
Grounding and Solving
in Answer Set Programming

Benjamin Kaufmann
Universität Potsdam, Germany
kaufmann@cs.uni-potsdam.de

Nicola Leone
University of Calabria, Italy

leone@mat.unical.it

Simona Perri
University of Calabria, Italy

perri@mat.unical.it

Torsten Schaub∗

Universität Potsdam, Germany, and INRIA Rennes, France
torsten@cs.uni-potsdam.de

Abstract

Answer Set Programming is a declarative problem solv-
ing paradigm that rests upon a workflow involving model-
ing, grounding, and solving. While the former is described
in (Gebser and Schaub 2016), we focus here on key issues
in grounding, or how to systematically replace object vari-
ables by ground terms in a effective way, and solving, or how
to compute the answer sets of a propositional logic program
obtained by grounding.

Introduction
Answer Set Programming (ASP) combines a high-level
modeling language with effective grounding and solving
technology. Moreover, ASP is highly versatile by offering
various elaborate language constructs and a whole spectrum
of reasoning modes. The work flow of ASP is illustrated
in Figure 1. At first, a problem is expressed as a logic pro-
gram. A grounder systematically replaces all variables in the
program by (variable-free) terms, and the solver takes the re-
sulting propositional program and computes its answer sets
(or aggregations of them).

ASP’s success is largely due to the availability of a rich
modeling language (cf (Gebser and Schaub 2016)) along
with effective systems. Early ASP solvers smodels (Simons,
Niemelä, and Soininen 2002) and dlv (Leone et al. 2006)
were followed by SAT1-based ones, such as assat (Lin and
Zhao 2004) and cmodels (Giunchiglia, Lierler, and Maratea
2006), before genuine conflict-driven ASP solvers such as
clasp (Gebser, Kaufmann, and Schaub 2012a) and wasp (Al-
viano et al. 2015) emerged. In addition, there is a continued
interest in mapping ASP onto solving technology in neigh-
boring fields, like SAT or even MIP2 (Janhunen, Niemelä,
and Sevalnev 2009; Liu, Janhunen, and Niemelä 2012),
and in the automatic selection of the appropriate solver by
heuristics (Maratea, Pulina, and Ricca 2014).

On the other hand, modern grounders like (the one in)
dlv (Faber, Leone, and Perri 2012) or gringo (Gebser et

∗Affiliated with Simon Fraser University, Canada, and the Grif-
fith University, Australia.
Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Satisfiablity Testing
2Mixed Integer Programming

al. 2011) are based on semi-naive database evaluation tech-
niques (Ullman 1988) for avoiding duplicate work during
grounding. Grounding is seen as an iterative bottom-up
process guided by the successive expansion of a program’s
term base, that is, the set of variable-free terms constructible
from the signature of the program at hand. Other grounding
approaches are pursued in gidl (Wittocx, Mariën, and De-
necker 2010), lparse (Syrjänen 2001), and earlier versions
of gringo (Gebser, Schaub, and Thiele 2007). The latter
two bind non-global variables by domain predicates to en-
force ω- or λ-restricted (Syrjänen 2001; Gebser, Schaub, and
Thiele 2007) programs that guarantee a finite grounding, re-
spectively.

In what follows, we describe the basic ideas and major
issues of modern ASP grounders and solvers, also in view
of supporting its language constructs and reasoning modes.

Grounding
Modern ASP systems perform their computation by first
generating a ground program that does not contain any vari-
able but has the same answer sets as the original program.
This phase, usually referred to as grounding or instantiation,
solves a complex problem. In the case in which input non-
ground programs can be assumed to be fixed (data complex-
ity), this task is polynomial. However, as soon as variable
programs are given in input, grounding becomes EXPTIME-
hard, and the produced ground program is potentially of ex-
ponential size with respect to the input program. To give an
idea of that, consider the following program containing only
one rule, and two facts:

obj(0). obj(1).
tuple(X1,...,Xn) :- obj(X1), ..., obj(Xn).

The ground instantiation of the rule contains 2n ground
rules, corresponding to the number of n-tuples, over a set
of two elements. For more details about complexity of ASP
the reader may refer to (Dantsin et al. 2001).

Grounding, hence, may be computationally very expen-
sive having a big impact on the performance of the whole
system, as its output is the input for an ASP solver, that, in
the worst case, takes exponential time in the size of the input.
Thus, a naı̈ve grounding which replaces the variables with
all the constants appearing in the program (thus producing
the full instantiation) is undesirable from a computational
point of view. Indeed, most of the ground atoms appearing



Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Figure 1: The work flow of Answer Set Programming

in the full instantiation are not derivable from the program
rules, and all generated ground rules containing these atoms
in the positive bodies are useless for answer set computation.
For instance, consider the following program:

c(1,2).
a(X) | b(Y) :- c(X,Y).

The full instantiation of the only rule appearing in the pro-
gram contains four ground instances:
a(1) | b(1) :- c(1,1).
a(2) | b(1) :- c(2,1).
a(2) | b(2) :- c(2,2).
a(1) | b(2) :- c(1,2).

However, the first three ground rules are useless. They
will never be applicable because their bodies contain atoms
c(1,1) and c(2,1), and c(2,2) that are not derivable
from the program (they do not appear in the head of any
rule).

ASP grounders, like gringo or the dlv instantiator, employ
smart procedures that are geared toward efficiently produc-
ing a ground program that is considerably smaller than the
full instantiation but preserves the semantics. In the follow-
ing, we first give an informal description of the grounding
computation. Then we introduce the problem of dealing
with function symbols, which may lead to infinite ground-
ings. Finally we overview some optimization strategies.

The Instantiation Procedure
In this subsection, we provide a description of the basic in-
stantiation procedure, which is adopted by the most popular
grounders, gringo and the dlv instantiator. For clarity, the
description is informal, and presents a simplified version of
the actual instantiation strategy. For instance, we do not take
into account extensions of the basic language like choice
rules or aggregates (Lifschitz 2016; Alviano, Leone 2015;
2016). Full details can be found in (Faber, Leone, and Perri
2012; Gebser et al. 2011).

The core of the grounding phase is the process of rule
instantiation. Given a rule r and a set of ground atoms S,
which represents the extensions of the predicates, it gener-
ates the ground instances of r. Such task can be performed

by iterating on the body literals looking for possible substi-
tutions for their variables. Grounders impose a safety condi-
tion which requires that each rule variable appears also in a
positive body literal. Thus, for the instantiator, it is enough
to have a substitution for the variables occurring in the pos-
itive literals.

To clarify this process, consider the following (non-
ground) rule:

a(X) | b(Y) :- p(X,Z), q(Z,Y).

Now, assume that the set of extensions S = {p(1,2),
q(2,1), q(2,3)} is given. Then, the instantiation starts
by looking for a ground atom in S matching with p(X,Z).
Therefore p(X,Z) is matched with p(1,2) and the sub-
stitution for X and Z is propagated to the other body liter-
als, thus leading to the partially-ground rule body p(1,2),
q(2,Y). Then, q(2,Y) is instantiated with the matching
ground atom q(2,1) and a ground rule a(1)| b(1):-
p(1,2), q(2,1) is generated. Now, in order to find other
possible rule instances, a backtracking step is performed,
the binding for variable Y is restored and a new match for
q(2,Y) is searched, finding q(2,3). The new match is
applied, leading to another rule instance a(1) | b(3) :-
p(1,2), q(2,3). Then, the process goes on, by back-
tracking again to q(2,Y), and then to p(X,Z), because
there are no more matches for q(2,Y). Given that also no
further matches are possible for p(X,Z), the instantiation of
the rule terminates, producing only two ground rules:

a(1) | b(1) :- p(1,2), q(2,1).
a(1) | b(3) :- p(1,2), q(2,3).

Roughly, the body literals are instantiated from left to right,
starting from the first one. The instantiation of the generic
body literal L consists in searching in S for a ground atom
A matching with L; if such a matching is found, then the
variables in L are bound with the constants in A, the substi-
tution is propagated to the other body literals, and the next
literal in the body is considered. If such a matching atom is
not found, a backtracking step to a previous literal L′ is per-
formed, some variable bindings are restored, and the process
goes on by looking for another matching for L′. When all
body literals have been instantiated, an instance for the rule



r is found and the process continues by backtracking again
to some previous literal, in order to find other substitutions.
A crucial aspect of this process is how the set of ground
atoms S containing the extensions of the predicates is com-
puted. When a program is given as input to a grounder, it
usually contains also a set of ground atoms, called Facts. It
constitutes the starting point of the computation. In other
words, initially S = Facts. During instantiation, the set S is
expanded with the ground atoms occurring in the head of the
newly generated ground rules. For instance, in the previous
example, the ground atoms a(1) and b(1) are added to S
and they will possibly be used for the instantiation of other
rules. Thus, the extensions of the predicates are built dy-
namically. In order to guarantee the generation of all useful
ground instances a particular evaluation order should be fol-
lowed. If a rule r1 defines (i.e., has in the head) a predicate
p, and another rule r2 contains p in the positive body, then
r1 has to be evaluated before r2 since r1 produces ground
atoms needed for instantiating r2. Complying with such
evaluation orders ensures that the produced ground program
has the same answer sets of the full instantiation, but is pos-
sibly smaller (Faber, Leone, and Perri 2012).

To produce proper evaluation orders, grounders make
use of structural information provided by a directed graph,
called Dependency Graph, that describes how predicates
depend on each other. This graph induces a partition of
the input program into subprograms, associated with the
strongly connected components, and a topological ordering
over them. The subprograms are instantiated one at a time
starting from the ones associated with the lowest compo-
nents in the topological ordering.

Recursive rules within a subprogram, i.e. rules where
some body predicate depends, directly or transitively, on a
predicate in the head, are instantiated according to a semi-
naı̈ve database technique (Ullman 1988). Their evaluation
produces ground atoms needed for their own evaluation,
thus, several iterations are performed, until a fixpoint is
reached. At each iteration, for the predicates involved in
the recursion, only the ground atoms newly derived during
the previous iteration are taken into account.

To illustrate this, consider the following problem, called
Reachability: Given a finite directed graph, compute all
pairs of nodes (a, b) such that b is reachable from a through
a nonempty sequence of arcs.

This problem can be encoded by the following ASP pro-
gram:

reach(X,Y) :- arc(X,Y).
reach(X,Y) :- arc(X,U), reach(U,Y).

The set of arcs is represented by the binary relation arc.
A fact arc(a,b) means that the graph contains an arc from
a to b; the set of nodes is not explicitly represented.

The program computes a binary relation reach contain-
ing all facts reach(a,b) such that b is reachable from a
through the arcs of the input graph G. In particular, the first
(non-recursive) rule states that b is directly reachable from
a, if there is an arc from a to b; whilst the second (recursive)
rule states that b is transitively reachable from a, if there is a
path in the graph from a to b.

The instantiation of this program is performed by first
evaluating the non-recursive rule on the set S containing
the arcs. Assuming that S = { arc(1,2), arc(2,3),
arc(3,4)} three ground instances are produced:

reach(1,2) :- arc(1,2).
reach(2,3) :- arc(2,3).
reach(3,4) :- arc(3,4).

The ground atoms reach(1,2), reach(2,3), and
reach(3,4) are added to set S and the evaluation of the
recursive rule starts. The first iteration is performed, pro-
ducing rules

reach(1,3) :- arc(1,2), reach(2,3).
reach(2,4) :- arc(2,3), reach(3,4).

Then, reach(1,3), reach(2,4) are added to S and an-
other iteration starts. To avoid duplicate rules, for the recur-
sive predicate reach, only the two newly generated ground
atoms are used, producing:

reach(1,4) :- arc(1,2), reach(2,4).

Now, reach(1,4) is added to S. Another iteration is
performed. Nothing new can be produced. The fixpoint is
reached and the evaluation terminates.

Optimizations
Substantial effort has been spent on sophisticated algorithms
and optimization techniques aimed at improving the per-
formance of the instantiation process. In the following we
briefly recall the most relevant ones.

The dynamic magic sets technique (Alviano et al. 2012a)
is a rewriting-based optimization strategy used by the dlv
system. It extends the Magic Sets technique originally de-
fined for standard Datalog for optimizing query answering
over logic programs. Given a query, the Magic Sets tech-
nique rewrites the input program to identify a subset of the
program instantiation which is sufficient for answering the
query. The restriction of the instantiation is obtained by
means of additional “magic” predicates, whose extensions
represent relevant atoms w.r.t. the query. Dynamic Magic
Sets, specifically conceived for disjunctive programs, in-
herit the benefits provided by standard magic sets and ad-
ditionally allow to exploit the information provided by the
magic predicates also during the answer set search. Magic
sets turned out to be very useful in many application do-
mains, even on some co-NP complete problems like consis-
tent query answering (Manna, Ricca, and Terracina 2015).

Other techniques have been developed for optimizing the
rule instantiation task (Faber, Leone, and Perri 2012). In
particular, since rule instantiation is essentially performed
by evaluating the relational join of the positive body liter-
als, an optimal ordering of literals in the body is a key issue
for the efficiency of the procedure, just like for join compu-
tation. Thus, an efficient body reordering criterion specifi-
cally conceived for the rule instantiation task has been pro-
posed. Moreover, a backjumping algorithm has been devel-
oped (Perri et al. 2007), which reduces the size of the ground
programs, avoiding the generation of useless rules, but fully
preserving the semantics.



In the last few years, in order to make use of modern
multi-core/multi-processor computers, a parallel instantia-
tor has been developed. It is based on a number of strategies
allowing for the concurrent evaluation of parts of the pro-
gram, and is endowed with advanced mechanisms for deal-
ing with load balancing and granularity control (Perri, Ricca,
and Sirianni 2013).

Dealing with function symbols
Function symbols are widely recognized as an important
feature for ASP. They increase the expressive power and
in some cases improve the modeling capabilities of ASP,
allowing the support of complex terms like lists, and set
terms. Functions can also be employed to represent, via sc-
holemization, existential quantifiers, which are receiving an
increasing attention in the logic programming and database
communities (Gottlob, Manna, and Pieris 2015). However,
the presence of function symbols within ASP programs has
a strong impact on the grounding process, which might even
not terminate. Consider, for instance, the program:

p(0).
p(f(X)) :- p(X).

The instantiation is infinite; indeed the grounding of the
recursive rule, at the first iteration adds to the set of ex-
tensions S the ground atom p(f(0)), that is used in the
next iteration, producing p(f(f(0)) and so on. Despite
this, grounders like the one in dlv and gringo allow to deal
with recursive function symbols, and guarantee termination
whenever the program belongs to the class of the so called
finitely-ground programs (Calimeri et al. 2008). Intuitively,
for each program P in this class, there exists a finite ground
program P ′ having exactly the same answer sets as P . Pro-
gram P ′ is computable for finitely-ground programs, thus
answer sets of P are computable as well. Notably, each
computable function can be expressed by a finitely-ground
program; membership in this class is not decidable, but it
has been proven to be semi-decidable (Calimeri et al. 2008).

For applications in which termination needs to be guar-
anteed a priori, the ASP grounders can make use of a pre-
processor implementing a decidable check, which allows
the user to statically recognize whether the input program
belongs to a smaller subclass of the finitely-ground pro-
grams (Syrjänen 2001; Gebser, Schaub, and Thiele 2007;
Lierler and Lifschitz 2009; Calimeri et al. 2008). For in-
stance, the grounder of dlv is endowed with a checker (which
can also be disabled) for recognizing argument-restricted
programs (Lierler and Lifschitz 2009). Earlier version of
gringo in order to guarantee finiteness, accepted input pro-
grams with a domain restriction, namely λ-restricted pro-
grams (Gebser, Schaub, and Thiele 2007). From series 3,
gringo removed domain restrictions and the responsibility
to check whether the input program has a finite grounding is
left to the user.

Solving
Modern ASP solvers rely upon advanced conflict-driven
search procedures, pioneered in the area of Satisfiablity test-

ing (SAT; (Biere et al. 2009)).3 Conflicts are analyzed and
recorded, decisions are taken in view of conflict scores, and
back-jumps are directed to the origin of a conflict.

While the general outline of search in ASP is arguably
the same as in SAT, the extent of ASP requires a much more
elaborate approach. First, the stable models semantics en-
forces that atoms are not merely true but provably true (Lif-
schitz 2016). Second, the rich modeling language of ASP
comes with complex language constructs. In particular, dis-
junction in rule heads and non-monotone aggregates lead to
an elevated level of computational complexity, which im-
poses additional search efforts. Finally, ASP deals with var-
ious reasoning modes. Apart from satisfiability testing, this
includes enumeration, projection, intersection, union, and
(multi-objective) optimization of answer sets, and moreover
combinations of them, for instance, the intersection of all
optimal models.4 The first two issues bring about additional
inferences, the latter require flexible solver architectures.

The restriction of modern SAT solvers to propositional
formulas in Conjunction Normal Form allows for reducing
inferences to unit propagation along with the usual choice
operations. In contrast, traditional ASP solving deals with
an abundance of different inferences for propagation, which
makes a direct adaption of conflict-driven search procedures
virtually impossible. The key idea is thus to map inferences
in ASP onto unit propagation on nogoods5 (Gebser, Kauf-
mann, and Schaub 2012a), which traces back to a character-
ization of answer sets in propositional logic (Lin and Zhao
2004). Let us illustrate this by program P (thereby restrict-
ing ourselves to normal rules): 6

P =

{
a :- not b, b :- not a,
x :- a,not c, x :- y,
y :- x,b

}
Interpreting this program in propositional logic results in the
set RF (P ) of implications:

RF (P ) =

{
a← ¬b, b← ¬a,
x← a ∧ ¬c ∨ y,
y ← x ∧ b

}
Note that we replaced default negation not by classical
negation ¬ and combined both rules with head x, while leav-
ing the direction of the implications untouched (for readabil-
ity). Now, the set RF (P ) has twelve classical models, many
of which contain atoms not supported by any rule. (This
is important because the stable models semantics insists on
provably true atoms.) For instance, c is not supported by any
rule, as is b whenever a is true as well.

Models containing unsupported atoms are eliminated by
turning the implications in RF (P ) into equivalences (Clark

3This technology is usually referred to as Conflict-driven
Clause Learning.

4Actually, this is a frequent reasoning mode used in under-
specified application domains such as bio-informatics (Erdem, Gel-
fond, and Leone 2016).

5Nogoods express inadmissible assignments (Dechter 2003).
6Below, RF (P ), CF (P ), and LF (P ) stand for the rule, com-

pletion, and loop formulas of P .



1978). Doing so for each atom yields the set CF (P ) of
equivalences:

CF (P ) =

{
a↔ ¬b, b↔ ¬a,
x↔ a ∧ ¬c ∨ y,
y ↔ x ∧ b, c↔ ⊥

}
This strengthening results in three models of CF (P ), one
entailing atom b only, another making b, x, y true, and finally
one in which a, x hold, respectively. The first two models
differ in making both x and y true or not. A closer look at the
original program P reveals that x and y support each other
in a circular way. Whether or not such a circular derivation
is harmful depends upon the existence of a valid external
support (Lin and Zhao 2004), provided by an applicable rule
whose head is in the loop but none of its positive antecedents
belongs to it. In our case, this can be accomplished by the
formula in LF (P ):

LF (P ) = { (x ∨ y)→ a ∧ ¬c }
The formula expresses that an atom in the loop (consist-
ing of x and y) can only be true if an external support of
x or y is true. Here the only external support is provided
by rule x ← a,not c in P , as reflected by the conse-
quent in LF (P ). That is, x or y can only be true if the
latter rule applies. Since no other loops occur in P , the set
CF (P ) ∪ LF (P ) provides a characterization of P ’s answer
sets (Lin and Zhao 2004), one making atom b true and an-
other a, x.

Note that in general the size of CF (P ) is linear in that of a
program P , whereas the size of LF (P ) may be exponential
in P (Lifschitz and Razborov 2006). Fortunately, satisfac-
tion of LF (P ) can be tested in linear time for logic programs
facing no elevated complexity (see above), otherwise this
test is co-NP-complete (Leone, Rullo, and Scarcello 1997).

The translation of programs into nogoods employed by
modern ASP solvers follows the above characterization but
takes the space issue into account. Given a program P , the
nogoods expressing CF (P ) are explicitly represented in an
ASP solver, while the ones in LF (P ) are only made explicit
upon violation. This violation is detected by so-called un-
founded set algorithms (Leone, Rullo, and Scarcello 1997;
Gebser et al. 2012). Although we do not detail this here,
we mention that aggregates are treated in a similar way by
dedicated mechanisms unless they can be translated into no-
goods in a feasible way (Gebser et al. 2009).

Finally, let us make this more concrete by looking at the
system architecture of clasp, depicted in Figure 2. The pre-
processing component takes a (disjunctive) logic program
and translates it into an internal representation. This is done
in several steps. First, the given program, P , is simplified
by semantic preserving translations as well as equivalence
detection (Gebser et al. 2008). The simplified program P ′ is
then translated into nogoods expressing CF (P ′), which are
subject to clausal simplifications adapted from correspond-
ing SAT techniques. The resulting static nogoods are kept
in the shared context component, as are parts of the depen-
dency graph of P in order to reconstruct members of LF (P )
on demand. Often more than three quarters of the nogoods
obtained from CF (P ′) are binary or ternary. Hence, such

short nogoods are stored in dedicated data structures (and
shared during parallel solving). Each solver instance imple-
ments a conflict-driven search procedure, as sketched at the
outset of this section. Of particular interest is propagation,
distinguishing between unit and post propagation. The for-
mer computes a fixed point of unit propagation. More elabo-
rate propagation mechanisms can be added via post propaga-
tors. For instance, for programs with loops, this list contains
a post propagator implementing the unfounded set checking
procedure. Similarly, clasp’s extension with constraint pro-
cessing, clingcon (Ostrowski and Schaub 2012), as well as
dlvhex (Eiter et al. 2006) use its post propagation mecha-
nism to realize additional theory-specific propagations. The
parallel execution of clasp allows for search space splitting
as well as running competitive strategies. In both cases,
learned conflict nogoods (as well as bounds in case of op-
timization) are exchanged between solver instances, each of
which can be configured individually (see (Gebser, Kauf-
mann, and Schaub 2012b) for details on multi-threading).
Finally, the enumerator is in charge of handling the various
reasoning modes; once a solver finds a model, the enumer-
ator tells it how to continue. This can be done by finding a
next model in case of enumeration, or a better model in case
of optimization.

Conclusion
Answer Set Programming combines a high-level model-
ing language with effective grounding and solving technol-
ogy. This materializes in off-the-shelf ASP systems, whose
grounding and solving engines can be used as black-box sys-
tems with standardized interfaces. Also, ASP is highly ver-
satile by offering various complex language constructs and
reasoning modes. As a side-effect, many ASP solvers can
also be used for MAX-SAT7, SAT, and PB8 solving. As a
consequence, ASP faces a growing range of applications, as
detailed in (Erdem, Gelfond, and Leone 2016).

Acknowledgments The first and last author were partially
funded by DFG grants SCHA 550/8 and SCHA 550/9. The
second and third author were partially supported by MIUR
under PON project “SI-LAB BA2KNOW – Business Anal-
itycs to Know”, and by Regione Calabria, programme POR
Calabria FESR 2007-2013, projects “ITravel PLUS” and
“KnowRex: Un sistema per il riconoscimento e l’estrazione
di conoscenza”.

References
Alviano, M.; Faber, W.; Greco, G.; and Leone, N. 2012a.
Magic Sets for Disjunctive Datalog Programs. Artificial In-
telligence 187:156–192.
Alviano, M.; Dodaro, C.; Leone, N.; and Ricca, F. 2015.
Advances in WASP. In Calimeri, F.; Ianni, G.; and
Truszczyński, M., eds., Proceedings of the Thirteenth Inter-
national Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR’15), 40–54. Springer.

7Maximum Satisfiability Problem
8Pseudo-Boolean



Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder
Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Figure 2: The multi-threaded architecture of the ASP solver clasp

Alviano, M.; Leone, N. 2015. Complexity and Compilation
of GZ-aggregates in Answer Set Programming. Theory and
Practice of Logic Programming 15(4-5):574–587.
Alviano, M.; Leone, N. 2016. On the Properties of GZ-
Aggregates in Answer Set Programming. Proceedings of
the 25-th International Joint Conference on Artificial Intel-
ligence (IJCAI-16). AAAI Press.
Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds.
2009. Handbook of Satisfiability. IOS Press.
Calimeri, F.; Cozza, S.; Ianni, G.; and Leone, N. 2008. Com-
putable Functions in ASP: Theory and Implementation. In
Garcia de la Banda, M., and Pontelli, E., eds., Proceed-
ings of the Twenty-fourth International Conference on Logic
Programming (ICLP’08), 407–424. Springer.
Clark, K. 1978. Negation as Failure. In Gallaire, H., and
Minker, J., eds., Logic and Data Bases. Plenum Press. 293–
322.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and Expressive Power of Logic Programming.
ACM Computing Surveys 33(3):374–425.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann Publishers.
Eiter, T.; Ianni, G.; Schindlauer, R.; and Tompits, H. 2006.
DLVHEX: A Prover for Semantic-web Reasoning under the
Answer-set Semantics. In Proceedings of the International
Conference on Web Intelligence (WI’06), 1073–1074. IEEE
Computer Society.
Erdem, E.; Gelfond, M.; and Leone, N. 2016. Applications
of ASP. AI Magazine. This issue.
Faber, W.; Leone, N.; and Perri, S. 2012. The Intelligent
Grounder of DLV. In Erdem, E.; Lee, J.; Lierler, Y.; and
Pearce, D., eds., Correct Reasoning: Essays on Logic-Based
AI in Honour of Vladimir Lifschitz. Springer. 247–264.

Gebser, M., and Schaub, T. 2016. Modeling and Language
Extensions. AI Magazine. This issue.

Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2008. Advanced Preprocessing for Answer Set Solving. In
Ghallab, M.; Spyropoulos, C.; Fakotakis, N.; and Avouris,
N., eds., Proceedings of the Eighteenth European Confer-
ence on Artificial Intelligence (ECAI’08), 15–19. IOS Press.

Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2009. On the Implementation of Weight Constraint Rules
in Conflict-driven ASP Solvers. In Hill, P., and Warren, D.,
eds., Proceedings of the Twenty-fifth International Confer-
ence on Logic Programming (ICLP’09), 250–264. Springer.

Gebser, M.; Kaminski, R.; König, A.; and Schaub, T. 2011.
Advances in Gringo Series 3. In Delgrande, J., and Faber,
W., eds., Proceedings of the Eleventh International Confer-
ence on Logic Programming and Nonmonotonic Reasoning
(LPNMR’11), 345–351. Springer.

Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer Set Solving in Practice. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan and
Claypool Publishers.

Gebser, M.; Kaufmann, B.; and Schaub, T. 2012a. Conflict-
driven Answer Set Solving: From Theory to Practice. Arti-
ficial Intelligence 187-188:52–89.

Gebser, M.; Kaufmann, B.; and Schaub, T. 2012b. Multi-
threaded ASP Solving with Clasp. Theory and Practice of
Logic Programming 12(4-5):525–545.

Gebser, M.; Schaub, T.; and Thiele, S. 2007. Gringo: A
new Grounder for Answer Set Programming. In Baral, C.;
Brewka, G.; and Schlipf, J., eds., Proceedings of the Ninth
International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’07), 266–271. Springer.

Giunchiglia, E.; Lierler, Y.; and Maratea, M. 2006. An-



swer Set Programming Based on Propositional Satisfiability.
Journal of Automated Reasoning 36(4):345–377.
Gottlob, G.; Manna, M.; and Pieris, A. 2015. Polynomial
Rewritings for Linear Existential Rules. In Proceedings of
the 24-th International Joint Conference on Artificial Intel-
ligence (IJCAI-15), 2992-2998. AAAI Press.
Janhunen, T.; Niemelä, I.; and Sevalnev, M. 2009. Comput-
ing Stable Models via Reductions to Difference Logic. In
Erdem, E.; Lin, F.; and Schaub, T., eds., Proceedings of the
Tenth International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’09), 142–154. Springer.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.;
Perri, S.; and Scarcello, F. 2006. The DLV System for
Knowledge Representation and Reasoning. ACM Transac-
tions on Computational Logic 7(3):499–562.
Leone, N.; Rullo, P.; and Scarcello, F. 1997. Disjunctive Sta-
ble Models: Unfounded Sets, Fixpoint Semantics, and Com-
putation. Information and Computation 135(2):69–112.
Lierler, Y., and Lifschitz, V. 2009. One More Decidable
Class Of Finitely Ground Programs. In Hill, P., and War-
ren, D., eds., Proceedings of the Twenty-fifth International
Conference on Logic Programming (ICLP’09), 489–493.
Springer.
Lifschitz, V., and Razborov, A. 2006. Why Are There So
Many Loop Formulas? ACM Transactions on Computa-
tional Logic 7(2):261–268.
Lifschitz, V. 2016. Answer Sets and the Language of An-
swer Set Programming. AI Magazine. This issue.
Lin, F., and Zhao, Y. 2004. ASSAT: Computing Answer Sets
of a Logic Program by SAT Solvers. Artificial Intelligence
157(1-2):115–137.
Liu, G.; Janhunen, T.; and Niemelä, I. 2012. Answer Set
Programming via Mixed Integer Programming. In Brewka,
G.; Eiter, T.; and McIlraith, S., eds., Proceedings of the Thir-
teenth International Conference on Principles of Knowl-
edge Representation and Reasoning (KR’12), 32–42. AAAI
Press.
Manna, M.; Ricca, F.; and Terracina, G. 2015. Taming
Primary Key Violations to Query Large Inconsistent Data
via ASP. Theory and Practice of Logic Programming 15(4-
5):696–710.
Maratea, M.; Pulina, L.; and Ricca, F. 2014. A Multi-engine
Approach to Answer-set Programming. Theory and Practice
of Logic Programming 14(6):841–868.
Ostrowski, M., and Schaub, T. 2012. ASP Modulo CSP:
The Clingcon System. Theory and Practice of Logic Pro-
gramming 12(4-5):485–503.
Perri, S.; Scarcello, F.; Catalano, G.; and Leone, N. 2007.
Enhancing DLV Instantiator by Backjumping Techniques.
Annals of Mathematics and Artificial Intelligence 51(2-
4):195–228.
Perri, S.; Ricca, F.; and Sirianni, M. 2013. Parallel In-
stantiation of ASP Programs: Techniques and Experiments.
Theory and Practice of Logic Programming 13(2):253–278.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending

and Implementing the Stable Model Semantics. Artificial
Intelligence 138(1-2):181–234.
Syrjänen, T. 2001. Omega-restricted Logic Programs. In
Eiter, T.; Faber, W.; and Truszczyński, M., eds., Proceedings
of the Sixth International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR’01), 267–279.
Springer.
Ullman, J. 1988. Principles of Database and Knowledge-
Base Systems. Computer Science Press.
Wittocx, J.; Mariën, M.; and Denecker, M. 2010. Ground-
ing FO and FO(ID) with Bounds. Journal of Artificial Intel-
ligence Research 38:223–269.


