
1

An Incremental Answer Set Programming
Based System for Finite Model Computation
Martin Gebser, Orkunt Sabuncu and Torsten Schaub
Universität Potsdam, Potsdam, Germany
E-mail: {gebser,orkunt,torsten}@cs.uni-potsdam.de

We address the problem of Finite Model Computation (FMC) of first-order theories and show that FMC can efficiently and
transparently be solved by taking advantage of a recent extension of Answer Set Programming (ASP), called incremental Answer
Set Programming (iASP). The idea is to use the incremental parameter in iASP programs to account for the domain size of a
model. The FMC problem is then successively addressed for increasing domain sizes until an answer set, representing a finite
model of the original first-order theory, is found. We implemented a system based on the iASP solver iClingo and demonstrate
its competitiveness by showing that it slightly outperforms the winner of the FNT division of CADE’s 2009 Automated Theorem
Proving (ATP) competition on the respective benchmark collection.

Keywords: Incremental Answer Set Programming, Finite Model Computation

1. Introduction

While Finite Model Computation (FMC;[1]) consti-
tutes an established research area in the field of Au-
tomated Theorem Proving (ATP;[2]), Answer Set Pro-
gramming (ASP;[3]) has become a widely used ap-
proach for declarative problem solving, featuring man-
ifold applications in the field of Knowledge Represen-
tation and Reasoning. Up to now, however, both FMC
and ASP have been studied in separation, presumably
due to their distinct hosting research fields. We address
this gap and show that FMC can efficiently and trans-
parently be solved by taking advantage of a recent ex-
tension of ASP, called incremental Answer Set Pro-
gramming (iASP;[4]).

Approaches to FMC for first-order theories [5,6] fall
in two major categories, translational and constraint
solving approaches. In translational approaches [7,8],
the FMC problem is divided into multiple satisfiabil-
ity problems in propositional logic. This division is
based on the size of the finite domain. A Satisfiabil-
ity (SAT;[9]) solver searches in turn for a model of
the subproblem having a finite domain of fixed size,
which is gradually increased until a model is found
for the subproblem at hand. In the constraint solving
approach [10,11], a system computes a model by in-
crementally casting FMC into a constraint satisfaction
problem. While systems based on constraint solving
are efficient for problems with many unit equalities,

translation-based ones are applicable to a much wider
range of problems [6].

In fact, translational approaches to FMC bear a
strong resemblance to iASP. The latter was developed
for dealing with dynamic problems like model check-
ing and planning. To this end, iASP foresees an integer-
valued parameter that is consecutively increased un-
til a problem is found to be satisfiable. Likewise, in
translation-based FMC, the size of the interpretations’
domain is increased until a model is found. This sim-
ilarity in methodologies motivates us to encode and
solve FMC by means of iASP.

The idea is to use the incremental parameter in iASP
to account for the domain size. Separate subproblems
considered in translational approaches are obtained by
grounding an iASP encoding, where care is taken to
avoid redundancies between subproblems. The param-
eter capturing the domain size is then successively in-
cremented until an answer set is found. In the success-
ful case, an answer set obtained for parameter value i
provides a finite model of the input theory with domain
size i.

We implemented a system based on the iASP solver
iClingo [4] and compared its performance to various
FMC systems. To this end, we used problems from
the FNT (First-order form Non-Theorems) division of
CADE’s 2009 and 2010 ATP competitions. The results
demonstrate the competitiveness of our system. On the
benchmark collection used in 2009, iClingo solved the

AI Communications
ISSN 0921-7126, IOS Press. All rights reserved

2

same number of problems as Paradox [8] in approxi-
mately half of its run time on average. Note that Para-
dox won first places in the FNT division each year from
2007 to 2010.

The paper is organized as follows. The next section
introduces basic concepts about the translational ap-
proach to FMC and about iASP. Section 3 describes
our incremental encoding of FMC and how it is gener-
ated from a given set of clauses. Information about our
system can be found in Section 4. We empirically eval-
uate our system in Section 5 and conclude in Section 6.
Proofs and an input first-order theory along with logic
programs, as used by our FMC system based on iASP,
are provided in Appendix A and B, respectively.1

2. Background

We assume the reader to be familiar with the ter-
minology and basic definitions of first-order logic and
ASP. In what follows, we thus focus on the introduc-
tion of concepts needed in the remainder of this paper.

In our method, we translate first-order theories into
sets of flat clauses. A clause is flat if (i) all its predi-
cates and functions have only variables as arguments,
(ii) all occurrences of constants and functions are
within equality predicates, and (iii) each equality pred-
icate has at least one variable as an argument. Any first-
order clause can be transformed into an equisatisfiable
flat clause via flattening [7,8,6], done by repeatedly ap-
plying the rewrite rule C[t] (C[X] ∨ (X 6= t)),
where t is a term offending flatness and X is a fresh
variable. For instance, the clause (f(X) = g(Y)) can
be turned into the flat clause (Z = g(Y)) ∨ (Z 6=
f(X)). In the translational approach to FMC, flatten-
ing is used to bring the input into a form that is easy to
instantiate using domain elements.

As regards ASP, we rely on the language supported
by grounders lparse [12] and gringo [13], providing
normal and choice rules as well as cardinality and in-
tegrity constraints. As usual, rules with variables are
regarded as representatives for all respective ground
instances. Beyond that, our approach makes use of
iASP [4] that allows for dealing with incrementally
growing domains. In iASP, a parameterized domain de-
scription is a triple (B,P,Q) of logic programs, among
which P and Q contain a (single) parameter k ranging
over positive integers. Hence, we sometimes denote P

1This paper extends a previous JELIA’10 contribution with the
same title by providing additional benchmark results and proofs.

and Q by P [k] and Q[k]. The base program B de-
scribes static knowledge, independent of parameter k.
The role of P is to capture knowledge accumulating
with increasing k, whereas Q is specific for each value
of k. Our goal is then to decide whether the program

R[i] = B ∪
⋃

1≤j≤iP [k/j] ∪Q[k/i] (1)

has an answer set for some (minimum) integer i ≥ 1,
where P [k/j] and Q[k/i] refer to the programs ob-
tained from P and Q by replacing each occurrence of
constant k with j or i, respectively. In what follows,
we refer to rules in B, P [k], and Q[k] as being static,
cumulative, and volatile, respectively.

3. Approach

In this section, we present our encoding of FMC
in iASP. The first task, associating terms with domain
elements, is dealt with in Section 3.1. Based on this,
Section 3.2 describes the evaluation of (flat) clauses
within iASP programs. In Section 3.3, we explain how
a model of a first-order theory is then read off from
an answer set. Section 3.4 presents an encoding opti-
mization by means of symmetry breaking. Finally, we
show the soundness and completeness of our approach
in Section 3.5.

Throughout this section, we illustrate our approach
on a running example. Assume that the following first-
order theory is given as starting point:

p(a)

(∀X) ¬q(X,X)

(∀X) (p(X)→ (∃Y) q(X,Y)). (2)

The first preprocessing step, clausification of the the-
ory, yields the following:

p(a)

¬q(X,X)

¬p(X) ∨ q(X, sko(X)).

The second step, flattening, transforms these clauses
into the following ones:

p(X) ∨ (X 6= a)

¬q(X,X)

¬p(X) ∨ q(X,Y) ∨ (Y 6= sko(X)). (3)

3

Such flat clauses form the basis for our iASP encoding.
Before we present it, note that the theory in (3) has a
model I over domain {1, 2} given by:

aI = 1

skoI = {1 7→ 2, 2 7→ 2}
pI = {1}
qI = {(1, 2)}. (4)

Importantly, I is also a model of the original theory in
(2), even if skoI is dropped.

3.1. Interpreting Terms

In order to determine a model, we need to associate
the (non-variable) terms in the input with domain ele-
ments. To this end, every constant c is represented by a
fact cons(c)., belonging to the static part of our iASP
program. For instance, the constant a found in (3) gives
rise to the following fact:

cons(a). (5)

Our iASP encoding uses the predicate assign(T,D)
to represent that a term T is mapped to a domain ele-
ment D. Here and in the following, we write k to refer
to the incremental variable in an iASP program. Un-
less stated otherwise, all rules provided in the sequel
are cumulative by default. For constants, the following
(choice) rule then allows for mapping them to the kth
domain element:

{assign(T, k)} ← cons(T). (6)

Note that, by using k in assign(T, k), it is guaranteed
that instances of the rule are particular to each incre-
mental step.

Unlike with constants, the argument tuples of (non-
zero arity) functions grow when k increases. To deal
with this, we first declare auxiliary facts to represent
available domain elements:

dom(k). arg(k, k). (7)

Predicates dom and arg are then used to qualify the
arguments of an n-ary function f in the following rule:

func(f(X1, . . . , Xn))←
dom(X1), . . . , dom(Xn),
1{arg(X1, k), . . . , arg(Xn, k)}. (8)

The cardinality constraint 1{arg(X1, k), . . . ,
arg(Xn, k)} stipulates at least one of the argu-
ments X1, . . . , Xn of f to be k. As in (6), though
using a different methodology, this makes sure that
the (relevant) instances are particular to a value of k.
However, note that rules of the above form need to
be provided separately for each function in the input,
given that the arities of functions matter. For the unary
function sko in (3), applying the described scheme
leads to the following rule:

func(sko(X))←
dom(X), 1{arg(X, k)}. (9)

To represent new mappings via a function when k
increases, the previous methodology can easily be ex-
tended to requiring some argument or alternatively the
function value to be k. The following (choice) rule en-
codes mappings via an n-ary function f :

{assign(f(X1, . . . , Xn), Y)} ←
dom(X1), . . . , dom(Xn), dom(Y),
1{arg(X1, k), . . . , arg(Xn, k), arg(Y, k)}. (10)

For instance, the rule encoding mappings via unary
function sko is as follows:

{assign(sko(X), Y)} ←
dom(X), dom(Y),
1{arg(X, k), arg(Y, k)}. (11)

Observe that the cardinality constraint 1{arg(X, k),
arg(Y, k)} necessitates at least one of argument X or
value Y of function sko to be k, which in the same
fashion as before makes the (relevant) instances of the
rule particular to each incremental step.

To see how the previous rules are handled in iASP
computations, we below show the instances of (7)
and (11) generated in and accumulated over three in-
cremental steps:

Step 1

dom(1). arg(1, 1).

{assign(sko(1), 1)}.

Step 2

dom(2). arg(2, 2).

{assign(sko(1), 2)}.
{assign(sko(2), 1)}.
{assign(sko(2), 2)}.

4

Step 3

dom(3). arg(3, 3).

{assign(sko(1), 3)}.
{assign(sko(2), 3)}.
{assign(sko(3), 1)}.
{assign(sko(3), 2)}.
{assign(sko(3), 3)}.

Given that the body of (11) only relies on facts (over
predicates dom and arg), its ground instances can be
evaluated and then be reduced: if a ground body holds,
the corresponding (choice) head is generated in a step;
otherwise, the ground rule is trivially satisfied and
needs not be considered any further. Hence, all rules
shown above have an empty body after grounding.
Notice, for example, that rule {assign(sko(1), 1)}. is
generated in the first step, while it is not among the
new ground rules in the second and third step.

Finally, a mapping of terms to domain elements
must be unique and total. To this end, translation-based
FMC approaches add uniqueness and totality axioms
for each term to an instantiated theory. In iASP, such
requirements can be encoded as follows:

← assign(T,D), assign(T, k), D < k. (12)

← cons(T), {assign(T,D) : dom(D)}0. (13)

← func(T), {assign(T,D) : dom(D)}0. (14)

While the integrity constraint in (12) forces the map-
ping of each term to be unique, the ones in (13) and
(14) stipulate each term to be mapped to some do-
main element. However, since the domain grows over
incremental steps and new facts are added for predi-
cate dom , ground instances of (13) and (14) are only
valid in the step where they are generated. Hence, the
integrity constraints in (13) and (14) belong to the
volatile part of our iASP program.

3.2. Interpreting Clauses

To evaluate an input theory, we also need to inter-
pret its predicates. To this end, we include a rule of the
following form for every n-ary predicate p in our iASP
program:

{p(X1, . . . , Xn)} ←
dom(X1), . . . , dom(Xn),
1{arg(X1, k), . . . , arg(Xn, k)}. (15)

As discussed above, requiring 1{arg(X1, k), . . . ,
arg(Xn, k)} to hold guarantees that (relevant) in-

stances are particular to each incremental step. The
only exception to this is n = 0 (a predicate p of arity
zero), in which case the rule {p}. belongs to the static
part of our program. Also note that, unlike constants
and functions, we do not reify predicates, as assigning
a truth value can be expressed more naturally without
it. For example, the following rules allow for interpret-
ing the predicates p and q in (3):

{p(X)} ← dom(X), 1{arg(X, k)}.

{q(X,Y)} ← dom(X), dom(Y),
1{arg(X, k), arg(Y, k)}. (16)

Following [14], the basic idea of encoding a (flat)
clause is to represent it by an integrity constraint con-
taining the complements of the literals in the clause.
However, clauses may contain equality literals of the
form (X = Y) or (X 6= Y), where at least one of
the terms X and Y is a variable, and so we also need
to consider complements of such literals. W.l.o.g., we
below assume that the left-hand side of every equality
literal is a variable, while the right-hand side is either
a variable or a non-variable term. In view of this con-
vention, we define the encoding L of the complement
of a (classical or equality) literal L as follows:

L =

not p(X1, . . . , Xn)
if L = p(X1, . . . , Xn)

p(X1, . . . , Xn)
if L = ¬p(X1, . . . , Xn)

not assign(t,X)
if L = (X = t) for some non-variable term t

assign(t,X)
if L = (X 6= t) for some non-variable term t

X 6= Y
if L = (X = Y) for some variable Y
X = Y
if L = (X 6= Y) for some variable Y .

Observe that the first two cases refer to the interpre-
tation of a predicate p, the third and the fourth to the
mapping of non-variable terms to domain elements,
and the last two to built-in comparison operators of
grounders like lparse and gringo.

With the complements of literals at hand, we
can now encode a flat clause containing literals
L1, . . . , Lm and variables X1, . . . , Xn by an integrity
constraint as follows:

5

← L1, . . . , Lm, dom(X1), . . . , dom(Xn),
1{arg(X1, k), . . . , arg(Xn, k)}. (17)

Note that we use the same technique as before to sepa-
rate the (relevant) instances obtained at each incremen-
tal step. For our running example, the clauses in (3)
give rise to the following integrity constraints:

← not p(X), assign(a,X), dom(X), 1{arg(X, k)}.

← q(X,X), dom(X), 1{arg(X, k)}.

← p(X),not q(X,Y), assign(sko(X), Y),
dom(X), dom(Y), 1{arg(X, k), arg(Y, k)}. (18)

While the first two integrity constraints each contribute
a single instance at an incremental step, (2 ∗ k) − 1
instances are obtained for the third one.

Although they are unlikely to occur in first-order
theories, propositional clauses without variables and
equality literals require a slightly different treatment.
For a propositional clause containing (classical) liter-
als L1, . . . , Lm, instead of (17), we include the follow-
ing simpler integrity constraint in the static part of our
iASP program:

← L1, . . . , Lm. (19)

3.3. Extracting Models

The rules that represent the mapping of terms to do-
main elements (described in Section 3.1) along with
those representing satisfiability of flat clauses (de-
scribed in Section 3.2) constitute our iASP program
for FMC. To compute an answer set, the incremental
variable k is increased by one at each step. This cor-
responds to the addition of a new domain element. If
an answer set is found in a step i, it means that the in-
put theory has a model over a domain of size i. In fact,
from an answer set A of our iASP program, a model I
of the input theory over domain {d | dom(d) ∈ A} is
extracted as follows:

cI = d if cons(c) ∈ A and assign(c, d) ∈ A,

f I = {(d1, . . . , dn) 7→ d |
func(f(d1, . . . , dn)) ∈ A,
assign(f(d1, . . . , dn), d) ∈ A},

pI = {(d1, . . . , dn) | p(d1, . . . , dn) ∈ A}.

For the iASP program encoding the theory in (3),
composed of the rules in (5–7, 9, 11–14, 16, 18), the
following answer set is obtained in the second incre-

mental step:

dom(1), dom(2), arg(1, 1), arg(2, 2),

cons(a), assign(a, 1),

func(sko(1)), assign(sko(1), 2),

func(sko(2)), assign(sko(2), 2),

p(1), q(1, 2)

The corresponding model over domain {1, 2} is the
one shown in (4).

3.4. Breaking Symmetries

In view of the fact that interpretations obtained by
permuting domain elements are isomorphic, an input
theory can have many symmetric models. For exam-
ple, an alternative model to the one in (4) can easily be
obtained by swapping domain elements 1 and 2. Such
symmetries tend to degrade the performance of FMC
systems. Hence, systems based on the constraint solv-
ing approach, such as Sem and Falcon, apply variants
of a dynamic symmetry breaking technique called least
number heuristic [11]. Translation-based systems, such
as Paradox and FM-Darwin, staticly break symmetries
by narrowing how terms can be mapped to domain el-
ements.

Our approach to symmetry breaking is also a static
one that aims at reducing the possibilities of mapping
constants to domain elements. To this end, we use the
technique described in [8,15], fixing an order of the
constants in the input by uniquely assigning a rank in
[1, n], where n is the total number of constants, to each
of them. Given such a ranking in terms of facts over
predicate order , we can replace the rule in (6) with:

{assign(T, k)} ← cons(T), order(T,O), k ≤ O.

For instance, if the order among three constants, c1, c2,
and c3, is given by facts order(ci, i). for i ∈ {1, 2, 3},
the following instances of the above rule are generated
in and accumulated over three incremental steps:

Step 1

{assign(c1, 1)}.
{assign(c2, 1)}.
{assign(c3, 1)}.

Step 2

{assign(c2, 2)}.
{assign(c3, 2)}.

Step 3

{assign(c3, 3)}.

6

That is, while all three constants can be mapped to the
first domain element, c1 cannot be mapped to the sec-
ond one, and only c3 can be mapped to the third one.
Note that, despite of these restrictions, the above rules
still admit mappings like cI1 = 1, cI2 = 1, cI3 = 3.

To further disambiguate the mapping of constants to
domain elements, the following rules can be added:

assigned(T, k)← order(S,O), order(T,O+1),
assign(S, k).

assigned(T, k)← order(S,O), order(T,O+1),
assigned(S, k).

← cons(T), assign(T, k), 1 < k,
not assigned(T, k−1).

The idea is to propagate the mapping of a constant to
the ones that succeed it in the given order. Then, an
integrity constraint is used to stipulate that there are
no gaps in the sequence of domain elements to which
constants are mapped. When reconsidering the con-
stants c1, c2, c3, the following (relevant) instances of
the above rules are generated in and accumulated over
three incremental steps:

Step 1

assigned(c2, 1)← assign(c1, 1).
assigned(c3, 1)← assign(c2, 1).
assigned(c3, 1)← assigned(c2, 1).

Step 2

assigned(c3, 2)← assign(c2, 2).
← assign(c2, 2),not assigned(c2, 1).
← assign(c3, 2),not assigned(c3, 1).

Step 3

← assign(c3, 3),not assigned(c3, 2).

For the mapping cI1 = 1, cI2 = 1, cI3 = 3, repre-
sented by the atoms assign(c1, 1), assign(c2, 1), and
assign(c3, 3), we derive two atoms over predicate
assigned : assigned(c2, 1) and assigned(c3, 1). That
is, the integrity constraint generated in Step 3 refutes
the mapping at hand. On the other hand, all integrity
constraints are satisfied when we switch from cI3 = 3
to cI3 = 2. In fact, the admissible mappings of con-
stants to domain elements are exactly the ones referred
to by the term “canonical form” in [8].

Finally, we note that our iASP encoding of the the-
ory in (3) yields 10 answer sets in the second incremen-
tal step. If we apply the described symmetry breaking,
it disallows mapping the single constant a to the sec-

ond domain element, which prunes 5 of the 10 mod-
els. Although our simple technique can in general not
break all symmetries related to the mapping of terms
because it does not incorporate functions, the experi-
ments in Section 5 demonstrate that it may nonetheless
lead to significant performance gains. Unlike with con-
stants, given a priori, additionally incorporating func-
tions into our approach to symmetry breaking would
require the extension of predicate order to newly com-
posed functional terms in each incremental step. For
the special case of unary functions, such an exten-
sion [8] is implemented in Paradox; with FM-Darwin,
it has not turned out to be more effective than symme-
try breaking for only constants [15].

3.5. Soundness and Completeness

Before stating our theorem, we first define the pa-
rameterized domain description formed for a set T of
flat clauses. The signature 〈F0,F ,P0,P〉 of T is built
from a set F0 of constants, a set F of (non-zero arity)
functions, a set P0 of zero arity predicates, and a set
P of non-zero arity predicates. For T , we then form
the parameterized domain description (B,P,Q) in the
following way:

B = {cons(c). | c ∈ F0} ∪ {{p}. | p ∈ P0} ∪ΠT0 ,

P =

dom(k). arg(k, k).
{assign(T, k)} ← cons(T).
← assign(T,D), assign(T, k), D < k.

∪ ΠF ∪ΠP ∪ΠT , and

Q =

{
← cons(T), {assign(T,D) : dom(D)}0.
← func(T), {assign(T,D) : dom(D)}0.

}
where ΠF contains rules of the form (8) and (10)
for each function f ∈ F , ΠP contains a rule of the
form (15) for each predicate p ∈ P , ΠT contains a
rule of the form (17) for each non-propositional clause
in T , and ΠT0 contains a rule of the form (19) for each
propositional clause in T . With these concepts at hand,
we are ready to formulate the soundness and complete-
ness of our approach.

Theorem 1 (Soundness & Completeness). Let T be a
set of flat clauses and (B,P,Q) the parameterized do-
main description for T . Then, the logic program R[i],
as defined in (1), has an answer set for some positive
integer i iff T has a model over a finite domain of size i.

7

Note that the theorem still applies when including
symmetry breaking, as described in the previous sec-
tion, in view of the fact that it may eliminate some iso-
morphic models, but not all of them. A proof of Theo-
rem 1 is provided in Appendix A.

4. System

We use FM-Darwin to read an input in TPTP format,
a format for first-order theories widely used within the
community of ATP, to clausify it if needed, and to flat-
ten the clauses at hand. Additionally, FM-Darwin ap-
plies some input optimizations before flattening, such
as renaming deep ground subterms to avoid the gener-
ation of flat clauses with many variables [15]. For ob-
taining flat clauses from an input theory specified in a
file tptp_input.p, FM-Darwin is invoked as fol-
lows:

darwin -fd true -pfdp Exit
tptp_input.p

Having an input in terms of flat clauses, we can ap-
ply the transformations described in Section 3.1 and
3.2 to generate an iASP program. To this end, we
implemented a compiler called fmc2iasp2, written in
Python. It outputs the rules that are specific to an in-
put theory, while the theory-independent rules in (6),
(7), and (12–14) are provided in a separate file. This
separation allows us to test encoding variants without
changing fmc2iasp, for instance, the symmetry break-
ing described in Section 3.4. Finally, we use iClingo
to incrementally ground the obtained iASP program
and to search for answer sets representing finite mod-
els of the input theory. Provided that fmc.lp is the
file containing theory-independent rules, the following
command-line call is used for FMC:

darwin -fd true -pfdp Exit
tptp_input.p | fmc2iasp.py | cat
fmc.lp - | iclingo

5. Experiments

We consider the following systems: iClingo (2.0.5),
Clingo (2.0.5), Paradox (3.0), FM-Darwin (1.4.5), and
Mace4 (2009-11A). While Paradox and FM-Darwin
are based on the translational approach to FMC,
Mace4 applies the constraint solving approach. For

2http://potassco.sourceforge.net/

iClingo and Clingo, we used command line switch
--heuristic=VSIDS, as it improved search per-
formance.3 Our experiments have been performed on a
3.4GHz Intel Xeon machine running Linux, imposing
300 seconds as time and 2GB as memory limit.

FMC instances stem from the FNT division of
CADE’s 2009 and 2010 ATP competitions. The in-
stances in this division are satisfiable and suitable for
evaluating FMC systems, among which Paradox won
the first place in both years’ competitions. The consid-
ered problem domains are: computing theory (COM),
common-sense reasoning (CSR), geography (GEG),
geometry (GEO), graph theory (GRA), groups (GRP),
homological algebra (HAL), knowledge representation
(KRS), lattices (LAT), logic calculi (LCL), medicine
(MED), management (MGT), miscellaneous (MSC),
natural language processing (NLP), number theory
(NUM), planning (PLA), processes (PRO), rings in al-
gebra (RNG), software verification (SWV), syntactic
(SYN).4

Table 1 and 2 show benchmark results for each of
the problem domains. Column # displays how many
instances of a problem domain belong to the test suite.
For each system and problem domain, average run time
in seconds is taken over the solved instances; their
number is given in parentheses.5 A dash in an entry
means that a system could not solve any instance of the
corresponding problem domain within the run time and
memory limits. For each system, the last row shows
its average run time over all solved instances and pro-
vides their number in parentheses. The evaluation cri-
teria in CADE competitions are first number of solved
instances and then average run time as tie breaker.

In Table 1, we see that Mace4 and FM-Darwin
solved 50 and 82 instances, respectively, out of the 99
instances in total.6 Paradox, the winner of the FNT di-
vision in CADE’s 2009 ATP competition, solved 92 in-
stances in 6.05 seconds on average. While the version
of our system not using symmetry breaking (described
in Section 3.4), denoted by iClingo (2), solved two in-
stances less, the one with symmetry breaking, denoted
by iClingo (1), also solved 92 instances. As it spent
only 2.29 seconds on average, according to the CADE

3Note that Minisat, used internally by Paradox, also applies
VSIDS as decision heuristic [16].

4http://www.cs.miami.edu/~tptp/
5Run time results of our system include the time for preprocessing

by FM-Darwin; it is negligible compared to the model finding time.
6The FNT division included 100 instances in the 2009 competi-

tion. We dropped one instance that had an error in the encoding be-
cause the corrected version is unsatisfiable.

8

Benchmark # iClingo (1) iClingo (2) Clingo Paradox FM-Darwin Mace4

CSR 1 2.87 (1) 2.30 (1) 6.26 (1) — 20.56 (1) —
GEG 1 — — — 230.36 (1) — —
GEO 12 0.08 (12) 0.09 (12) 0.11 (12) 0.08 (12) 0.09 (12) 0.04 (12)
GRA 2 3.44 (1) — 12.78 (1) 0.49 (1) — —
GRP 1 4.25 (1) 216.96 (1) 6.31 (1) 0.63 (1) — 0.28 (1)
HAL 2 2.52 (2) 2.46 (2) 2.94 (2) 0.67 (2) 11.84 (1) —
KRS 6 0.14 (6) 0.16 (6) 0.27 (6) 0.11 (6) 30.87 (6) 0.03 (4)
LAT 5 0.10 (5) 0.11 (5) 0.13 (5) 0.12 (5) 0.08 (5) 0.04 (5)
LCL 17 8.62 (17) 9.50 (17) 10.86 (17) 3.70 (17) 1.65 (17) 5.10 (8)
MGT 4 0.08 (4) 0.09 (4) 0.10 (4) 0.06 (4) 0.12 (4) 1.09 (4)
MSC 3 4.70 (2) 0.23 (1) 12.58 (2) 122.56 (2) 0.19 (1) —
NLP 9 1.66 (9) 2.03 (9) 3.17 (9) 0.24 (9) 0.26 (8) 22.07 (1)
NUM 1 0.19 (1) 0.24 (1) 0.28 (1) 0.27 (1) 0.11 (1) 201.51 (1)
PRO 9 1.09 (9) 9.03 (9) 2.02 (9) 0.34 (9) 0.77 (9) 31.53 (7)
SWV 8 0.15 (4) 0.14 (4) 0.20 (4) 0.13 (4) 44.84 (5) 0.04 (2)
SYN 18 0.59 (18) 0.57 (18) 0.72 (18) 0.40 (18) 3.84 (12) 0.68 (5)

Total 99 2.29 (92) 5.55 (90) 3.32 (92) 6.05 (92) 6.43 (82) 9.88 (50)
Table 1

Benchmark results for problems in the FNT division of CADE’s 2009 ATP competition.

Benchmark # iClingo (1) iClingo (2) Clingo Paradox FM-Darwin Mace4

COM 2 0.21 (2) 0.28 (2) 0.39 (2) 0.23 (2) 0.09 (2) 0.05 (2)
GEO 1 0.06 (1) 0.11 (1) 0.07 (1) 0.05 (1) 0.07 (1) 0.03 (1)
GRA 2 101.08 (1) — 207.62 (1) 8.21 (2) 15.56 (1) 207.37 (1)
GRP 1 0.08 (1) 0.12 (1) 0.12 (1) 0.03 (1) 0.04 (1) 0.03 (1)
HAL 1 2.48 (1) 2.37 (1) 2.73 (1) 0.33 (1) — —
KRS 1 0.09 (1) 0.11 (1) 0.12 (1) 0.05 (1) 0.05 (1) 0.03 (1)
LCL 52 5.43 (42) 5.25 (41) 4.57 (40) 3.81 (49) 6.22 (42) 8.08 (19)
MED 1 0.11 (1) 0.11 (1) 0.15 (1) 0.08 (1) 0.06 (1) 0.02 (1)
MSC 1 — — — — — —
NLP 52 41.59 (21) 38.29 (22) 35.49 (22) 0.21 (32) 15.85 (49) 3.71 (2)
NUM 9 0.17 (9) 0.19 (9) 0.24 (9) 0.19 (9) 0.10 (9) 22.61 (8)
PLA 4 70.41 (4) 0.27 (3) 0.52 (3) 0.20 (4) 0.23 (4) 0.26 (4)
RNG 2 0.19 (2) 0.26 (2) 0.29 (2) 0.23 (2) 0.20 (2) 287.29 (1)
SWV 2 — — — — — —
SYN 12 7.13 (12) 7.18 (12) 7.96 (12) 5.46 (12) 68.76 (9) —

Total 143 16.07 (98) 11.98 (96) 13.28 (96) 2.38 (117) 13.73 (122) 20.43 (41)
Table 2

Benchmark results for problems in the FNT division of CADE’s 2010 ATP competition, restricted to instances not already used in 2009.

criteria, our system slightly outperformed Paradox. For
assessing the advantages due to incremental grounding
and solving, we also ran Clingo, performing iterative

deepening search by successively grounding and solv-
ing our iASP encoding for fixed domains of increas-
ing size. The average run time achieved with Clingo,

9

3.32 seconds, is substantially greater than the one of
iClingo (1); the gap becomes more apparent the more
domain elements (not shown in Table 1) are needed.

Although there are 200 instances in the FNT divi-
sion of CADE’s 2010 ATP competition, we only show
143 of them in Table 2. (The 57 remaining instances
were already used in 2009.) Mace4 solved 41 of these
143 instances. Paradox, the winner of the FNT divi-
sion also in 2010, solved 117 instances in 2.38 sec-
onds on average. When considering all 200 instances
used in 2010, Paradox solved 167 of them in 2.55 sec-
onds on average, and FM-Darwin also solved 167 in-
stances, but in 12.99 seconds on average. In fact, FM-
Darwin solved the most instances in Table 2, 122 out of
143. Like with the results shown in Table 1, the version
of our system with symmetry breaking, iClingo (1),
solved two more instances than the one without sym-
metry breaking, iClingo (2). Furthermore, the advan-
tages due to incremental grounding and solving are
more apparent in Table 2, viewing that Clingo solved
two instances less than iClingo (1), 96 compared to 98.
We however observe that iClingo cannot keep step with
Paradox and FM-Darwin on the instances in Table 2;
possible reasons are elaborated on next.

A general problem with the translational approach
is that flattening may increase the number of vari-
ables in a clause, which can deteriorate grounding
performance. We can observe this when comparing
the results of FM-Darwin on the NLP domain in Ta-
ble 2 with those of iClingo and Paradox: FM-Darwin
solved 17 instances more than Paradox and 28 more
than iClingo (1). Although FM-Darwin also pursues
a translational approach, it represents subproblems by
function-free first-order clauses and uses Darwin, not
relying on grounding [15], to solve them. An instance
of the SWV group (instance SWV484+2) in Table 1
provides an extreme example for the infeasibility of
grounding: it includes predicates of arity 34 and is
solved only by FM-Darwin. Furthermore, in compari-
son to iClingo, sort inference [8,15] promotes Paradox
and FM-Darwin on the instances of NLP in Table 2.
This shows that there is still potential to improve our
iASP approach to FMC. On the other hand, for the in-
stances of CSR and MSC in Table 1, we speculate that
clausification and further preprocessing steps of Para-
dox may be the cause for its deteriorated performance.

6. Discussion

We presented an efficient yet transparent approach
to computing finite models of first-order theories by

means of ASP. Our approach takes advantage of an
incremental extension of ASP that allows us to con-
secutively search for models with given domain size
by incrementing the corresponding parameter in the
iASP encoding. The declarative nature of our approach
makes it easily modifiable and leaves room for further
improvements. Moreover, our approach is rather com-
petitive and has even a slight edge on the winner of the
FNT division of CADE’s 2009 ATP competition on the
respective benchmark collection. Finally, our approach
complements the work in [17], where FMC systems
were used for computing the answer sets of tight7 logic
programs in order to circumvent grounding.

In [18], a special class of first-order formulas, called
Effectively Propositional (EPR) formulas, was ad-
dressed via ASP; application domains like planning
and bounded model checking have been encoded by
EPR formulas and were successfully tackled by means
of FMC [19,20]. EPR formulas do not contain func-
tions of non-zero arity in their clause forms. Although
our approach takes more general input than this, it can
currently not decide EPR formulas. To this end, we had
either to extract a bound on the incremental parame-
ter to make the system halt or to provide an alternative
dedicated encoding for EPR formulas. Such extensions
are interesting topics for future research.

Acknowledgments. This work was supported by the
German Science Foundation (DFG) under grants
SCHA 550/8-1/2. We are grateful to the anonymous
referees of previous workshop and conference versions
as well as of this paper for their helpful comments.

References

[1] Caferra, R., Leitsch, A., Peltier, N.: Automated Model Build-
ing. Kluwer Academic (2004)

[2] Bibel, W.: Automated Theorem Proving. Vieweg (1987)

[3] Baral, C.: Knowledge Representation, Reasoning and Declara-
tive Problem Solving. Cambridge University (2003)

[4] Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M.,
Schaub, T., Thiele, S.: Engineering an incremental ASP solver.
In Garcia de la Banda, M., Pontelli, E., eds.: Proceedings
of the 24th International Conference on Logic Programming
(ICLP’08), Springer (2008) 190–205

[5] Zhang, J., Huang, Z.: Reducing symmetries to generate eas-
ier SAT instances. Electronic Notes in Theoretical Computer
Science 125(3) (2005) 149–164

7Tight programs are free of recursion through positive literals
(cf. [3]).

10

[6] Tammet, T.: Finite model building: Improvements and com-
parisons. In Baumgartner, P., Fermüller, C., eds.: Proceedings
of the Workshop on Model Computation — Principles, Algo-
rithms, Applications (MODEL’03), (2003)

[7] McCune, W.: A Davis-Putnam program and its application to
finite first-order model search: Quasigroup existence problems.
Technical Report ANL/MCS-TM-194, Argonne National Lab-
oratory (1994)

[8] Claessen, K., Sörensson, N.: New techniques that im-
prove MACE-style finite model finding. In Baumgartner,
P., Fermüller, C., eds.: Proceedings of the Workshop on
Model Computation — Principles, Algorithms, Applications
(MODEL’03), (2003)

[9] Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of
Satisfiability. IOS (2009)

[10] Zhang, J., Zhang, H.: SEM: A system for enumerating models.
In: Proceedings of the 14th International Joint Conference on
Artificial Intelligence (IJCAI’95), Morgan Kaufmann (1995)
298–303

[11] Zhang, J.: Constructing finite algebras with FALCON. Journal
of Automated Reasoning 17(1) (1996) 1–22

[12] Syrjänen, T.: Lparse 1.0 user’s manual.
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz

[13] Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M.,
Schaub, T., Thiele, S.: A user’s guide to gringo, clasp,
clingo, and iclingo. http://potassco.sourceforge.net

[14] Simons, P., Niemelä, I., Soininen, T.: Extending and imple-
menting the stable model semantics. Artificial Intelligence
138(1-2) (2002) 181–234

[15] Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Com-
puting finite models by reduction to function-free clause logic.
Journal of Applied Logic 7(1) (2009) 58–74

[16] Eén, N., Sörensson, N.: An extensible SAT-solver. In
Giunchiglia, E., Tacchella, A., eds.: Proceedings of the 6th In-
ternational Conference on Theory and Applications of Satisfi-
ability Testing (SAT’03), Springer (2003) 502–518

[17] Sabuncu, O., Alpaslan, F.: Computing answer sets using model
generation theorem provers. In Costantini, S., Watson, R., eds.:
Proceedings of the 4th International Workshop on Answer Set
Programming (ASP’07), (2007) 225–240

[18] Lierler, Y., Lifschitz, V.: Logic programs vs. first-order
formulas in textual inference. http://z.cs.utexas.edu/users/ai-
lab/publications_recent.php

[19] Navarro Pérez, J., Voronkov, A.: Planning with effectively
propositional logic. In Podelski, A., Voronkov, A., Wilhelm,
R., eds.: Volume in Memoriam of Harald Ganzinger, Springer
(2008)

[20] Navarro Pérez, J., Voronkov, A.: Encodings of bounded LTL
model checking in effectively propositional logic. In Pfenning,
F., ed.: Proceedings of the 21st International Conference on
Automated Deduction (CADE’07), Springer (2007) 346–361

Appendix

A. Proof of Theorem 1

In order to prove Theorem 1, Section A.1 first pro-
vides a formal account of answer set semantics for

the logic programs under consideration. In Section A.2
and A.3, we formulate and prove lemmas on the sound-
ness and the completeness, respectively, of our iASP
encoding of FMC. Finally, our soundness and com-
pleteness result, Theorem 1, and its validity in the con-
text of symmetry breaking, as described in Section 3.4,
are elaborated on in Section A.4.

A.1. Answer Set Semantics

The semantics of a (non-ground) logic program R
is given by the answer sets of the ground instantiation
of R. A program R written in the language supported
by grounders lparse [12] and gringo [13] can contain
built-in predicates (=, 6=,≤, <, . . .) as well as cardi-
nality constraints (l{p(~x) : q(~y), . . . }u). In order to
define the ground instantiation of R, we thus consider
a signature 〈F,P, I〉 such that P ∩ I = ∅ where

– F is a set of function symbols with an associated
arity (possibly zero),

– P is a set of predicate symbols with an associated
arity (possibly zero) that includes ⊥/0 and >/0,
and

– I is a set of built-in predicates with an associ-
ated arity (possibly zero) that includes =/2, 6=/2,
</2, and ≤/2.

The Herbrand universe U consists of all terms that can
be constructed in the standard way from the function
symbols in F. The Herbrand base B consists of all
atoms constructed from predicate symbols p/n ∈ P
and n terms from U. (Note that B does not include
atoms over built-in predicates from I.)

Let us introduce some notations for a rule r of the
form

a0 ← a1, . . . , am,not am+1, . . . ,not an. (20)

By head(r) = a0 and body(r) = {a1, . . . , am,
not am+1, . . . ,not an}, we denote the head and the
body of r, respectively. A fact a0. is understood as a
shorthand for the rule a0 ← >., so that body(a0.) =
{>}. Likewise, an integrity constraint r of the form
← a1, . . . , am,not am+1, . . . ,not an. is identified
with the rule ⊥ ← body(r)., so that head(r) = {⊥}.

For an atom a over a predicate from P ∪ I, we de-
note the set of all first-order variables occurring in a by
var(a). We define var(c) = ∅ for a cardinality con-
straint c. (Also note that var(>) = var(⊥) = ∅.) For
a rule r of the form (20), the set of global variables
occurring in r is var(r) =

⋃
0≤i≤n var(ai). A sub-

11

stitution θ : var(r) → U maps each global variable
of r to some term in U. We denote the rule obtained by
applying θ to r by rθ.

To deal with non-ground cardinality constraints in
a program R, let facts(R) = {>} ∪ {head(r) |
r ∈ R, body(r) = {>}}. For a (non-ground) cardi-
nality constraint c of the form l{a1 : b1, . . . , an : bn}u,
we define local(c) = l

(
{a1θ | θ : var(b1) → U,

b1θ ∈ facts(R)} ∪ · · · ∪ {anθ | θ : var(bn) → U,
bnθ ∈ facts(R)}

)
u. Here, var(b1), . . . , var(bn)

are local variables of c; a1θ, b1θ, . . . , anθ, bnθ refer
to the atoms obtained by applying a substitution θ
to a1, b1, . . . , an, bn. The parts “l,” “u,” and “: bi” can
optionally be omitted in c, in which case they are iden-
tified with “0,” “∞,” and “: >,” respectively.

Since built-in predicates from I are evaluated during
grounding, for an atom a over a predicate from I, we
define local(a) = > if a holds according to its standard
interpretation, and local(a) = ⊥ otherwise. Given an
arbitrary yet fixed strict total order ≺ on U that agrees
with the standard order < on integers for the common
elements in U ∩ Z, the standard interpretation of =/2,
6=/2, </2, and ≤/2 is (syntactic) equality, (syntactic)
inequality, containment in ≺, and equality or contain-
ment in ≺, respectively.

By letting local(a) = a for an atom a over a pred-
icate from P and local(r) = local(a0) ← local(a1),
. . . , local(am),not local(am+1), . . . ,not local(an).
for a rule r of the form (20), we are now ready to define
the ground instantiation of a program R as follows:

ground(R) = {local(rθ) | r ∈ R, θ : var(r)→ U}.

That is, ground(R) consists of the rules obtained by
applying all possible substitutions θ : var(r) → U
for global variables in rules r of R and by afterwards
performing local evaluations on cardinality constraints
and atoms over built-in predicates, respectively, in rθ.

It remains to define the answer sets of ground(R).
In the following, we provide a simplified version of
the definition in [14], which is sufficient for the logic
programs considered here. Our simplifications rely on
the fact that cardinality constraints occur only posi-
tively and contain only positive literals, while negative
(body) literals not a for atoms a hold w.r.t. all subsets
of a Herbrand interpretation not including a.

For a subset A of the Herbrand base B, we de-
fine the satisfaction relation on (positive) rule elements
by A |= a if a ∈ A, and A |= l{a1, . . . , an}u if
l ≤ |{a1, . . . , an} ∩ A| ≤ u. (Note that the head
of a choice rule is trivially satisfied since its lower

and upper bound are 0 and∞, respectively.) The body

of a rule r of the form (20) is satisfied by A, writ-

ten A |= body(r), if A |= a1, . . . , A |= am and

A 6|= am+1, . . . , A 6|= an; r is satisfied by A, denoted

by A |= r, if A |= body(r) implies A |= a0. We call

A a model of a program R if > ∈ A, ⊥ /∈ A, and

A |= r for every r ∈ R. The reduct of R relative to A

is defined by

RA = {a← body(r). | r ∈ ground(R),
a ∈ atom(head(r)) ∩A,A |= body(r)}

where atom(a) = {a} if a ∈ B, and atom(c) =

{a1, . . . , an} if c = l{a1, . . . , an}u. Finally, A is an

answer set of R if A is a model of ground(R) such

that no proper subset of A is a model of RA.

Before we proceed to prove soundness and com-

pleteness, as formulated in Theorem 1, let us link the

language of a set T of flat clauses to the one of the

parameterized domain description (B,P,Q) for T and

the logic programR[i] = B∪
⋃

1≤j≤iP [k/j]∪Q[k/i],

as defined in (1). For the signature 〈F0,F ,P0,P〉
of T , w.l.o.g., we assume that k/0 /∈ F0, P0 ∩
{>/0,⊥/0} = ∅, and P ∩ {cons/1, func/1, dom/1,
arg/2, assign/2,=/2, 6=/2, </2,≤/2} = ∅. The sig-

nature 〈F,P, I〉 of R[i] is then given by:

F = F0 ∪ F ∪ {1/0, . . . , i/0}, (21)

P = P0 ∪ P ∪ {>/0,⊥/0, cons/1, func/1,

dom/1, arg/2, assign/2}, (22)

I = {=/2, 6=/2, </2,≤/2}. (23)

In the following, we assume ground(R[i]) to be de-

fined relative to the signature 〈F,P, I〉.
For example, consider the (non-ground) parameter-

ized domain description (B,P,Q) for the theory in (3):

12

B =
{
cons(a).

}

P =

dom(k). arg(k, k).

func(sko(X))←
dom(X), 1{arg(X, k)}.

{assign(T, k)} ← cons(T).

{assign(sko(X), Y)} ←
dom(X), dom(Y),
1{arg(X, k), arg(Y, k)}.

← assign(T,D), assign(T, k), D < k.

{p(X)} ← dom(X), 1{arg(X, k)}.
{q(X,Y)} ← dom(X), dom(Y),

1{arg(X, k), arg(Y, k)}.

← not p(X), assign(a,X), dom(X),
1{arg(X, k)}.

← q(X,X), dom(X), 1{arg(X, k)}.
← p(X),not q(X,Y),

assign(sko(X), Y), dom(X),
dom(Y), 1{arg(X, k), arg(Y, k)}.

Q =

{
← cons(T), {assign(T,D) : dom(D)}0.
← func(T), {assign(T,D) : dom(D)}0.

}

The ground instantiation of R[2] is equivalent to:8

8We omit part of the rules of ground(R[2]) containing atoms in
the body that do not occur in the head of any rule in ground(R[2]).
The bodies of such rules are not satisfied by any answer set of R[2].
We also omit (redundant) ground rules from P [k/1] that have equiv-
alent counterparts in P [k/2] (and are not produced upon grounding
P [k] incrementally w.r.t. an evolving Herbrand universe).

cons(a).
dom(1). arg(1, 1). dom(2). arg(2, 2).

func(sko(1))← dom(1), 1{arg(1, 1)}.
func(sko(2))← dom(2), 1{arg(2, 2)}.

{assign(a, 1)} ← cons(a).
{assign(a, 2)} ← cons(a).

{assign(sko(1), 1)} ← dom(1), dom(1),
1{arg(1, 1), arg(1, 1)}.

{assign(sko(1), 2)} ← dom(1), dom(2),
1{arg(1, 2), arg(2, 2)}.

{assign(sko(2), 1)} ← dom(2), dom(1),
1{arg(2, 2), arg(1, 2)}.

{assign(sko(2), 2)} ← dom(2), dom(2),
1{arg(2, 2), arg(2, 2)}.

← assign(a, 1), assign(a, 1),⊥.
← assign(a, 1), assign(a, 2),>.
← assign(a, 2), assign(a, 2),⊥.
← assign(sko(1), 1), assign(sko(1), 1),⊥.
← assign(sko(1), 1), assign(sko(1), 2),>.
← assign(sko(1), 2), assign(sko(1), 2),⊥.
← assign(sko(2), 1), assign(sko(2), 2),>.
← assign(sko(2), 2), assign(sko(2), 2),⊥.
{p(1)} ← dom(1), 1{arg(1, 1)}.
{p(2)} ← dom(2), 1{arg(2, 2)}.
{q(1, 1)} ← dom(1), dom(1),

1{arg(1, 1), arg(1, 1)}.
{q(1, 2)} ← dom(1), dom(2),

1{arg(1, 2), arg(2, 2)}.
{q(2, 1)} ← dom(2), dom(1),

1{arg(2, 2), arg(1, 2)}.
{q(2, 2)} ← dom(2), dom(2),

1{arg(2, 2), arg(2, 2)}.
← not p(1), assign(a, 1), dom(1), 1{arg(1, 1)}.
← not p(2), assign(a, 2), dom(2), 1{arg(2, 2)}.
← q(1, 1), dom(1), 1{arg(1, 1)}.
← q(2, 2), dom(2), 1{arg(2, 2)}.
← p(1),not q(1, 1), assign(sko(1), 1),

dom(1), dom(1), 1{arg(1, 1), arg(1, 1)}.
← p(1),not q(1, 2), assign(sko(1), 2),

dom(1), dom(2), 1{arg(1, 2), arg(2, 2)}.
← p(2),not q(2, 1), assign(sko(2), 1),

dom(2), dom(1), 1{arg(2, 2), arg(1, 2)}.
← p(2),not q(2, 2), assign(sko(2), 2),

dom(2), dom(2), 1{arg(2, 2), arg(2, 2)}.
← cons(a), {assign(a, 1), assign(a, 2)}0.
← func(sko(1)),
{assign(sko(1), 1), assign(sko(1), 2)}0.

← func(sko(2)),
{assign(sko(2), 1), assign(sko(2), 2)}0.

13

One can check that

A =

dom(1), dom(2), arg(1, 1), arg(2, 2),

cons(a), assign(a, 1),

func(sko(1)), assign(sko(1), 2),

func(sko(2)), assign(sko(2), 2),

p(1), q(1, 2)

(additionally including the syntactic atom >) is a
model of ground(R[2]). In particular, the bodies of in-
tegrity constraints are not satisfied by A. In fact, the
reduct (R[2])A contains the following rules:

cons(a).
dom(1). arg(1, 1). dom(2). arg(2, 2).

func(sko(1))← dom(1), 1{arg(1, 1)}.
func(sko(2))← dom(2), 1{arg(2, 2)}.

assign(a, 1)← cons(a).
assign(sko(1), 2)← dom(1), dom(2),

1{arg(1, 2), arg(2, 2)}.
assign(sko(2), 2)← dom(2), dom(2),

1{arg(2, 2), arg(2, 2)}.
p(1)← dom(1), 1{arg(1, 1)}.

q(1, 2)← dom(1), dom(2),
1{arg(1, 2), arg(2, 2)}.

Note that the bodies of all rules in (R[2])A are satisfied
by A and that choice rules are turned into strict rules
(for head atoms in A). Due to this, it is not difficult to
verify that no proper subset ofA is a model of (R[2])A,
so that A is an answer set of R[2].

Recall that A is the answer set shown in Section 3.3,
which corresponds to the model in (4) over domain
{1, 2}. In the following, we show that the correspon-
dence between finite models of a theory and answer
sets of its associated iASP program holds in general.

A.2. Proof of Soundness

The following lemma establishes one direction of
Theorem 1 by showing that an answer set of our iASP
program yields a (finite) model of a first-order theory.

Lemma 1 (Soundness). Let T be a set of flat clauses
and (B,P,Q) the parameterized domain description
for T . If the logic program R[i], as defined in (1), has
an answer set for some positive integer i, then T has a
model over a (finite) domain of size i.

Proof. Assume that A is an answer set of R[i] = B ∪⋃
1≤j≤iP [k/j] ∪Q[k/i]. As (informally) described in

Section 3.3, we extract the domain {d | dom(d) ∈ A}
along with the following concepts from A:

cI = d if cons(c) ∈ A and assign(c, d) ∈ A,

f/nI = {(d1, . . . , dn) 7→ d |
func(f(d1, . . . , dn)) ∈ A,
assign(f(d1, . . . , dn), d) ∈ A},

pI =

{
> if p/0 ∈ P0 ∩A
⊥ if p/0 ∈ P0 \A,

p/nI = {(d1, . . . , dn) | p/n ∈ P,
p(d1, . . . , dn) ∈ A}.

Since A is a model of ground(R[i]), in view of the
rules (7), dom(k). and arg(k, k)., in P [k], A con-
tains dom(1), arg(1, 1), . . . , dom(i), arg(i, i). Given
that no other atoms over dom/1 and arg/2 occur in
the head of any rule in (R[i])A, since no proper sub-
set of A is a model of (R[i])A, we also have that
dom(1), arg(1, 1), . . . , dom(i), arg(i, i) are all atoms
over dom/1 and arg/2 in A. This shows that {d |
dom(d) ∈ A} = {1, . . . , i}. It remains to check that I
provides us with a model of T over domain {1, . . . , i}.

In an interpretation, every constant in F0 and every
function in F (along with a tuple of arguments) must
be mapped to a unique domain element. Hence, we
need to show that the atoms of the form assign(t, d)
in A, where t is a constant or a functional term, define
a total mapping to domain elements d.

To begin with, for each constant c/0 ∈ F0, B con-
tains cons(c). Since A is a model of ground(R[i]),
this implies that cons(c) ∈ A. As no other atom over
cons/1 occurs in the head of any rule in (R[i])A, since
no proper subset of A is a model of (R[i])A, we also
have that cons(c) ∈ A implies c/0 ∈ F0. Furthermore,
for each c/0 ∈ F0, the integrity constraint (13),

← cons(T), {assign(T,D) : dom(D)}0.,

in Q[k] has the following instance in ground(R[i]):

← cons(c), {assign(c, 1), . . . , assign(c, i)}0.

Since A is a model of ground(R[i]), this implies that
{assign(c, 1), . . . , assign(c, i)} ∩A 6= ∅.

Regarding functions f/n ∈ F , P [k] contains the
rule (8),

func(f(X1, . . . , Xn))←
dom(X1), . . . , dom(Xn),
1{arg(X1, k), . . . , arg(Xn, k)}.

14

Since dom(1), arg(1, 1), . . . , dom(i), arg(i, i) belong
to A, for each substitution of the variables X1, . . . , Xn

with domain elements in {1, . . . , i}, an instance of the
rule is contained in (R[i])A, and there are no further
ground instances of (8) in (R[i])A. As a consequence,
func(f(~x)) ∈ A iff f/n ∈ F and ~x ∈ {1, . . . , i}n.
Similar to constants, the integrity constraint (14),

← func(T), {assign(T,D) : dom(D)}0.,

in Q[k] has the following instance in ground(R[i]):

← func(f(~x)),
{assign(f(~x), 1), . . . , assign(f(~x), i)}0.

Since A is a model of ground(R[i]), this implies that
{assign(f(~x), 1), . . . , assign(f(~x), i)} ∩A 6= ∅.

We have thus established that the atoms of the form
assign(t, d) in A are such that each constant or func-
tional term t is mapped to some domain element d. It
remains to show that the mapping is unique. To this
end, we note that only the ground instances of the
rules (6) and (10) in P [k],

{assign(T, k)} ← cons(T).

{assign(f(X1, . . . , Xn), Y)} ←
dom(X1), . . . , dom(Xn), dom(Y),
1{arg(X1, k), . . . , arg(Xn, k), arg(Y, k)}.,

that contribute to (R[i])A contain atoms over assign/2
in the head. Since no proper subset of A is a model
of (R[i])A, this implies that every atom of the form
assign(t, d) in A contains a constant or functional
term t and a domain element d as its arguments. In
view of the integrity constraint (12),

← assign(T,D), assign(T, k), D < k.,

in P [k], since A is a model of ground(R[i]), for
every constant or functional term t, we have that
|{assign(t, 1), . . . , assign(t, i)} ∩ A| ≤ 1. As shown
above, {assign(t, 1), . . . , assign(t, i)} ∩ A 6= ∅ also
holds. That is, cI and f/nI , as defined above, provide
a total mapping of constants c/0 ∈ F0 and functional
terms constructed from f/n ∈ F to domain elements.

To check that I is an interpretation over domain
{1, . . . , i}, we note that P [k] contains a rule (15),

{p(X1, . . . , Xn)} ←
dom(X1), . . . , dom(Xn),
1{arg(X1, k), . . . , arg(Xn, k)}.,

for each predicate p/n ∈ P . For every instance r ∈
ground(R[i]), derived from (15) by replacing k with j
for 1 ≤ j ≤ i, if A |= body(r), the fact that dom(1),
. . . , dom(i) are all atoms over dom/1 in A implies
thatX1, . . . , Xn are substituted with domain elements.
As other rules in ground(R[i]) do not contain any atom
over p/n in the head, since no proper subset of A is a
model of (R[i])A, this implies that all atoms p(~x) over
p/n in A are such that ~x ∈ {1, . . . , i}n. That is, I is
indeed an interpretation over domain {1, . . . , i}.

It remains to show that I is a model of T . To this
end, suppose that I is not a model of T . Then, there
is some clause C in T that is not satisfied by I . Let
L1, . . . , Lm be the literals and X1, . . . , Xn the vari-
ables of C. Since C is not satisfied by I , there is a vari-
able assignment θ = {X1 7→ dX1

, . . . , Xn 7→ dXn
},

where dX1 , . . . , dXn are contained in {1, . . . , i}, under
which none of L1, . . . , Lm is satisfied by I . If θ 6= ∅
(C is not propositional), let j = max{dX1 , . . . , dXn},
and note that the following instance of the integrity
constraint (17) belongs to ground(R[i]):

← L1θ, . . . , Lmθ, dom(dX1
), . . . , dom(dXn

),
1{arg(dX1

, j), . . . , arg(dXn
, j)}.

Since dom(1), . . . , dom(i) and arg(j, j) belong to A,
we have that A |= dom(dX1), . . . , A |= dom(dXn)
and A |= 1{arg(dX1 , j), . . . , arg(dXn , j)}. On the
other hand, if θ = ∅ (C is propositional), the following
integrity constraint (19) belongs to ground(R[i]):

← L1θ, . . . , Lmθ.

Regardless of whether C is propositional or not, one of
the following is the case for every 1 ≤ j ≤ m:9

• If Lj = p for some p/0 ∈ P0, then Ljθ = not p,
pI = ⊥, and A 6|= p.
• IfLj = ¬p for some p/0 ∈ P0, thenLjθ = p, pI = >,

and A |= p.
• If Lj = p(X1j , . . . , Xnj) for some p/nj ∈ P , then
Ljθ = not p(dX1j

, . . . , dXnj
), (dX1j

, . . . , dXnj
) /∈

(p/nj)
I , and A 6|= p(dX1j

, . . . , dXnj
).

• If Lj = ¬p(X1j , . . . , Xnj) for some p/nj ∈ P ,
then Ljθ = p(dX1j

, . . . , dXnj
), (dX1j

, . . . , dXnj
) ∈

(p/nj)
I , and A |= p(dX1j

, . . . , dXnj
).

• If Lj = (X = c) for some c/0 ∈ F0, then Ljθ =
not assign(c, dX), cI 6= dX , and A 6|= assign(c, dX).

9Recall the encoding L of the complement of a (classical or equal-
ity) literal L from Section 3.2.

15

• If Lj = (X 6= c) for some c/0 ∈ F0, then Ljθ =
assign(c, dX), cI = dX , and A |= assign(c, dX).
• If Lj = (X = f(X1j , . . . , Xnj

)) for some f/nj ∈
F , then Ljθ = not assign(f(dX1j

, . . . , dXnj
), dX),

((dX1j
, . . . , dXnj

) 7→ dX) /∈ (f/nj)
I , and A 6|=

assign(f(dX1j
, . . . , dXnj

), dX).
• If Lj = (X 6= f(X1j , . . . , Xnj

)) for some f/nj ∈
F , then Ljθ = assign(f(dX1j

, . . . , dXnj
), dX),

((dX1j
, . . . , dXnj

) 7→ dX) ∈ (f/nj)
I , and A |=

assign(f(dX1j
, . . . , dXnj

), dX).
• If Lj = (X = Y) for variables X and Y , then Ljθ =

(dX 6= dY), dX 6= dY , and local(dX 6= dY) = >.
• If Lj = (X 6= Y) for variables X and Y , then Ljθ =

(dX = dY), dX = dY , and local(dX = dY) = >.

The above cases show that A |= a if Ljθ = a, A 6|= a
if Ljθ = not a, or local(Ljθ) = > holds. That is,
A |= body(r) holds for some integrity constraint r ∈
ground(R[i]), which contradicts the fact that A is a
model of ground(R[i]). From this, we conclude that I
must be a model of T .

A.3. Proof of Completeness

Our second lemma shows that the other direction of
Theorem 1, i.e., that a finite model of a first-order the-
ory coincides with an answer set, holds as well.

Lemma 2 (Completeness). Let T be a set of flat
clauses and (B,P,Q) the parameterized domain de-
scription for T . If T has a model over a finite domain
of size i, then the logic program R[i], as defined in (1),
has an answer set.

Proof. Assume that an interpretation I over finite do-
main {1, . . . , i} is a model of T . We will show that the
following set A of atoms is an answer set of R[i]:

A = {>}
∪ {dom(j), arg(j, j) | 1 ≤ j ≤ i}
∪ {cons(c) | c/0 ∈ F0}
∪ {assign(c, d) | c/0 ∈ F0, c

I = d}
∪ {func(f(~x)) | f/n ∈ F , ~x ∈ {1, . . . , i}n}
∪ {assign(f(~x), d) | f/n ∈ F , (~x 7→ d) ∈ f/nI}
∪ {p | p/0 ∈ P0, p

I = >}
∪ {p(~x) | p/n ∈ P, ~x ∈ p/nI}.

To begin with, we note the instances in
ground(R[i]) of the rules (7), dom(k). and
arg(k, k)., in P [k], obtained by replacing k with j

for 1 ≤ j ≤ i, are satisfied by A. The same applies
to every rule cons(c). in B and ground(R[i]). Since
body(r) = {>} for such rules r ∈ (R[i])A, every
model of (R[i])A must contain dom(1), arg(1, 1), . . . ,
dom(i), arg(i, i) as well as cons(c) for all c/0 ∈ F0.
In particular, these atoms belong to each subset of A
that is a model of (R[i])A.

Regarding functions f/n ∈ F , P [k] contains the
rule (8),

func(f(X1, . . . , Xn))←
dom(X1), . . . , dom(Xn),
1{arg(X1, k), . . . , arg(Xn, k)}.

By its definition, A satisfies all instances of this rule
in ground(R[i]). (A includes func(f(~x)) for all ~x ∈
{1, . . . , i}n.) Moreover, since dom(1), arg(1, 1), . . . ,
dom(i), arg(i, i) belong to every model of (R[i])A,
every model of (R[i])A must contain func(f(~x)) for
all ~x ∈ {1, . . . , i}n. In particular, these atoms belong
to each subset of A that is a model of (R[i])A.

Atoms over assign/2 occur in the heads of the
rules (6) and (10) in P [k],

{assign(T, k)} ← cons(T).

{assign(f(X1, . . . , Xn), Y)} ←
dom(X1), . . . , dom(Xn), dom(Y),
1{arg(X1, k), . . . , arg(Xn, k), arg(Y, k)}.,

whose instances r ∈ ground(R[i]) are satisfied by A
because A |= head(r) holds trivially. However, for ev-
ery constant c/0 ∈ F0 and cI = d, since cons(c) ∈ A
and assign(c, d) ∈ A, the following rule is contained
in (R[i])A:

assign(c, d)← cons(c).

As shown above, cons(c) belongs to every model of
(R[i])A, so that assign(c, d) must be included as well.
Likewise, for every function f/n ∈ F , ((d1, . . . ,
dn) 7→ d) ∈ f/nI , and j = max{d1, . . . , dn, d}, the
following rule is contained in (R[i])A:

assign(f(d1, . . . , dn), d)←
dom(d1), . . . , dom(dn), dom(d),
1{arg(d1, j), . . . , arg(dn, j), arg(d, j)}.

Given that dom(1), arg(1, 1), . . . , dom(i), arg(i, i)
belong to every model of (R[i])A, we have that
assign(f(d1, . . . , dn), d) must be included as well. We
have thus shown that all atoms over assign/2 inA also
belong to each subset of A that is a model of (R[i])A.

16

Regarding the predicates from P0 ∪ P , B contains
a rule {p}. for each p/0 ∈ P0, and P [k] contains a
rule (15),

{p(X1, . . . , Xn)} ←
dom(X1), . . . , dom(Xn),
1{arg(X1, k), . . . , arg(Xn, k)}.,

for each p/n ∈ P . Their instances r ∈ ground(R[i])
are satisfied by A because A |= head(r) holds triv-
ially. However, for every p/0 ∈ P0 such that pI = >,
(R[i])A contains the rule p., so that every model
of (R[i])A must include p. Furthermore, for every
p/n ∈ P , (d1, . . . , dn) ∈ p/nI , and j = max{d1,
. . . , dn}, the following rule is contained in (R[i])A:

p(d1, . . . , dn)←
dom(d1), . . . , dom(dn),
1{arg(d1, j), . . . , arg(dn, j)}.

Given that dom(1), arg(1, 1), . . . , dom(i), arg(i, i)
belong to every model of (R[i])A, we have that
p(d1, . . . , dn) must be included as well. We have thus
shown that all atoms over predicates from P0 ∪P in A
also belong to each subset of A that is a model of
(R[i])A. Since other atoms of A cannot be dropped ei-
ther in a model of (R[i])A (shown above), we conclude
that no proper subset of A is a model of (R[i])A.

It remains to show that A satisfies all integrity con-
straints in ground(R[i]). To this end, we note that the
mapping of constants c/0 ∈ F0 and functional terms
constructed from f/n ∈ F to domain elements, given
by I , is total and unique. Hence,A contains exactly one
atom of the form assign(c, d) for each c/0 ∈ F0, and
exactly one atom of the form assign(f(~x), d) for each
f/n ∈ F and ~x ∈ {1, . . . , i}n, where d ∈ {1, . . . , i}.
In view of uniqueness, A satisfies the instances in
ground(R[i]) of the integrity constraint (12),

← assign(T,D), assign(T, k), D < k.,

in P [k]. Moreover, in view of totality, the instances in
ground(R[i]) of the integrity constraints (13) and (14),

← cons(T), {assign(T,D) : dom(D)}0.

← func(T), {assign(T,D) : dom(D)}0.,

in Q[k] are satisfied by A.
Finally, given that I is a model of T , for every

clause, containing literals L1, . . . , Lm and variables
X1, . . . , Xn, in T and every variable assignment θ =

{X1 7→ dX1
, . . . , Xn 7→ dXn

}, some Lj for 1 ≤
j ≤ m is satisfied by I under θ. Then, one of the fol-
lowing cases applies to Lj :

• If Lj = p for some p/0 ∈ P0, then Ljθ = not p,
pI = >, and A |= p.
• IfLj = ¬p for some p/0 ∈ P0, thenLjθ = p, pI = ⊥,

and A 6|= p.
• If Lj = p(X1j , . . . , Xnj

) for some p/nj ∈ P , then
Ljθ = not p(dX1j

, . . . , dXnj
), (dX1j

, . . . , dXnj
) ∈

(p/nj)
I , and A |= p(dX1j

, . . . , dXnj
).

• If Lj = ¬p(X1j , . . . , Xnj
) for some p/nj ∈ P ,

then Ljθ = p(dX1j
, . . . , dXnj

), (dX1j
, . . . , dXnj

) /∈
(p/nj)

I , and A 6|= p(dX1j
, . . . , dXnj

).

• If Lj = (X = c) for some c/0 ∈ F0, then Ljθ =

not assign(c, dX), cI = dX , and A |= assign(c, dX).
• If Lj = (X 6= c) for some c/0 ∈ F0, then Ljθ =

assign(c, dX), cI 6= dX , and A 6|= assign(c, dX).
• If Lj = (X = f(X1j , . . . , Xnj)) for some f/nj ∈
F , then Ljθ = not assign(f(dX1j

, . . . , dXnj
), dX),

((dX1j
, . . . , dXnj

) 7→ dX) ∈ (f/nj)
I , and A |=

assign(f(dX1j
, . . . , dXnj

), dX).
• If Lj = (X 6= f(X1j , . . . , Xnj)) for some f/nj ∈
F , then Ljθ = assign(f(dX1j

, . . . , dXnj
), dX),

((dX1j
, . . . , dXnj

) 7→ dX) /∈ (f/nj)
I , and A 6|=

assign(f(dX1j
, . . . , dXnj

), dX).

• If Lj = (X = Y) for variables X and Y , then Ljθ =

(dX 6= dY), dX = dY , and local(dX 6= dY) = ⊥.
• If Lj = (X 6= Y) for variables X and Y , then Ljθ =

(dX = dY), dX 6= dY , and local(dX = dY) = ⊥.

The above cases show that A |= a if Ljθ = not a,
A 6|= a if Ljθ = a, or local(Ljθ) = ⊥ holds. That is,
A 6|= body(r) for every instance r ∈ ground(R[i]) of
the integrity constraints (17) and (19),

← L1, . . . , Lm, dom(X1), . . . , dom(Xn),
1{arg(X1, k), . . . , arg(Xn, k)}.

← L1, . . . , Lm.,

in P [k] or B (depending on whether a clause is propo-
sitional or not), respectively. As we have now consid-
ered all rules in R[i] and verified that A is a model of
ground(R[i]), along with the fact that no proper subset
ofA is a model of (R[i])A (shown above), we conclude
that A is an answer set of R[i].

17

A.4. Soundness and Completeness

In view of Lemma 1, showing the soundness of
our iASP encoding of FMC, and Lemma 2, showing
its completeness, we immediately derive the desired
soundness and completeness result.

Theorem 1 (Soundness & Completeness). Let T be a
set of flat clauses and (B,P,Q) the parameterized do-
main description for T . Then, the logic program R[i],
as defined in (1), has an answer set for some positive
integer i iff T has a model over a finite domain of size i.

Proof. The result is immediate by Lemma 1 and 2.

Note that Theorem 1 still applies when using sym-
metry breaking, as described in Section 3.4. To see
this, assume that the set of constants in a theory T is
{c1, . . . , cn}, and let I be a model of T over finite do-
main {1, . . . , i}. Then, define a permutation π on do-
main elements by

π(d) =

|{cIj | 1 ≤ j < min{m | cIm = d}}|+ 1

if d ∈ {cI1, . . . , cIn}
|{cIj ∈ {cI1, . . . , cIn} | d < cIj}|+ d

if d ∈ {1, . . . , i} \ {cI1, . . . , cIn}.

The permutation π rearranges domain elements such
that the sequence (π(cI1), . . . , π(cIn)) starts with 1 and
consecutively picks domain elements on their first use.
For example, given the mapping cI1 = 3, cI2 = 1,
cI3 = 3 of constants c1, c2, c3 and domain {1, 2, 3, 4},
we get π(1) = 2, π(2) = 3, π(3) = 1, π(4) = 4 and
(π(cI1), π(cI2), π(cI3)) = (1, 2, 1). This mapping satis-
fies the conditions encoded by the rules for symmetry
breaking provided in Section 3.4. Along with the fact
that a model of a theory T stays a model of T when
permuting domain elements (via π), we conclude that
Lemma 2 (Completeness) and Theorem 1 remain valid
also in the presence of symmetry breaking rules.

B. fmc2iasp at Work

We below provide an example input in TPTP format
(Section B.1). Theory-independent rules (Section B.2)
as well as the ones generated by fmc2iasp (Section B.3)
can then be used as inputs to compute finite models
with iClingo.

B.1. Input Theory

The input theory (2), written in TPTP format, is as
follows:

fof(1, axiom, p(a)).
fof(2, axiom, ! [X]: (~q(X,X))).
fof(3, axiom, ! [X]:

(p(X) => (? [Y]: q(X,Y)))).

B.2. Theory-Independent iASP Program

The theory-independent program part with symme-
try breaking (cf. Section 3.4), in the input language of
iClingo, is as follows:

#cumulative k.

dom(k).
arg(k,k).

{ assign(T,k) } :- cons(T),
order(T,O), k <= O.

:- assign(T,D), assign(T,k), D < k.

assigned(T,k) :- order(S,O),
order(T,O+1), assign(S,k).

assigned(T,k) :- order(S,O),
order(T,O+1), assigned(S,k).

:- cons(T), assign(T,k),
not assigned(T,k-1), 1 < k.

#volatile k.

:- cons(T), { assign(T,D):dom(D) } 0.
:- func(T), { assign(T,D):dom(D) } 0.

B.3. Theory-Dependent iASP Program

The rules generated by fmc2iasp for the flat clauses
in (3) are as follows:

#cumulative k.

% functions
func(sko(X0)) :- dom(X0),

1 { arg(X0,k) }.
{ assign(sko(X0),Y) } :- dom(X0;Y),

1 { arg(X0;Y,k) }.

18

% predicates
{ p(X0) } :- dom(X0),

1 { arg(X0,k) }.
{ q(X0,X1) } :- dom(X0;X1),

1 { arg(X0;X1,k) }.

% flat clauses
:- not p(X0), assign(a,X0),

dom(X0), 1 { arg(X0,k) }.
:- q(X0,X0),

dom(X0), 1 { arg(X0,k) }.
:- p(X0), not q(X0,X1),

assign(sko(X0),X1),
dom(X0;X1), 1 { arg(X0;X1,k) }.

#base.

cons(a).
order(a,1).

#hide.
#show assign/2.
#show p/1.
#show q/2.

In order to compute a finite model of (2), we can use
this program concatenated with the rules from Sec-
tion B.2, as it is described in Section 4.

