⊆ A. Furthermore, max({dl(ρ) | ρ ∈ ε′ \{σ}}∪{0}) = m
implies that max({dl(ρ) | ρ ∈ (ε′ \ {σ}) ∪ (ε \ {σ})} ∪ {0}) = m. Finally, since any
solution B for ∆Π ∪ ∇ ∪ {δ′} contains either σ or σ, while ε′ 6⊆ B and ε 6⊆ B, we have
that (ε′ \ {σ}) ∪ (ε \ {σ}) 6⊆ B.

It remains to show that CONFLICTANALYSIS(δ′,Π,∇,A) terminates, i.e., that the base case of
the induction eventually applies. To this end, note that, in the induction step above, we have that

52

(ε′\{σ})∪(ε\{σ}) ⊆ A[σ] ⊆ A, i.e., all literals ρ ∈ (ε′\{σ})∪(ε\{σ}) precede σ in A. From
this and the fact A does not include duplicate literals, we conclude that there cannot be infinitely
many applications of the induction step over iterations of the loop in Line 1–7 of Algorithm 4,
so that CONFLICTANALYSIS(δ′,Π,∇,A) terminates by returning a pair (δ, k).

We now turn to CDNL-ASP in Algorithm 1 for deciding whether a logic program has an
answer set, where Lemma 4.7 establishes invariants that are crucial for the main soundness and
completeness result stated in Theorem 4.8.

Lemma 4.7. Let Π be a logic program.
Then, we have that the following holds whenever Line 5 of Algorithm 1 is entered in an

execution of CDNL-ASP(Π):

1. ∇ is a set of nogoods such that δ 6⊆ B for every δ ∈ ∇ and any solution B for ∆Π ∪ ΛΠ;

2. A is an assignment such that {σ ∈ A | ρ ∈ A[σ], dl(σ) < dl(ρ)} = ∅ and {σ ∈ A |
dl(σ) ≤ max({dl(ρ) | ρ ∈ A[σ]} ∪ {0})} ⊆ {σ ∈ A | ε ∈ ∆Π ∪∇, ε \A[σ] = {σ}};

3. dl ∈ N is such that δ 6⊆ {σ ∈ A | dl(σ) < dl} for every δ ∈ ∆Π ∪ ΛΠ ∪∇.

Proof. By induction on iterations of the loop in Line 4–17 of Algorithm 1, we show that the
items of the statement hold whenever Line 5 is entered in an execution of CDNL-ASP(Π):

Base case: Before the first iteration, in view of Line 1–3 of Algorithm 1, we have that A =
∇ = ∅ and dl = 0, for which the items of the statement trivially hold, and also that
max({dl(σ) | σ ∈ A} ∪ {0}) ≤ dl .

Induction step: At the beginning of an iteration of the loop in Line 4–17 of Algorithm 1, let
∇′, A′, and dl ′ be such that the items (1, 2, and 3) of the statement are satisfied wrt
them, and assume that (a) max({dl(σ) | σ ∈ A′} ∪ {0}) ≤ dl ′.21 Then, by Lemma 4.5
(along with Lemma 4.1 and 4.4) and in view of Line 7–8 of Algorithm 2, we have that
NOGOODPROPAGATION(dl ′,Π,∇′,A′) invoked in Line 5 returns a pair (A,∇) such that
the items of the statement still hold for ∇, A, and dl ′, respectively. In addition, we have
that max({dl(σ) | σ ∈ A} ∪ {0}) ≤ dl ′. Afterwards, one of the following cases applies:

ε ⊆ A for some ε ∈ ∆Π ∪∇: If the condition in Line 7 of Algorithm 1 applies, CDNL-
ASP(Π) immediately terminates by returning “no answer set”. Otherwise, by
Lemma 4.6, CONFLICTANALYSIS(ε,Π,∇,A) returns a pair (δ, k) such that δ ⊆ A,
|{σ ∈ δ | k < dl(σ)}| = 1, and δ 6⊆ B for any solution B for ∆Π ∪ ∇. Since any
solution B for ∆Π ∪ ΛΠ is a solution for ∆Π ∪ ∇ as well, it follows that δ 6⊆ B, so
that (1) B is a solution for ∆Π ∪ (∇∪ {δ}), where∇∪ {δ} is constructed in Line 9.
Furthermore, Ak = A \ {σ ∈ A | k < dl(σ)} constructed in Line 10 is such that (2)

21We below indicate derivations of our induction hypotheses by (1), (2), and (3), standing for the first, the second,
and the third item of the statement, respectively, as well as by (a), expressing that max({dl(σ) | σ ∈ A}∪{0}) ≤ dl
holds for an assignment A and the current value of dl .

53

{σ ∈ Ak | ρ ∈ Ak[σ], dl(σ) < dl(ρ)} = ∅ and {σ ∈ Ak | dl(σ) ≤ max({dl(ρ) |
ρ ∈ Ak[σ]}∪{0})} ⊆ {σ ∈ Ak | ε ∈ ∆Π∪(∇∪{δ}), ε\Ak[σ] = {σ}}. Since 0 ≤ k
holds in view of Line 3 of Algorithm 4, (a) max({dl(σ) | σ ∈ Ak} ∪ {0}) ≤ dl ,
where dl is set to k in Line 8. Finally, δ ⊆ A and |{σ ∈ δ | k < dl(σ)}| = 1 yield
that dl < dl ′ and δ 6⊆ Ak, so that (3) dl ∈ N is such that δ′ 6⊆ {σ ∈ Ak | dl(σ) < dl}
for every δ′ ∈ ∆Π∪ΛΠ∪ (∇∪{δ}). That is, the induction hypotheses still apply wrt
∇∪ {δ}, Ak, and dl .

ε 6⊆ A for all ε ∈ ∆Π ∪∇: If the condition in Line 11 of Algorithm 1 applies, CDNL-
ASP(Π) terminates in Line 12 by returning AT ∩ atom(Π). Otherwise, some deci-
sion literal σd = Tv or σd = Fv such that v ∈ (atom(Π)∪body(Π))\(AT∪AF), as
required in Section 4.1, is returned by SELECT(Π,∇,A) in Line 14. Let dl = dl ′+1,
as set in Line 15. Since dl(σd) is set to dl in Line 16, we have that Aσd = A ◦ σd
constructed in Line 17 is such that (a) max({dl(σ) | σ ∈ Aσd} ∪ {0}) = dl and (2)
{σ ∈ Aσd | ρ ∈ Aσd [σ], dl(σ) < dl(ρ)} = ∅ and {σ ∈ Aσd | dl(σ) ≤ max({dl(ρ) |
ρ ∈ Aσd [σ]}∪{0})} ⊆ {σ ∈ Aσd | ε ∈ ∆Π∪∇, ε\Aσd [σ] = {σ}}. Finally, we note
that (1)∇ is not altered, and by the third item in the statement of Lemma 4.5, we have
that (3) dl ∈ N is such that δ 6⊆ {σ ∈ Aσd | dl(σ) < dl} for every δ ∈ ∆Π∪ΛΠ∪∇.
That is, the induction hypotheses still apply wrt∇, Aσd , and dl .

We have thus shown that the items of the statement hold whenever Line 5 of Algorithm 1 is
entered.

Theorem 4.8. Let Π be a logic program.
Then, we have that CDNL-ASP(Π) terminates, and it returns an answer set of Π iff Π has

some answer set.

Proof. If AT ∩ atom(Π) is returned in Line 12 of Algorithm 1, then the test in Line 6 and the
third item in the statement of Lemma 4.5 establish that A is a solution for ∆Π∪ΛΠ. Furthermore,
by Lemma 3.1, we have that there is no solution B 6= A for ∆Π∪ΛΠ such that BT∩atom(Π) =
AT∩ atom(Π). Hence, by Theorem 3.7, we conclude that AT∩ atom(Π) is an answer set of Π.
On the other hand, if CDNL-ASP(Π) returns “no answer set” in Line 7, in view of the third
item in the statement of Lemma 4.7, we have that max({dl(σ) | σ ∈ ε} ∪ {0}) = 0 for some
ε ∈ ∆Π ∪ ∇ such that ε ⊆ A. Then, by the second item in the statement of Lemma 4.7, for
every σ ∈ ε, there is some antecedent of σ wrt A in ∆Π∪∇, so that there cannot be any solution
for ∆Π ∪ ∇. Along with the first item in the statement of Lemma 4.7, it follows that there is no
solution for ∆Π ∪ ΛΠ. Hence, by Theorem 3.7, we conclude that Π has no answer set.

It remains to show that CDNL-ASP(Π) terminates. In view of the second and the third
item in the statement of Lemma 4.7 along with the condition in Line 7 of Algorithm 1, we
have that Lemma 4.6 applies whenever CONFLICTANALYSIS(ε,Π,∇,A) is invoked in Line 8.
Hence, it returns a pair (δ, k) such that some literal ρ is unit-resulting for δ wrt A \ {σ ∈ A |
k < dl(σ)}. As a consequence, ρ will be added to A \ {σ ∈ A | k < dl(σ)} in Line 5
in the next iteration of the loop in Line 4–17. That is, after every backjump in Line 10, some
element of atom(Π)∪body(Π) is assigned at a smaller (non-negative) decision level than before.

54

Since atom(Π) ∪ body(Π) is finite, this implies that CDNL-ASP(Π) admits only finitely many
backjumps.22 Along with the fact that A is strictly extended in Line 17, so that either a backjump
or termination in Line 12 is inevitable within a linear number of iterations of the loop in Line 4–
17, we conclude that CDNL-ASP(Π) eventually terminates in Line 7 or 12 of Algorithm 1.

References
[1] C. Anger, M. Gebser, T. Linke, A. Neumann, and T. Schaub. The nomore++ approach to

answer set solving. In G. Sutcliffe and A. Voronkov, editors, Proceedings of the Twelfth
International Conference on Logic for Programming, Artificial Intelligence, and Reason-
ing (LPAR’05), volume 3835 of Lecture Notes in Artificial Intelligence, pages 95–109.
Springer-Verlag, 2005.

[2] C. Anger, M. Gebser, and T. Schaub. Approaching the core of unfounded sets. In J. Dix
and A. Hunter, editors, Proceedings of the Eleventh International Workshop on Nonmono-
tonic Reasoning (NMR’06), number IFI-06-04 in Institute for Informatics, Clausthal Uni-
versity of Technology, Technical Report Series, pages 58–66, 2006.

[3] K. Apt, H. Blair, and A. Walker. Towards a theory of declarative knowledge. In J. Minker,
editor, Foundations of Deductive Databases and Logic Programming, chapter 2, pages
89–148. Morgan Kaufmann Publishers, 1987.

[4] G. Audemard and L. Simon. Predicting learnt clauses quality in modern SAT solvers. In
Boutilier [14], pages 399–404.

[5] Y. Babovich and V. Lifschitz. Computing answer sets using program completion. 2003.
http://www.cs.utexas.edu/users/tag/cmodels/cmodels-1.ps.

[6] C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, 2003.

[7] C. Baral, G. Brewka, and J. Schlipf, editors. Proceedings of the Ninth International Con-
ference on Logic Programming and Nonmonotonic Reasoning (LPNMR’07), volume 4483
of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2007.

[8] C. Baral, G. Greco, N. Leone, and G. Terracina, editors. Proceedings of the Eighth Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’05),
volume 3662 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2005.

22See, e.g., [128, 115] for detailed arguments for the fact that the search pattern combining backjumping with
conflict-driven assertions is complete for (UN)SAT. In a nutshell, such arguments work by ranking assignments
according to the numbers of variables assigned per decision level and by verifying that the sequence of assignments
generated during search is strictly monotonic. Since the total number of variables is finite, every such sequence
must be finite as well (yet its length depends on heuristics). Note that this does not necessitate keeping all recorded
conflict (or loop) nogoods. Rather, only the antecedents of assigned literals are ultimately needed (for conflict
resolution), and their number is bounded by the number of variables.

55

[9] P. Beame, H. Kautz, and A. Sabharwal. Towards understanding and harnessing the poten-
tial of clause learning. Journal of Artificial Intelligence Research, 22:319–351, 2004.

[10] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability modulo theories. In
Handbook of Satisfiability [12], chapter 26, pages 825–885.

[11] A. Biere. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Computa-
tion, 4:75–97, 2008.

[12] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability,
volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2009.

[13] G. Boenn, M. Brain, M. De Vos, and J. Fitch. Automatic composition of melodic and
harmonic music by answer set programming. In Garcia de la Banda and Pontelli [43],
pages 160–174.

[14] C. Boutilier, editor. Proceedings of the Twenty-first International Joint Conference on
Artificial Intelligence (IJCAI’09). AAAI Press/The MIT Press, 2009.

[15] M. Brain and M. De Vos. The significance of memory costs in answer set solver imple-
mentation. Journal of Logic and Computation, 19(4):615–641, 2009.

[16] G. Brewka and J. Lang, editors. Proceedings of the Eleventh International Conference on
Principles of Knowledge Representation and Reasoning (KR’08). AAAI Press, 2008.

[17] F. Calimeri, W. Faber, G. Pfeifer, and N. Leone. Pruning operators for disjunctive logic
programming systems. Fundamenta Informaticae, 71(2-3):183–214, 2006.

[18] X. Chen, J. Ji, and F. Lin. Computing loops with at most one external support rule. In
Brewka and Lang [16], pages 401–410.

[19] X. Chen, J. Ji, and F. Lin. Computing loops with at most one external support rule for
disjunctive logic programs. In Erdem et al. [38], pages 130–144.

[20] K. Claessen and N. Sörensson. New techniques that improve MACE-style finite model
finding. In P. Baumgartner and C. Fermüller, editors, Proceedings of the Workshop on
Model Computation — Principles, Algorithms, Applications (MODEL’03), 2003.

[21] K. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Data Bases,
pages 293–322. Plenum Press, 1978.

[22] clasp. http://www.cs.uni-potsdam.de/clasp.

[23] A. Darwiche and K. Pipatsrisawat. Complete algorithms. In Handbook of Satisfiability
[12], chapter 3, pages 99–130.

[24] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.
Communications of the ACM, 5:394–397, 1962.

56

[25] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of the
ACM, 7:201–215, 1960.

[26] R. Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.

[27] J. Delgrande and W. Faber, editors. Proceedings of the Eleventh International Confer-
ence on Logic Programming and Nonmonotonic Reasoning (LPNMR’11), volume 6645
of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2011.

[28] M. Denecker, J. Vennekens, S. Bond, M. Gebser, and M. Truszczyński. The second answer
set programming competition. In Erdem et al. [38], pages 637–654.

[29] N. Dershowitz, Z. Hanna, and A. Nadel. Towards a better understanding of the function-
ality of a conflict-driven SAT solver. In Marques-Silva and Sakallah [98], pages 287–293.

[30] W. Dowling and J. Gallier. Linear-time algorithms for testing the satisfiability of proposi-
tional Horn formulae. Journal of Logic Programming, 1:267–284, 1984.

[31] C. Drescher, M. Gebser, T. Grote, B. Kaufmann, A. König, M. Ostrowski, and T. Schaub.
Conflict-driven disjunctive answer set solving. In Brewka and Lang [16], pages 422–432.

[32] C. Drescher, M. Gebser, B. Kaufmann, and T. Schaub. Heuristics in conflict resolution. In
M. Pagnucco and M. Thielscher, editors, Proceedings of the Twelfth International Work-
shop on Nonmonotonic Reasoning (NMR’08), number UNSW-CSE-TR-0819 in School
of Computer Science and Engineering, The University of New South Wales, Technical
Report Series, pages 141–149, 2008.

[33] N. Eén and A. Biere. Effective preprocessing in SAT through variable and clause elim-
ination. In F. Bacchus and T. Walsh, editors, Proceedings of the Eighth International
Conference on Theory and Applications of Satisfiability Testing (SAT’05), volume 3569 of
Lecture Notes in Computer Science, pages 61–75. Springer-Verlag, 2005.

[34] N. Eén and N. Sörensson. Temporal induction by incremental SAT solving. Electronic
Notes in Theoretical Computer Science, 89(4), 2003.

[35] N. Eén and N. Sörensson. An extensible SAT-solver. In Proceedings of the Sixth Inter-
national Conference on Theory and Applications of Satisfiability Testing (SAT’03), pages
502–518, 2003.

[36] N. Eén and N. Sörensson. Translating Pseudo-Boolean constraints into SAT. Journal on
Satisfiability, Boolean Modeling and Computation, 2:1–26, 2006.

[37] E. Ellguth, M. Gebser, M. Gusowski, R. Kaminski, B. Kaufmann, S. Liske, T. Schaub,
L. Schneidenbach, and B. Schnor. A simple distributed conflict-driven answer set solver.
In Erdem et al. [38], pages 490–495.

57

[38] E. Erdem, F. Lin, and T. Schaub, editors. Proceedings of the Tenth International Confer-
ence on Logic Programming and Nonmonotonic Reasoning (LPNMR’09), volume 5753
of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2009.

[39] W. Faber, G. Pfeifer, and N. Leone. Semantics and complexity of recursive aggregates in
answer set programming. Artificial Intelligence, 175(1):278–298, 2011.

[40] F. Fages. Consistency of Clark’s completion and the existence of stable models. Journal
of Methods of Logic in Computer Science, 1:51–60, 1994.

[41] P. Ferraris. Answer sets for propositional theories. In Baral et al. [8], pages 119–131.

[42] J. Freeman. Improvements to propositional satisfiability search algorithms. PhD thesis,
University of Pennsylvania, 1995.

[43] M. Garcia de la Banda and E. Pontelli, editors. Proceedings of the Twenty-fourth Inter-
national Conference on Logic Programming (ICLP’08), volume 5366 of Lecture Notes in
Computer Science. Springer-Verlag, 2008.

[44] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and M. Schneider.
Potassco: The Potsdam answer set solving collection. AI Communications, 24(2):105–
124, 2011.

[45] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and S. Thiele. A user’s
guide to gringo, clasp, clingo, and iclingo. Available at [110].

[46] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and S. Thiele. En-
gineering an incremental ASP solver. In Garcia de la Banda and Pontelli [43], pages
190–205.

[47] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. On the implementation of weight
constraint rules in conflict-driven ASP solvers. In Hill and Warren [73], pages 250–264.

[48] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Multi-criteria optimization in
answer set programming. In J. Gallagher and M. Gelfond, editors, Technical Communica-
tions of the Twenty-seventh International Conference on Logic Programming (ICLP’11),
volume 11 of Leibniz International Proceedings in Informatics (LIPIcs), pages 1–10.
Dagstuhl Publishing, 2011.

[49] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, M. Schneider, and S. Ziller. A portfolio
solver for answer set programming: Preliminary report. In Delgrande and Faber [27],
pages 352–357.

[50] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, and B. Schnor. Cluster-based ASP
solving with claspar. In Delgrande and Faber [27], pages 364–369.

58

[51] M. Gebser, R. Kaminski, A. König, and T. Schaub. Advances in gringo series 3. In
Delgrande and Faber [27], pages 345–351.

[52] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp: A conflict-driven answer
set solver. In Baral et al. [7], pages 260–265.

[53] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set enu-
meration. In Baral et al. [7], pages 136–148.

[54] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set solving.
In Veloso [125], pages 386–392.

[55] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Advanced preprocessing for
answer set solving. In M. Ghallab, C. Spyropoulos, N. Fakotakis, and N. Avouris, editors,
Proceedings of the Eighteenth European Conference on Artificial Intelligence (ECAI’08),
pages 15–19. IOS Press, 2008.

[56] M. Gebser, B. Kaufmann, and T. Schaub. The conflict-driven answer set solver clasp:
Progress report. In Erdem et al. [38], pages 509–514.

[57] M. Gebser, B. Kaufmann, and T. Schaub. Solution enumeration for projected Boolean
search problems. In W. van Hoeve and J. Hooker, editors, Proceedings of the Sixth Inter-
national Conference on Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems (CPAIOR’09), volume 5547 of Lecture Notes
in Computer Science, pages 71–86. Springer-Verlag, 2009.

[58] M. Gebser, J. Lee, and Y. Lierler. Elementary sets for logic programs. In Gil and Mooney
[69], pages 244–249.

[59] M. Gebser, J. Lee, and Y. Lierler. Head-elementary-set-free logic programs. In Baral et al.
[7], pages 149–161.

[60] M. Gebser, M. Ostrowski, and T. Schaub. Constraint answer set solving. In Hill and
Warren [73], pages 235–249.

[61] M. Gebser and T. Schaub. Loops: Relevant or redundant? In Baral et al. [8], pages 53–65.

[62] M. Gebser and T. Schaub. Characterizing ASP inferences by unit propagation. In
E. Giunchiglia, V. Marek, D. Mitchell, and E. Ternovska, editors, Proceedings of the
First International Workshop on Search and Logic: Answer Set Programming and SAT
(LaSh’06), pages 41–56, 2006.

[63] M. Gebser and T. Schaub. Tableau calculi for answer set programming. In S. Etalle
and M. Truszczyński, editors, Proceedings of the Twenty-second International Conference
on Logic Programming (ICLP’06), volume 4079 of Lecture Notes in Computer Science,
pages 11–25. Springer-Verlag, 2006.

59

[64] M. Gebser, T. Schaub, S. Thiele, and P. Veber. Detecting inconsistencies in large biological
networks with answer set programming. Theory and Practice of Logic Programming,
11(2-3):323–360, 2011.

[65] M. Gelfond. Answer sets. In V. Lifschitz, F. van Harmelen, and B. Porter, editors, Hand-
book of Knowledge Representation, chapter 7, pages 285–316. Elsevier, 2008.

[66] M. Gelfond and N. Leone. Logic programming and knowledge representation — the A-
Prolog perspective. Artificial Intelligence, 138(1-2):3–38, 2002.

[67] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
R. Kowalski and K. Bowen, editors, Proceedings of the Fifth International Conference
and Symposium on Logic Programming (ICLP’88), pages 1070–1080. The MIT Press,
1988.

[68] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9:365–385, 1991.

[69] Y. Gil and R. Mooney, editors. Proceedings of the Twenty-first National Conference on
Artificial Intelligence (AAAI’06). AAAI Press, 2006.

[70] E. Giunchiglia, N. Leone, and M. Maratea. On the relation among answer set solvers.
Annals of Mathematics and Artificial Intelligence, 53(1-4):169–204, 2008.

[71] E. Giunchiglia, Y. Lierler, and M. Maratea. Answer set programming based on proposi-
tional satisfiability. Journal of Automated Reasoning, 36(4):345–377, 2006.

[72] E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT solver. In Proceedings of
the Fifth Conference on Design, Automation and Test in Europe (DATE’02), pages 142–
149. IEEE Press, 2002.

[73] P. Hill and D. Warren, editors. Proceedings of the Twenty-fifth International Conference
on Logic Programming (ICLP’09), volume 5649 of Lecture Notes in Computer Science.
Springer-Verlag, 2009.

[74] J. Huang. The effect of restarts on the efficiency of clause learning. In Veloso [125], pages
2318–2323.

[75] H. Ishebabi, P. Mahr, C. Bobda, M. Gebser, and T. Schaub. Answer set vs integer lin-
ear programming for automatic synthesis of multiprocessor systems from real-time paral-
lel programs. Journal of Reconfigurable Computing, 2009. http://www.hindawi.
com/journals/ijrc/2009/863630.html.

[76] T. Janhunen. Some (in)translatability results for normal logic programs and propositional
theories. Journal of Applied Non-Classical Logics, 16(1-2):35–86, 2006.

60

[77] T. Janhunen and I. Niemelä. Compact translations of non-disjunctive answer set pro-
grams to propositional clauses. In M. Balduccini and T. Son, editors, Logic Programming,
Knowledge Representation, and Nonmonotonic Reasoning: Essays Dedicated to Michael
Gelfond on the Occasion of His 65th Birthday, volume 6565 of Lecture Notes in Computer
Science, pages 111–130. Springer-Verlag, 2011.

[78] T. Janhunen, I. Niemelä, and M. Sevalnev. Computing stable models via reductions to
difference logic. In Erdem et al. [38], pages 142–154.

[79] M. Järvisalo and E. Oikarinen. Extended ASP tableaux and rule redundancy in normal
logic programs. Theory and Practice of Logic Programming, 8(5-6):691–716, 2008.

[80] T. Kim, J. Lee, and R. Palla. Circumscriptive event calculus as answer set programming.
In Boutilier [14], pages 823–829.

[81] H. Kleine Büning and X. Zhao, editors. Proceedings of the Eleventh International Con-
ference on Theory and Applications of Satisfiability Testing (SAT’08), volume 4996 of
Lecture Notes in Computer Science. Springer-Verlag, 2008.

[82] J. Lee. A model-theoretic counterpart of loop formulas. In L. Kaelbling and A. Saf-
fiotti, editors, Proceedings of the Nineteenth International Joint Conference on Artificial
Intelligence (IJCAI’05), pages 503–508. Professional Book Center, 2005.

[83] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic, 7(3):499–562, 2006.

[84] N. Leone, P. Rullo, and F. Scarcello. Disjunctive stable models: Unfounded sets, fixpoint
semantics, and computation. Information and Computation, 135(2):69–112, 1997.

[85] C. Li and F. Manyà. MaxSAT. In Handbook of Satisfiability [12], chapter 19, pages
613–631.

[86] Y. Lierler. Abstract answer set solvers with learning. Theory and Practice of Logic Pro-
gramming, 11(2-3):135–169, 2011.

[87] V. Lifschitz. Answer set programming and plan generation. Artificial Intelligence, 138(1-
2):39–54, 2002.

[88] V. Lifschitz and A. Razborov. Why are there so many loop formulas? ACM Transactions
on Computational Logic, 7(2):261–268, 2006.

[89] V. Lifschitz, L. Tang, and H. Turner. Nested expressions in logic programs. Annals of
Mathematics and Artificial Intelligence, 25(3-4):369–389, 1999.

[90] F. Lin and Y. Zhao. ASSAT: Computing answer sets of a logic program by SAT solvers.
Artificial Intelligence, 157(1-2):115–137, 2004.

61

[91] Z. Lin, Y. Zhang, and H. Hernandez. Fast SAT-based answer set solver. In Gil and Mooney
[69], pages 92–97.

[92] M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup of Las Vegas algorithms.
Information Processing Letters, 47(4):173–180, 1993.

[93] V. Marek and V. Subrahmanian. The relationship between stable, supported, default
and autoepistemic semantics for general logic programs. Theoretical Computer Science,
103(2):365–386, 1992.

[94] V. Marek and M. Truszczyński. Stable models and an alternative logic programming
paradigm. In K. Apt, V. Marek, M. Truszczyński, and D. Warren, editors, The Logic
Programming Paradigm: A 25-Year Perspective, pages 375–398. Springer-Verlag, 1999.

[95] M. Mariën, J. Wittocx, M. Denecker, and M. Bruynooghe. SAT(ID): Satisfiability of
propositional logic extended with inductive definitions. In Kleine Büning and Zhao [81],
pages 211–224.

[96] J. Marques-Silva, I. Lynce, and S. Malik. Conflict-driven clause learning SAT solvers. In
Handbook of Satisfiability [12], chapter 4, pages 131–153.

[97] J. Marques-Silva and K. Sakallah. GRASP: A search algorithm for propositional satisfia-
bility. IEEE Transactions on Computers, 48(5):506–521, 1999.

[98] J. Marques-Silva and K. Sakallah, editors. Proceedings of the Tenth International Con-
ference on Theory and Applications of Satisfiability Testing (SAT’07), volume 4501 of
Lecture Notes in Computer Science. Springer-Verlag, 2007.

[99] A. Mileo, D. Merico, and R. Bisiani. A logic programming approach to home monitoring
for risk prevention in assisted living. In Garcia de la Banda and Pontelli [43], pages 145–
159.

[100] D. Mitchell. A SAT solver primer. Bulletin of the European Association for Theoretical
Computer Science, 85:112–133, 2005.

[101] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an ef-
ficient SAT solver. In Proceedings of the Thirty-eighth Conference on Design Automation
(DAC’01), pages 530–535. ACM Press, 2001.

[102] I. Niemelä. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273, 1999.

[103] I. Niemelä. Stable models and difference logic. Annals of Mathematics and Artificial
Intelligence, 53(1-4):313–329, 2008.

[104] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo theories:
From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of
the ACM, 53(6):937–977, 2006.

62

[105] S. Perri, F. Scarcello, G. Catalano, and N. Leone. Enhancing DLV instantiator by back-
jumping techniques. Annals of Mathematics and Artificial Intelligence, 51(2-4):195–228,
2007.

[106] D. Pearce. A new logical characterisation of stable models and answer sets. In J. Dix,
L. Pereira, and T. Przymusinski, editors, Proceedings of the Sixth Workshop on Non-
Monotonic Extensions of Logic Programming (NMELP’96), volume 1216 of Lecture
Notes in Computer Science, pages 57–70. Springer-Verlag, 1996.

[107] K. Pipatsrisawat and A. Darwiche. A lightweight component caching scheme for satisfia-
bility solvers. In Marques-Silva and Sakallah [98], pages 294–299.

[108] K. Pipatsrisawat and A. Darwiche. A new clause learning scheme for efficient unsatisfia-
bility proofs. In D. Fox and C. Gomes, editors, Proceedings of the Twenty-third National
Conference on Artificial Intelligence (AAAI’08), pages 1481–1484. AAAI Press, 2008.

[109] K. Pipatsrisawat and A. Darwiche. On the power of clause-learning SAT solvers as reso-
lution engines. Artificial Intelligence, 175(2):512–525, 2011.

[110] Potassco. http://potassco.sourceforge.net.

[111] P. Purdom. A transitive closure algorithm. BIT Numerical Mathematics, 10:76–94, 1970.

[112] F. Ricca, W. Faber, and N. Leone. A backjumping technique for disjunctive logic pro-
gramming. AI Communications, 19(2):155–172, 2006.

[113] F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming.
Elsevier, 2006.

[114] O. Roussel and V. Manquinho. Pseudo-Boolean and cardinality constraints. In Handbook
of Satisfiability [12], chapter 22, pages 695–733.

[115] L. Ryan. Efficient algorithms for clause-learning SAT solvers. Master’s thesis, Simon
Fraser University, 2004.

[116] V. Ryvchin and O. Strichman. Local restarts. In Kleine Büning and Zhao [81], pages
271–276.

[117] J. Schlipf. The expressive powers of the logic programming semantics. Journal of Com-
puter and System Sciences, 51:64–86, 1995.

[118] L. Schneidenbach, B. Schnor, M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub.
Experiences running a parallel answer set solver on Blue Gene. In M. Ropo, J. Wester-
holm, and J. Dongarra, editors, Proceedings of the Sixteenth European PVM/MPI Users’
Group Meeting on Recent Advances in Parallel Virtual Machine and Message Passing In-
terface (PVM/MPI’09), volume 5759 of Lecture Notes in Computer Science, pages 64–72.
Springer-Verlag, 2009.

63

[119] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model
semantics. Artificial Intelligence, 138(1-2):181–234, 2002.

[120] T. Syrjänen. Lparse 1.0 user’s manual. http://www.tcs.hut.fi/Software/
smodels/lparse.ps.gz.

[121] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

[122] M. Thielscher. Answer set programming for single-player games in general game playing.
In Hill and Warren [73], pages 327–341.

[123] G. Tseitin. On the complexity of derivation in propositional calculus. In A. Slisenko,
editor, Structures in Constructive Mathematics and Mathematical Logic, part 2, pages
115–125. Consultants Bureau, 1970.

[124] A. Van Gelder, K. Ross, and J. Schlipf. The well-founded semantics for general logic
programs. Journal of the ACM, 38(3):620–650, 1991.

[125] M. Veloso, editor. Proceedings of the Twentieth International Joint Conference on Artifi-
cial Intelligence (IJCAI’07). AAAI Press/The MIT Press, 2007.

[126] J. Ward and J. Schlipf. Answer set programming with clause learning. In V. Lifschitz
and I. Niemelä, editors, Proceedings of the Seventh International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’04), volume 2923 of Lecture Notes
in Artificial Intelligence, pages 302–313. Springer-Verlag, 2004.

[127] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven learning in a
Boolean satisfiability solver. In Proceedings of the International Conference on Computer-
Aided Design (ICCAD’01), pages 279–285, 2001.

[128] L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-based
checker: Practical implementations and other applications. In Proceedings of the Sixth
Conference on Design, Automation and Test in Europe (DATE’03), pages 10880–10885.
IEEE Press, 2003.

64

