
Citation: Rajaratnam, D.; Schaub, T.;

Wanko, P.; Chen, K.; Liu, S.; Son, T.C.

Solving an Industrial-Scale

Warehouse Delivery Problem with

Answer Set Programming Modulo

Difference Constraints. Algorithms

2023, 16, 216. https://doi.org/

10.3390/a16040216

Academic Editor: Angelo Montanari

Received: 6 February 2023

Revised: 24 March 2023

Accepted: 17 April 2023

Published: 21 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Solving an Industrial-Scale Warehouse Delivery Problem with
Answer Set Programming Modulo Difference Constraints
David Rajaratnam 1 , Torsten Schaub 1,2 , Philipp Wanko 1,2,* , Kai Chen 3, Sirui Liu 3 and Tran Cao Son 4

1 Potassco Solutions, 14467 Potsdam, Germany
2 Institute of Computer Science, University of Potsdam, 14469 Potsdam, Germany
3 Dorabot, Nanshan District, Shenzhen 518068, China
4 Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA
* Correspondence: wanko@cs.uni-potsdam.de

Abstract: A warehouse delivery problem consists of a set of robots that undertake delivery jobs within
a warehouse. Items are moved around the warehouse in response to events. A solution to a warehouse
delivery problem is a collision-free schedule of robot movements and actions that ensures that all
delivery jobs are completed and each robot is returned to its docking station. While the warehouse
delivery problem is related to existing research, such as the study of multi-agent path finding (MAPF),
the specific industrial requirements necessitated a novel approach that diverges from these other
approaches. For example, our problem description was more suited to formalizing the warehouse
in terms of a weighted directed graph rather than the more common grid-based formalization. We
formalize and encode the warehouse delivery problem in Answer Set Programming (ASP) extended
with difference constraints. We systematically develop and study different encoding variants, with a
view to computing good quality solutions in near real-time. In particular, application specific criteria
are contrasted against the traditional notion of makespan minimization as a measure of solution
quality. The encoding is tested against both crafted and industry data and experiments run using the
Hybrid ASP solver clingo[DL].

Keywords: answer set programming; answer set programming modulo theories; hybrid reasoning;
multi-agent path finding; multi-agent planning

1. Introduction

A warehouse delivery problem consists of a set of robots that undertake delivery jobs
as a response to events. A delivery consists of an item that is picked up at one location,
then taken to and put down at another location. The robots are required to navigate
autonomously along the paths of the warehouse while ensuring that they do not collide
with each other. Finally, a robot is assigned to its own docking station where it is parked
when not otherwise engaged.

When tackling a warehouse delivery problem it is reasonable to consider a number
of different types of deliveries that can take place within such a warehouse. For example,
in our concrete application scenario, we consider the movement of storage pallets. In this
scenario, robots deliver loaded and unloaded pallets. Items that arrive at a warehouse’s
loading bay are deposited onto pallets, and these loaded pallets must be delivered to
specified storage locations. However, it is also necessary for a replacement empty pallet to
be delivered to the loading bay for use with any new arriving items.

In order to provide a general framework for solving these different delivery scenarios,
we model a task as simply being an action that must be undertaken by a robot at a specific
location within the warehouse. So the job of a robot delivering an item from one location to
another, is modeled as consisting of two distinct, but dependent, tasks. Firstly, a task to
navigate to a source location and pick up the item, and secondly, a task to navigate to a

Algorithms 2023, 16, 216. https://doi.org/10.3390/a16040216 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16040216
https://doi.org/10.3390/a16040216
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-4919-7997
https://orcid.org/0000-0002-7456-041X
https://orcid.org/0000-0003-4986-4881
https://orcid.org/0000-0003-3689-8433
https://doi.org/10.3390/a16040216
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16040216?type=check_update&version=2

Algorithms 2023, 16, 216 2 of 62

destination location and put down the item. The nature of these different tasks, and the
dependencies between them, is captured within a task graph.

In order to maintain generality, we model the physical layout of the warehouse as
a directed graph, with vertices capturing various locations and waypoints within the
warehouse. The vertices are connected by weighted edges, with the weight representing
the minimum travel times between vertices.

Solving the warehouse delivery problem can be divided into two interdependent
components, one dealing with task allocation and sequencing and another handling robot
routing and scheduling. From the task graph, the tasks are assigned to distinct robots and
a task sequence is established for each robot. Once the task assignments and sequences
are determined, the routes are calculated. The routes have to ensure that the robots visit
their assigned task locations in the correct order, are capable of executing the task at said
locations, and the robots’ movements along these routes has to be scheduled to ensure there
are no collisions. However, the routing and scheduling can in turn affect the satisfiability of
the task assignment, and hence these parts cannot be considered in isolation.

Of course, finding a satisfying solution to a problem is only one aspect of tackling a
warehouse delivery problem. We also have to consider the quality of the solution as well as
the time taken to find that solution. Firstly, we consider the traditional optimization criteria
of makespan minimization. However, many warehouse delivery problems need to be
solved in an online setting, with some degree of non-determinism, and where planning (or
replanning) must occur as new items arrive at the warehouse. Such a setting requires plans
to be computed in near real-time so that they can be immediately executed. Consequently,
it can often be unrealistic to focus purely on finding optimal plans. Instead, a “good
enough” solution found quickly may be preferable to waiting for the optimal solution
to be calculated. With this in mind, we consider quality measures other than makespan
minimization. In particular, we consider constraint-based criteria that can satisfy domain
specific quality measures and lead to satisfactory, albeit non-optimal, solutions computed
in a timely manner.

This work originates from an industrial collaboration between the two companies
Dorabot, China, and Potassco Solutions, Germany; it reports on the principles underlying a
solution to solving real-world warehouse delivery problems. The key idea is to use Answer
Set Programming (ASP [1]) for conflict detection, routing, and serialization and to rely
upon difference constraints for scheduling. Moreover, scheduling is used for ordering
actions in view of collision avoidance. As a result, action variables need no longer be
indexed by time steps and upper bounds on the length of plans become obsolete. This
comes at the price of restricting ourselves to acyclic plans, since multiple occurrences of
the same action cannot be distinguished any more. A similar approach was already used
for train disposition [2,3] in a joint project between Swiss Federal Railways, Switzerland,
and Potassco Solutions, Germany. In multi-agent path finding (MAPF) a related idea was
implemented using activity constraints from constraint-based scheduling [4].

The rest of this paper is organized as follows. The next section deals with practical
facets of ASP, focusing on the language elements used later on. Section 3 introduces a
formalization of the specific warehouse delivery problem addressed in our application. An
interesting aspect of this formalization is that it reflects an industrial application and as such
combines a multitude of features at once. Section 4 presents our ASP-based solution to the
warehouse delivery problem. To this end, we provide two different approaches, which we
refer to as step- and path-based, respectively. The first approach directly reflects the concepts
in our formalization, and bares similarities to traditional techniques for modeling action
and change in ASP through the use of a step-based encoding [1]. The second approach
pursues the aforementioned step-free approach that builds on more refined scheduling. We
describe both approaches bottom-up from the respective source code while paying attention
to grounding reductions and other pragmatic aspects relevant for scalability. We provide
an informal argumentation of the correctness of both approaches with respect to the for-
malization developed in Section 3. Completeness is only obtained in the step-based setting,

Algorithms 2023, 16, 216 3 of 62

since the path-based one only yields acyclic plans. This lack in expressiveness is however
largely compensated by a superior performance, as demonstrated in Section 5, where we
empirically evaluate our approach and contrast various alternatives. Last but not least, we
discuss related work and summarize our contributions in Sections 6 and 7, respectively.

2. Answer Set Programming

A logic program consists of rules of the form

a1;...;am :- am+1 ,...,an,not an+1 ,...,not ao

where each ai is an atom of form p(t1,...,tk) and all ti are terms, composed of function
symbols and variables. For 1 ≤ m ≤ n ≤ o, atoms a1 to am are often called head atoms,
while am+1 to an and not an+1 to not ao are also referred to as positive and negative body
literals, respectively. An expression is said to be ground, if it contains no variables. As
usual, not denotes (default) negation. A rule is called a fact if m = n = o = 1, normal if
m = 1, and an integrity constraint if m = 0. In what follows, we deal with normal logic
programs only, for which m is either 0 or 1. Semantically, a logic program induces a set of
stable models, being distinguished models of the program determined by the stable models
semantics [5].

To ease the use of ASP in practice, several extensions have been developed. First of all,
rules with variables are viewed as shorthands for the set of their ground instances. Further
language constructs include conditional literals and cardinality constraints [6]. The former
are of the form a:b1,...,bm (terminated by ‘;’ or ‘.’ in rule bodies [7]), the latter can be
written as s {d1;...;dn} t, where a and bi are possibly negated (regular) literals and each
dj is a conditional literal; s and t provide optional lower and upper bounds on the number
of satisfied literals in the cardinality constraint. We refer to b1,...,bm as a condition. Note,
more elaborate forms of aggregates are obtained by explicitly using functions (e.g., #count)
and relation symbols (e.g., <=) [7]. The practical value of these constructs become apparent
when used with variables. For instance, a conditional literal like a(X):b(X) in a rule’s body
expands to the conjunction of all instances of a(X) for which the corresponding instance
of b(X) holds. Similarly, 2 {a(X):b(X)} 4 is true whenever at least two and at most four
instances of a(X) (subject to b(X)) are true. More sophisticated examples are given in
Section 4.

A particular convenience feature are anonymous variables, denoted uniformly by an
underscore ‘_’. Each underscore in a rule is interpreted as a fresh variable. In turn, atoms with
anonymous variables are replaced by new atoms dropping these variables; the new atoms
are then linked to the original ones by rules expressing projections. For instance, an atom like
task(T,_) is replaced by task’(T) while adding the rule task’(T) :- task(T,X).

As an example, consider the rule:
1 { assign(R,T): robot(R) } 1 :- task(T,_), not depends(deliver,_,T).

This rule has a single head atom consisting of a cardinality constraint; it comprises
all instances of assign(R,T), where T is constrained by the two body literals, and R varies
over all instantiations of predicates robot/1. Given 12 robots, this results in 12 instances
of assign(R,T) for each valid replacement of T, among which exactly one must be chosen
according to the above rule. Furthermore, both body literals get tacitly removed and
corresponding projection rules are added; no link is established among the two occurrences
of the anonymous variable.

Finally, let us consider some system directives particular to clingo. These solver
directives are preceded with a hash symbol in clingo [7].

To begin with, clingo offers means for manipulating the solver’s decision heuristics.
Such heuristic directives are of form

#heuristic a:b1,...,bm. [w,o]

where a:b1,...,bm is a conditional literal; w is a numeral term and o a heuristic mod-
ifier, indicating how the solver’s heuristic treatment of a should be changed whenever
b1,...,bm holds. If a is chosen by the solver, sign enforces that it becomes either true or

Algorithms 2023, 16, 216 4 of 62

false depending on whether w is positive or negative, respectively. The modifier level
partitions all atoms in focus according to the given weight, and then selects atoms with
decreasing weight. Finally, modifiers true and false constitute a combination of sign and
level. See [7,8] for a comprehensive introduction to heuristic modifiers in clingo.

Furthermore, clingo features an integrated acyclicity checker. Acyclicity constraints
are expressed by edge directives of the form

#edge (u,v):b1,...,bm.

where u and v are terms representing an edge from node u to node v and b1,...,bm is
a condition. The arc (u,v) belongs to an (internal) graph whenever the condition holds.
Once such directives are present a stable model is only output by clingo, if its induced graph
is acyclic [9].

In fact, we rely in this paper on the extension of clingo with difference constraints, viz.
clingo[DL]. Difference constraints are expressed as theory atoms (theory atoms are preceded
with an ampersand in clingo [10]) of the form

&diff { u-v } <= d

where u and v are terms and d is a numeral term; they may occur as head atoms or body
literals. Each such theory atom is associated with a difference constraint u− v ≤ d, where
u, v are integer variables and d is an integer. In this setting, a stable model is only obtained
if the set of difference constraints associated with the theory atoms in the stable model is
satisfiable [11]. In clingo[DL], the obtained integer assignment is captured by expressions
using predicate dl/2. For instance, the assignment u 7→ 3 is output as dl(u,3). In fact,
the satisfaction of a set of difference constraints can be reduced to an acyclicity check of a
weighted graph, in which each difference constraint u− v ≤ d induces an edge from node
u to node v weighted with d. Whenever a cycle is present whose sum of weights is negative,
the set of difference constraints is unsatisfiable. In view of this, difference constraints can
be seen as an extension of acyclicity constraints with distances.

Full details on the input language of clingo along with various examples can be found
in the Potassco User Guide [7].

3. Warehouse Delivery Problem

A warehouse consists of a physical space divided into meaningful locations; such
as loading bays, storage bins, and robot parking stations. We model these locations as
the vertices of a graph with the edges between vertices representing the paths that the
robots can take. Robots navigate through the graph picking up items from one vertex
and delivering them to another. The robots themselves have physical dimensions, and
this imposes its own restrictions. We model these restrictions as conflict constraints, and
ensure that only one robot can be located at a given vertex at a time. Additionally, some
vertices are close enough together that a collision would occur if more than one of them
were occupied. So we broaden our notion of conflict constraints to encompass groups of
vertices. Beyond overly close but even unconnected vertices, it should be noted that a
conflict group cannot simply be calculated from the weights of the paths that connect the
vertices in the graph. Two vertices may be an adequate distance apart as determined by the
weights assigned to the edges, but may nevertheless be part of a conflict group because of
their close proximity within the physical warehouse.

To make the warehouse delivery problem more concrete, we consider a simplified
example warehouse in Figure 1. This warehouse consists of two robots r1 and r2, with their
corresponding parking stations (i.e., their home vertices) h1 and h2, and two truck loading
bays, l1 and l2. In our scenario, items are loaded and moved around on pallets. The robots
must transport full pallets from the loading bays to their storage locations, but also deliver
replacement empty pallets to the loading bays for future arrivals. The empty pallets are
collected from the empty pallet location p1. Finally, there are two storage locations s1 and
s2, which are in close proximity to each other and therefore cannot both be accessed by the
robots at the same time.

Algorithms 2023, 16, 216 5 of 62

151515

15 15 15

15 15

3020

30 2020

1818

10

15

Figure 1. A graph representing a simple warehouse with loading bay vertices l1 and l2, an empty
pallet area p1, storage vertices s1, s2, waypoint vertices w1, . . . , w8, and home vertices h1, h2 for robots
r1, r2, respectively. Edge labels represent the minimal travel times between vertices (in seconds).

Each of these physical locations are the endpoints of a graph, which can then be
reached via a set of waypoints. For example, the robot r1 that is located at h1 can reach the
loading bay l2 by traveling along the path h1, w3, w4, w8, l2. The edges between the vertices
are not equally spaced and we model the movement of robots in terms of the minimum
time required to travel between connected vertices. Modelling edge weights as minimum
travel times provides the flexibility to consider robots that can slow down where necessary.
This can be important to bridge the abstraction divide between high-level task planning
and low-level robot motion control; where a robot that can slow down between waypoints,
rather than simply stopping at waypoints, can reduce the wear on parts and battery life.
For the sake of the example, we consider a minimum travel time granularity of seconds
while noting that our approach can deal with an arbitrary time granularity.

Mirroring the physical restrictions on the storage locations, the connected waypoints
w5 and w6, that connect to these storage location, are also in close proximity to each other
and therefore must only be accessed by a single robot at a time.

Finally, it should be noted that our example scenario in Figure 1 considers the ware-
house graph as undirected, with robots being able to move in either direction along the
edges. However, this is not a restriction of our approach, and it can be useful to model
directed edges. Besides physical constraints that may enforce navigation in one direction
only, directed edges can also be used by the warehouse designers to impose additional
structural constraints. For example, the major thoroughfares of a warehouse could be
divided into directed “highways” which could improve the solving performance while
maintaining the efficiency of navigation.

3.1. Formalization

We formalize the warehouse delivery problem in a number of distinct parts. First, we
develop a formal description of the notion of a warehouse, comprising of a set of locations,
waypoints, and robots. Then, we present a task execution graph as an abstraction of the
movement of items within the warehouse in terms of a set of delivery tasks. This task graph
embodies a multitude of interdependent tasks to be achieved by a group of robots. Finally,
we formalize the notion of a robot assignment, and explore the restrictions that make for
valid solutions.

3.1.1. Problem Formulation

Warehouse. We define a warehouse as a tuple (V,E, fE,C,R, fH , fS) such that:

Algorithms 2023, 16, 216 6 of 62

a. (V, E) is a connected directed graph, fixing the warehouse layout;
b. fE : E→ N assigns the minimum travel time along an edge;
c. C ⊆ V ×V is a reflexive and symmetric conflict relation over vertices V;
d. R is a set of robots;
e. fH : R→ V assigns a home docking vertex to each robot; and
f. fS : R→ V assigns a starting vertex to each robot.

The warehouse formalization simply provides for the physical layout of the environ-
ment, in terms of a weighted graph (V, E, fE), as well as parameters for the robots. Vertices
represent locations and weighted edges capture their connectivity. To avoid robots colliding
while traveling through the warehouse, we keep track of locations that can hold only a
single robot at a time. We formalize this in terms of a conflict relation over the vertices of
the graph (for simplicity, we assume a planar warehouse graph and refrain from adding
conflicts among edges). It is worth noting that while our examples only consider robots
starting at their respective docking stations, the formalization itself allows for the separa-
tion of these locations. This generalizes the formalism, making it applicable to an online
setting that potentially requires re-planning and pre-existing partial assignments.

We can now consider the example scenario in light of this formalism. The set of vertices
and edges in the graph are specified by Figure 1, for example s1 ∈ V and (w1, l1) ∈ E. The
travel times between connected vertices, encoded in function fE, are similarly taken directly
from the figure, for example fE((w1, w2)) = 20 and fE((w7, w8)) = 30. Finally, the robot
home docking stations and starting locations are determined by the functions fH and fS,
respectively, and are assigned based on the figure:

fH(r1) = fS(r1) = h1, fH(r2) = fS(r2) = h2

Next, the conflict relation ensures that only a single robot at a time can access a vertex
or a group of vertices that are physically close together. This relation is reflexive (and
symmetric), so all vertices form a conflict with themselves, but we also need to add the
storage locations and their connected vertices:

{(s1, s2), (s2, s1), (w5, w6), (w6, w5)} ⊆ C

The above warehouse formalization and examples encodes the static information for a
given configuration. We now consider the dynamic information, in particular, the set of
tasks that the robots must perform and the relationship between these tasks.

We model tasks at a fine-grained level, where a task is associated with an action that
needs to be executed at a specific vertex. Because we are dealing with a delivery problem,
each task is either a pickup or a putdown action. Hence, a robot that needs to transport
an item from one location to another is performing two distinct tasks, a pickup at the
first location followed by a putdown at the second. In order to capture the relationship
between tasks, we adopt the notion of a task execution graph, restricting the order in which
tasks can be executed as well as capturing the dependency relation between tasks. For our
example scenario, we need the task graph to capture two key pieces of information. Firstly,
it needs to encode the pairs of pickup-putdown tasks that are part of the same delivery,
and secondly, it needs to specify when a replacement empty pallet is to be delivered to a
loading bay.

Task Execution Graph. We define a task execution graph as a tuple (T, D, fD, fV)
such that:

g. (T, D) is a directed acyclic graph, specifying dependencies among tasks T;
h. fD : D → {deliver, wait} specifies a type for each dependency; and
i. fV : T → V assigns to each task a location for the task’s action execution.

Applying this formalism to the example scenario, we consider four delivery tasks;
where items are delivered from the loading bays l1 and l2 to the storage locations s1 and

Algorithms 2023, 16, 216 7 of 62

s2, respectively, and replacement pallets are delivered from the empty pallet area to the
loading bays (cf. Figure 2).

Figure 2. Item deliveries from l1 to s1 and from l2 to s2. Their corresponding replacement empty
pallet deliveries are from p1 to l1 and l2, respectively.

Note that in the formalization, tasks are simply abstract entities, and the property of
one task being a pickup task while another being a putdown task is not an attribute of the
task entity itself. Rather, this property is encoded in the tasks’ dependencies.

For example, because there is a deliver relation from task t1 to task t2, t1 must be a
pickup task and t2 must be its corresponding putdown task. Functionally, tasks in a deliver
dependency have to be executed by the same robot, while tasks in a wait dependency do
not. However, both comprise the idea that one task must be executed before another. So the
wait relation from task t1 to task t4 tells us that t1’s full pallet pickup task must be executed
before t4’s replacement empty pallet putdown task, but it does not prescribe which robots
execute these tasks. These tasks could be executed by the same robot or by different robots.

The graphical representation of Figure 2 corresponds to the following formal repre-
sentation of the task execution graph consisting of tasks T = {t1, . . . , t8} with the task
dependencies establishing the executability relationship between the different tasks:

D = {(t1, t2), (t3, t4), (t1, t4), (t5, t6), (t7, t8), (t5, t8)}

The dependency type mapping fD establishes that two tasks are part of the same
delivery and that one task must wait for another to finish:

fD = {(t1, t2) 7→ deliver, (t3, t4) 7→ deliver, (t1, t4) 7→ wait,

(t5, t6) 7→ deliver, (t7, t8) 7→ deliver, (t5, t8) 7→ wait}

The deliver label associated with the edge (t1, t2) establishes that t1 is a pickup task
and t2 is its corresponding putdown task. In contrast, the wait label associated with (t1, t4)
establishes that the action of t1 must be executed before the action of t4.

Finally, the assignment of a vertex to each task establishes the task’s action execution
vertex; that is, the location where the pickup or putdown action occurs:

fV = {t1 7→ l1, t2 7→ s1, t3 7→ p1, t4 7→ l1, (1)

t5 7→ l2, t6 7→ s2, t7 7→ p1, t8 7→ l2} (2)

Warehouse delivery problem. We can now combine the two concepts, of a warehouse
and a task execution graph, into a single problem description. We define a warehouse delivery
problem as the pairing of a warehouse and a task execution graph.

3.1.2. Solution Formulation

Having defined the warehouse delivery problem in terms of a warehouse environment
and the tasks to be performed within that warehouse, we now turn to formalizing the
notion of a solution to this problem. After some supporting definitions and terminology,

Algorithms 2023, 16, 216 8 of 62

we introduce the notion of a robot assignment that assigns tasks and walks to robots in the
warehouse. Then, we define additional restrictions that make a robot assignment a solution
to a warehouse problem instance.

Task sequences. Ultimately our goal is to assign to a robot a set of tasks to be executed in
a particular order. To this end, we define a task sequence over a set T of tasks as a (possibly
empty) sequence 〈t0, . . . , tn〉 such that ti ∈ T and ti 6= tj for all i 6= j. We denote the set of
all task sequences over T as TT .

Next, we clarify sequence operations and terminology. Firstly, a subsequence is a
sequence that can be derived from another sequence by deleting zero or more elements
without changing the order of the remaining elements. We use the notation~v v ~w to denote
that ~v is a subsequence of ~w. Secondly, we sometimes treat sequences as sets and apply set
operations to sequences by ignoring their order and only considering their elements. For
example, 〈1, 2, 1, 4〉 ∩ 〈3, 4, 1〉 = {1, 4}.

Timed walks. A walk is a finite traversal along the vertices and edges of a graph, where
vertices and edges may be visited multiple times. Since we consider graphs with at most
one edge between any two vertices, we identify walks by their sequence of vertices. Given
a warehouse with vertices V, we define the notion of a timed walk as a sequence of route
points, (v, a, e) ∈ V ×N×N, where v ∈ V is a vertex in the warehouse, a is the arrival time
at v, and e is the exit time from v. To warrant the feasibility of a timed walk in a warehouse,
the arrival and exit times at each vertex must be compatible with the edge weights in the
warehouse. That is, given a warehouse W with vertices V, edges E, and edge weights fE,
we require for each timed walk 〈(v0, a0, e0), . . . , (vn, an, en)〉 feasible in W that

1. (vi, vi+1) ∈ E,
2. ai ≤ ei, and
3. ei + fE((vi, vi+1)) ≤ ai+i.

We useWW to denote the set of timed walks feasible in warehouse W.
Robot Assignment. Given a warehouse W = (V, E, fE, C, R, fH , fS) and a task execu-

tion graph (T, D, fD, fV), we define a robot assignment as a pair (fT , fW) such that:

4. fT : R→ TT assigns to each robot a task sequence over T; and
5. fW : R→WW assigns to each robot a timed walk feasible in W.

The robot assignment specifies two key pieces of information. Firstly, it specifies the
assignment of robots to tasks, also called the robot’s task sequence assignment, and secondly,
it specifies the movements of each robot within the warehouse, referred to as the walk
assignment. For instance,

fT(r1) = 〈t1, t2, t3, t4〉 and fT(r2) = 〈t5, t6, t7, t8〉 (3)

are task sequence assignments for robot r1 and r2 in our example (cf. Figure 2); it is
further illustrated in Table 1. This task assignment makes each robot perform both an
item delivery as well as an empty pallet replacement. However, other alternatives are also
possible, such as where one robot performs both item deliveries and the other performs
both pallet replacements.

Table 1. Task assignment for robot r1 and r2.

fT(r1) t1 pickup from l1 fT(r2) t5 pickup from l2
t2 putdown at s1 t6 putdown at s2
t3 pickup replacement from p1 t7 pickup replacement from p1
t4 putdown replacement at l1 t8 putdown replacement at l2

Corresponding time walks for both robots in our example warehouse (cf. Figure 1) are
given in Table 2, and formally captured by function fW , viz.

fW(r1) = 〈(h1, 0, 0), . . . , (h1, 405, ∞)〉 and fW(r2) = 〈(h2, 0, 0), . . . , (h2, 383, ∞)〉 (4)

Algorithms 2023, 16, 216 9 of 62

Both robots start at time point zero at their respective home docking stations as starting
locations and return there at time point 405 and 383, respectively. In our scenario, most
nodes are passed instantaneously as indicated by the same arrival and exit time. We use ∞
as the exit time for a terminal vertex to indicate that a robot has reached its final destination
and will not subsequently leave this vertex.

Table 2. Timed walks of robot r1 and r2 taking 18 and 20 steps, respectively.

fW(r1) (h1, 0, 0)
(w3, 15, 15)
(w2, 45, 45)
(w1, 65, 65)
(l1, 80, 90) t1
(w1, 105, 105)
(w5, 175, 175)
(s1, 190, 200) t2
(w5, 215, 215)
(w6, 225, 225)
(w2, 240, 240)
(p1, 255, 265) t3
(w2, 280, 280)
(w1, 300, 300)
(l1, 315, 325) t4
(w1, 340, 340)
(w2, 360, 360)
(w3, 390, 390)
(h1, 405, ∞)

fW(r2) (h2, 0, 0)
(w4, 15, 15)
(w8, 30, 30)
(l2, 45, 55) t5
(w8, 70, 70)
(w7, 100, 100)
(w6, 120, 120)
(s2, 135, 145) t6
(w6, 160, 160)
(w2, 175, 175)
(p1, 190, 200) t7
(w2, 215, 215)
(w1, 235, 235)
(w5, 253, 253)
(w6, 263, 263)
(w7, 283, 283)
(w8, 313, 313)
(l2, 328, 338) t8
(w8, 353, 353)
(w4, 368, 368)
(h2, 383, ∞)

We now consider additional definitions and criteria that make for a solution to a
warehouse problem. Firstly, we need to ensure that all specified tasks are assigned to robots
and every task must be assigned to exactly one robot.

Complete and Non-Overlapping Assignment. Given a task execution graph (T, D,
fD, fV), we define a robot assignment (fT , fW) as complete and non-overlapping with respect
to T iff:

6.
⋃

r∈R fT(r) = T; and
7. fT(r) ∩ fT(r′) = ∅ for distinct r, r′ ∈ R.

Clearly, the task assignment in (3) is complete and non-overlapping with respect to
the eight tasks T = {t1, . . . , t8} in our example (cf. Figure 2) since the first four are taken
care of by robot r1 and the second four by r2.

Secondly, we ensure that each robot must return to its home base once it has finished
its assigned tasks. In particular, each robot’s timed walk must start at its assigned starting
location and end at its home vertex.

Starting and Homing Assignment. Given a warehouse (V,E, fE,C,R, fH , fS), we define
a robot assignment (fT , fW) as starting and homing iff for all robots r ∈ R, fW(r) is a
non-empty sequence 〈(v0, a0, e0) . . . , (vn, an, en)〉 such that:

8. v0 = fS(r);
9. vn = fH(r);
10. a0 = 0; and
11. en = ∞.

Recall that we use ∞ as exit times at terminal vertices to indicate that robots stay put.
It is worth noting that an empty sequence does not constitute a starting or homing walk
as it does not place the robot on any vertex at any point in time. In contrast, a robot r
that starts and remains stationary at its home vertex corresponds to the singleton walk
〈(fH(r), 0, ∞)〉 and trivially satisfies the criteria for a starting and homing assignment. For

Algorithms 2023, 16, 216 10 of 62

our example scenario, both robots start and end their walks in (4) at their home docking
stations; hence both walks in (4) are starting and homing.

Next, we consider restrictions over the movements of the robots to ensure that the
robots do not collide with each other. Essentially, we must make sure that the timed walk
for a robot cannot conflict with that of any other robot. To this end, we take a rather
conservative approach and require that the robot passing first through a crucial zone must
already have reached its next waypoint before another robot can enter the zone. This is
similar to the follow constraint in MAPF (cf. [12]).

This condition could be refined by instead introducing a safety period after a robot
leaves a conflict zone rather than waiting until it arrives at the next node. For simplicity,
we opt for this conservative formalization.

Collision-free Assignment. Given a warehouse (V,E, fE,C,R, fH , fS), we define a robot
assignment (fT , fW) as collision-free iff:

12. For any distinct robots r, r′ ∈ R and route points (v, a, e) ∈ fW(r) and (v′, a′, e′) ∈
fW(r′) with (v, v′) ∈ C, either

(a) a < a′ and fW(r) = 〈. . . , (v, a, e), (v′′, a′′, e′′), . . . 〉 such that a′′ ≤ a′; or
(b) a′ < a and fW(r′) = 〈. . . , (v′, a′, e′), (v′′′, a′′′, e′′′), . . . 〉 such that a′′′ ≤ a.

In both cases, we require that either of the conflict parties arrives strictly first at the
vertices in question. Then, if robot r arrives first, as in Condition 12a, there must be a
subsequent route point (v′′, a′′, e′′) such that robot r′ is only allowed to arrive at v′ once r
has arrived at its next destination v′′, and has thus moved out of the way so that r′ may
pass. The converse situation where r′ proceeds first is expressed in Condition 12b, such that
robot r is only allowed to arrive at v once r′ has arrived at its next destination v′′′. Clearly,
most conflict zones are singleton. However, in case of a larger conflict zone, Condition 12a
and 12b would in turn by applied to all corresponding pairs in the conflict relation to
warrant that the first robot has left the zone before another one may enter.

For illustration, let us consider the connected vertices w5 and w6. Both are traversed
three times by robot r1, namely, at time points 175, 215, and 225, and four times by r2 at
120, 160, 253, and 263, respectively. We have to ensure that none of the twelve putative
encounters leads to a collision. As an example, consider route point (w5, 215, 215) of robot
r1 along with the putatively colliding route point (w6, 120, 120) of r2, and let r1, r2 slip in the
roles of r and r′ in (12). Here, we apply Condition 12b since r2 arrives earlier at w6 than r1 at
w5. Now, we have to make sure that r2 has already reached its next (non-crucial) waypoint
before r1 enters w5. The next route point of r2 is (s2, 135, 145) and thus r2 is already passed
s2 before r1 even arrives at w5. Hence, there is no collision at stake.

Having specified criteria to ensure that all tasks are assigned, that robots always return
to their home base, and that robots do not collide, we still need to ensure that the tasks
assigned to these robots can actually be completed. For simplicity, we assume that the time
to perform the pickup and putdown actions is fixed. We fix this value to 10 s and refer to it
with the symbol κ. This could be extended to a more complex setting, such as where the
action time is dependent on the weight of the load, etc.

In order to do this, we first introduce a supporting definition that maps assigned tasks
to the timed walk of a robot.

Projection. Given a warehouse (V,E, fE,C,R, fH , fS), a task execution graph (T,D, fD, fV),
a timed walk ~w ∈ WW , and a task sequence~t = 〈t0, . . . , tn〉, we define a sequence ~v =
〈(v0, a0, e0), . . . , (vn, an, en)〉 as a projection of ~w onto~t iff

j. ~v v ~w, that is, ~v is a subsequence of ~w;

and for every i ∈ {0, . . . , n}
k. vi = fV(ti); and
l. ai + κ ≤ ei.

A non-timed projection of a (non-timed) walk onto a task sequence is a sequence of
vertices satisfying the above definition but dropping arrival and exit times along with
Condition l.

Algorithms 2023, 16, 216 11 of 62

The essential idea behind a projection is to provide a mechanism to ensure that a robot
is in fact capable of executing the tasks that it has been assigned. It must visit each task’s
ti action execution vertex, viz. fV(ti), in the correct order and for long enough in order
to execute the required action. For a projection ~p onto task sequence~t, each route point
(vi, ai, ei) ∈ ~p is referred to as the projection point of the corresponding task ti ∈~t. We call
PWW the set of all possible projections onto all possible timed walks.

For illustration, we give in Table 3 the projections of the timed walks of robot r1 and r2
in Table 2 onto their tasks sequences in Table 1.

Table 3. Projections of timed walks of robot r1 and r2 in Table 2 onto their tasks sequences in Table 1.

r1 (l1, 80, 90) t1 (pickup)
(s1, 190, 200) t2 (putdown)
(p1, 255, 265) t3 (pickup)
(l1, 315, 325) t4 (putdown)

r2 (l2, 45, 55) t5 (pickup)
(s2, 135, 145) t6 (putdown)
(p1, 190, 200) t7 (pickup)
(l2, 328, 338) t8 (putdown)

To see this, we observe that both are subsequences of the entire walks and also maintain
the original order among the projection points. Furthermore, the locations in the projection
points correspond to the tasks’ action execution vertices given in (1) and (2). For instance,
fV(t1) = l1 and fV(t8) = l2. Finally, the layover time of each robot at each location respects
the time to perform the pickup and putdown actions.

The concept of a projection and projection points can be applied to defining criteria
for ensuring that the set of robots execute all their required tasks in an order that satisfies
the task execution graph.

Executable Assignment. Given a warehouse (V,E, fE,C,R, fH , fS) and a task execu-
tion graph (T,D, fD, fV), we define a robot assignment (fT , fW) as executable wrt. a set of
projections P iff:

13. For each robot r ∈ R, there is exactly one projection ~p ∈ P of the timed walk fW(r)
onto the task sequence fT(r);

14. For any distinct tasks t, t′ ∈ T such that (t, t′) ∈ D and corresponding projection
points (v, a, e) in some ~p ∈ P and (v′, a′, e′) in some ~p′ ∈ P, we have a + κ ≤ a′;

15. For any distinct tasks t, t′ ∈ T such that (t, t′) ∈ D and fD((t, t′)) = deliver, there is
some projection ~p ∈ P with ~p = 〈p0 . . . , pi, pi+1, . . . , pm〉 such that pi is the projection
point of t in ~p and pi+1 is the projection point of t′ in ~p for 0 ≤ i ≤ m.

The first item in this definition ensures that every robot is able to execute the tasks
that it was assigned, and in the assigned order. The second and third items ensure that the
dependencies of these assigned tasks are met. In particular, no task can begin to be executed
before its dependencies have finished executing, and matching pickup and putdown tasks
are executed by the same robot one immediately after the other. Note that Condition (14)
implicitly assumes that a task is executed as soon as its assigned robot arrives at the vertex
of the corresponding projection point. The rationale for this assumption is simple: When a
task’s dependencies have been satisfied then the assigned robot should execute that task as
soon as it is able to do so.

To see that the robot assignment given in Tables 1 and 2 is executable, we start with
noting that the sequences in Table 3 are indeed projections of the two timed walks in
Table 2 on the corresponding task assignments in Table 1. For (14), we observe that each
putdown task follows several seconds after its preceding pickup task; the same applies
to the two wait dependencies, namely (t1, t4) and (t5, t8). Furthermore, finally, all deliver
dependencies are mapped onto consecutive projection points in Table 3, namely, t1 directly
precedes t2, t3 precedes t4, etc., establishing (15).

Solutions. A pair ((fT , fW), P) of a robot assignment (fT , fW) and a set of projections
P ⊆ 2PWW is a solution to a warehouse delivery problem with warehouse
W = (V, E, fE, C, R, fH , fS) and a task execution graph (T,D, fD, fV) iff it is complete, non-
overlap-ping, starting, homing, collision-free, and executable wrt. P.

Algorithms 2023, 16, 216 12 of 62

Note that there might be several sets of projections for which a robot assignment is
executable. For instance, a robot might move several times over a target vertex and remain
there long enough to execute the assigned task. The projections clarify at which specific
visit the task is executed.

In our running example, the robot assignment given in Tables 1 and 2, together with the
projections in Table 3, constitute a solution to the warehouse delivery problem, consisting
of the warehouse in Figure 1 and the task execution graph in Figure 2.

Observations. In order to complete the description of our approach we now list some
observations that are a direct result of our formalization. These observations are reflected in
the next section, where they are used to provide a richer and more efficient ASP encoding
to match the formalization.

Given a warehouse delivery problem consisting of a warehouse W = (V, E, fE, C, R,
fH , fS) and task execution graph (T, D, fD, fV), and a robot assignment (fT , fW) with
corresponding set of projections P that satisfies Conditions 7, 13 and 15, then:

1. For any distinct tasks t, t′ ∈ T such that (t, t′) ∈ D and fD((t, t′)) = deliver, and
corresponding projection points (v, a, e) in some ~p ∈ P and (v′, a′, e′) in some ~p′ ∈ P,
it follows that a + κ ≤ a′

2. For distinct tasks t, t′ ∈ T such that (t, t′) ∈ D and fD((t, t′)) = deliver, then:

(a) there exists a robot r ∈ R such that 〈t, t′〉 v fT(r), and
(b) for all r′ ∈ R, where r 6= r′, then t, t′ 6∈ fT(r).

Conditions 13 and 15 establish that the delivery task pair t, t′ are consecutive tasks
for some robot’s task sequence (Observation 2a). Condition 7 ensures that there is only
one such robot for any task pair (Observation 2b). Since a projection requires that the
assigned robot is stationary at a task’s vertex for at least time κ (Condition l.), hence
there is a guarantee that the arrival at the vertex for task t′ is at least κ time after the
arrival at t’s vertex (Observation 1). The key point of Observation 1 is that Condition 14
is implicitly satisfied for a pair of tasks involved in a delivery. In simple terms, to pickup
an item and then to put it down implicitly means that the one must follow the other with
a time gap of at least κ. Consequently, for this special case it is unnecessary to explicitly
enforce Condition 14, which we use to provide a more efficient encoding by avoiding these
redundant constraints.

These observations are reflected in the example scenario, where the projections of the
timed walks for robot r1 and r2 contain arrival times that satisfy Observation 1 and the
delivery task pairs form distinct subsequences for each robot’s task sequences:

〈t1, t2〉 v fT(r1), 〈t3, t4〉 v fT(r1), 〈t5, t6〉 v fT(r2), and 〈t7, t8〉 v fT(r2) (5)

3.2. Solution Quality

In this section, we present two measures for the quality of a solution to the warehouse
delivery problem. The first one is the makespan, where the quality of the solution is the
duration of executing the solution, i.e., the maximum among all arrival time points at the
last vertex in the timed walks. While makespan is an important quality measure, using
makespan minimization as an optimization criteria is computationally expensive and can
be impractical in a real-world setting that requires online planning over large warehouses.
Instead we need to consider alternative, potentially cheaper, metrics. Here we provide a
second quality measure that is an application driven metric that measures the maximum
duration between the execution of task pairs that are given.

Makespan. Given a solution ((fT , fW), P) to a warehouse delivery problem with
warehouse W and a task execution graph (T, D, fD, fV), we define the makespan qM(fW) :
WW → N as:

qM(fW) = max{a | 〈. . . , (v, a, e)〉 ∈ fW}

Note that neither task assignment nor projections influence the makespan, therefore
only the timed walks need to be an argument. For instance, the solution to our running

Algorithms 2023, 16, 216 13 of 62

example in Table 2 has the makespan qM(fW) = 405 as this is the arrival at the final vertex
of robot r1’s walk, and is also the last arrival for all the robots.

Task-pair Distance. Given a solution ((fT , fW), P) to a warehouse delivery prob-
lem with warehouse W and a task execution graph (T, D, fD, fV), and a set of task pairs
TP ⊆ 2T×T , we define the task-pair distance qTP(fW , P, TP) :WW × 2PWW × 2T×T → N as:

qTP(fW , P, TP) = max{|a1 − a2| | (v1, a1, e1) ∈ ~p1, (v2, a2, e2) ∈ ~p2, {~p1, ~p2} ∈ P, (t1, t2) ∈ TP}

where (v1, a1, e1) and (v2, a2, e2) are the projection points of t1 and t2, respectively.
For this quality measure, we need to determine the precise projection points for the

task pairs, therefore both timed walks and projections are required. Note that we do not
need to take task execution time into consideration, as the same time would be added to
a1 and a2. We can now use the task-pair distance to evaluate solutions for the scenario in
which pallets have to be replaced after a loading bay was emptied.

In our example, we chose task-pairs TP = {(t1, t4), (t5, t8)}, which signify that we
want to measure the time it takes from the pickup action at the loading bay and the putdown
action of the new pallet on the same loading bay.

Note that we can find such a task-pair set for arbitrary instance size with the same
replacement pattern by merely having a task-pair for each loading bay and replacement
event. The projections P are given by the triples that are marked with a task name in Table 2.
Then, the task-pair distance qTP(fW , P, TP) for our example is 283, which is the time it takes
robot r2 to replenish the pallet at loading bay l2.

In industry, there are often online settings in which new tasks arrive and plans have to
be redone. Therefore, a makespan optimization cannot be exact and might be too costly
from a performance point of view. The task-pair distance provides a more local means
of evaluation that expresses in our example that a certain idle time has to be avoided.
Using this measure, we can for instance express that a loading bay should not be idle for
more than 5 min if we assume seconds as the time metric and only accept solutions with
qTP(fW , P, TP) smaller than 300. This establishes a fairness criteria by ensuring that there
are no tasks that are ignored indefinitely. In Section 5, we evaluate these metrics and argue
that the task-pair distance allows us to quickly find “good-enough” solutions in a setting
where makespan minimization is impractical.

4. Solving the Warehouse Delivery Problem

As common in ASP, we separate our problem specification into the problem instance,
represented by a set of facts, and the problem encoding, captured by a set of rules. Ac-
cordingly, we first specify our instance format in the next section. Then, we present our
encoding for assigning and sequencing tasks in Section 4.2. This encoding is common to the
two alternative encoding techniques presented in the following sections. The step-based en-
coding, introduced in Section 4.3, closely follows our formal specification of the warehouse
delivery problem and combines the dominant step-based encoding technique for ASP plan-
ning [13] with difference constraints for scheduling. The path-based encoding, introduced
in Section 4.4, separates further from the traditional step-based ASP planning approach
by abolishing the need for steps altogether. It does this by replacing the computation of
robot-oriented timed walks with a series of (acyclic) paths, where robots are associated with
paths only through the task assignment. The two last sections discuss further performance
improvements and introduce objectives for optimization.

4.1. Fact Format

We start with our fact format representing instances of warehouse delivery problems.
For simplicity, in what follows, we identify semantic objects, like v ∈ V or fE((v, v′)),
with their syntactic representation. We represent a warehouse (V,E, fE,C,R, fH , fS) by the
following facts

• For each edge (v, v′) ∈ E, we add

edge(v,v′, fE((v, v′))).

Algorithms 2023, 16, 216 14 of 62

For instance, fact edge(w1,w2,20) indicates that there is an edge from w1 to w2 requir-
ing the robot to travel at least 20 s.

• For each robot r ∈ R, we add

robot(r). home(r, fH(r)). start(r, fS(r)).

For instance, the facts robot(r1), start(r1,h1), and home(r1,h1) represent that
there exists a robot named r1, which is currently located at vertex h1, which is also its
docking station.

• For each (v, v′) ∈ C, we add

conflict(v,v′).

For instance, the fact conflict(s1,s2) expresses that vertices s1 and s2 cannot be
accessed simultaneously.

We represent the task execution graph (T,D, fD, fV) as follows.

• For each t ∈ T and (t′, t′′) ∈ D, we add

task(t, fV(t)). depends(fD(t′, t′′),t′,t′′).

For instance, the facts task(t1,l1) and depends(deliver,t1,t2) represent that there
exists a task t1 that has to be executed at vertex l1, it has to finish before t2 can be
executed, and they have to be completed by the same robot.

For illustration, we give in Listing 1 the facts capturing our example warehouse and
task execution graph in Figures 1 and 2. Note that Line 7 makes sure that the edge relation
is symmetric and thus that the actual graph is undirected. Similarly, the rules in Lines 14–16
take care of the reflexivity and symmetry of the conflict relation.

Listing 1. Facts representing our example problem instance capturing the warehouse and task
execution graph in Figures 1 and 2.

1 edge(l1,w1,15). edge(p1,w2,15). edge(h1,w3,15). edge(h2,w4,15).
2 edge(w1,w2,20). edge(w2,w3,30). edge(w3,w4,20).
3 edge(w1,w5,18). edge(w2,w6,15). edge(w3,w7,18). edge(w4,w8,15).
4 edge(w5,w6,10). edge(w6,w7,20). edge(w7,w8,30).
5 edge(w5,s1,15). edge(w6,s2,15). edge(l2,w8,15).

7 edge(V,V ’,T) :- edge(V’,V,T).

9 robot(r1). home(r1,h1). start(r1,h1).
10 robot(r2). home(r2,h2). start(r2,h2).

12 conflict(s1,s2). conflict(w5,w6).

14 conflict(V,V) :- edge(V,_,_).
15 conflict(V’,V ’) :- edge(_,V ’,_).
16 conflict(V,V ’) :- conflict(V’,V).

18 task(t1,l1). task(t2,s1). task(t5,l2). task(t6,s2).
19 task(t3,p1). task(t4,l1). task(t7,p1). task(t8,l2).

21 depends(deliver,t1,t2). depends(deliver,t5,t6).
22 depends(deliver,t3,t4). depends(deliver,t7,t8).
23 depends(wait,t1,t4). depends(wait,t5,t8).

4.2. Task Assignment and Sequencing

We present in Listing 2 an encoding for assigning and sequencing tasks.

Algorithms 2023, 16, 216 15 of 62

Listing 2. Task assignment and sequencing.

1 1 { assign(R,T) : robot(R) } 1 :- task(T,_), not depends(deliver,_,T).
2 assign(R,T’) :- assign(R,T), depends(deliver,T,T’).

4 0 { task_sequence(T,T’) : task(T’,_), T!=T’, not depends(deliver,_,T’) } 1
5 :- task(T,_), not depends(deliver,T,_).
6 task_sequence(T,T’) :- depends(deliver,T,T’).

8 same_robot(T,T’) :- assign(R,T), assign(R,T’), T < T’,
9 not depends(deliver,T,T’).

10 same_robot(T,T’) :- depends(deliver,T,T’).

12 :- task_sequence(T,T’), not depends(deliver,T,T’),
13 not same_robot(T,T’), not same_robot(T’,T).
14 :- task(T,_), 2 #count{ T’ : task_sequence(T’,T) }.
15 :- assign(R,_), not #count{ T : assign(R,T), not task_sequence(_,T) } = 1.

More precisely, a complete and non-overlapping task sequence assignment to robots
is established. This part is common to both the step- and path-based approach introduced
in the following two sections. In what follows, we draw on the components of a fixed
warehouse (V,E, fE,C,R, fH , fS) and a task execution graph (T,D, fD, fV).

A task sequence assignment fT allots each robot a sequence of tasks; it is represented by
atoms over predicates assign/2 and task_sequence/2. An atom assign(r,t) represents
that t ∈ fT(r) for robot r and task t. Furthermore, an atom task_sequence(t,t′) signifies
that there is a task assignment fT(r) = 〈. . . , t, t′, . . . 〉 with two consecutive tasks t, t′ ∈ T
for some robot r ∈ R.

Lines 1–2 deal with task assignments and enforce that the task sequence assignment is
complete and non-overlapping, as spelled out in Condition 6 and 7. In Line 1, we assign
each task t without any delivery dependency, or formally, where there is no (t, t′) ∈ D such
that fD((t, t′)) = deliver, to exactly one robot in R. Line 2 ensures that tasks that are in a
delivery dependency are assigned to the same robot. That is, once a robot r is assigned a
task t that is part of a delivery dependency (t, t′), then r must also be assigned task t′.

The remainder of Listing 2 is dedicated to sequencing the assigned tasks. In Line 4, a
task t′ can be chosen as succeeding a task t, by means of task_sequence(t,t′), so long as t′

has no other task as a delivery dependency and t is not a delivery dependent of some other
task. That is, for any task t without a subsequent delivery dependency, we may choose a
succeeding task t′ having no preceding delivery dependency. On the other hand, whenever
two tasks t, t′ ∈ T are in a delivery dependency, viz. (t, t′) ∈ D and fD((t, t′)) = deliver, we
enforce their succession by deriving task_sequence(t,t′) in Line 6.

Lines 8–10 identify tasks assigned to the same robot. We separate this into two
cases. Line 8 deals with tasks that are not in a delivery dependency but happen to be
assigned to the same robot. This information is dynamic and can only be determined at
solving time from the identity of the assigned robots. Note, clingo’s grounder guarantees a
total ordering over terms; and we rely on this ordering by using the condition T < T’ to
avoid the generation of redundant ground rules resulting from the symmetry between the
tasks T and T’. In contrast, Line 10 directly asserts the static fact that a pair of tasks in a
delivery dependency is necessarily assigned to the same robot. This static information is
independent of the identity of the assigned robots and can be determined at grounding
time. Consequently, separating the two cases results in a (slight) reduction of the size of
the resulting grounding and results in fewer choices that need to be made by the solver.
The resulting information is then used in Line 12 to ensure that all pairs of ordered tasks,
expressed by task_sequence(t,t′), are assigned to the same robot. Line 14 forbids that
a task has several predecessors and Line 15 requires that a robot’s task sequence has a
unique beginning.

Algorithms 2023, 16, 216 16 of 62

Note that the encoding in Listing 2 cannot rule out that the obtained instances of
predicate task_sequence/2 form disconnected cycles. This is because it only enforces
that each such task sequence has a unique start and there is no task with several pre-
decessors. For instance, given the robot assignments assign(r1,t1), assign(r1,t2),
assign(r1,t3), and assign(r1,t4), Lines 4–15 could potentially generate the linear se-
quence task_sequence(t1,t2) in combination with the circular sequence consisting of
task_sequence(t3,t4) and task_sequence(t4,t3). Fortunately, while Listing 2 by it-
self is not ruling out such incorrect sequences, they are discarded when scheduling in-
formation is added. This is an implicit consequence of assigning time points to tasks
which rule out cyclic time sequences. However, scheduling is handled differently for the
step and path encodings, and we therefore differ the discussion of its application to the
following subsections.

Nevertheless, while the scheduling process implicitly removes any disconnected
cycles, it is also possible, and potentially beneficial, to enforce this explicitly. We introduce
two distinct mechanisms for doing this. The first way of removing cyclic task sequences
without scheduling is via a reachability encoding. The encoding in Listing 3 ensures that
all tasks on a task sequence are reachable from the start of a sequence.

Listing 3. Task sequence reachability.

1 task_reachable(T) :- task_sequence(T,_), not task_sequence(_,T).
2 task_reachable(T’) :- task_reachable(T), task_sequence(T,T ’).
3 :- task_sequence(T,_), not task_reachable(T).

First, Line 1 identifies the start of a sequence and determines that it is reachable, then,
Line 2 propagates that a task is also reachable if it is connected to some other reachable
task on a task sequence. Finally, Line 3 ensures that a task sequence may only continue
from a reachable task. This discards the cyclic example from above, as neither t3 nor t4
are reachable from the start of a task sequence. In fact, the reachability between t3 and t4
forms an unfounded set and is discarded by the unfounded set checker of clingo.

A second, and easy, alternative to explicitly eliminating cyclic task sequences is by
using clingo’s builtin acyclicity checker. This can be accomplished by using the #edge
directive with atoms over predicate task_sequence/2 as shown in Listing 4.

Listing 4. Task sequence acyclicity via #edge directives.

#edge(T,T ’) : task_sequence(T,T ’).

The advantages of combining Listings 2 with either 3 or 4 are twofold. First, the stable
models of both listings combined yield all correct possible task sequence assignments,
and second, although redundant when scheduling is added, it may improve solving
performance by immediately discarding cyclic task sequences. We empirically investigate
this in Section 5.

Beyond individually correct task sequences, we can also employ acyclicity detection
to prematurely discard more complex sequences that are unschedulable. For instance, we
may have the single acyclic sequence task_sequence(t3,t4), task_sequence(t4,t1), and
task_sequence(t1,t2), where all tasks are assigned to the same robot (e.g., assign(r1,t1),
assign(r1,t2), assign(r1,t3), and assign(r1,t4)). While this task sequence itself is
not cyclic, nevertheless there is a cycle introduced through wait dependencies over multiple
task sequences. In this example, there is a wait dependency depends(wait,t1,t4) because
t1 is the full pallet pickup task at location l1 while t4 is its corresponding empty pallet
putdown task (see Figure 2). Essentially t1 must be executed before t4, and so this
sequence is not schedulable despite the fact that the task sequence itself is acyclic. Listing 5
eliminates such cycles by adding the wait dependencies, via the edge directive, to the
acyclicity detection. However, it is important to note that this encoding has no effect
individually and needs to be used in tandem with Listing 4.

Algorithms 2023, 16, 216 17 of 62

Listing 5. Acyclicity between task sequences via #edge directives.

#edge(T,T ’) : depends(D,T,T ’), D != deliver.

Our example yields 120 (acyclic) task sequence assignments, among them the one in
Table 1, represented by

assign(r1,t1) assign(r2,t5)
assign(r1,t2) assign(r2,t6)
assign(r1,t3) assign(r2,t7)
assign(r1,t4) assign(r2,t8)

task_sequence(t1,t2) task_sequence(t5,t6)
task_sequence(t2,t3) task_sequence(t6,t7)
task_sequence(t3,t4) task_sequence(t7,t8)

4.3. Step-Based Encoding

In this section, we address routing and scheduling aspects of our application via an
encoding closely following our formalization. In doing so, we separately describe the parts
of the encoding capturing walk assignments, conflict detection and resolution, projections,
and scheduling. Finally, we discuss the correspondence of the resulting stable models to
the solutions of warehouse delivery problems.

4.3.1. Walk Assignment

We start by providing an encoding capturing (non-timed) walks satisfying starting
and homing conditions in Listing 6; timing constraints addressing arrival and exit times
are addressed in Section 4.3.4.

Listing 6. Assign a walk to each robot.

1 step (0.. maxstep).

3 vertex(V) :- edge(V,_,_).
4 vertex(V’) :- edge(_,V’,_).
5 0 { walk(R,S,V) : vertex(V) } 1 :- robot(R), step(S).

7 :- walk(R,S,_), not walk(R,S -1,_), S>0.
8 :- walk(R,S,V), walk(R,S+1,V ’), not edge(V,V ’,_).

10 :- walk(R,0,V), not start(R,V).
11 :- walk(R,S,V), not walk(R,S+1,_), not home(R,V).
12 :- start(R,V), home(R,V ’), V != V’, not walk(R,_,_).

To begin with, we introduce a horizon limiting the maximum length of any walk.
The corresponding parameter is introduced in Line 1 and controls how many instances of
predicate step/1 are introduced.

A robot’s walk is a sequence of vertices; it is represented via the ternary predicate
walk/3. The walk in Table 2 is captured by the following atoms.

walk(r1 ,0,h1) walk(r2 ,0,h2)
walk(r1 ,1,w3) walk(r2 ,1,w4)
walk(r1 ,2,w2) walk(r2 ,2,w8)
walk(r1 ,3,w1) walk(r2 ,3,l2)
walk(r1 ,4,l1) walk(r2 ,4,w8)
walk(r1 ,5,w1) walk(r2 ,5,w7)
walk(r1 ,6,w5) walk(r2 ,6,w6)
walk(r1 ,7,s1) walk(r2 ,7,s2)
walk(r1 ,8,w5) walk(r2 ,8,w6)

Algorithms 2023, 16, 216 18 of 62

walk(r1 ,9,w6) walk(r2 ,9,w2)
walk(r1 ,10,w2) walk(r2 ,10,p1)
walk(r1 ,11,p1) walk(r2 ,11,w2)
walk(r1 ,12,w2) walk(r2 ,12,w1)
walk(r1 ,13,w1) walk(r2 ,13,w5)
walk(r1 ,14,l1) walk(r2 ,14,w6)
walk(r1 ,15,w1) walk(r2 ,15,w7)
walk(r1 ,16,w2) walk(r2 ,16,w8)
walk(r1 ,17,w3) walk(r2 ,17,l2)
walk(r1 ,18,h1) walk(r2 ,18,w8)

walk(r2 ,19,w4)
walk(r2 ,20,h2)

Each instance walk(r,s,v) expresses that robot r is at step s + 1 at vertex v. Accord-
ingly, Line 5 allows every robot in every step to be at any vertex, while the remaining
integrity constraints make sure that walks are feasible (except for timing constraints) and
respect the starting and homing conditions.

Firstly, the integrity constraint at Line 7 excludes walks with gaps. This ensures a
canonical representation making sure that subsequently visited vertices also have subse-
quent step numbers. Next, since walks have to respect the warehouse’s structure, vertices
with successive step numbers must be connected via an edge in the warehouse graph. This
is enforced by the integrity constraint in Line 8.

Up to this point, the encoding produces (non-timed) feasible walks with up to
maxstep+1 vertices for each robot in the warehouse at hand. Next, we add additional
constraints to ensure Conditions 8 and 9, warranting a starting and homing walk. Line 10
ensures that the walk of each robot begins at its starting location. Then, Line 11 requires
each walk to end at the robot’s home location. Furthermore, finally, Line 12 enforces that
the walk is non-empty if the robot does not start at its home location. This is necessary to
deal with the special case of a robot that does not start at its home location but also has
no assigned tasks. Without this constraint it would be possible for there to be no walk/3
instances generated for this robot, which in turn would mean that the homing constraint at
Line 11 would not ensure that the robot finished its walk at its home location.

4.3.2. Conflict Detection and Resolution

Having assigned robots to walks, we now turn to detecting and resolving any poten-
tial conflicts between these walks. Rather than explicitly ruling out conflicting situations,
Listing 7 relies on the predicate before/2 to indicate which robot is to proceed first when-
ever two robots travel over conflicting vertices.

Listing 7. Resolve conflicts for robots visiting conflicting vertices.

1 { before((R,S),(R’,S’)) } :- walk(R,S,V), walk(R’,S’,V’),
2 conflict(V,V’), R < R’.
3 before((R’,S’),(R,S)) :- walk(R,S,V), walk(R’,S’,V’),
4 conflict(V,V’), R < R’,
5 not before((R,S),(R’,S’)).

7 :- start(R,V), not walk(R,_,_), walk(_,_,V).
8 :- walk(R,0,_), before((_,_),(R,0)).
9 :- walk(R,S,_), not walk(R,S+1,_), before((R,S),(_,_)).

11 :- walk(R,S,V1), walk(R,S+1,V2), walk(R’,S’,V1’), walk(R’,S’+1,V2’),
12 conflict(V1,V1’), conflict(V2,V2’), before((R,S),(R’,S’)),
13 not before((R,S+1),(R’,S’+1)).
14 :- walk(R,S,V1), walk(R,S+1,V2), walk(R’,S’,V1’), walk(R’,S’+1,V2’),
15 conflict(V1,V2’), conflict(V2,V1’), before((R,S),(R’,S’+1)),
16 not before((R,S+1),(R’,S’)).

Algorithms 2023, 16, 216 19 of 62

More specifically, an atom of the form before((r,s),(r′,s′)) indicates that robot r in
its step s precedes robot r′ in its steps s′. The underlying conflicting vertices remain implicit.
The actual detection and resolution of conflicts is done in Lines 1–5. To reduce grounding,
we only make a choice whenever the robots’ names are strictly smaller. We derive the
opposite ordering, if the robot with the smaller name was not chosen to advance first.

The rest of the encoding adds constraints for a conflict-free routing that are expressible
without the need of timing constraints. In the initial situation, robots are located at their
starting positions, and therefore, no other robot could pass through there first. Line 7
forbids any robot to pass through the starting point of another robot that never moves.
A similar constraint is expressed in Line 8, denying robots precedence over other robots at
the starting step no matter where this step takes place. Finally, Line 9 imposes a constraint
for the end of each robot’s walk. In particular, for the final vertex of a given robot’s walk,
all other robots need to have passed through any conflicting vertices first, before the given
robot is allowed to arrive at its destination. Note, since our solutions are restricted to
homing walks, this constraint covers the corner-case where a robot visits another robot’s
home vertex. This would only happen if the robot’s home vertex happened to also be a
waypoint to some other vertex, or if a robot needed to detour to this vertex to allow some
other robot to pass, such as along a narrow corridor. However, both these situations are
potential indicators of a poorly designed warehouse, and are therefore unlikely to occur
in practice.

Finally, the integrity constraints in Lines 11 and 14 handle robots following or facing
each other in a group of conflicting vertices. The idea is that in both situations, whatever
decision was made to order a pair of robots with respect to a pair of conflicting vertices,
that same decision has to be maintained throughout the rest of the group of conflicting
vertices. As a consequence, overtaking or colliding head-on is impossible since the robots
remain in the same order or let the other robot pass completely before entering the critical
part of the warehouse.

Continuing our example, the following facts capture part of the conflict resolution for
the walks of robots r1 and r2. To help illustrate this scenario ASP comments also show the
underlying warehouse conflict atoms.

before ((r2 ,6),(r1 ,6)) before ((r2 ,6),(r1 ,8))
before ((r2 ,6),(r1 ,9)) before ((r2 ,7),(r1 ,7))
before ((r2 ,8),(r1 ,6)) before ((r2 ,8),(r1 ,8))
before ((r2 ,8),(r1 ,9))

before ((r1 ,6),(r2 ,13)) before ((r1 ,6),(r2 ,14))
before ((r1 ,8),(r2 ,13)) before ((r1 ,8),(r2 ,14))
before ((r1 ,9),(r2 ,13)) before ((r1 ,9),(r2 ,14))

These atoms address the conflicts on the two pairs of conflict vertices (w5,w6), and
(s1,s2), discussed in Section 3 and shown in Figure 1. Robot r2 passes through these
conflict vertices twice; once on its way to dropping off a full pallet at s2 and a second time
on its way to dropping off an empty pallet at l2. In contrast, robot r1 only passes through
the vertices once on its way to dropping off a full pallet at s1. In combination, there are
two sets of occasions requiring conflict resolution, and we have therefore presented these
facts in two distinct blocks.

Firstly, when r2 is at its step 6 it passes through vertex w6 on its way to dropping off
the pallet at s2. The first fact states that r2 must do this before r1 passes through vertices
w5 at its own step 6. In fact, the subsequent facts in this block show that because of the
adjacency of these conflict pairs, r2 must complete the full sequence of moves from w5 to
s2, back to w5 and then leave w5 before r1 is able to travel through w5 on its way to s1 and
back to w5 and then to w6.

The second block of facts deals with r2’s second visit to w5 and w6 as it passes through
these vertices on its way to dropping off an empty pallet at vertex l2. However, unlike the
first case where r2 was given precedence over robot r1, in this case r1 is given precedence.

Algorithms 2023, 16, 216 20 of 62

Intuitively, this is the preferred scenario as the overall delay would have been much greater
if r1 had to wait for r2 to pass through twice before it could finish its first delivery task.

Finally, it is worthwhile observing that the before/2 facts only establish a qual-
itative ordering without providing any assignment of specific timings. For instance,
before((r2,6),(r1,8)) only expresses that the passage of r2 in its sixth step must pre-
cede that of r1 in its eighth step. As shown in Section 3.1.2, in an ultimate solution of our
example, this is refined by letting r1 pass at time point 215 and r2 at 120.

4.3.3. Projection

Next, we form projections for checking whether task assignments, sequences and
walks are executable, still without considering timing constraints. For this, we derive in
Listing 8 atoms of the form proj(t,s) to indicate that task t is executed during some walk
at step s.

Listing 8. Choose a projection for each walk.

1 1 { proj(T,S) : step(S) } 1 :- task(T,_).

3 :- #count{ T : proj(T,S), assign(R,T) } > 1, step(S), robot(R).

5 :- proj(T,S), task(T,V), assign(R,T), not walk(R,S,V).
6 :- proj(T,S), proj(T’,S ’), task_sequence(T,T ’), S > S’.

Specifically, we project in Line 1 each task onto exactly one step. In contrast to
Condition 13, this abstracts from the specific robot and vertex; which allows for a more
compact encoding that scales independently of the number of robots and vertices. Rather,
we represent the actual projection points implicitly and enforce the connection to the specific
robot and vertex via the integrity constraints in Lines 3 to 5. Line 3 makes sure that at most
one task per robot and step is projected, given that robots cannot execute several tasks
simultaneously. The constraint in Line 5 enforces that there actually is a robot assigned
with the specific task at its target vertex in the projected step. In detail, for proj(t,s), it
is required that we have walk(r,s,v) with t ∈ fT(r) and fV(t) = v, or assign(r,t) and
task(t,v), respectively. This establishes Condition k. in the definition of projections and
selects the relevant vertices from the robot’s walk. Finally, Line 6 ensures that projections
respect the order of the task sequences, fT . Together the rules in Listing 8 make sure that
there is a non-timed projection of each robot’s walk onto its task sequence. This establishes
the qualitative aspects of Condition 13.

As an example, the representation of the two projections in Table 3 is given below.
proj(t1 ,4) proj(t5 ,3)
proj(t2 ,7) proj(t6 ,7)
proj(t3 ,11) proj(t7 ,10)
proj(t4 ,14) proj(t8 ,17)

Note that the respective step indicates the position in the timed walks in Table 2, which
are in turn represented by the following instances of walk/3 (cf. end of Section 4.3.1):

walk(r1 ,4,l1) walk(r2 ,3,l2)
walk(r1 ,7,s1) walk(r2 ,7,s2)
walk(r1 ,11,p1) walk(r2 ,10,p1)
walk(r1 ,14,l1) walk(r2 ,17,l2)

4.3.4. Scheduling

Up to now, we have ignored all timing constraints. In fact, so far our encoding has only
dealt with walks rather than timed walks, making up an actual walk assignment. Recall
that the walk assignment fW(r) of a robot r is a sequence of route points being feasible
in the underlying warehouse. Each route point represents the arrival and exit time at a
vertex. We represent a route point (v, a, e) at position s + 1 of the timed walk fW(r) of a

Algorithms 2023, 16, 216 21 of 62

robot r by means of an atom walk(r,s,v) along with two terms a and e acting as integer
variables. The actual timing constraints are expressed as difference constraints among these
integer variables.

Listing 9 poses timing constraints based on the robots’ walks, resolved conflicts, and
projections. These constraints are encoded using integer variables that correspond to the
arrival and exit times of specific robots at specific steps of their walks. These variables are
represented by the terms arrive(r,s) and exit(r,s) for any robot r at step s + 1 of walk
assignment fW(r). Note, the arrival and exit of a robot at a specific step maps directly to
specific vertices, so we can think of the constraints as determining the arrival and exit times
of robots at vertices. The purpose of the difference constraints in Listing 9 is then to check
whether an integer assignment to these variables exists that warrants a feasible timed walk
in view of the constraints posed by the other parts of the encoding.

Listing 9. Derive timing constraints to obtain a valid schedule.

1 &diff{ arrive(R,S) - exit(R,S) } <= 0 :- walk(R,S,_).

3 &diff{ exit(R,S) - arrive(R,S+1) } <= -W :- walk(R,S,V), walk(R,S+1,V’),
4 edge(V,V’,W).

6 &diff{ arrive(R,0) - 0 } <= 0 :- walk(R,0,_).
7 &diff{ 0 - arrive(R,0) } <= 0 :- walk(R,0,_).

9 &diff{ arrive(R,S) - bound } <= 0 :- walk(R,S,_), not walk(R,S+1,_).
10 &diff{ exit(R,S) - bound } <= 0 :- walk(R,S,_), not walk(R,S+1,_).
11 &diff{ bound - exit(R,S) } <= 0 :- walk(R,S,_), not walk(R,S+1,_).

14 &diff{ arrive(R,S+1) - arrive(R’,S’) } <= 0 :- before((R,S),(R’,S’)).

16 #const kappa=10.

18 &diff{ arrive(R,S) - exit(R,S) } <= -kappa :-
19 proj(T,S), assign(R,T).
20 &diff{ arrive(R,S) - arrive(R’,S’) } <= -kappa :-
21 proj(T,S), assign(R,T),
22 proj(T’,S’), assign(R’,T’),
23 depends(D,T,T’), D != deliver,
24 R != R’.

Line 1 ensures that the exit time of a robot at a vertex, as represented by the robot’s step
count, does not precede its arrival at that vertex, while Line 3 ensures that the travel time
between vertices is respected. Together, this corresponds to the feasibility requirements (2)
and (3) on timed walks. Next, Lines 6 and 7 force each robot’s arrival time at its starting
vertex, represented by the step count 0, to a time of 0 as stipulated in 10.

Lines 9 to 11 impose constraints on each robot at its terminal vertex. In particu-
lar, the constraints ensure that for any robot r at its terminating step s, we have that
arrive(r,s) ≤ bound and exit(r,s) = bound. Note, bound here is an integer variable,
so the value of bound is an upper bound on all robots’ arrival times at their last steps. In
fact, clingo[DL] yields the least upper bound, which corresponds to the last of these arrival
times, because the assignment returned by clingo[DL] contains the lowest possible positive
integer values that satisfy all difference constraints. Furthermore, the exit times of all last
steps are set to this value. Hence, the exit times of all robots at their corresponding home
vertices are equal, which also constitutes the makespan of the solution to the warehouse
delivery problem. The advantage of this technique is two-fold. First, if a home vertex of a
robot can be in the walk of another robot, we ensure that finished robots remain in place
until the entire execution is completed. Second, the variable bound gives us an easy access
to the makespan of the solution. This can be utilized to either minimize or restrict the

Algorithms 2023, 16, 216 22 of 62

execution time. Note, that we use the variable bound for the exit times at terminal vertices
rather than the constant ∞, as stipulated by the homing Condition 11. However, since
bound is the common exit time of all terminal vertices it is easy to see the direct mapping
between the two.

The combination of the constraints from Lines 1 to 11 ensures that the obtained robot
arrival and exit times result in a timed walk that is feasible in the given warehouse. We
now turn to the remaining constraints that address the timing of conflict resolution and
task execution.

Condition 12 requires the robot assignment to be collision-free. Line 14 addresses this
condition by imposing a difference constraint to ensure that two robots visiting conflicting
vertices at certain steps do not collide. That is, whenever a robot r has been granted
precedence over another robot r′ by virtue of before((r,s),(r′,s′)), then the relationship
arrive(r,s + 1) ≤ arrive(r′,s′) must hold. This relationship ensures that r′ enters the
conflict zone only once r has already moved outside the conflict zone to its next vertex (this
vertex is guaranteed to exist due to Line 9 in Listing 7). To further elaborate on how the
difference constraint satisfies the collision-free condition, we start by noting that the above
robot-step pairs, (r, s) and (r′, s′), are associated with vertices v, v′, and v′′ by atoms (see
Listing 7). walk(r,s,v), walk(r′,s′,v′), as well as walk(r,s + 1,v′′). The actual conflict
concerns route points (v, a, e) ∈ fW(r) and (v′, a′, e′) ∈ fW(r′) with (v, v′) ∈ C. Given walk
fW(r) = 〈. . . , (v, a, e), (v′′, a′′, e′′), . . . 〉, the difference constraint in Line 14 requires a′′ ≤ a′.
Furthermore, the non-zero travel time of r between v and v′′ implies that a < a′, namely
that r arrives at s before r′ arrives at s′. Note that if we also have conflict (v′, v′′) ∈ C, the
integrity constraints in Lines 11 and 14 in Listing 7 ensure that before((r,s + 1),(r′,s′))
also holds. This then further delays the entry of r′ to vertex v′ in the same manner as above.

Moving on to task timing, the rule at Line 18 enforces that when a robot arrives at a
vertex to execute a given task, it must remain at that vertex long enough for it to actually
complete the task’s execution. To this end, the constraint arrive(r,s) + κ ≤ exit(r,s) is
imposed whenever assign(r,t) and proj(t,s) hold. However, note, by virtue of Line 5 in
Listing 8, whenever assign(r,t) and proj(t,s) hold, then we also conclude walk(r,s,v)
for vertex v = fV(t). So we know that robot r is at the correct location v, and time step s,
required to execute the task t to which it has been assigned. So the difference constraint at
Line 18 simply ensures that the duration of r’s stay at v does indeed satisfy the minimum
timing requirement given by the definition of a projection (i.e., Condition l.). Together with
the earlier result in Section 4.3.3 that Listing 8 satisfies the qualitative aspect of Condition 13,
the result of this timing constraint is to satisfy the quantitative aspect of this same condition.

Finally, Line 20 establishes the satisfaction of Condition 14 by enforcing the timing
constraint that arrive(r,s) + κ ≤ arrive(r′,s′) for any two robots r, r′ that are assigned,
respectively, to the two tasks t and t′ in a pair of dependent tasks, where s and s′ are the
projections points corresponding to these two tasks. Similarly to the explanation for Line 14,
the rule’s precondition implies the existence of the two route points (v, a, e) ∈ fW(r) and
(v′, a′, e′) ∈ fW(r′) that serve as the projection points s and s′ of the tasks t and t′. The given
timing constraint thus amounts to the one required in Condition 14, namely, a + κ ≤ a′.
Finally, note that the rule’s precondition includes the requirement that D != deliver, thus
limiting its application to non-delivery dependent tasks. The reason for this restriction
is simply that this rule is redundant for a pair of delivery dependent tasks. Delivery
dependent tasks can only be assigned to the same robot and since the task sequencing
for that robot guarantees the correct task execution order, the correctness of the timing is
implicitly guaranteed by this ordering.

This completes the explanation of the difference constraints and variables defined in
Listing 9. The assignment to these integer variables in our example is output by using the
binary predicate dl/2 in clingo[DL]. The following expressions capture the arrival and exit
times in the timed walks in Table 2.

Algorithms 2023, 16, 216 23 of 62

dl(arrive(r1 ,0) ,0) dl(exit(r1 ,0),0) dl(arrive(r2 ,0),0) dl(exit(r2 ,0),0)
dl(arrive(r1 ,1) ,15) dl(exit(r1 ,1) ,15) dl(arrive(r2 ,1) ,15) dl(exit(r2 ,1) ,15)
dl(arrive(r1 ,2) ,45) dl(exit(r1 ,2) ,45) dl(arrive(r2 ,2) ,30) dl(exit(r2 ,2) ,30)
dl(arrive(r1 ,3) ,65) dl(exit(r1 ,3) ,65) dl(arrive(r2 ,3) ,45) dl(exit(r2 ,3) ,55)
dl(arrive(r1 ,4) ,80) dl(exit(r1 ,4) ,90) dl(arrive(r2 ,4) ,70) dl(exit(r2 ,4) ,70)
dl(arrive(r1 ,5) ,105) dl(exit(r1 ,5) ,105) dl(arrive(r2 ,5) ,100) dl(exit(r2 ,5) ,100)
dl(arrive(r1 ,6) ,175) dl(exit(r1 ,6) ,175) dl(arrive(r2 ,6) ,120) dl(exit(r2 ,6) ,120)
dl(arrive(r1 ,7) ,190) dl(exit(r1 ,7) ,200) dl(arrive(r2 ,7) ,135) dl(exit(r2 ,7) ,145)
dl(arrive(r1 ,8) ,215) dl(exit(r1 ,8) ,215) dl(arrive(r2 ,8) ,160) dl(exit(r2 ,8) ,160)
dl(arrive(r1 ,9) ,225) dl(exit(r1 ,9) ,225) dl(arrive(r2 ,9) ,175) dl(exit(r2 ,9) ,175)
dl(arrive(r1 ,10) ,240) dl(exit(r1 ,10) ,240) dl(arrive(r2 ,10) ,190) dl(exit(r2 ,10) ,200)
dl(arrive(r1 ,11) ,255) dl(exit(r1 ,11) ,265) dl(arrive(r2 ,11) ,215) dl(exit(r2 ,11) ,215)
dl(arrive(r1 ,12) ,280) dl(exit(r1 ,12) ,280) dl(arrive(r2 ,12) ,235) dl(exit(r2 ,12) ,235)
dl(arrive(r1 ,13) ,300) dl(exit(r1 ,13) ,300) dl(arrive(r2 ,13) ,253) dl(exit(r2 ,13) ,253)
dl(arrive(r1 ,14) ,315) dl(exit(r1 ,14) ,325) dl(arrive(r2 ,14) ,263) dl(exit(r2 ,14) ,263)
dl(arrive(r1 ,15) ,340) dl(exit(r1 ,15) ,340) dl(arrive(r2 ,15) ,283) dl(exit(r2 ,15) ,283)
dl(arrive(r1 ,16) ,360) dl(exit(r1 ,16) ,360) dl(arrive(r2 ,16) ,313) dl(exit(r2 ,16) ,313)
dl(arrive(r1 ,17) ,390) dl(exit(r1 ,17) ,390) dl(arrive(r2 ,17) ,328) dl(exit(r2 ,17) ,338)
dl(arrive(r1 ,18) ,405) dl(exit(r1 ,18) ,405) dl(arrive(r2 ,18) ,353) dl(exit(r2 ,18) ,353)

dl(arrive(r2 ,19) ,368) dl(exit(r2 ,19) ,368)
dl(bound ,405) dl(arrive(r2 ,20) ,383) dl(exit(r2 ,20) ,405)

Note that ∞ is replaced by the makespan, viz. the value of variable bound.

4.3.5. Stable Models of the Step-Based Encoding and Solutions to the Warehouse
Delivery Problem

After examining the individual parts of our step-based encoding of the warehouse
delivery problem, we now describe how the resulting stable models relate to solutions of
the warehouse delivery problem. This is not meant as a formal correctness proof but rather
an informal account providing a broader perspective.

To this end, let F be the set of facts obtained from a given warehouse (V,E, fE,C,R, fH , fS)
and task execution graph (T,D, fD, fV), as described in Section 4.1, and let P be the combined
set of rules from Listings 2 to 9.

A stable model X of logic program F ∪ P induces the candidate robot assignment
(f X

T , f X
W) in the following way for r ∈ R, t, t′ ∈ T, v, v′ ∈ V, and s, a, e ∈ N.

• If assign(r,t)∈ X, then t ∈ f X
T (r);

• If {assign(r,t),assign(r,t′),task_sequence(t,t′)} ⊆ X, then 〈t, t′〉 v f X
T (r);

• If {walk(r,s,v),dl(arrive(r,s),a),dl(exit(r,s),e)} ⊆ X and
walk(r,s + 1,v′) ∈ X, then route point (v, a, e) is at position s + 1 of f X

W(r);
• If {walk(r,s,v),dl(arrive(r,s),a),dl(exit(r,s),e)} ⊆ X and

walk(r,s + 1,v′) 6∈ X, then route point (v, a, ∞) is at position s + 1 of f X
W(r);

• If there are no walk/3 atoms for r in X, then f X
W(r) = 〈(fH(r), 0, ∞)〉.

Given a stable model X of logic program F ∪ P, we now establish step by step why
the induced robot assignment (f X

T , f X
W) meets all required conditions of a solution to the

warehouse delivery problem.
We begin with the basic properties of robot assignments.
Condition 4: f X

T (r) is a task sequence over T for every robot r ∈ R. As described
in Section 4.2, atoms over predicates assign/2 and task_sequence/2 are established in a
way that all tasks are assigned to exactly one robot (Lines 1 and 2 in Listing 2), tasks are
indeed arranged in sequences with a single beginning (Line 15 in Listing 2), no branching
(Line 14 in Listing 2), or cycles (either Listing 4 or timing constraints induced by Listing 9),
and, finally, tasks connected via a task sequence are assigned to the same robot (Line 12 in
Listing 2), Then, by construction, this carries over to f X

T (r) and makes each a task sequence
for any r ∈ R.

Note, there are two implicit consequences of the above construct of f X
T from X. Firstly,

if there are no assign/2 atoms for r in X then f X
T (r) = 〈〉. Secondly, if there does exist

some assign(r,t)∈ X but t does not exist either as the first or second parameter of some
task_sequence/2 atom, then assign(r,t) is guaranteed to be the only assign/2 atom for
r and f X

T (r) = 〈t〉.

Algorithms 2023, 16, 216 24 of 62

Condition 5: f X
W(r) is a timed walk feasible in (V ,E, fE,C,R, fH , fS) for every robot

r ∈ R. This is achieved by the rules in Lines 5, 7, and 8 in Listing 6 and Lines 1 and 3 in
Listing 9.

The construction of f X
W along with the consecutive numbering of steps enforced

in Line 7 of Listing 6, ensures that any atom walk(r,s,v)∈ X indicates a route point
(v, a, e) ∈ f X

W(r) at position s + 1 in the timed walk of robot r for v ∈ V and a, e ∈ N. We
rely upon their consecutive step numbering in the following.

For Condition 1, we observe that for two successive route points (v, a, e) and (v′, a′, e′)
in f X

T (r), the integrity constraint in Line 8 of Listing 6 makes sure that there exists an edge
(v, v′) ∈ E. Condition 2 is captured in Line 1 of Listing 9: For any route point (v, a, e)
in a timed walk f X

T (r), the robot’s exit time is at least as large as its arrival time, viz. we
have a ≤ e. Line 3 of Listing 9 enforces Condition 3; it requires e + fE((v, v′)) ≤ a′ for any
successive route points (v, a, e) and (v′, a′, e′) in f X

T (r).
Note that Line 5 of Listing 6 does not guarantee that instances of predicate walk/3 are

generated for every robot. This leaves us with the corner case that there may be no such
atoms in X for a given robot r. This corresponds to the timed walk f X

W(r) = 〈(fH(r), 0, ∞)〉.
In this case, Condition 1 and 2 are trivially satisfied in the presence of a single route point
and 0 ≤ ∞ satisfies Condition 3.

Condition 6–7: Complete and Non-Overlapping Assignment. As already men-
tioned, Lines 1 and 2 of Listing 2 assign each task t to exactly one robot r. Thus, all
tasks are assigned and no task is assigned twice in f X

T .
Condition 8–11: Starting and Homing Assignment. Line 10 of Listing 6 ensures that

each robot is initially at its starting vertex; and Line 11 of Listing 6 guarantees that they
finish at their respective home docking vertices. Clearly, this establishes Condition 8 and 9
for f X

W .
In terms of timing, the difference constraints in Lines 6 and 7 of Listing 9 set the arrival

times at the starting vertices to 0, and thus fulfill Condition 10. Similarly, Lines 9 to 11 of
Listing 9 set the exit time at the last position of each walk to the makespan in view of all
timed walks. While this does not satisfy Condition 11 in an exact manner, the replacement
of ∞ by the makespan amounts to the same condition, since the makespan is greater than
or equal to any other time point in the timed walks. It is also, clearly, more informative.

Condition 12: Collision-free Assignment. Listing 7 is dedicated to detecting conflicts,
and in particular deciding whether Condition 12a or 12b is used to resolve a conflict.
More precisely, for distinct robots r, r′ with route points (v, e, a) ∈ f X

W(r), (v′, a′, e′) ∈
f X
W(r′) at steps s and s′, respectively, facing a conflict at (v, v′) ∈ C, we have that either
before((r,s),(r′,s′))∈ X or before((r′,s′),(r,s))∈ X. Then, in Line 14 of Listing 9, we
use this decision to derive difference constraints either expressing that arrive(r,s + 1) ≤
arrive(r′,s′) or arrive(r′,s′ + 1) ≤ arrive(r,s). If (v′′, a′′, e′′) and (v′′′, a′′′, e′′′) are the
route points following (v, a, e) and (v′, e′, a′) in f X

W(r) and f X
W(r′), respectively, then the

difference constraints enforce either a′′ ≤ a′ or a′′′ ≤ a, thus establishing Condition 12.
Condition 13–15: Executable Assignment. A pivotal concept for establishing a solu-

tion is the set of projections on the robots walks warranting that all tasks can be executed.
In the step-based encoding, we do not explicitly represent the projection for every robot but
rather rely upon atoms over predicate proj/2. Specifically, an atom proj(t,s) represents
that task t is projected on some walk at position s. We can retrieve the projected walk via
atoms assign(r,t) and walk(r,s,v) telling us that we project on the walk of robot r. This,
as well as task(t,v), also provides the task’s action execution vertex v. Note that encoding
projections in this way reduces the number of ground atoms compared to a more direct
representation with proj(r,s,v).

A stable model X of logic program F∪ P induces a set PX of projections in the following
way for r ∈ R, t, t′, t′′ ∈ T, v, v′, v′′ ∈ V, and s, s′, s′′, a, a′, e, e′ ∈ N.

• If {proj(t,s),assign(r,t),walk(r,s,v),dl(arrive(r,s),a),dl(exit(r,s),e)} ⊆ X,
{proj(t′,s′),assign(r,t′),walk(r,s′,v′)} ⊆ X
and {dl(arrive(r,s′),a′),dl(exit(r,s′),e′)} ⊆ X

Algorithms 2023, 16, 216 25 of 62

such that s < s′, and there exists no {proj(t′′,s′′),assign(r,t′′),walk(r,s′′,v′′)} ⊆ X
such that s < s′′ < s′ and v = fV(t), v′ = fV(t′), v′′ = fV(t′′),
then ~p = 〈. . . , (v, a, e), (v′, a′, e′), . . . 〉 for some ~p ∈ PX .

• If {proj(t,s),assign(r,t),walk(r,s,v),dl(arrive(r,s),a),dl(exit(r,s),e)} ⊆ X,
and there exists no {proj(t′,s′),assign(r,t′),walk(r,s′,v′)} ⊆ X
such that s′ < s and v = fV(t), v′ = fV(t′),
then ~p = 〈(v, a, e), . . . 〉 for some ~p ∈ PX .

• If {proj(t,s),assign(r,t),walk(r,s,v),dl(arrive(r,s),a),dl(exit(r,s),e)} ⊆ X,
and there exists no {proj(t′,s′),assign(r,t′),walk(r,s′,v′)} ⊆ X
such that s < s′ and v = fV(t), v′ = fV(t′),
then ~p = 〈. . . , (v, a, e)〉 for some ~p ∈ PX .

We start with Condition 13. First, Line 5 of Listing 8 ensures a non-timed candidate
projection on the robots’ walks. That is, for each robot r and (timed) walk ~w ∈ f X

W(r),
we have a projection ~p in PX such that (v, a, e) ∈ ~p only if (v, a, e) ∈ ~w for any v = fV(t)
and task t ∈ f X

T (r). Then, Line 6 of Listing 8 accounts for the correct order within the
projections in view of the task sequences. In detail, for any robot r with task sequence
f X
T (r) = 〈. . . , t, t′, . . . 〉, we have a corresponding projection 〈. . . , (v, a, e), (v′, a′, e′), . . . 〉 in

PX with v = fV(t) and v′ = fV(t′). Finally, Line 18 of Listing 9 ensures that a robot stays
on the projection point of a given task for at least its execution time κ. Specifically, for every
robot r, task t ∈ f X

T (r) and corresponding projection ~p ∈ PX, we have a projection point
(v, a, e) ∈ ~p satisfying a + κ ≤ e.

Condition 14 is addressed in Line 20 of Listing 9 by ensuring that the task execution
time is respected for tasks in a dependency. Note that we only need to pose a timing
constraint if interdependable tasks are assigned to different robots. If we have two distinct
tasks t, t′ with (t, t′) ∈ fD and t, t′ ∈ f X

T (r) for some robot r, then there is a projection ~p in
PX of form ~p = 〈. . . , (v, a, e), . . . , (v′, a′, e′), . . . 〉, comprising the projection points (v, a, e)
and (v′, a′, e′) of t and t′ in the given order, respectively. This is the case, first, because
f X
T (r) respects dependencies by construction, and second, as established above, there has

to be a projection on the walk of r in PX. Then, by the properties of projections, we have
that a + κ ≤ e ≤ a′, and thus a ≤ a′ − κ. Otherwise, if we have two distinct tasks t, t′

with (t, t′) ∈ fD and two distinct robots r, r′ with t ∈ f X
T (r) and t′ ∈ f X

T (r′), we pose the
timing constraint a− a′ ≤ −κ which implies a ≤ a′ − κ on the projection points (v, a, e)
and (v′, a′, e′) of tasks t and t′, respectively.

To address Condition 15, Line 6 of Listing 2 makes sure that tasks in a delivery
dependency are assigned to the same task sequence, and Line 10 in the same listing that
they are assigned to the same robot. Then, Line 6 of Listing 8 demands their successive
execution. Note that it is enough to require that there exists a projection such that for two
adjacent tasks in a task sequence the latter one is executed at a strictly larger step number.
This is because a task may have at most one successor and predecessor in a task sequence
due to Lines 4 and 14 of Listing 2. That means, if such a projection exists, the tasks in a task
sequence are strictly ordered by the step they are executed in. Of course, this also holds for
deliver dependencies. In detail, for distinct tasks t, t′ with fD((t, t′)) = deliver, there exists
a projection ~p in PX such that ~p = 〈. . . , p, p′, . . . 〉 and p and p′ are the projection points of t
and t′, respectively.

4.4. Path-Based Encoding

In this section, we present an encoding to the warehouse delivery problem that solves
the routing and scheduling of robots through a series of discrete acyclic paths. This
approach contrasts to the step-based encoding, presented in the previous section, that
explicitly assigns timed walks to individual robots. While a timed walk pertains to the
entire movement of a single robot, from its starting vertex through to its final arrival at its
home vertex, we use the graph theoretic notion of (acyclic) paths at a more fine-grained
level of abstraction.

Algorithms 2023, 16, 216 26 of 62

In particular, in our encoding we generate an individual path for each task. The start
of the path is the vertex of the assigned robot at the point that it starts fulfilling that task,
and the path’s destination is the task’s execution vertex. A path is also generated for each
robot that needs to return to its home location. For any robot assigned a sequence of tasks,
the corresponding path sequence is constructed so that the starting and ending vertices of
each path align with the task sequence. Consequently, the series of paths are generated so
as to fulfill all tasks and return all robots to their home stations.

For example, the walk of robot r1 is given by the sequence in Table 2; where the robot
visits a series of vertices starting and finishing at its home location h1. The actual task
execution for tasks t1 through to t4 is determined by Table 3 showing the projection of
the walk onto r1’s task sequence. In contrast, for the path-based approach we view this
walk as being composed of a sequence of five distinct paths; the first path h1, w3, w2, w1, l1
is associated with task t1, the second l1, w1, w5, s1 is associated with task t2, and the final
path l1, w1, w2, w3, h1 is associated with robot r1’s journey back to its home vertex. Note,
that while each individual path is acyclic, nevertheless r1 still visits some vertices multiple
times, but it does so only when fulfilling different paths.

4.4.1. Advantages and Limitations

The path-based encoding has a number of key advantages over the step-based encod-
ing. In the first place, it does not require a step horizon; the step horizon is instance specific
and has to be determined on a case-by-case basis. The lack of a horizon also means that
there is no step counter for tracking each robot’s walk through the warehouse, which has
important consequences for scalability and the size of the ground instances produced by
the encoding. A second advantage of the path-based encoding is that by introducing an
explicit notion of a path it allows for specific path-based optimizations. In particular it
allows for pre-computed shortest-paths that can be used to calculate timing lower-bounds,
determine movement corridors, and specify domain-based move heuristics.

Despite the advantages of the path-based encoding, restricting each task to a single
acyclic path does limit the allowable moves that a robot can make, whereas the step-based
encoding permits arbitrary movements. This limitation can be easily observed in the
example outlined in Figure 3. In this scenario each robot needs to swap sides in order
to execute its assigned task; r1 needs to travel to l1 while r2 needs to travel to l2. The
step-based encoding is able to calculate an optimal solution of 90 s, where both robots
start moving at the same time with robot r2 deviating to vertex wp to allow the robot r1
to pass (Figure 3 left). In contrast with the step-based encoding robot r2 is not able to
deviate to wp as it would then have to visit vertex w3 twice, which would break the path
acyclicity requirement. Instead, one of the robots has to wait until the other robot arrives at
its destination before starting its journey (Figure 3 right); with the resulting non-optimal
minimal makespan of 120 s.

Figure 3. A simple example showing the limitation of the path encoding against the step-based
encoding; robot r1 located at vertex h1 needs to travel to l1, while robot r2 at h2 needs to travel to l2.
For a uniform edge weight of 10 s the walk encoding (left) can achieve the optimal makespan of 90 s
while the best path encoding plan (right) requires 120 s.

The observant reader may also notice that it would be easy to generate a variant of
Figure 3 where the path encoding admits no solutions at all. In particular, if robot r1 starts

Algorithms 2023, 16, 216 27 of 62

at w1 and r2 starts at w5 then neither robot will be able to break the deadlock by moving
to wp.

While the lack of completeness of the path encoding with respect to the formalization
is important to appreciate, nevertheless, in practice it is not a serious limitation. The main
reason for this is that in practice warehouse graphs are designed by domain experts, and
a well-designed warehouse rarely contains artefacts that would lead to these types of
scenarios. This is borne out in Section 5, where this restriction has no practical impact when
applied to our real-world warehouse scenarios.

Finally, it should also be noted that even in cases where such a narrow corridor is
unavoidable, it is possible for the path encoding to avoid such deadlocks through the
careful introduction of mirrored vertices and edges. In Figure 3, it would be possible
to introduce an extra vertex w′3, setting a conflict with w3, and with edges to both w2
and wp. In this modified scenario, robot r2 could then travel along the (acyclic) path
sequence h2, w5, w4, w3, wp, w′3, w2, w1, l2 allowing it to use the passing vertex wp and find
an optimal plan.

4.4.2. Outline

As in Section 4.3, we start by discussing individual encoding components, namely,
path creation, routing, conflict resolution and scheduling. Finally, we relate the answer sets
of the path-based encoding to the ones of the step-based encoding, and discuss the relation
to the problem formalization.

Recall that both the step- and path-based encoding rely upon Listing 2, optionally
with Listings 3–5, for assigning and sequencing tasks. It provides task sequence assign-
ments allotting each robot a sequence of tasks; they are represented by atoms assign(r,t),
representing that t ∈ fT(r) for robot r and task t, and task_sequence(t,t′), capturing that
there is a task assignment fT(r) with two consecutive tasks t, t′ for some robot r.

4.4.3. Path Creation

Knowing task assignment and sequences provides us with the necessary information
about paths to be routed and their order. That is, there needs to be a path addressing
each task, whereby the set of paths are ordered so as to match the task sequences, and an
additional path has to be routed to return each robot to its home station. The latter applies
to robots having been assigned a task or not having started from their home station.

Looking at the warehouse delivery problem in terms of necessary paths has the
advantage that a lot of relevant information is static, since the tasks’ target vertices are
known in advance. Hence, the routing problem is no longer being solved in a somewhat
indirect manner, by shaping the meandering timed walks of individual robots to fit their
assigned tasks. Instead routing becomes focused on the individual paths themselves, where
only the starting location of each path can be subject to change based on the assigned robot.

Listing 10 identifies how the necessary paths are constructed.

Listing 10. Create necessary paths and path sequences.

1 path(T,V) :- task(T,V).
2 path(R,V) :- assign(R,_), home(R,V).
3 path(R,V) :- not start(R,V), home(R,V).

5 path_assign(R,T) :- assign(R,T).
6 path_assign(R,R) :- assign(R,_).
7 path_assign(R,R) :- not start(R,V), home(R,V).

9 path_sequence(T,T’) :- task_sequence(T,T’).
10 path_sequence(T,R) :- assign(R,T), not task_sequence(T,_).

Lines 1–3 define atoms over predicate path/2, where the first argument can be seen as
the name of a path and the second as its destination. More precisely, we have path(t,v)

Algorithms 2023, 16, 216 28 of 62

for every task t and fV(t) = v, and path(r,v) for every robot r that needs to return to its
home station, either because it has assigned tasks or because it did not start at its home
station, viz. fS(r) 6= fH(r).

Analogously, we assign paths to robots in Lines 5–7. We have path_assign(r,t)
whenever assign(r,t) and path_assign(r,r) for any robot r having a task assignment or
not having started at its home station. Here the first argument identifies the robot while the
second identifies the path.

Lines 9 and 10 build path sequences from task sequences. Line 9 aligns path sequences
with task sequences. That is, we have path_sequence(t,t′)whenever task_sequence(t,t′)
for all tasks t, t′. Furthermore, we have to route a way home once a robot has executed
its final assigned task. For this, we add path_sequence(t,r) in Line 10, where t is the
final task assigned to robot r. Here, t is identifiable as a final task as it has no successor
task in any task sequence. Note, that Line 10 covers two cases: one where there exists a
fact task_sequence(t′,t) for some t′, and one where there is no such fact. The latter is a
corner-case that does not occur in our specific application setting, since every delivery job
consists of both a pickup and a putdown task, guaranteeing that any robot having a task
assignment is assigned more than one task.

We get the following atoms in our example in Table 1.

path(t1,l1) path(t2 ,s1) path(t3 ,p1) path(t4,l1)
path(t5,l2) path(t6 ,s2) path(t7 ,p1) path(t8,l2)
path(r1,h1) path(r2 ,h2)

path_assign(r1 ,t1) path_assign(r2 ,t5)
path_assign(r1 ,t2) path_assign(r2 ,t6)
path_assign(r1 ,t3) path_assign(r2 ,t7)
path_assign(r1 ,t4) path_assign(r2 ,t8)
path_assign(r1 ,r1) path_assign(r2 ,r2)

path_sequence(t1,t2) path_sequence(t5 ,t6)
path_sequence(t2,t3) path_sequence(t6 ,t7)
path_sequence(t3,t4) path_sequence(t7 ,t8)
path_sequence(t4,r1) path_sequence(t8 ,r2)

The first eight atoms over path/2 identify paths associated with specific tasks, while
the last two care about the return of both robots to their home station. In turn, robot
r1 is assigned t1, . . . , t4 plus its return home; analogously, r2 is assigned t5, . . . , t8 and its
return. The given list of tasks also corresponds to the order of the paths to be executed by
each robot.

4.4.4. Routing

Listing 11 determines routes for the paths created in Listing 10. The individual moves
along a path are represented by atoms over predicate move/3, where the first argument is
the path’s name, and the second and third are vertices belonging to an edge on the path.
Note that there is no time step associated with a move. This abolishes the need for a horizon
and yields, a priori, a smaller problem representation. The drawback is, however, that each
path needs to be acyclic since there is no way to distinguish between multiple visits to a
vertex. In contrast, with a step-based encoding, distinct time steps allow for multiple visits
of vertices. Having said that, the combination of the distinct paths that form the overall
walk of any given robot may itself contain cycles, it is only the paths themselves that must
be acyclic.

Algorithms 2023, 16, 216 29 of 62

Listing 11. Route necessary paths.

1 0 { move(T,V,V’) : edge(V,V’,_) } 1 :- task(T,_), edge(V,_,_).
2 0 { move(T,V,V’) : edge(V,V’,_) } 1 :- task(T,_), edge(_,V’,_).

4 0 { move(R,V,V’) : edge(V,V’,_) } 1 :- robot(R), edge(V,_,_).
5 0 { move(R,V,V’) : edge(V,V’,_) } 1 :- robot(R), edge(_,V’,_).
6 :- robot(R), not path(R,_), move(R,_,_).

8 first_visit(P,V) :- move(P,V,_), not move(P,_,V).
9 last_visit(P,V) :- move(P,_,V), not move(P,V,_).

10 :- #count{ V : last_visit(P,V) } > 1, path(P,_).

12 first_visit(P,V) :- path(P,V), not move(P,_,_).
13 last_visit(P,V) :- path(P,V), not move(P,_,_).

15 :- start(R,V), path(R,_), not assign(R,_), not first_visit(R,V).
16 :- start(R,V), path_assign(R,P),
17 path_sequence(P,_), not path_sequence(_,P), not first_visit(P,V).
18 :- path_sequence(P,P’), path(P,V), not first_visit(P’,V).
19 :- path(P,V), not last_visit(P,V).

Lines 1–6 allow for traversing every vertex on each path in at most one way, namely,
along an incoming and an outgoing edge. The definition of predicate move/3 is separated
into four choice rules, two for each task and two for homing each robot. In each case,
the first rule handles moves over outgoing edges while the second handles moves over
incoming edges.

The encoding of the move choices in this way introduces two forms of redundancy.
Firstly, rather than explicitly dealing with paths, we encode separate choice rules for tasks
and robots. This allows rule bodies to be dissolved during grounding, since task/2 and
robot/1 are input predicates, while path/2 is not. For the solver, this eliminates the need to
first derive instances of path/2 before making the respective move choices. Secondly, while
the duplication of choice rules for incoming and outgoing moves allows the same move to
be selected by each rule, it also allows for solver propagation along both directions along a
path. In particular, since there is at most one incoming and one outgoing move to any vertex,
the solver can generate a chain of moves, propagating either from a vertex back to some
source for forward to some destination. Consequently, while these choice rules encode
some redundancy, this redundancy allows for improved propagation during solving.

Finally, note that the constraint in Line 6 simply ensures that homing moves are created
only when a robot needs it; a robot that starts at its home location and has no assigned
tasks has no need to be homed.

While the choice rules in Lines 1–6 ensure that each vertex along a path has at most
one incoming and one outgoing edge, nevertheless, moves may still be disconnected and
may not match a task’s or robot’s location. Ensuring these restrictions is addressed through
the addition of integrity constraints. The rules in Lines 8–10 identify the first and last vertex
in each path via atoms over first_visit/2 and last_visit/2, respectively. Such atoms
are used to ensure that paths form connected sequences of moves. Specifically, Line 10
expresses that there cannot be paths with more than one end vertex. Additionally, Lines 12
and 13 define the first and last vertex of a path without movement. This is the case if the
robot starts on a vertex where it also executes a task. Then, the path only consists of the
single vertex, the target vertex of the task.

Finally, the integrity constraints in Lines 15–19 align paths with robot and task loca-
tions. Line 15 ensures that a robot without any assigned tasks begins its homing path at its
start location. The integrity constraint in Line 16 enforces a similar arrangement for the

Algorithms 2023, 16, 216 30 of 62

opposite case of robots that have assigned tasks. It requires that a path addressing the first
task assigned to a robot needs to begin at the robot’s starting location.

Next, Line 18 connects paths being adjacent in a path sequence. In detail, the target
vertex of the preceding path needs to be the first vertex of the following path. Finally,
Line 19 enforces that the last vertex of a path is indeed its target vertex. This is either a
task’s destination or a robot’s home location.

Up to this point, the path routing has ensured that there is a connected sequence of
moves for each path that is aligned with the relevant task and robot locations. However,
similar to the sequencing of tasks detailed in Section 4.2, this does not exclude the possibility
of disconnected cyclic moves. As with task sequencing, we may employ three alternative
techniques to ensure acyclicity: scheduling via difference constraints, a reachability encod-
ing, and an edge directive. Since we detail the former approach in Section 4.4.6, we focus
below on the two latter; also because they allow for routing valid paths independently. The
encoding of reachability is given in Listing 12.

Listing 12. Path reachability.

1 vertex_reachable(P,V) :- path(P,V).
2 vertex_reachable(P,V) :- vertex_reachable(P,V’), move(P,V,V’).
3 :- move(P,_,V), not vertex_reachable(P,V).

In contrast to the reachability encoding for task sequencing, we establish reachability
for move sequencing from a path’s destination vertex, because this target vertex is known
statically. First, Line 1 declares that target vertices of each path are reachable, then, Line 2
propagates that vertices are reachable by a path, if they are connected with a reachable
vertex via an outgoing move, and, finally, Line 3 checks that all moves along a path end in
a reachable vertex. As an easy alternative, we may also use an edge directive to enforce
acyclicity, as shown in Listing 13.

Listing 13. Path acyclicity via #edge directives.

#edge((P,V),(P,V ’)) : move(P,V,V ’).

Concluding the routing of paths, Listing 11, combined with cyclic move detection,
ensures a sequence of moves for each path that satisfies all tasks and homes all robots. The
moves of the example timed walk in Table 2 is captured by the following atoms.

move(t1,h1,w3) move(t1,w3,w2) move(t1 ,w2,w1) move(t1 ,w1 ,l1)
move(t2,l1,w1) move(t2,w1,w5) move(t2 ,w5,s1)
move(t3,s1,w5) move(t3,w5,w6) move(t3 ,w6,w2) move(t3 ,w2 ,p1)
move(t4,p1,w2) move(t4,w2,l1)
move(r1,l1,w1) move(r1,w1,w2) move(r1 ,w2,w3) move(r1 ,w3 ,h1)

move(t5,h2,w4) move(t5,w4,w8) move(t5 ,w8,l2)
move(t6,l2,w8) move(t6,w8,w7) move(t6 ,w7,w6) move(t6 ,w6 ,s2)
move(t7,s2,w6) move(t7,w6,w2) move(t7 ,w2,p1)
move(t8,p1,w2) move(t8,w2,w1) move(t8 ,w1,w5) move(t8 ,w5 ,w6)
move(t8,w6,w7) move(t8,w7,w8) move(t8 ,w8,l2)
move(r2,l2,w8) move(r2,w8,w4) move(r2 ,w4,h2)

The first block of moves corresponds to the walk for robot r1. Task t1 is the first task
assigned to r1 so the path for t1 begins at r1’s starting location, h1, and ends at t1’s target
location l1. Task t2 is the second task assigned to r1, so the path for t2 begins at l1 and ends
at its target location s1. The astute reader may note that these moves correspond to robot r1
first moving to the pallet pickup location l1 and then delivering the pallet to the storage
location s1. This pattern is then repeated for the subsequent tasks t3 and t4, where the
final task t4 corresponds to the delivery of the replacement (empty) pallet to l1. Finally, the
homing path for r1 begins at t4’s target location l1 and ends back at r1’s home location h1.

Algorithms 2023, 16, 216 31 of 62

An identical pattern of moves applies to the second block, corresponding to the walk
for robot r2. It starts at r2’s home location h2, successively traveling to the target locations
for t5, t6, t7, and t8, and finishing back at h2.

4.4.5. Conflict Detection and Resolution

Having routed the paths that the robots must follow, we can now turn to dealing
with conflict detection and resolution. Similar to the step-based approach in Section 4.3.2,
we refrain from explicitly ruling out conflicting situations, and rather rely on the binary
predicate before/2 for expressing precedences. In contrast to Section 4.3.2, however, these
precedences are now established among paths rather than robots.

The encoding in Listing 14 derives either the fact before((p,v),(p′,v′)) or the fact
before((p′,v′),(p,v)). This represents that vertex v is visited on path p before vertex v′

is visited on path p′ or vice versa, whenever paths p and p′ contain conflicting vertices v
and v′ and are assigned to different robots.

Listing 14. Resolve conflicts for paths visiting conflicting vertices and edges.

1 visit(P,V) :- path(P,V).
2 visit(P,V) :- move(P,V,_).
3 same_robot(R,T) :- assign(R,T).

5 { before((P,V),(P’,V’)) } :- visit(P,V), visit(P’,V’),
6 conflict(V,V’), P < P’,
7 not same_robot(P,P’),
8 not same_robot(P’,P).
9 before((P’,V’),(P,V)) :- visit(P,V), visit(P’,V’),

10 conflict(V,V’), P < P’,
11 not same_robot(P,P’),
12 not same_robot(P’,P),
13 not before((P,V),(P’,V’)).

15 :- start(R,V), not path(R,_), { move(_,V,_); move(_,_,V) } 1.
16 :- start(R,V), path(R,_), not assign(R,_), before((_,_),(R,V)).
17 :- start(R,V), path_assign(R,P),
18 path_sequence(P,_), not path_sequence(_,P), before((_,_),(P,V)).
19 :- before((P,V),(P’,V’)), path(P,V), path_sequence(P,P’’),
20 not before((P’’,V),(P’,V’)).
21 :- robot(R), path(R,V), before((R,V),(_,_)).

24 :- move(P,V1,V2), move(P’,V1’,V2’),
25 conflict(V1,V1’), conflict(V2,V2’), before((P,V1),(P’,V1’)),
26 not before((P,V2),(P’,V2’)).
27 :- move(P,V1,V2), move(P’,V1’,V2’),
28 conflict(V1,V2’), conflict(V2,V1’), before((P,V1),(P’,V2’)),
29 not before((P,V2),(P’,V1’)).

To this end, Lines 1 to 2 provide predicate visit/2 to capture which vertices are
visited on each path; the first argument is the name of the path and the second argument is
a vertex belonging to the path. Note that the rule in Line 1 uses static information since
the endpoint of each path is known beforehand. Then, Line 2 only needs to collect the first
vertex from each path’s moves, which is dynamic information.

Predicate same_robot/2 is already defined in Listing 2 to indicate which tasks are
executed by the same robot. Line 3 extends this to paths by stating that for every robot r
that is assigned a task t, the path named r and the path named t is executed by the same
robot. This extends to paths since path names are task names.

Algorithms 2023, 16, 216 32 of 62

With these auxiliary predicates, lines 5 to 13 use visit and path assignments to de-
tect and resolve conflicts as indicated above. Note that we are only allowed to choose
before((p,v),(p′,v′)) whenever path p is alphanumerically smaller than path p′. If
this atom is not chosen, we derive the opposite ordering before((p′,v′),(p,v)). This
enhances propagation because we only need half the choices and reduces the problem size
since the additional constraint that only one ordering can be chosen becomes unnecessary.

Integrity constraints in Lines 15 to 21 avoid invalid moves and address the part of
conflict resolution discernible without precise scheduling. Line 15 states that no move is
possible through a robot’s starting location if it has no path assigned and thus never leaves
this location. Both Lines 16 and 17 focus on the first path assigned to a robot. The former
addresses paths to home nodes where no further tasks are assigned; the latter deals with the
first task in the path sequence. In both cases, the integrity constraints ensure that no other
path is given priority over the robots’ starting positions, which constitutes the first vertex
of the respective initial paths. Since each robot can be viewed as “arriving” at its starting
location at time point zero, therefore, no path assigned to a different robot containing this
starting location, or a vertex in conflict with it, could arrive there first.

Line 19 aligns conflict resolution at the transition between two adjacent paths in
a sequence. This transition is reflected in the target vertex v of a path p, expressed by
path(p,v). If path p is followed immediately by path p′′ then v is both the final vertex for
p and the starting vertex for p′′. Since the robot remains on v during this path transition,
therefore, the same conflict resolution that applied between p and p′ must also apply
between p′′ and p′. That is, since p had precedence over p′ in accessing v therefore p′′ must
also precede p′ in accessing v.

Finally, integrity constraints in Lines 24 and 27 align conflict resolution whenever
paths follow or cross each other with respect to adjacent pairs of conflicting vertices. In
essence, if path p contains a move from vertex v1 to vertex v2, path p′ contains a move
from vertex v′1 to vertex v′2, and we have that (v1, v′1) ∈ C and (v2, v′2) ∈ C, then whatever
conflict resolution is applied to v1 and v′1 must also carry over to v2 and v′2. Intuitively, in
this situation, two robots would follow each other through narrow terrain, so overtaking
would not be possible, whoever starts going first, continues doing so. Similarly, if instead
(v1, v′2) ∈ C and (v2, v′1) ∈ C, that is, distinct robots traveling along paths p and p′ that
cross in a tight corridor, the robot to enter the corridor first must also exit the corridor
before the second robot can enter, resulting in the same conflict resolution for v1 and v′2 and
for v2 and v′1.

Our running example in Table 2 exhibits the following conflict resolution.

before ((t1,w2),(t7 ,w2)) before ((t7 ,w2),(t3,w2))
before ((t1,w2),(t8 ,w2)) before ((t8 ,w2),(t3,w2))
before ((t1,w1),(t8 ,w1)) before ((t7 ,p1),(t3,p1))
before ((t2,w1),(t8 ,w1)) before ((t7 ,w2),(t4,w2))
before ((t2,w5),(t8 ,w5)) before ((t8 ,w2),(t4,w2))
before ((t3,w5),(t8 ,w5)) before ((t8 ,w1),(t4,w1))
before ((t6,w6),(t3 ,w6)) before ((t8 ,w1),(r1,w1))
before ((t3,w6),(t8 ,w6)) before ((t7 ,w2),(r1,w2))

before ((t8,w2),(r1 ,w2))

4.4.6. Scheduling

Once the paths have been routed and the potential conflicts have been resolved, the
next step is deal with scheduling. Listing 15 handles scheduling for the path-based encoding.

Algorithms 2023, 16, 216 33 of 62

Listing 15. Derive timing constraints to obtain a valid schedule.

1 &diff{ arrive(P,V) - exit(P,V) } <= 0 :- visit(P,V).
2 &diff{ exit(P,V) - arrive(P,V’) } <= -W :- move(P,V,V’), edge(V,V’,W).

4 &diff{ 0 - arrive(P,V) } <= 0 :- path(P,_), not path_sequence(_,P),
5 path_assign(R,P), start(R,V).
6 &diff{ arrive(P,V) - 0 } <= 0 :- path(P,_), not path_sequence(_,P),
7 path_assign(R,P), start(R,V).
8 &diff{ exit(P,V) - arrive(P’,V) } <= 0 :- path_sequence(P,P’),
9 path(P,V).

10 &diff{ arrive(R,V) - bound } <= 0 :- home(R,V).
11 &diff{ exit(R,V) - bound } <= 0 :- home(R,V).
12 &diff{ bound - exit(R,V) } <= 0 :- home(R,V).

14 &diff{ arrive(P,V’’) - arrive(P’,V’) } <= 0 :-
15 before((P,V),(P’,V’)), move(P,V,V’’).

17 #const kappa=10.
18 &diff{ arrive(T,V) - exit(T,V) } <= -kappa :- task(T,V).
19 &diff{ exit(T,V) - exit(T’,V’)} <= -kappa :- depends(D,T,T’),
20 D != deliver,
21 task(T,V), task(T’,V’),
22 not same_robot(T,T’),
23 not same_robot(T’,T).

Similarly to the step-based encoding, difference constraints over integer variables
are used to derive the arrival and exit times at vertices. More specifically, variables
arrive(p,v) and exit(p,v) represent the arrival and exit times, respectively, at a vertex
v for path p. Note that, in contrast to the step-based encoding, we no longer have a step
associated with variable names. This has the advantage that variables describing arrival
and exit times on target vertices for tasks are known apriori, and the number of possible
variables scales with the number of paths and vertices instead of the number of robots
and chosen horizon. The drawback, as already discussed, is that there is no mechanism
to distinguish multiple visits to a vertex, and therefore, there cannot be cyclic movement
within a single path. The structure of the scheduling for the path-based encoding is very
similar to the scheduling for the step-based encoding, detailed in Listing 4.3.4. We first
create a valid schedule for the individual paths, then handle conflict resolution between
paths, and finally address task executions and dependencies.

Line 1 reuses predicate visit/2, described in Section 4.4.5, to derive difference con-
straints stating that the exit time at each vertex on a path is greater than or equal to the
arrival time. Line 2 ensures that the schedule of each path respects durations stemming
from the warehouse layout. That is, whenever there is a move from v to v′ on path p, then a
difference constraint enforces that exit(p,v) + fE(v, v′) ≤ arrive(p,v′). The two rules
in Lines 4 to 7 deal with the first vertex on the first path in a path sequence and set the
corresponding arrival time to zero. Line 8 deals with scheduling of the transition between
paths. This is, for a path p′ that immediately follows path p in a path sequence, such that
the target vertex of p is v, then we stipulate that exit(p,v) ≤ arrive(p′,v), Note that
here the exit time of path p at vertex v should be understood as the end of the assigned
robot’s execution of p. It does not indicate that the robot itself has left the vertex, only that
p is finished and that any corresponding task has been executed. Similarly, the arrival time
of path p′ at vertex v marks the beginning of the execution of path p by the assigned robot,
and not the robot’s physical arrival at vertex v.

Analogously to the step-based encoding, Lines 10–12 add difference constraints to
set the variable bound to the makespan, and align it with the final paths’ exit times. Note

Algorithms 2023, 16, 216 34 of 62

that this is made possible by selecting the home vertex of each robot, because the last path
in a path sequence is always identified by the name of a robot, and the last vertex of this
path is the home vertex of that robot. Naming the homing path with the identifier of the
corresponding robot has the added advantage that home/2 is known statically so these
atoms is dissolved during grounding.

Line 14 deals with conflict resolution. Whenever we have before((p,v),(p′,v′)), we
add a difference constraint expressing the condition that arrive(p,v′′) ≤ arrive(p′,v′),
where v′′ is the vertex immediately following vertex v along path p. Intuitively, this
constraint ensures that the robot following path p has moved on to the vertex past the
conflict before the robot tasked with p′ may arrive at the vertex in conflict. This removes
any possibility of a collision. There are a number of points worth noting here. Firstly, if
vertex v′′ is also in conflict with v′, then the fact before((p,v′′),(p′,v′)) would also be
derived. Hence a matching difference constraint regarding the followup vertex of v′′ in
path p and vertex v′ in path p′ would also be derived, essentially delaying the robot that
is assigned to p′ until the whole conflict zone is cleared. Secondly, the corner case where
path p has no move after vertex v, since v is its target vertex, is covered by the constraints
in Lines 17 to 21 of Listing 14. In this case, the conflict resolution has been propagated to
path p’s successor and the appropriate difference constraint is derived. Furthermore, in
this case p is guaranteed to have a successor path, since if p were a final homing path then
the constraint at Line 21 of Listing 14 would have prevented before((p,v),(p′,v′)) from
being derived.

Finally, it is worth noting that there are alternative ways of addressing conflict resolu-
tion. Here, we take a conservative approach by tracking the time when a robot arrives at a
location outside of the conflict area. This might be too strict if one faces edges with large
durations: The robot might already be out of the way before actually arriving at its next
location. In such a case, alternative conflict strategies could be considered. For example,
one could introduce a safety period after the exit at the conflict vertex to more closely fit
real-world conditions.

The final aspect of scheduling is to deal with task execution and dependencies. This is
handled by the difference constraints at Lines 18 and 19. Line 18 ensures that the assigned
robot remains at the target vertex long enough for the task to be executed. That is, for every
task t and v = fV(t), we require that arrive(t,v) + κ ≤ exit(t,v). This constraint only
requires that a path overlaps at least the execution time with its task’s target location;
it would be a valid assignment to the integer variables if the exit time were larger than
necessary. In practice, however, the difference constraint solver generates an assignment
that schedules everything as early as possible, meaning that the exit time of a path is equal
to the arrival time at the task location plus the execution time. However, this does not force
the robot to physically move locations at this time; it simply transitions to the successor
path which has its own arrival and exit variables at that same vertex. This may be necessary,
for instance, to delay the starting movement of the robot to let another robot pass.

It is worth highlighting an important performance consideration of this constraint.
Since each task has an identically named path, the arrival and exit times of the path at its
target vertex can be simply identified by the static fact task(t,v). This means that this
constraint can be applied unconditionally by the solver. In contrast, scheduling of task
execution for the step-based encoding is dependent on the projection of the task over the
assigned robot’s walk (see Line 18 of Listing 9). This means that its application is conditional
on both the task assignment choice as well as the projection choice. Consequently, task
execution scheduling for the step-based encoding is a significantly more complicated, and
potentially costly, process.

Finally, the rule starting at Line 19 addresses task interdependencies. We add a timing
constraint whenever the paths associated with dependent tasks are assigned to different
robots. More precisely, for two tasks t, t′ with (t, t′) ∈ D and distinct robots r, r′ such that
t ∈ fT(r) and t′ ∈ fT(r′), we impose the timing constraint exit(t,v) + κ ≤ exit(t′,v′)
with fV(t) = v and fV(t′) = v′. Recall that exit(t,v) marks the end of path t and not

Algorithms 2023, 16, 216 35 of 62

necessarily r’s physical departure from vertex v, and due to the difference constraint in
Line 18, we know that task t must be executed by the time point exit(t,v). Hence, the
earliest time point that task t′ could be finished is exit(t,v) + κ. Again, combined with
Line 18, this means that the execution time of t′ is after t has finished. However, the
constraint does not require that task t′ be executed the instant after t is finished, and it is of
course possible for there to be an arbitrary delay following t’s completion.

This dependency constraint is only enforced when the paths are assigned to distinct
robots. For paths that are assigned to the same robot this constraint is redundant, since
the correctness of the scheduling is enforced implicitly by the path sequencing. However,
here we have also imposed the additional restriction that the tasks are in a non-delivery
dependency. Delivery dependencies are a special case of tasks that are assigned to the same
robot, since they are known statically. This means that not only is the rule redundant for
delivery dependencies, but specifying it explicitly means that its application to delivery
dependencies is removed completely during grounding. In our application setting, this is
the only special case we need to consider. However, in a different application setting with
other dependency types that can only be executed by the same robot, we could derive a
specific static predicate to capture these cases.

As was the case for scheduling in the step-based encoding (Section 4.3.4), we use
the binary predicate dl/2 to express the assignment of arrival and exit times. The paths
corresponding to the timed walks in Table 2 are scheduled as follows.

dl(arrive(t1,h1),0) dl(exit(t1 ,h1),0) dl(arrive(t5,h2),0) dl(exit(t5,h2),0)
dl(arrive(t1,w3),15) dl(exit(t1 ,w3),15) dl(arrive(t5 ,w4),15) dl(exit(t5,w4),15)
dl(arrive(t1,w2),45) dl(exit(t1 ,w2),45) dl(arrive(t5 ,w8),30) dl(exit(t5,w8),30)
dl(arrive(t1,w1),65) dl(exit(t1 ,w1),65) dl(arrive(t5 ,l2),45) dl(exit(t5,l2),55)
dl(arrive(t1,l1),80) dl(exit(t1 ,l1),90) dl(arrive(t6 ,l2),55) dl(exit(t6,l2),55)
dl(arrive(t2,l1),90) dl(exit(t2 ,l1),90) dl(arrive(t6 ,w8),70) dl(exit(t6,w8),70)
dl(arrive(t2,w1),105) dl(exit(t2 ,w1),105) dl(arrive(t6,w7),100) dl(exit(t6 ,w7),100)
dl(arrive(t2,w5),175) dl(exit(t2 ,w5),175) dl(arrive(t6,w6),120) dl(exit(t6 ,w6),120)
dl(arrive(t2,s1),190) dl(exit(t2 ,s1),200) dl(arrive(t6,s2),135) dl(exit(t6 ,s2),145)
dl(arrive(t3,s1),200) dl(exit(t3 ,s1),200) dl(arrive(t7,s2),145) dl(exit(t7 ,s2),145)
dl(arrive(t3,w5),215) dl(exit(t3 ,w5),215) dl(arrive(t7,w6),160) dl(exit(t7 ,w6),160)
dl(arrive(t3,w6),225) dl(exit(t3 ,w6),225) dl(arrive(t7,w2),175) dl(exit(t7 ,w2),175)
dl(arrive(t3,w2),240) dl(exit(t3 ,w2),240) dl(arrive(t7,p1),190) dl(exit(t7 ,p1),200)
dl(arrive(t3,p1),255) dl(exit(t3 ,p1),265) dl(arrive(t8,p1),200) dl(exit(t8 ,p1),200)
dl(arrive(t4,p1),265) dl(exit(t4 ,p1),265) dl(arrive(t8,w2),215) dl(exit(t8 ,w2),215)
dl(arrive(t4,w2),280) dl(exit(t4 ,w2),280) dl(arrive(t8,w1),235) dl(exit(t8 ,w1),235)
dl(arrive(t4,w1),300) dl(exit(t4 ,w1),300) dl(arrive(t8,w5),253) dl(exit(t8 ,w5),253)
dl(arrive(t4,l1),315) dl(exit(t4 ,l1),325) dl(arrive(t8,w6),263) dl(exit(t8 ,w6),263)
dl(arrive(r1,l1),325) dl(exit(r1 ,l1),325) dl(arrive(t8,w7),283) dl(exit(t8 ,w7),283)
dl(arrive(r1,w1),340) dl(exit(r1 ,15) ,340) dl(arrive(t8,w8),313) dl(exit(t8 ,w8),313)
dl(arrive(r1,w2),360) dl(exit(r1 ,16) ,360) dl(arrive(t8,l2),328) dl(exit(t8 ,l2),338)
dl(arrive(r1,w3),390) dl(exit(r1 ,17) ,390) dl(arrive(r2,l2),338) dl(exit(r2 ,l2),338)
dl(arrive(r1,h1),405) dl(exit(r1 ,18) ,405) dl(arrive(r2,w8),353) dl(exit(r2 ,w8),353)

dl(arrive(r2,w4),368) dl(exit(r2,w4),368)
dl(bound ,405) dl(arrive(r2,h2),383) dl(exit(r2,h2),405)

4.4.7. Stable Models of the Path-Based and Step-Based Encodings

In this section, we show how the stable models of a path-based encoding correspond
to the models of a step-based encoding, and thus also constitute solutions to the warehouse
delivery problem in view of Section 4.3.5.

In general the opposite is not the case and the solution of a step-based encoding may
not have a corresponding path-based solution. To see this, consider a possible stable model
of the step-based encoding for our running example in which robot r1 walks back and forth
at its home station. This stable model may contain atoms walk(r1,0,h1), walk(r1,1,w3),
and walk(r1,2,h1). Since no task is executed, the moves had to belong to the same path
in a stable model of the path-based encoding which is impossible since each path must
be acyclic.

In what follows, let F be the set of facts obtained from a warehouse (V,E, fE,C,R, fH , fS)
and a task execution graph (T,D, fD, fV) as described in Section 4.1, and let P be the com-
bined set of rules from Listings 2 and 10 to 15.

To associate a stable model of the path-based encoding to one of the step-based
encoding, we trace moves on paths, such that each move in the former corresponds to a

Algorithms 2023, 16, 216 36 of 62

move in the latter along with an increasing step counter. We make this precise by mapping
paths and vertices to steps as follows: Given a stable model X of logic program F ∪ P, we
define the function πX : (T ∪ R)×V → N recursively in the following way:

πX(p, v) =


0 if move(p, v, v′) ∈ X, move(p, v′′, v) 6∈ X, path_sequence(p′, p) 6∈ X
πX(p, v′) + 1 if move(p, v′, v) ∈ X
πX(p′, v) if move(p, v, v′) ∈ X, move(p, v′′, v) 6∈ X, path_sequence(p′, p) ∈ X

for some v′, v′′ ∈ V and p′ ∈ T ∪ R in each case. The three cases address the respective
positions in a sequence of paths. The first case reflects the first position in the first path
of a sequence, which means that it is the starting vertex for the corresponding robot. The
second deals with intermediate moves on paths. Furthermore, the third case carries over
the step count of the last vertex of the previous path to the first vertex of the current path.
Note, that this last case does not increment the step count, since the transition between
paths does not involve any change of location from the assigned robot.

Now, let P be the logic program defined above and P′ its step-based counterpart,
that is, the combined set of rules from Listings 2 to 9. Then, a stable model X of logic
program F ∪ P is mapped into a stable model Y of logic program F ∪ P′. For r ∈ R, t, t′ ∈ T,
p, p′ ∈ T ∪ R, v, v′, v′′ ∈ V, and s, a, a′, e, e′ ∈ N, we have

1. assign(r,t)∈ Y if assign(r,t)∈ X
2. {assign(r,t),assign(r,t′),task_sequence(t,t′)} ⊆ Y if

{assign(r,t),assign(r,t′),task_sequence(t,t′)} ⊆ X
3. same_robot(t,t′)∈ Y if same_robot(t,t′)∈ X

4. {walk(r,πX(p, v),v),walk(r,πX(p, v′),v′)} ∪
{dl(arrive(r,πX(p, v)),a),dl(exit(r,πX(p, v)),e)} ∪
{dl(arrive(r,πX(p, v′)),a′),dl(exit(r,πX(p, v)),e′)} ⊆ Y

if

{move(p,v,v′),move(p,v′,v′′),path_assign(r,p)} ∪
{dl(arrive(p,v),a),dl(exit(p,v),e)} ∪
{dl(arrive(p,v′),a′),dl(exit(p,v′),e′)} ⊆ X

5. {walk(r,πX(p, v′),v′)} ∪
{dl(arrive(r,πX(p, v′)),a),dl(exit(r,πX(p, v′)),e)} ⊆ Y

if

{move(p,v,v′),path_assign(r,p)} ∪
{dl(arrive(p,v′),a),dl(exit(p,v′),e)} ⊆ X

provided that move(p,v′,v′′) 6∈ X and path_sequence(p,p′) 6∈ X

6. {walk(r,πX(p, v′),v′), proj(p,πX(p, v′))} ∪
{dl(arrive(r,πX(p, v′)),a),dl(exit(r,πX(p, v′)),e)} ⊆ Y

if

{move(p,v,v′),move(p′,v′,v′′)} ∪
{path_sequence(p,p′),path_assign(r,p)} ∪
{dl(arrive(p,v′),a),dl(exit(p′,v′),e)} ⊆ X

provided that move(p,v′,v′′) 6∈ X
7. {before((r,πX(p, v)),(r′,πX(p′, v′)))} ⊆ Y if

{before((p,v),(p′,v′)),path_assign(r,p),path_assign(r′,p′)} ⊆ X

We first establish that task assignment and task sequences function in the same way in
both settings. Then, for intermediate moves along a path, we determine the timed walk for
both vertices in 4. That is, we identify the robot assigned to the path and add both vertices
to its walk at the step provided by function πX as well as the arrival and exit times.

The next two cases deal with the end of a path. If we have reached the final vertex, i.e.,
there are no more paths in the path sequence, we add the information provided by stable

Algorithms 2023, 16, 216 37 of 62

model X as is. If another path follows, we combine the duration of both paths on their
shared vertex to define the timed walk.

Looking at 6 in more detail. If robot r is assigned to paths p and p′, with p′ immediately
following on from p, and where vertex v′ is the target vertex of p, then we add atoms
representing that robot r visits vertex v′ at step πX(p, v′), arriving at path p’s arrival time
at v′ and departing at path p′’s exit time from v′. Furthermore, since p identifies a task,
and not just a path, and v′ is its target location, we can add the projection of task p on step
πX(p, v′). Note that the step count is the same for paths p and p′ on vertex v′.

Finally, we deal with conflict resolution in 7. If vertex v on path p precedes vertex
v′ on path p′, then the robot, r, assigned to path p also precedes the robot, r′, assigned
to path p′ on these vertices. Recall that conflict resolution in the step-based encoding is
expressed via the step and not the vertex. It is mapped to the correct vertices via atoms
walk(r,πX(p, v),v) and walk(r′,πX(p′, v′),v′).

4.5. Performance Enhancement via Shortest Path Information

To this point, we have provided two different encodings that generate solutions to the
warehouse delivery problem. The step-based encoding closely matches the formalization
of the warehouse delivery problem, so the mapping from a stable model of the step-based
encoding to a solution of the problem was relatively straightforward. In contrast, the link
from the path-based encoding to the problem formalization was less immediate. So instead,
we showed how a path-based solution maps directly to a step-based solution (but not
vice versa), and hence, by implication, the stable models of a path-based encoding also
correspond to solutions of the warehouse delivery problem.

We now go beyond the basic encodings to develop enhancements that can be added
to improve solver performance, and also solution quality, when searching for solutions to
the warehouse delivery problem. The enhancements that we introduce are based around
pre-computing shortest path information for a given warehouse graph. This type of pre-
processing is tractable and needs only be done once for a graph at hand. The shortest path
information is used in three key ways: to calculate timing lower-bounds to improve solver
propagation, to implement domain heuristics to prefer routes along shortest paths, and
finally to define corridors for limiting the choice of robot moves.

It is worth pointing out that we do not consider performance enhancements for the
step-based encoding. There are two reasons for this. Firstly, the need to apply a step
horizon means that grounding problem instances for the step-based encoding is highly
dependent on the size of the warehouse graph. As will be clear from our experimental
results (Section 5), this issue alone negatively impacts the viability of the step-based
encoding for many realistic warehouse graphs. The second reason is that it is significantly
more challenging to apply shortest path techniques to the step-based encoding. This
encoding deals with the entire walk of a robot as a single unit, from its starting vertex to its
final arrival at its home vertex. In order to apply shortest path information in such a setting
it would be necessary to first segment a robot’s walk into sub-parts for which shortest path
information would be relevant. In contrast, this is something that comes for free with the
path-based encoding, shortest path information can be applied directly to the paths of the
path-based encoding.

The underlying shortest path information is provided at the outset by pre-computing
all shortest paths from every vertex on the graph to every endpoint vertex. By endpoint
vertex we simply mean all possible task target vertices as well as the robot home vertices.
For a warehouse (V,E, fE,C,R, fH , fS), this results in facts of the form

shortest_path(v,v′,l,v′′).

for every {v, v′} ⊆ V, (v, v′′) ∈ E, and l ∈ N. Such a fact represents that there is a shortest
path from v to v′ of length l that follows edge (v, v′′) ∈ E. Note that there might be several
such shortest paths.

The idea is now to use this information to calculate shortest paths that are relevant for
a given set of tasks. This is done in Listing 16.

Algorithms 2023, 16, 216 38 of 62

Listing 16. Calculate static and dynamic shortest path information for relevant vertices.

1 static_shortest_path(T’,V) :- depends(deliver,T,T’), task(T,V).
2 static_shortest_path(T,V’’) :- static_shortest_path(T,V), task(T,V’),
3 shortest_path(V,V’,_,V’’).

5 possible_shortest_path(R,R,V) :- start(R,V).
6 possible_shortest_path(T,R,V) :- robot(R), not depends(deliver,T,_),
7 task(T,V).
8 possible_shortest_path(P,R,V’’) :- possible_shortest_path(P,R,V),
9 home(R,V’),

10 shortest_path(V,V’,_,V’’).
11 possible_shortest_path(R,T,V) :- start(R,V), task(T),
12 not depends(deliver,_,T).
13 possible_shortest_path(T,T’,V’) :- task(T,_), task(T’,V’), T != T’,
14 not depends(deliver,T,T’).
15 possible_shortest_path(P,T,V’’) :- possible_shortest_path(P,T,V),
16 task(T,V’),
17 shortest_path(V,V’,_,V’’).

19 dynamic_shortest_path(R,V) :- possible_shortest_path(R,R,V),
20 not assign(R,_), path(R,_).
21 dynamic_shortest_path(R,V) :- possible_shortest_path(T,R,V),
22 path_sequence(T,R), not path_sequence(R,_).
23 dynamic_shortest_path(T,V) :- possible_shortest_path(R,T,V), assign(R,T),
24 task_sequence(T,_), not task_sequence(_,T).
25 dynamic_shortest_path(T’,V) :- possible_shortest_path(T,T’,V),
26 task_sequence(T,T’), task(T’,_).

To begin with, in Lines 1 to 3 we capture the shortest paths that are relevant ir-
respective of the task assignment or the sequencing. To this end, atoms of the form
static_shortest_path(t,v) collect vertices, v, belonging to shortest paths among the
start and end node of task of t. In fact, whenever two tasks t and t′ are in a delivery
dependency with their respective target vertices v and v′, then v must be the start of the
path to v′ for the path of t′, since both t and t′ have to be executed by the same robot and
one immediately after the other. We then use the pre-computed shortest path information
to complete the shortest paths from v to v′ for the path of t′. For instance, in our running
example, we get

static_shortest_path(t2,l1) static_shortest_path(t2 ,w1)
static_shortest_path(t2,w5) static_shortest_path(t2 ,s1)

because path t2 must begin at vertex l1 and end at s1.
From Lines 5 to 17, we define all possible relevant shortest paths depending on what

paths and robots are present. An atom possible_shortest_path(x,p,v) states that vertex
v belongs to the shortest path p if x is a path and precedes p in the path sequence or x is a
robot and p is its first path. Then, Lines 19 to 26 check the actual task assignment and path
sequencing and determine the shortest paths for each path. The multitude of rules in both
cases stems from case discrimination.

For instance, if we consider the path for task t1 in our example, we have the following
possibilities among others:

Algorithms 2023, 16, 216 39 of 62

possible_shortest_path(r1 ,t1 ,h1) possible_shortest_path(r1,t1,w3)
possible_shortest_path(r1 ,t1 ,w2) possible_shortest_path(r1,t1,w1)
possible_shortest_path(r1 ,t1 ,l1)

possible_shortest_path(r2 ,t1 ,h2) possible_shortest_path(r2,t1,w4)
possible_shortest_path(r2 ,t1 ,w3) possible_shortest_path(r2,t1,w2)
possible_shortest_path(r2 ,t1 ,w1) possible_shortest_path(r2,t1,l1)

possible_shortest_path(t6 ,t1 ,s2) possible_shortest_path(t6,t1,w6)
possible_shortest_path(t6 ,t1 ,w5) possible_shortest_path(t6,t1,w1)
possible_shortest_path(t6 ,t1 ,l1)

The three blocks of atoms tell us what vertices belong to path t1 depending on
whether task t1 is assigned first to robot r1, first to robot r2, or is preceded by task t6 in
the path sequence.

For the solution in Table 2, we then get the following atoms for path t1 that determine
the vertices on its shortest path

dynamic_shortest_path(t1,h1) dynamic_shortest_path(t1 ,w3)
dynamic_shortest_path(t1,w2) dynamic_shortest_path(t1 ,w1)
dynamic_shortest_path(t1,l1)

They correspond to the first block of atoms since task t1 is the first task assigned to
robot r1.

4.5.1. Lower-Bound Propagation

The first application of the shortest path information is to impose lower bounds
on travel times for all paths. Although these lower bound constraints are redundant,
their addition may improve propagation and therefore decrease solving time. The lower
bound information can quickly prune invalid variable assignments that could never be
part of a satisfiable solution. This can be especially performant for detecting unsatisfiable
problem instances.

We express this by means of difference constraints in Listing 17.

Listing 17. Add difference constraint representing lower bound on travel time.

1 &diff{ exit(R,V) - arrive(R,V’) } <= -N :-
2 start(R,V), home(R,V’), V != V’,
3 not assign(R,_), shortest_path(V,V’,N,_).
4 &diff{ exit(T,V) - arrive(T,V’) } <= -N :-
5 start(R,V), not task_sequence(_,T), task(T,V’),
6 assign(R,T), shortest_path(V,V’,N,_).
7 &diff{ exit(P’,V) - arrive(P’,V’) } <= -N :-
8 path_sequence(P,P’), path(P,V), path(P’,V’),
9 shortest_path(V,V’,N,_).

Whenever we have a path p with start vertex v and end vertex v′, and a shortest path
among them of length n, we add a difference constraint requiring that the arrival time at v′

on p is at least n time units after the exit of v on p. For instance, in our running example, we
would add the difference constraint &diff { exit(t2,l1) - arrive(t2,s1) } <= -48
for the path for t2.

As above, case discrimination results in the three different rules for identifying the
respective start and end vertex of each path. Line 1 captures the situation where a robot has
no work assigned but is not at its home vertex; the start of the path is thus the start of the
robot and the end is its home vertex. Line 4 identifies the first task in a task sequence. The
start of the path is the start of its associated robot, and the end is the target vertex of the
task. Furthermore, finally, Line 7 handles two subsequent paths in a path sequence. The
target vertex of the first path is the start and the target vertex of the second path the end.

Algorithms 2023, 16, 216 40 of 62

4.5.2. Domain-Specific Heuristics

The second application of shortest path information is to use it to encode domain-
specific heuristics to prefer moves on shortest paths as well as to avoid moves that are off
the shortest paths. We use the two heuristic modifiers [1,sign] and [1,false] to specify
these preferences; where the modifier [1,false] is a shorthand for the combination of
[-1,sign] and [1,level].

The heuristic directives in Line 1 and Line 4 in Listing 18 prefer atoms over move/3 to
be assigned true, at the default assignment level of 0, whenever they are on statically and
dynamically determined shortest paths, respectively. Note that Line 1 is determined before
solving, while Line 4 is evaluated during solving, since it depends on task assignments
and sequencing.

Listing 18. Domain-specific heuristics avoiding moves not a shortest path and preferring moves on
the shortest path.

1 #heuristic move(P,V,V ’) : static_shortest_path(P,V), path(P,V ’’),
2 shortest_path(V,V ’’,_,V ’), V != V’.

[1,sign]

4 #heuristic move(P,V,V ’) : dynamic_shortest_path(P,V), path(P,V ’’),
5 shortest_path(V,V ’’,_,V ’), V != V’.

[1,sign]

7 #heuristic move(P,V,V ’) : edge(V,V ’,_), path(P,V ’’),
8 not shortest_path(V,V ’’,_,V ’).

[1 ,false]

Finally, the statement in Line 7 prefers choosing and falsifying atoms, at the higher
assignment level of 1, for moves that are not on a shortest path.

While all three directives express preferences on the assigned truth values, the latter
is assigned first and is therefore the stronger preference. In this way, we use a weaker
form of heuristics for moves on the shortest path. This is because there might be several
shortest paths spread over different vertices, and so heuristically modifying all of them has
no focusing effect. On the other hand, if a move is not on any shortest path, it is clearly
preferable to avoid it.

We verify these hypotheses empirically in Section 5.
For instance, in our running example, we would add the directives (after grounding):

#heuristic move(t1,w1,w5). [1,sign]
#heuristic move(t1,w1,w2). [1,false]

4.5.3. Corridor-Based Routing

Last but not least, the final application of shortest path information is to define corri-
dors and to restrict robot moves accordingly. Unlike the previous applications of shortest
path information, restricting robot moves to defined corridors actually restricts the solution
space of the problem. While the path-based encoding has already been shown to be incom-
plete with respect to the formalization (Section 4.4.1), the introduction of corridor-based
routing adds a second source of incompleteness. Candidate models that deviate from the
corridors will no longer be acceptable as solutions. On the other hand, the corridor restric-
tion decreases the problem size, and therefore the overall size of the ground instance, which
is an important consideration when dealing with large warehouse graphs. This is borne
out in Section 5 where the experimental results show that a significant number problem
instances simply fail to ground without the addition of corridor-based routing. Further-
more, with some caveats that we discuss at the end of this section, the set of solutions often
have shorter makespans, even in the absence or other performance enhancements, such as
domain heuristics, since detours are avoided.

Algorithms 2023, 16, 216 41 of 62

In the same way that there can be multiple shortest paths between any two vertices,
there can also be multiple corridor between any two vertices. To define the corridors be-
tween two vertices we first ensure that the shortest paths between these vertices are part of
some corridor. We then expand each corridor to include vertices that are directly connected
to a shortest path vertex that is already on that corridor. Optionally this expansion can be
restricted only to cases where the new vertex does not increase the distance to the target
goal vertex.

Listing 19 shows the creation of corridors from the shortest paths.

Listing 19. Calculate an immediate corridor around the shortest paths.

1 corridor(T,V) :- static_shortest_path(T,V).
2 corridor(T,V ’) :- static_shortest_path(T,V),
3 edge(V,V ’,_), task(T,V ’’),
4 shortest_path(V,V ’’,N,_),
5 shortest_path(V’,V’’,N’,_), N’ <= N.

7 corridor(P,P ’,V) :- possible_shortest_path(P,P ’,V).
8 corridor(P,T,V ’) :- corridor(P,T,V),
9 edge(V,V ’,_), task(T,V ’’),

10 shortest_path(V,V ’’,N,_),
11 shortest_path(V’,V’’,N’,_), N’ <= N.
12 corridor(P,R,V ’) :- corridor(P,R,V),
13 edge(V,V ’,_), home(R,V ’’),
14 shortest_path(V,V ’’,N,_),
15 shortest_path(V’,V’’,N’,_), N’ <= N.

Lines 1 and 7 make the shortest paths part of the corridors. The rules in Lines 2, 8
and 12 extend the corridor with vertices if the aforementioned conditions are fulfilled. The
three different cases are necessary because of different sources of shortest path information.
We have to differentiate whether a path is associated with a task or a robot to know its
target location. Note that all corridors are established after grounding.

Listing 19 only shows the case where the expansion is restricted to vertices where
the distance to the target vertex is not increased. However in the experimental results
(Section 5) we also consider the case where the expansion is not restricted by this require-
ment, essentially removing the N’ <= N restriction from each rule and requiring only that a
vertex in a corridor either is a vertex on the shortest path or is directly connected to such
a vertex.

We ensure in the adapted routing encoding in Listing 20 that the correct corridors are
traversed depending on task assignment and sequencing.

As an example, we have the following corridor for path t2 in our example.
corridor(t2 ,l1) corridor(t2 ,w1)
corridor(t2 ,w5) corridor(t2 ,s1)

This corridor is identical to the only shortest path because all alternative routes would
increase the distance to the target vertex s1. On the other hand, a corridor that is unequal
to a shortest path in our running example is the following one.

corridor(r1 ,t1 ,h1) corridor(r1,t1,w3)
corridor(r1 ,t1 ,w2) corridor(r1,t1,w7)
corridor(r1 ,t1 ,w1) corridor(r1,t1,w6)
corridor(r1 ,t1 ,l1) corridor(r1,t1,w5)

Here the corridor includes the shortest path vertices h1, w3, w2, and l1, as well as the
vertices w7, w1, w6, and w5, that are directly connected to one of these shortest path vertices.
If we consider the case of vertex w7, it is directly connected to w3 and from w7 the minimum
travel time to the target l1 is 63 s, which is less than the 65 s from w3 to l1. In contrast w4 is
also directly connected to w3, but has a minimum travel time of 85 s to w7 and hence fails
the N’ <= N restriction.

Algorithms 2023, 16, 216 42 of 62

To integrate the corridor information, we need to replace the choice rules in Lines 1
to 6 in Listing 11 by the ones in Lines 1 to 10 in Listing 20.

Listing 20. Only allow moves along corridors.

1 0 { move(P,V,V’) : edge(V,V’,_), corridor(P,V’) } 1 :-
2 corridor(P,V), edge(V,_,_).
3 0 { move(P,V,V’) : edge(V,V’,_), corridor(P,V) } 1 :-
4 corridor(P,V’), edge(_,V’,_).

6 0 { move(P,V,V’) : edge(V,V’,_), corridor(_,P,V’) } 1 :-
7 corridor(_,P,V), edge(V,_,_).
8 0 { move(P,V,V’) : edge(V,V’,_), corridor(_,P,V) } 1 :-
9 corridor(_,P,V’), edge(_,V’,_).

10 :- robot(R), not path(R,_), move(R,_,_).

12 :- move(P’,V,V’), path_sequence(P,P’),
13 not corridor(P,P’,V), not corridor(P,P’,V’).

15 :- move(R,V,V’), robot(R), not assign(R,_),
16 not corridor(R,R,V), not corridor(R,R,V’).

This only allows moves along corridors. Furthermore, recall that corridors are decided
at grounding time, so we keep the desired property that the choices do not depend on any
non-domain atom.

Finally, the integrity constraints in Lines 12 and 15 ensure that only moves are made
on corridors applicable to the path sequencing and task assignments.

Although corridor-based routing restricts the set of possible solutions, its advantages
are twofold. Firstly, the problem size is reduced, and secondly, the first solution found by
the solver is likely to have a relatively high quality with respect to the set of all possible
solutions. What we mean by this is that the pool of solutions without a corridor-based
restriction will include circuitous paths that can range over the entire warehouse graph. If
the solver is simply trying to find a single satisfying solution then it is difficult to guarantee
that it will not fix on one of these poor quality solutions. In contrast the solutions returned
by the corridor-based restriction will all have the basic level of route quality guaranteed by
the corridor definition.

In this section, we have described the details of corridor-based routing and highlighted
its many advantages. Nevertheless this approach also has some important limitations
that need to be considered. As was mentioned earlier, applying corridor-based routing
introduces a source of incompleteness to the encoding. It is relatively easy to construct an
example where the use of corridor-based routes can rule out an optimal solution or even
fail to admit any solution. In Figure 4, corridor-free routing allows robot r2 to take a longer
path that avoids conflicts with the path of robot r1. In so doing it is able to find an optimal
makespan of 70 s. In contrast, with corridor-based routing the longer path is no longer an
option, which makes the problem highly sensitive to timing so that robot r2 has to reach its
destination before r1 can even start its journey. This results in a non-optimal makespan of
80 s. Furthermore, as with the scenario in Figure 3 it is also possible to create an alternative
scenario with robot r1 starting at w1 and r2 starting at w3 that makes the corridor-based
routing fail to admit a solution.

Algorithms 2023, 16, 216 43 of 62

Figure 4. A simple example showing the limitation of the corridor-based routing; robot r1 located at
vertex h1 needs to travel to l1, while robot r2 at h2 needs to travel to l2. For a uniform edge weight of
10 s the corridor-free encoding (left) can achieve the optimal makespan of 70 s by sending r2 along a
non-shortest path route, while the corridor-based encoding (right) rules out vertices w4, . . . , w7 from
the corridor and requires 80 s.

Nevertheless, as with the discussion of the trade-offs between the step and path-based
encodings, there are measures that can be taken to minimize any potential negative effects
of employing corridor-based routing. Firstly, and most importantly, as we have already
outlined in Section 4.4.1, good warehouse design is crucial. The artefacts that can lead to
poor solutions, such as narrow corridors with no room for passing or over-taking, do not
typically occur in well designed real-world warehouses.

Secondly, where necessary it is also possible to consider different corridor definitions.
Here, we have only considered the case of expanding the corridor with vertices that are
directly connected to some shortest path vertex, optionally only if they do not increase
the distance to the final destination. However, this expansion could be generalized to
some arbitrary distance from the shortest path. We did not consider this generalization
since our corridor definition worked well for our application setting and our warehouse
configurations. However, alternative corridor definitions could certainly be considered for
different application and warehouse settings.

4.6. Encoding Solution Quality

We accommodate both quality measures presented in Section 3.2. For measuring the
makespan, we utilize the variable bound, as mentioned in Section 4.4.6. This allows us to
either restrict the solution quality via a constraint of the form &diff{bound} <= q, where
q ∈ N is the desired solution quality, or we can use clingo[DL]’s built-in branch-and-bound
optimization by adding to the command line the option --minimize-variable=bound.
Note that the latter method is computationally expensive and lacks clingo’s sophisticated
optimization algorithms. This is the case because the scheduled values are not known to
the solver and are stored in the background propagator handling difference constraints.

As for the task-pair distance, we assume an instance structure as in our running
example. That is, every wait dependency expresses that something has to be retrieved from
a loading bay before an empty pallet can be placed. Then, we only have to consider all tasks
involved in such dependencies as our task pairs to accomplish that the task-pair distance
expresses the maximum replacement time. Currently, we have no means of minimizing
this measure, but we can restrict it to a certain value to enforce a desired solution quality.
Listing 21 adds difference constraints to enforce the desired task-pair distance.

Listing 21. Add difference constraint representing an upper bound on the pallet replacement times.

1 #const replacement_bound=3*60*1000.

3 &diff{ arrive(T’,V’) - arrive(T,V) } <= replacement_bound :-
4 depends(wait,T,T’), task(T,V), task(T’,V’).

This pallet replacement bound provides a solution quality guarantee without resorting
to computationally expensive optimization, as with makespan minimization. The constant
replacement_bound should be overridden based on domain specific factors, such as the
graph size and the expected ratio of tasks to robots.

Algorithms 2023, 16, 216 44 of 62

5. Experiments

We evaluated our approach to the warehouse delivery problem using the Hybrid ASP
system clingo[DL] v1.3.0, which is built on clingo v5.5.1. Given the industry focus of this
work, the primary goal of these experiments is to understand the potential viability of our
approach for solving real-world warehouse delivery problems. In particular, we evaluate
the performance of the step-based and path-based encoding variants under different
warehouse graph configurations and task loads.

While the focus is principally on the performant variants of the path-based encoding,
the step-based encoding is also important to the evaluation. In particular, the step-base
encoding provides a direct correspondence to the underlying problem formalization. In
contrast, because the path-based encoding is restricted to acyclic paths, there are problem
instances for which the step-based encoding admits a solution but the path-based encoding
does not. Therefore the step-based encoding provides a baseline for our evaluation; both
in terms of the solver performance but also to see whether the lack of completeness of the
path-based encoding is an issue in practice.

We consider two sets of benchmarks. The first set of benchmarks consist of syntheti-
cally generated graphs, varying in size and graph density. The second set of benchmarks
consist of real warehouse graphs, where we consider variations in the number of tasks
and robots. The synthesized benchmarks have graphs with fewer vertices. On the other
hand these benchmarks are grid-based in their construction, and in some cases are denser
than the real warehouse graphs. Consequently, the differences in the two sets of bench-
marks serve to highlight different performance features for a range of graph types and
problem sizes.

For the real warehouse graphs we also consider a number of further variations to
the problem instances. Firstly, we compare the performance when the size of each robot
is treated as a single point versus when the robots are assigned non-point diameters
of one and two meters. Importantly, depending on the graph vertex density, allowing
for larger robots can result in an increase in the number of vertex conflict constraints.
Secondly, we also consider how the addition of application specific constraints, in this
case pallet replacement time constraints, affect solver performance. The pallet replacement
constraints provide a mechanism to ensure good-enough plans without having to consider
makespan minimization; which is computationally more expensive, and, as we shall see,
ultimately impractical.

All benchmarks ran on a Linux computer with an Intel(R) Xeon(R) CPU E3-1260L
v5 @ 2.90 GHz and 32 GB of RAM. Runs were given a memory limit of 30GB of RAM.
For the experiments to find a single solution a time limit of 1800 s (30 min) was imposed.
For the optimization runs with makespan minimization a longer time limit of 7200 s (2 h)
was allowed. clingo[DL] was run in single-threaded mode, which ensures deterministic
behavior and makes the experimental results repeatable. Finally, while we experimented
with different solver configurations, clingo[DL]’s default tweety configuration provided good
overall performance. In order to keep the presentation of the results manageable we only
show the results for this default configuration.

5.1. Benchmarks

As mentioned earlier we consider two sets of benchmark problems to understand the
performance limits of the different encodings and variants.

5.1.1. Crafted Benchmark

We generated a set of 50 problem instances of varying sizes and graph density. Graphs
were generated from a number of grid configurations ranging in size from 20× 4 to 40× 20.
For each size of grid the graphs were generated by varying the density of the vertices over
the grid points and the connectedness between adjacent vertices. Each graph was also
assigned a task execution graph consisting of between 2 and 20 robots and between 3 and
15 “jobs”. Note, we loosely use the term “job” here to describe two pairs of dependent

Algorithms 2023, 16, 216 45 of 62

tasks; so a single job consists of 4 distinct tasks. Each pair of tasks consists of a pickup
and a putdown task; and the putdown of the second task pair has a wait dependency on
the pickup of the first task pair. This corresponds to the industry scenario of a full pallet
pickup-putdown from a loading bay to a storage location, as well as the corresponding
pickup-putdown of a replacement empty pallet from the empty pallet storage to the newly
vacated loading bay.

Figure 5 shows some example instances for a range of graph sizes. Note, the visualiza-
tions of benchmark graphs in Figures 5 and 6 were generated using Clingraph [14], https:
//github.com/potassco/clingraph (accessed on 1 February 2023). The robots, pallet load-
ing bays, and empty pallet storage locations were all placed on the south-most vertices,
while the storage locations were placed on the north-most vertices. This ensured that each
problem instance required routing over a substantial area of the graph.

 jb2 jb1 jb3

jb2

 jb1 jb3

 1 2

20 x 4 grid

jb3

jb6 jb2

jb1 jb4 jb5

jb5

jb6

jb3

jb4

jb1

jb2

6

3

8

1

2

4

7

5

20 x 10 grid

jb1

jb1

jb6

jb3 jb6

jb2

jb2

jb5

jb5

jb3

jb4

jb4

6

5

7

3 8

4 2

1

40 x 8 grid
jb10 jb7

jb10

jb8

jb14 jb2 jb8

jb13 jb4 jb7

jb11

jb11

jb6 jb14 jb9

jb6

jb5

jb5

jb13

 jb1

jb4

jb2

jb3

jb12

jb12 jb3

jb15

jb9

jb15

jb1

19

3

11

16 17

1

6

12

2

5

15 10

20

9 8

13 4

7

14

18

40 x 20 grid

Figure 5. Example synthesized warehouse graphs. Circular green vertices indicate robot home
locations. Square red vertices indicate full pallet pickup locations with a dotted blue arrow pointing
to the corresponding storage location. Octagonal red vertices indicate empty pallet pickup locations
with a dotted red arrow pointing to the delivery location for the corresponding empty pallet.

5.1.2. Industry Benchmark

The industry benchmark consist of six distinct graphs handcrafted by domain experts
at Dorabot, a provider of robotic and smart warehouse solutions. The graphs range in
shape and size: 31 m × 39 m (map0), 55 m × 80 m (map1), 105 m × 67 m (map2), 28 m ×
19 m (map3), 28 m × 26 m (map4), and 430 m × 85 m (map5). The graphs were provided
in the OpenStreetMap (OSM) format, https://wiki.openstreetmap.org/wiki/OSM_XML
(accessed on 1 February 2022), which we converted to our ASP graph fact format by
converting the OSM edges to weighted edge/3 facts while assuming a constant velocity
of 1 m/s. For example, an OSM edge that is 1.5 m in length is converted to an edge/3
fact with a weight of 1.5 s (which we represent as 1500 ms to remove the need for floating
point numbers).

For each graph the allowable loading bay, storage, empty pallet, and robot home
vertices were indicated with OSM attributes. In order to support more robots, we added
some graph variants that increased the number of robots by turning some unused storage
vertices into robot home locations. The maximum allowable robot home vertices for each
graph ranged from 2 to 20 robots. For each map-robot configuration we then generated
instances (5 instances each) with differing number of jobs from 5 to 40 depending on the
capacity of the graph. As previously described, each job consists of two pairs of dependant
tasks that constitute a full pallet delivery and its corresponding replacement empty pallet

https://github.com/potassco/clingraph
https://github.com/potassco/clingraph
https://wiki.openstreetmap.org/wiki/OSM_XML

Algorithms 2023, 16, 216 46 of 62

delivery. The maximum job capacity for each graph varied, with one graph only supporting
15 jobs (60 distinct tasks), some supporting 20 jobs (80 distinct tasks), others supporting
30 jobs (120 distinct tasks), and finally two supporting 40 jobs (160 distinct tasks). Overall
this produced 215 distinct problems instances. See Figure 6 for an example instance from
each of the warehouse graphs.

 jb5

jb4

jb1

jb2

jb1

jb3

jb5

jb2

r1

jb3

r2

jb4

r3

31m × 39m (map0)

r1

 jb4

 jb1

 jb3

jb5

jb4

jb3

jb1

r2

r3

 jb2

jb2

 jb5

55m × 80m (map1)

r1

r2

r3

r4

r5

jb4

jb3

jb2

jb5

jb5

jb1

jb2

 jb3 jb4 jb1r7 r6r11r10r9 r8

105m × 67m (map2)

 r4

 r6

r1

r2

r3

r5

 jb3 jb5 jb8jb1

jb1

 jb2

jb2

 jb6

jb6

jb9 jb7

jb9

jb3 jb4

jb4

jb10

jb7

 jb10 jb5

 jb8

28m × 19m (map3)

jb2

r1

jb3

jb1

jb4

jb4

 jb5

jb2

jb3

 jb5

jb1

r2

28m × 26m (map4)

jb15

jb15

 jb3

jb3

 jb14

jb5 jb9

jb2

jb9

jb2

jb7

jb5 jb14

jb8

jb8

jb7

jb1 jb10

 jb6

jb6

jb1 jb12 jb13 jb11
jb10

jb4

jb12

jb13

jb4jb11

 r1 r2

r3
r4

r5 r6 r7

r8

r9 r10 r11
r12r13 r14 r15

r16

r17
r18

r19
r20

430m × 85m (map5)

Figure 6. Example instances for the real-world warehouse graph. Circular green vertices indicate
robot home locations. Square red vertices indicate full pallet pickup locations with a dotted blue
arrow pointing to the corresponding storage location. Octagonal red vertices indicate empty pallet
pickup locations with a dotted red arrow pointing to the delivery location for the corresponding
empty pallet.

Algorithms 2023, 16, 216 47 of 62

Note, that at the maximum number of task and robots some of the generated problem
instances are potentially larger than what might be required in a real-world setting. How-
ever, our intention in generating this wide range of problem instances, from those with a
relative few number of tasks to those with a large number of tasks, has been to explore the
performance limits of our encodings.

5.2. Encodings Variants

In this sub-section we outline the different encoding variants used for the experiments.
While some variants apply to both the step-based and path-based encodings, the majority
of variants rely on pre-computed shortest path information and therefore only apply to the
path-based encoding. Finally, we also consider the application specific variant of adding
pallet replacement time constraints, which we also only apply to the path-based encoding
for solving the industry benchmarks.

5.2.1. Basic and Task Acyclicity Variants

For the step-based and path-based encodings we tested the basic encodings as well as
the variants with added task acyclicity checking. To be clear, all variants produce correct
solutions but the basic variants have no enhancements to improve performance.

Both the step-based and path-based encodings support the addition of task sequence
acyclicity checking, using the #edge directive, shown in Listing 4. Additionally, we also
added the acyclicity check of Listing 5 to enforce task wait dependencies. As outlined in
Section 4.2 the task acyclicity check can also be encoded in pure ASP using a reachability
encoding (Listing 3). However, in all our experiments the reachability version for detecting
task acyclicity under-performed the #edge variant, so we do not report on these results
here. In our results tables we use the abbreviation TSKACYC(W) to indicate the use of task
acycyclicity checking with wait dependencies.

5.2.2. Shortest-Path Enhancements

As the path-based encoding treats the notion of a path as a primitive, this enables many
performance enhancements based on using pre-calculated shortest path information (see
Section 4.5). For each problem instance, the shortest path information was pre-calculated
using the FloydWarshal algorithm [15]. For a fast Python implementation of FloydWarshal
see https://gist.github.com/mosco/11178777 (accessed on 1 February 2022). Note, here
we calculated the shortest path information separately for each problem instance. However,
in a production environment this information would typically to be calculated only once
for each warehouse graph, and then filtered based on the particular tasks that make up the
problem instance.

Lower-Bound Propagation

The first use of the shortest-path information that we evaluated was for propagating
path length lower-bounds (Listing 17). We use the abbreviation LB to indicate the use of
lower-bound propagation in a configuration. Because lower-bound propagation showed
only positive performance results we used it as the basis for all subsequent configurations.

Corridor Restrictions

To foreshadow the presentation of results, the path-based encoding can ground many
more problem instances that are simply beyond the reach of the step-based encoding.
Nevertheless grounding was still problematic for the path-based encoding when the paths
were unconstrained. In order to reduce the grounding we restricted the allowable moves
of the robots to a corridor constructed around the shortest-path information, as shown in
Listings 19 and 20. We considered both the strict and non-strict corridor definitions, where
the non-strict version simply drops the N’ <= N restriction to the rules in Listing 19. For the
strict corridor definition we use the abbreviation CORR(S) and for the non-strict version
we use the abbreviation CORR(NS). We consider both versions because there are some few

https://gist.github.com/mosco/11178777

Algorithms 2023, 16, 216 48 of 62

cases where the strict definition makes the problem harder to solve without additional
performance enhancements.

Domain Heuristics for Moves

Unarguably, the most important performance enhancement we consider is the addition
of the domain heuristics for selecting moves. The main move heuristic we consider is the
negative heuristic of preferring to set moves that are not on a shortest path to false. This is
encoded in the rule at Line 7 of Listing 18. We use the abbreviation MVH to indicate the
use of this heuristic.

While the negative move heuristic always improved solver performance, we also
considered the case where this heuristic is supplemented with the additional heuristic of
weakly preferring moves that are on a shortest path. This weak preference heuristic is
encoded in the rules at Lines 1 and 4 of Listing 18, and we use the abbreviation MVH(P) to
indicate its use.

5.2.3. Move Routing Acyclicity Checking

As discussed in Section 4.4.4 the time-based path acyclicity checking of the base routing
rules (Listing 11) can be supplemented by the addition of explicit acyclicity checking of
the moves along a path. We considered both the pure ASP encoding using reachability
(Listing 12) and using the edge/3 encoding (Listing 13). For the pure ASP reachability
encoding we use the abbreviation MVR and for the edge/3 based encoding we use the
abbreviation MVA. We report on the performance of these two additional move acyclicity
checkers separately as well as working together.

5.2.4. Pallet Replacement Time Bound

Finally, we report on the use of the pallet replacement time bound as a mechanism
for providing a quality guarantee that can be computed quickly while providing a good-
enough solution. Because determining an appropriate pallet replacement time bound
is specific to a specific warehouse and problem configuration we do not perform these
experiments on the synthetically generated graphs of the crafted benchmark, and only
perform these experiments for the warehouse graphs of the industry benchmark. For most
of the warehouse graphs we considered a pallet replacement time bound of 300 s and
400 s, however for the largest warehouse (map5) we used a bound of 800 s because some
instances were simply not satisfiable given the lower bounds.

5.2.5. A Note on Step Encoding Horizons

The step-based encoding requires a horizon value that fixes the maximum length of
any robot walk. A balance needs to be found between a horizon that is large enough to
admit solutions and a horizon that is not so large that the problem instance fails to ground.

Since the size of the ground instance is directly correlated with the horizon, and we
conjectured that grounding would be a major hurdle for the step-based encoding, ideally
we would want to use the smallest horizon possible for each problem instance. However,
determining this value for each problem instance would have been impractical, potentially
needing to run each problem instance 100 s or 1000 s of times with varying horizon values
to find this minimum value.

As a compromise we used the results generated by the solution of the path-based
encoding. While the path-based encoding does not require a walk horizon, a horizon value
can be calculated from each solution, using the translation described in Section 4.4.7. To
approximate the minimum horizon we used the horizon value calculated when minimizing
the makespan for the path-based encoding (with a 2 h time limit).

Note, there are two caveats to this approach. Firstly, most problem instances timed
out after 2 h so the makespans found were not necessarily minimal. Secondly, the horizon
value calculated from a minimal makespan solution does not guarantee that the horizon
itself will be minimal. A solution with a minimal makespan solves the problem in the

Algorithms 2023, 16, 216 49 of 62

shortest amount of time, but this does not guarantee that the maximum number of steps
required for all robots is also minimal. Nevertheless the two are loosely correlated so such
a solution will provide a horizon that is close to the minimal.

Unfortunately, as we shall see in the next section (Section 5.3), despite our best efforts
most problem instances simply failed to ground. While it is conceivable that there could
be some cases where our approximation of the horizon was not good enough, however,
considering that even for the basic path-based encoding there where 55 instances that failed
to ground, finding a better horizon for just a few more instances of the step-based encoding
would always be of limited use. Some form of restriction to reduce the grounding, such as
the move corridors used in the path-based encoding, would still be required. Importantly,
such corridor restrictions are difficult to define for the step-based encoding because there is
no primitive path concept on which to anchor such a definition.

5.3. Results

We now report on our experimental results. To establish the base-line and to highlight
the dramatic improvements of the path-based encoding with performance enhancements,
we first compare the step-based encoding with both the basic and most performant path-
based encodings. Here we only looked at the basic problem of finding a single solution to
see which encoding variant could find a solution within the 30 min time limit.

Having established a base-line with the step-based encoding, we next focus entirely
on the path-based encoding highlighting features of the different encoding variants. This
identifies the most performant path-based encoding variant, PATH + LB + CORR(S) +
TSKACYC(W) + MVA + MVR + MVH, which we use for the remaining experiments. To
better understand the limits of the path-based encoding on the industry benchmark we
separate the instances by the graph and number of jobs. Then we look at the impact of
the performance of solving on the size of the robot, comparing a point sized robot against
one meter and two meter diameter robots. Finally, we consider solution quality. Here we
consider the addition of the pallet replacement time constraints and compare the solving
time and resulting makespan metric against solving to find the minimal makespan.

5.3.1. From Step Encoding to Best Path-Base Encoding Variant

Table 4 compares the step-based encoding, with and without task acyclicity checking,
against a selection of path-based encoding variants. For the path-based encoding we
highlight the basic variant, a variant with a corridor restriction, and finally, a variant with
the most performant enhancements. These results serve to highlight the full range of
behaviors for the different encodings and their variants.

Firstly, we can see that while the step-based encoding can solve some of the crafted
problem instances it failed on all of the industrial problem instances. For all of the industry
benchmark, and most of the crafted benchmark instances, clingo[DL] simply ran out of
memory and failed to ground the problem.

Note, as we used the #edge-based task acyclicity checking for the high-performant
path-based encoding, and because it was the only performance enhancement that we
consider for the step-based encoding, we therefore also compare this variant of the step-
based encoding with the basic variant. However, as we can see in Table 4 there is no benefit
of adding task acyclicity checking for the step-based encoding.

Besides the fact that the step-based encoding failed to ground most problem instances,
there are two points to highlight. Firstly, while the basic path-based encoding was able
to ground many more instances than the step-based encoding, nevertheless it still failed
to ground a significant number of the industrial problems. However, when we added a
corridor restriction it was able to ground all of the problem instances. Furthermore, with
the corridor restriction, and lower-bound propagation, it also reduced the number of time
outs and allowed many more additional problem instances to be solved. The final point
to highlight is to do with the performance of the best variant of the path-based encoding,
PATH + LB + CORR(S) + TSKACYC(W) + MVA + MVR + MVH. Not only did it ground all

Algorithms 2023, 16, 216 50 of 62

problem instances, but it was also able to solve most of them; in some cases in a matter of
seconds and in other cases within a few minutes.

Table 4. Comparison of the step encoding and path encodings, from basic to most performant
variants. Note, means and geometric means of runtimes apply to grounded instances only.

Configuration Benchmark
SAT/ Time Mem Runtime

UNSAT/ Out Out Mean/Geo.Mean
UNKNWN (Excl. Mem Out)

STEP BASIC CRAFTED 10/2/38 4 34 43.46/472.92
INDUSTRY 0/0/215 0 215 -/-
TOTAL 10/2/253 4 249 43.46/472.92

STEP TSKACYC(W) CRAFTED 10/2/38 4 34 45.36/474.61
INDUSTRY 0/0/215 0 215 -/-
TOTAL 10/2/253 4 249 45.36/474.61

PATH BASIC CRAFTED 35/2/13 13 0 20.48/527.56
INDUSTRY 0/0/215 169 46 1800.00/1800.00
TOTAL 35/2/228 182 46 647.81/1509.49

PATH + LB + CORR(NS) CRAFTED 37/2/11 11 0 6.88/400.84
INDUSTRY 100/0/115 115 0 338.08/1069.35
TOTAL 137/2/126 126 0 162.12/943.22

PATH + LB + CORR(S) CRAFTED 48/2/0 0 0 1.07/5.13
+ TSKACYC(W) INDUSTRY 209/0/6 6 0 22.41/124.47
+ MVA + MVR + MVH TOTAL 257/2/6 6 0 12.63/101.95

Note, the mean and geometric means for runtimes apply only to the grounded problem
instances. Consequently, the reason that the runtimes for the basic path-based encoding
are higher than the basic step-based encoding is simply that the step-based encoding was
not able to ground the hard problem instances. The basic path-based encoding grounded a
majority of these instances, even though it subsequently failed to solve them within the
time limit.

5.3.2. Comparison of Path-Based Encoding Variants

Table 5 compares variants of the path-based encoding with a view to identifying the
variant with the best overall performance. We only consider variants with some form of
move corridor restriction, since Table 4 shows that variants without a move corridor had
many problem instances that failed to ground. As these configurations were able to ground
all problem instances, therefore, on top of the runtime results, we only report the number
of problem instances that were solved versus the number that timed out.

Table 5. Comparison of path encoding variants with/without basic move heuristic and differing
in move corridor types and task/move acyclicity checks. Note, all problem instances grounded
successfully so we only report on whether the problem was solvable or whether it timed out.

Configuration Benchmark Solved Time Runtime
Out Mean/Geo.Mean

PATH + LB + CORR(NS) CRAFTED 39 11 6.88/400.84
INDUSTRY 100 115 338.08/1069.35
TOTAL 139 126 162.12/943.22

PATH + LB + CORR(S) CRAFTED 43 7 3.20/265.02
INDUSTRY 138 77 79.12/704.28
TOTAL 181 84 43.20/621.40

PATH + LB + CORR(NS) CRAFTED 50 0 1.37/5.34
+ MVH INDUSTRY 209 6 32.43/171.51

TOTAL 259 6 17.86/140.16

Algorithms 2023, 16, 216 51 of 62

Table 5. Cont.

Configuration Benchmark Solved Time Runtime
Out Mean/Geo.Mean

PATH + LB + CORR(S) CRAFTED 49 1 1.21/39.59
+ MVH INDUSTRY 207 8 24.79/148.78

TOTAL 256 9 14.03/128.18

PATH + LB + CORR(NS) CRAFTED 50 0 1.30/13.94
+ MVH + TSKACYC(W) INDUSTRY 210 5 30.67/154.98

TOTAL 260 5 16.90/128.37

PATH + LB + CORR(S) CRAFTED 49 1 1.16/38.85
+ MVH + TSKACYC(W) INDUSTRY 210 5 22.05/116.99

TOTAL 259 6 12.65/102.25

PATH + LB + CORR(S) CRAFTED 49 1 1.17/38.75
+ MVH + TSKACYC(W) INDUSTRY 210 5 21.58/114.00
+ MVA TOTAL 259 6 12.44/99.80

PATH + LB + CORR(S) CRAFTED 50 0 1.10/26.06
+ MVH + TSKACYC(W) INDUSTRY 210 5 22.50/128.37
+ MVR TOTAL 260 5 12.74/109.07

PATH + LB + CORR(NS) CRAFTED 50 0 1.40/6.40
+ MVH + TSKACYC(W) INDUSTRY 210 5 30.93/141.50
+ MVA + MVR TOTAL 260 5 17.25/116.01

PATH + LB + CORR(S) CRAFTED 50 0 1.07/5.13
+ MVH + TSKACYC(W) INDUSTRY 209 6 22.41/124.47
+ MVA + MVR TOTAL 259 6 12.63/101.95

There are a number of interesting behaviors that can be observed from these results.
Firstly, the most dramatic improvement in performance comes from the use of the basic
move heuristic, where the move heuristic sets move/3 facts that are not on the shortest
path to false. Without the move heuristic the number of timeouts was 126 and 84 for the
non-strict and strict move corridors, respectively. This dropped dramatically to 6 and 9,
respectively, with the addition of the move heuristic.

The second interesting behavior comes from the difference between the strict and
non-strict move corridors. Using the strict corridor over the non-strict corridor typically
improves solver performance for most cases, but results in timeouts for a few cases. Adding
task acyclicity detection and move acyclicity detection with a reachability encoding was
able to solve more cases. Interestingly for the crafted benchmark adding the move acyclicity
reachability encoding allowed the one problematic instance to be solved. This is a particu-
larly interesting case, because, unlike the industry benchmark problems which are large in
size, the crafted problems are relatively small. Consequently it is useful to examine this
problematic instance (Figure 7) in more detail to understand the difference between the
strict and non-strict corridor versions.

jb6

jb4

jb6

jb2

jb4

jb3

jb2 jb5

jb1

jb3

jb5

jb1

7

8

6

2

5

3

1

4

Figure 7. The crafted problem instance that is difficult for the strict move corridor definition.

The densely connected grid structure, meant that the strict corridor definition, which
requires that corridor vertices be no further from the goal vertex than a shortest path vertex,
failed to define an adequate corridor beyond the shortest paths themselves. Furthermore,

Algorithms 2023, 16, 216 52 of 62

there was significant clustering for the task source vertices and task destination vertices.
The combination of this clustering and the pure shortest path corridors resulted in the
search for a conflict free route for each task’s path being dominated by the potential vertex
conflicts. Without the explicit task and move acyclicity checking, this resulted in a heavy
burden on the difference logic solver to resolve the very fine grained timing required to
avoid conflicts.

In contrast the non-strict corridor allows all vertices connected to a shortest path vertex
to be part of the corridor, so in this case a wider corridor could be generated. This in turn
provides greater flexibility in the allowable moves of the robots in order to avoid conflicts,
and less heavy lifting is required by the difference logic solver.

The final observation from Table 5 is that there is no clear winner between the top path-
based encoding variants with #edge-based task ayclicity checking and both #edge-based
and reachability based move acyclicity detection. Using a non-strict corridor definition
does allow more instances to be solved, in this case a single instance, but increases the
solver runtime. The best choice of performance enhancements for a given scenario will
therefore depend on the specific warehouse graph. For the sake of this paper, we have
chosen the strict corridor version as our candidate winner. It had marginally, but also
consistently, better runtimes than the best non-strict corridor based encoding for both the
crafted and industry benchmarks.

5.3.3. Comparison of Move Heuristics

As discussed in Section “Domain Heuristics for Moves” we consider two variants of
the move heuristic. The first move heuristic we consider preferences setting moves that are
not on the shortest-path to false. However, this heuristic does not specify any additional
heuristic behavior for moves that are on the shortest path. The second heuristic extends the
first heuristic by enforcing a weak preference for setting moves on the shortest-path to true.
Results of these two variants for a number of configurations are shown in Table 6.

Table 6. Comparison of path encoding configurations for two variants of the move heuristics.

Configuration Benchmark Solved Time Runtime
Out Mean/Geo.Mean

PATH + LB + CORR(S) CRAFTED 49 1 1.21/39.59
+ MVH INDUSTRY 207 8 24.79/148.78

TOTAL 256 9 14.03/128.18

PATH + LB + CORR(S) CRAFTED 49 1 1.19/39.45
+ MVH(P) INDUSTRY 208 7 24.40/154.62

TOTAL 257 8 13.81/132.89

PATH + LB + CORR(S) CRAFTED 49 1 1.16/38.85
+ MVH + TSKACYC(W) INDUSTRY 210 5 22.05/116.99

TOTAL 259 6 12.65/102.25

PATH + LB + CORR(S) CRAFTED 49 1 1.13/38.62
+ MVH(P) + TSKACYC(W) INDUSTRY 210 5 22.62/128.49

TOTAL 259 6 12.86/111.54

PATH + LB + CORR(S) CRAFTED 49 1 1.17/38.75
+ MVH + TSKACYC(W) INDUSTRY 210 5 21.58/114.00
+ MVA TOTAL 259 6 12.44/99.80

PATH + LB + CORR(S) CRAFTED 49 1 1.13/38.23
+ MVH(P) + TSKACYC(W) INDUSTRY 210 5 21.97/122.41
+ MVA TOTAL 259 6 12.56/106.52

For each configuration there was only margin differences in performance between
the MVH and MVH(P) variants. However, in all cases the simpler MVH variant per-
formed slightly better. Consequently, for all remaining experiments we only report on the
MVH results.

Algorithms 2023, 16, 216 53 of 62

5.3.4. Runtime with Increasing Number of Tasks

Table 7 highlights the scalability of the encoding as the number of tasks increases for
each graph. As expected the runtime increases as the number of tasks increase. For each
of the six graphs, solving for 10 jobs (i.e., 40 tasks) was relatively easy, with a maximum
geometric mean of 32.35 s for the largest map (map5). For context the geometric mean of
the makespans in this case was 8079 s; so it took approximately 30 s to generate a plan for
more than 2 h of robot operations. In this case the warehouse is very large (480 m × 85 m)
so the plans typically span relatively long distances for the robots to complete their tasks.

Table 7. Comparison of runtimes and makespans by map and and number of tasks for the high
performance path encoding variant PATH + LB + CORR(S) + TSKACYC(W) + MVA + MVR + MVH.

Map Num Num Jobs Time Makespan Runtime
Robots (4 Tasks Out (seconds) Mean/Geo.Meanper Job) Mean/Geo.Mean

map0 4 5 0 352/363 1.20/1.20
10 0 842/855 6.00/6.05
15 0 1308/1311 16.24/16.42

map1 3 5 0 1184/1198 2.33/2.33
10 0 2554/2581 10.38/10.42
15 0 3331/3343 28.32/28.45
20 0 4805/4830 71.32/72.55
30 0 6779/6848 308.39/327.74
40 0 8790/8805 797.99/852.29

map2 11 5 0 1038/1052 6.52/6.53
10 0 2450/2463 25.63/26.03
15 0 3870/3873 84.45/85.26
20 0 4808/4814 232.87/242.04
30 1 7322/7343 973.34/1059.79
40 5 -/- 1800.00/1800.00

map3 7 5 0 301/308 2.12/2.13
10 0 573/580 7.90/7.92
15 0 1045/1050 23.44/23.61
20 0 1361/1371 51.77/52.46
30 0 2321/2342 222.00/227.06

map4 2 5 0 341/354 1.11/1.12
10 0 656/662 5.16/5.18
15 0 926/934 15.68/15.78
20 0 1228/1236 39.64/40.35

map5 20 5 0 3520/3561 11.25/11.26
10 0 8008/8079 30.52/32.35
15 0 13,467/13,517 121.64/138.78
20 0 18,469/18,537 617.26/734.76

If we hypothetically consider a maximum runtime of 60–90 s as an expectation for
operating in a semi-realtime environment, then for most of the graphs the solver could
comfortably plan for up for 20 jobs. The two exceptions to this being the two biggest
graphs, map2 and map5. map5 could only solve for 10 jobs before breaching this limit,
while map2 could solve for 15 jobs, the latter generating solutions with a 3873 s makespan
(approx. 1 h). Unfortunately, for map2 the solver could not solve any instances containing
40 jobs within the 30 minute time limit.

5.3.5. Runtime with Differing Robot Diameters

Table 8 shows the effect of the diameter of the robot on solver performance. In
Listing 14, Lines 5 to 13, the encoding generates conflict constraints for pairs of paths and
vertices that can potentially interfere with each other. This is one of the main sources

Algorithms 2023, 16, 216 54 of 62

of combinatorics for the encoding. Consequently, as the size of each robot increases, the
number of vertex conflicts will also increase, and will result in an increase in the number
of conflict constraints. This in turn increases in the size of the ground program. One
would also expect an increase in the solver runtime as these additional constraints need to
be resolved.

Table 8. Comparison of solving for a point-sized robot vs. a circular one and two meter diameter
robot, for the high performance path encoding variant PATH + LB + CORR(S) + TSKACYC(W) +
MVA + MVR + MVH.

Map Robot Diamater Time Mem Runtime

Out Out Mean/Geo.Mean
(Excl. Mem Out)

map0 POINT SIZE 0 0 4.89/7.89
(15 instances) ONE METER 0 0 24.46/52.26

TWO METER 0 0 64.53/141.11

map1 POINT SIZE 0 0 47.87/215.63
(30 instances) ONE METER 0 5 117.45/333.81

TWO METER 0 10 166.70/289.34

map2 POINT SIZE 6 0 133.88/536.63
(30 instances) ONE METER 6 0 133.51/535.30

TWO METER 4 10 302.63/576.09

map3 POINT SIZE 0 0 21.42/62.63
(25 instances) ONE METER 2 0 101.35/405.24

TWO METER 4 5 264.22/591.31

map4 POINT SIZE 0 0 7.72/15.61
(20 instances) ONE METER 0 0 78.78/249.63

TWO METER 0 6 125.92/239.33

map5 POINT SIZE 0 0 71.26/229.29
(20 instances) ONE METER 0 0 65.40/180.52

TWO METER 5 0 314.24/684.35

Because of the variation in the vertex densities of the different maps it is worth looking
at these result separately for the individual maps. Table 8 shows that as the diameter of
the robots increase we start to see problems as more and more instances fail to ground.
Furthermore, as expected, the solver runtimes increase with timeouts becoming more
frequent. Note, in Table 8 the runtime results only apply to problem instances that were
able to be grounded. So the reason that the runtimes may not increase as much as expected
can simply be a result of the harder problems failing to ground and therefore not being
included in the aggregate solver runtime values.

These results highlight the importance of choosing the correct level of granularity for
a warehouse graph. A balance needs to be found between the need to plan high-level robot
tasks and plan relatively low-level movements that might be better handled by a low-level
robot motion controller. For example, while map3 (Figure 6) is relatively small in size it has
a very dense set of vertices. While this allows for fine-grained path planning for the robots,
it also results in large clusters of conflicting vertices that need to be resolved.

Finally, while reducing the density of vertices in the graph is one possibility for dealing
with an increase in conflicting vertices, a second option would be to separate the conflict
handling from the path routing. In particular, it would be possible to group vertices
into larger blocks where conflict handling is performed on the blocks rather than on the
individual vertices. We discuss this possibility further in Section 7.

5.3.6. Solution Quality with Pallet Replacement Time Bounds

To this point in the experimental results we have been primarily interested in solver
runtimes; identifying the path-based encoding variant PATH + LB + CORR(S) + TSKA-

Algorithms 2023, 16, 216 55 of 62

CYC(W) + MVA + MVR + MVH that solves the greatest number of benchmark instances
in the shortest amount of time. In this section, we use this encoding variant but turn to
examining the question of solution quality.

Table 9 compares the makespan produced for computing a single solution with, and
without, a given pallet replacement time constraint, and compares this to searching for the
minimal makespan. The pallet replacement time is an application domain criteria and is
highly sensitive to the specific warehouse graph. Therefore it only makes sense to evaluate
this criteria with respect to the industry benchmarks consisting of real-world warehouse
graphs, rather than the crafted benchmarks consisting of synthesized graphs. Note also,
from Table 4, we know that the industry benchmarks consist of only satisfiable problem
instances, which of course is a necessity for measuring solution quality.

Table 9. Comparison of makespan by map and decision problem for the high performance path
encoding variant PATH + LB + CORR(S) + TSKACYC(W) + MVA + MVR + MVH.

Map Decision Time Makespan Runtime
Problem Out (seconds) Mean/Geo.MeanMean/Geo.Mean

map0 Minimal 30 345/422 7200.00/7200.00
(30 instances) Pallet Rpl. 200 s 0 653/734 5.60/10.15

First Soln 0 771/896 4.82/7.88

map1 Minimal 50 1891/2734 7200.00/7200.00
(50 instances) Pallet Rpl. 400 s 5 2443/2884 49.60/325.60

First Soln 0 3241/3919 28.84/136.39

map2 Minimal 50 1660/2627 7200.00/7200.00
(50 instances) Pallet Rpl. 200 s 6 2060/2333 87.70/354.24

First Soln 6 3007/3545 60.85/278.82

map3 Minimal 45 413/575 7200.00/7200.00
(45 instances) Pallet Rpl. 200 s 0 665/789 20.38/106.45

First Soln 0 810/1009 15.51/40.97

map4 Minimal 20 412/481 7200.00/7200.00
(20 instances) Pallet Rpl. 200 s 0 611/695 12.69/40.73

First Soln 0 716/804 7.83/15.73

map5 Minimal 20 4916/6876 7200.00/7200.00
(20 instances) Pallet Rpl. 800 s 8 6206/6958 446.19/1078.63

First Soln 0 9064/10,747 64.60/180.25

There are a number of points to highlight here. Firstly, searching for a provably optimal
solution is unrealistic in a practical setting. In our evaluation, searching for the optimal
solution failed to prove optimality, within the 7200 s (2 h) timeout, for every problem
instance. In contrast finding a single solution took between a few seconds and a few
minutes. Note, for clarity it is worth pointing out that finding an optimal solution and
proving that that solution is indeed optimal are separate things. Once a solution is found
the solver still needs to ensure that there are no better solutions, so it is possible to find an
optimal solution within the time limit but not prove its optimality.

It should also be pointed out that when returning the first solution, the makespan was
typically around twice that of the makespan found for the optimality search, which in itself
could be considered a good enough solution under some application settings. A primary
reason for this relatively good solution quality is to do with the move heuristic and the
difference logic solver. The move heuristic ensures that the paths are close to the shortest
possible, while the algorithm for the difference logic solver returns the lowest possible
integer value for each variable, which effectively minimizes any time delays on a given
path. This means that any robot’s moves along a path will always be close to optimal. So it
is only within the allocation and ordering of tasks, and not the moves themselves, that the
main improvements in makespan can be made.

Algorithms 2023, 16, 216 56 of 62

When the pallet replacement time constraints were added, the solving time for finding
the first solution increased by up to a factor of 3. So for example, with map0 the geometric
mean of the runtimes increased from 7.88 to 10.15 s, while for map4 it increased from 15.73
to 40.73 s. It should also be observed that enforcing the pallet replacement time bound also
improved the makespan. The makespan often improved significantly, roughly halving the
difference between the first and best solutions.

Finally, whether or not the pallet replacement time metric provides good-enough
solutions will depend on the requirements of the given warehouse application. There are
also further possibilities that could be explored in the future to determine a good-enough
criteria for a given application. For example, when optimization is enabled, the solver
returns the solutions as they are found. This allows the solver to be used in an anytime
setting, returning the best solution up to some fixed timeout. So it could be interesting to
compare the quality of the solutions for makespan minimimization as they are produced
over time. It could be the case that the search gets close to an optimal solution quite quickly,
even if it is ultimately not practical to wait for the provably optimal solution to be found.

6. Related Work

The warehouse delivery problem considered in this paper can be viewed as a special-
ized instance of the multi-agent path finding (MAPF) problem that has attracted a lot of
attention in recent years due to its widespread applicability. Introductory materials on
MAPF can be found in the papers [12,16] and several tutorials at AAAI, IJCAI, or ICAPS.
Challenges and opportunities in MAPF and its extensions have been described by [17].
The present paper considers weighted graphs and robots that have a size that can place
complex constraints on possible movements, e.g., a robot can block more than one vertex at
a time and travel time between vertices is different.

As MAPF is essentially a planning problem, search-based approaches to solving MAPF
are frequently used. Indeed, a plethora of MAPF solvers have been proposed [18–27]. They
can be classified into different groups based on their search techniques such as conflict-
based search (CBS) or prioritized planning (PBS)) or the solution quality such as optimal,
bounded-optimal, or suboptimal solutions of MAPF.

Conflict-Based Search (CBS) is proposed in [21]. In this approach, the high-level
search identifies constraints between plans of agents generated by a low-level A∗ search.
These conflicts are then resolved using the low-level searches for new plans for a subset of
conflicted agents. CBSH2-RTC [19] is the state-of-the-art version of CBS and is well known
for its performance compared to other optimal MAPF solvers.

Enhanced CBS (EBCS) [28] relaxes the optimal criteria in CBS and returns suboptimal
solutions whose costs are bounded by some user-defined factor by replacing the optimal
search in different levels of CBS with focal search that uses an admissible heuristic for
bounding the solution cost at the higher-level and another heuristic in guiding the search.
EECBS [27] is an improved version of EBCS by replacing the high-level search in ECBS
with Explicit Estimation Search [29] and uses online learning to guide the search.

PBS [30] is a suboptimal MAPF solver that uses the idea of prioritized planning [31].
In this approach, agents are assigned different priorities and those with lower priority need
to avoid having any conflict with higher-priority agents. PBS adopts a lazy exploration
method that allows it to considers a total priority orderings. PBS is not complete solver.

In recent years, several extensions of the MAPF problem have been introduced. These
extensions focus on the assumptions made in the classical MAPF. For example, combined
Target Assignment and Path Finding (TAPF), where agents are partitioned into teams and each
team is given a set of targets that they need to reach, is considered in [32]. Deadlines of tasks
are addressed in [33]. MAPF problem with delay probabilities have been described by [34].
Lifelong MAPF is considered in [35]. The paper [36] investigates MAPF with continuous
time, which removes the assumption that transitions between nodes are uniform. A SAT-
based solver described in the paper [37] can also deal with this extension. SMT-based MAPF
solver for MAPF with continuous time and geometric agents is described in [38]. Issue

Algorithms 2023, 16, 216 57 of 62

of unexpected delays of agents is considered in [39]. This paper introduces the notion of
k-robust MAPF plan, which can still be successfully executed when at most k delays happen
and investigate pk-robots MAPF plan, a probabilistic extension of k-robust MAPF plan.
A somewhat more realistic version of MAPF, which allows agents to exchange packages
and transfer payload, is considered by [40]. Discussion of the problems where robots have
kinematic constraints can be found in the paper [41].

As we have mentioned above, the present paper addresses two assumptions in the
classical MAPF problem, the disregard for robot size and the equal-distance between
neighbors. Among these extensions, our work has some similarity to the multi- agent pickup
and delivery (MAPD) problem, introduced in [35], in which one agent might have to complete
many pickup-then-delivery tasks in an online setting. The warehouse delivery problem
considered in this paper requires each robot completes at most one pickup-then-delivery
task. Its natural extension will be the MAPD problem and we leave it for the future.

The present paper provides an ASP-based approach to solving an extension of MAPF
problem and therefore is strongly related to ASP-based encodings proposed in [42–45].
Among these works, reference [42] considers the classical MAPF, while reference [45] solves
the sum-of-cost variant of MAPF, and [43,44] tackles a more generalized MAPF problem.
None of these works, however, consider robots with sizes that can block multiple vertices
or graphs with non-uniform distances between vertices as in this paper.

The paper [43] discussed the MAPF problem in the context of a warehouse with
picking stations, shelfs, orders, and quantities. It introduced the asprilo framework for
experimental studies of MAPF problems, and thus, presented several scenarios and step-
based encodings. These encodings, however, cannot deal with weighted graph (grid) or
robots of different sizes. Experimental evaluation of various encodings was presented
but for rather short makespan (≤40) that is well below the need of problems considered in
this paper.

The paper [45] exploited a step-based encoding of MAPF and described different
improvements to the generic encoding that helps reducing the size of the grounding of a
problem. It also utilized parallel plans and used clingo with multiple threads to compute
solutions. Similar to [43], the experiments shown in this paper implies a much smaller size
of maps that does not meet the need of our applications.

The paper [44] employed an approach to solving TAPF problems. Focusing on the
warehouse problem, the approach consists of three steps. First, it creates a simplified graph
by combining nodes together. Second, it solves the problem on the simplified map. Third,
it uses the solution in the second step as the skeleton to compute the final solution. This
allows for the system to scale up quite well, being able to solve problems with more than
1,5 millions nodes. In our view, the path-based encoding of the present paper is similar in
the spirit of this approach as it attempts to first creates multiple segments of the solution
and then combining them to get the final solution.

It is worth noting that all of the aforementioned approaches to solving MAPF are
centralized. The paper [46] proposed a distributed ASP-based MAPF solver. More scalable
and efficient distributed MAPF-solvers can be found in [47–49].

7. Conclusions

A warehouse delivery problem consists of a set of robots that undertake delivery
jobs within a warehouse as a response to events. A solution to this problem consists of a
collision-free schedule of robot movements and actions that ensures that all delivery jobs
are satisfied and each robot is returned to its docking station. The formulation and solution
to this problem originates from an industrial collaboration between the two companies
Dorabot, China, and Potassco Solutions, Germany. We report on the principles underlying
formalizing and solving industrial-scale warehouse delivery problems, and in particular, we
show how this problem can be efficiently solved through the application of ASP extended
with difference constraints. ASP is used for conflict detection, routing and serialization,
while difference constraints provide the scheduling. This separation of scheduling from

Algorithms 2023, 16, 216 58 of 62

the core ASP encoding is crucial to the efficient handling of fine-grained, sub-second,
robot movements.

The industrial scale of the warehouse delivery problem required taking a novel ap-
proach that diverges from related research in the field, such as solving the MAPF problem.
Specifically, warehouses can be large and irregular shaped, making them unsuited to
the purely grid-based layout that is commonly used in the literature. Instead, we model
the warehouse as a weighted directed graph, with vertices representing the meaningful
locations and navigation waypoints along the graph, while the weighted edges capture
the minimum travel times between vertices. This allows us to adjust the granularity of
modeling based on the usage of the different areas within the warehouse. For example,
areas such as storage bins may require very fine-grained sub-second robot movements,
while other areas, such as corridors, may only require coarse grained movements. By
varying the density of the vertices in the graph we were able to capture these differing
navigational requirements. Finally, to ensure collision-free navigation we allow vertices to
be grouped into conflict zones, which can be fine-tuned based on the density requirements
of the graph.

Developing an efficient ASP-based solution to the warehouse delivery problem in-
volved a multi-staged process. We developed two base encodings, a step-based encoding
and a path-based encoding, that both rely on the scheduling of robot movements using
difference constraints. While the step-based encoding is able to capture the generality
of the formalization, it fails to scale to the level required for solving the problem in an
industrial setting. In contrast, the path-based encoding gains efficiency by restricting robot
motion to sequences of acyclic paths. We showed that despite lacking the generality of
the step-based encoding, the restriction of the path-based encoding was not a limitation in
practice. Furthermore, the encoding of paths provides a number of important advantages.
Firstly, it obviates the need to specify a horizon value for each problem instance, a problem
shared by many ASP-based planning approaches. Secondly, the introduction of paths
as a primitive to the encoding opens a number of avenues for developing performance
enhancing variants and restrictions.

We evaluated the path-based encoding and its variants on a range of problem instances,
from small semi-randomly generated warehouses through to large warehouses that were
hand-designed by domain experts at Dorabot. While all variants were able to provide
some performance benefits, we can identify two key improvements, one for memory usage
and the other for timing, that were crucial to the success of our approach. Both these
improvements were built on the use of pre-computed shortest-path information, which is
rendered practical as a result of the static nature of warehouse graphs.

Firstly, the restriction of robot motion to corridors, defined around the shortest-path
information, is a necessary step to allowing the memory usage of clingo[DL]’s grounder to
scale to robots operating over large graphs with many tasks. Secondly, the use of domain
heuristics for robot routing is crucial to reaching the near real-time performance required
by the application setting.

Beyond the task of simply finding a solution to a given problem instance, we also
evaluated the performance of our approach with respect to solution quality. We can
highlight three important findings from this evaluation. Firstly, we showed that traditional
makespan minimization is not a realistic expectation for large scale warehouse delivery
problems. Despite allowing for an extended timeout there was not a single case where
the solver was able to provably find the solution with the minimal makespan for any
of our industry benchmark problems. Secondly, the first solutions found by the basic
search were already of a high quality, typically less than twice the makespan of the best
solution found. This is not particularly surprising since the combination of the shortest-path
domain heuristic and the algorithm for the difference constraints solver ensured both near
optimal routes and minimal timing for individual tasks. Consequently, improvements in
solution quality can, largely, only come from changes to the robot-task assignment and

Algorithms 2023, 16, 216 59 of 62

sequencing. Finally, we showed that significant improvements in solution quality can often
come relatively cheaply through the use of application specific constraints.

While our evaluation shows the applicability of an ASP-based approach to warehouse
delivery problems, there are still a number of important avenues for further work.

Firstly, our developments and evaluation did not cover all possible variants that could
be applied to the path-based encoding. In particular, different corridor definitions could be
developed, and a variety of domain heuristics could be considered for both the routing as
well as task assignment and sequencing.

Secondly, the evaluation does highlight some areas for greater study and refinement.
One aspect in particular can be seen in the breakdown comparison for the individual maps;
both as the number of tasks increase but also as the size of the robots increase. Adding more
tasks increases the runtime and number of timeouts. More pronounced, for the comparison
of different robot diameters, increasing the size of the robots resulted in an increase in the
number of memory failures and timeouts. The reason for this is that increasing the size of
the robot means that the size of the clusters of conflicting vertices also needs to increase.
However, increasing the cluster of conflicting vertices in turn leads to a combinatorial
increase in the number of conflict constraints that need to be resolved. This both increases
the problem size and the time needed to resolve these new constraints.

Different mechanisms that can reduce the number of conflict constraints should be ex-
plored. One option would be to introduce additional primitives that group vertices together
for the purpose of conflict resolution. This would separate the level of fine-grained detail
needed to perform robot routing from the detail needed for conflict resolution. In principle,
this could potentially increase the minimum makespan achievable for any problem instance,
for example, robots could not follow each other quite so closely as would be possible other-
wise. Nevertheless, such a trade-off may be acceptable if it leads to a significant increase in
solver performance. This trade-off would need to be evaluated experimentally.

Finally, industrial settings also require dynamic responses to events as new items
are delivered to the warehouse. Because such events are unpredictable a working system
requires re-planning, with new delivery tasks added to any waiting and currently executing
tasks. While our encoding does allow for re-planning with partial assignments, nevertheless
our evaluation infrastructure would need to be extended to cover this scenario. However,
this is largely an engineering challenge, important from a practical perspective, but not
something that requires the development of new ASP techniques and encodings.

Author Contributions: Conceptualization, methodology and data curation, D.R., T.S., P.W., K.C. and
S.L.; software and analysis, D.R., T.S. and P.W.; investigation and resources, D.R., T.S., P.W., K.C., S.L.
and T.C.S.; writing, D.R., T.S., P.W. and T.C.S.; review and editing, D.R., T.S. and P.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by Dorabot, China, and Potassco Solutions, Germany, as well as
DFG grants SCHA 550/11 and 15, Germany.

Data Availability Statement: The ASP encodings and benchmark data used to generate the results is
available at https://github.com/krr-up/robot-scheduling-encodings/releases/tag/v1.0 (accessed
on 1 February 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lifschitz, V. Answer set planning. In Proceedings of the International Conference on Logic Programming (ICLP’99), Las Cruses,

NM, USA, 29 November–4 December 1999; de Schreye, D., Ed.; MIT Press: Cambridge, MA, USA, 1999; pp. 23–37.
2. Abels, D.; Jordi, J.; Ostrowski, M.; Schaub, T.; Toletti, A.; Wanko, P. Train scheduling with hybrid ASP. In Logic Programming

and Nonmonotonic Reasoning (LPNMR’19); Lecture Notes in Artificial Intelligence; Balduccini, M., Lierler, Y., Woltran, S., Eds.;
Springer: Berlin/Heidelberg, Germany, 2019; Volume 11481, pp. 3–17.

3. Abels, D.; Jordi, J.; Ostrowski, M.; Schaub, T.; Toletti, A.; Wanko, P. Train scheduling with hybrid ASP. Theory Pract. Log. Program.
2021, 21, 317–347. [CrossRef]

https://github.com/krr-up/robot-scheduling-encodings/releases/tag/v1.0
http://doi.org/10.1017/S1471068420000046

Algorithms 2023, 16, 216 60 of 62

4. Barták, R.; Svancara, J.; Vlk, M. A Scheduling-Based Approach to Multi-Agent Path Finding with Weighted and Capacitated
Arcs. In Proceedings of the Seventeenth International Conference on Autonomous Agents and Multiagent Systems (AAMAS’18),
Stockholm, Sweden, 10–15 July 2018; André, E., Koenig, S., Dastani, M., Sukthankar, G., Eds.; IFAAMAS: Richland, SC, USA,
2018; pp. 748–756.

5. Gelfond, M.; Lifschitz, V. Logic Programs with Classical Negation. In Proceedings of the Seventh International Conference on
Logic Programming (ICLP’90), Jerusalem, Israel, 18–20 June 1990; Warren, D., Szeredi, P., Eds.; MIT Press: Cambridge, MA, USA,
1990; pp. 579–597.

6. Simons, P.; Niemelä, I.; Soininen, T. Extending and implementing the stable model semantics. Artif. Intell. 2002, 138, 181–234.
[CrossRef]

7. Gebser, M.; Kaminski, R.; Kaufmann, B.; Lindauer, M.; Ostrowski, M.; Romero, J.; Schaub, T.; Thiele, S. Potassco User Guide,
2nd ed.; University of Potsdam: Potsdam, Germany, 2015. Available online: https://potassco.sourceforge.net/ (accessed on 1
February 2023).

8. Gebser, M.; Kaufmann, B.; Otero, R.; Romero, J.; Schaub, T.; Wanko, P. Domain-specific Heuristics in Answer Set Programming.
In Proceedings of the Twenty-Seventh Conference on Artificial Intelligence, Bellevue, WA, USA, 14–18 July 2013; AAAI Press:
Cambridge, MA, USA, 2013; pp. 350–356.

9. Bomanson, J.; Gebser, M.; Janhunen, T.; Kaufmann, B.; Schaub, T. Answer Set Programming Modulo Acyclicity. Fundam.
Informaticae 2016, 147, 63–91. [CrossRef]

10. Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.; Schaub, T.; Wanko, P. Theory Solving Made Easy with Clingo 5.
In Technical Communications of the Thirty-second International Conference on Logic Programming (ICLP’16); OpenAccess Series in
Informatics (OASIcs); Carro, M., King, A., Eds.; Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik: Wadern, Germany, 2016;
Volume 52, pp. 2:1–2:15.

11. Janhunen, T.; Kaminski, R.; Ostrowski, M.; Schaub, T.; Schellhorn, S.; Wanko, P. Clingo goes Linear Constraints over Reals and
Integers. Theory Pract. Log. Program. 2017, 17, 872–888. [CrossRef]

12. Stern, R.; Sturtevant, N.; Felner, A.; Koenig, S.; Ma, H.; Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T.; et al. Multi-Agent
Pathfinding: Definitions, Variants, and Benchmarks. In Proceedings of the Twelfth International Symposium on Combinatorial
Search (SOCS’19), Napa, CA, USA, 16–17 July 2019; Surynek, P., Yeoh, W., Eds.; AAAI Press: Cambridge, MA, USA, 2019;
pp. 151–159.

13. Lifschitz, V. Answer set programming and plan generation. Artif. Intell. 2002, 138, 39–54. [CrossRef]
14. Hahn, S.; Sabuncu, O.; Schaub, T.; Stolzmann, T. clingraph: ASP-based Visualization. In Logic Programming and Nonmono-

tonic Reasoning (LPNMR’22); Lecture Notes in Artificial Intelligence; Gottlob, G., Inclezan, D., Maratea, M., Eds.; Springer:
Berlin/Heidelberg, Germany, 2022; Volume 13416, pp. 401–414.

15. Floyd, R.W. Algorithm 97: Shortest Path. Commun. ACM 1962, 5, 345. [CrossRef]
16. Barták, R.; Svancara, J.; Skopková, V.; Nohejl, D.; Krasicenko, I. Multi-agent path finding on real robots. AI Mag. 2019, 32, 175–189.

[CrossRef]
17. Salzman, O.; Stern, R. Research Challenges and Opportunities in Multi-Agent Path Finding and Multi-Agent Pickup and

Delivery Problems. In Proceedings of the Nineteenth International Conference on Autonomous Agents and Multiagent Systems
(AAMAS’20), Auckland, New Zealand, 9–13 May 2020; El Fallah Seghrouchni, A., Sukthankar, G., An, B., Yorke-Smith, N., Eds.;
IFAAMAS: Richland, SC, USA, 2020; pp. 1711–1715.

18. Goldenberg, M.; Felner, A.; Stern, R.; Sharon, G.; Sturtevant, N.; Holte, R.; Schaeffer, J. Enhanced Partial Expansion A*. J. Artif.
Intell. Res. 2014, 50, 141–187. [CrossRef]

19. Li, J.; Harabor, D.; Stuckey, P.J.; Ma, H.; Gange, G.; Koenig, S. Pairwise symmetry reasoning for multi-agent path finding search.
Artif. Intell. 2021, 301, 103574. [CrossRef]

20. Wagner, G.; Choset, H. Subdimensional expansion for multirobot path planning. Artif. Intell. 2015, 219, 1–24. [CrossRef]
21. Sharon, G.; Stern, R.; Felner, A.; Sturtevant, N.R. Conflict-based search for optimal multi-agent pathfinding. Artif. Intell. 2015,

219, 40–66. [CrossRef]
22. Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin, D.; Betzalel, O.; Shimony, S. ICBS: Improved Conflict-Based Search Algorithm

for Multi-Agent Pathfinding. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence
(IJCAI’15), Buenos Aires, Argentina, 25–31 July 2015; Yang, Q., Wooldridge, M., Eds.; AAAI Press: Washington, DC, USA, 2015;
pp. 740–746.

23. Cohen, L.; Uras, T.; Kumar, T.; Xu, H.; Ayanian, N.; Koenig, S. Improved Solvers for Bounded-Suboptimal Multi-Agent Path
Finding. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI’16), New York, NY,
USA, 9–15 July 2016; Kambhampati, R., Ed.; IJCAI/AAAI Press: Washington, DC, USA, 2016; pp. 3067–3074.

24. Wang, K.; Botea, A. MAPP a Scalable Multi-Agent Path Planning Algorithm with Tractability and Completeness Guarantees. J.
Artif. Intell. Res. 2011, 42, 55–90.

25. Luna, R.; Bekris, K. Push and Swap: Fast Cooperative Path-Finding with Completeness Guarantees. In Proceedings of the
Twenty-Second International Joint Conference on Artificial Intelligence (IJCAI’11), Barcelona, Spain, 16–22 July 2011; Walsh, T.,
Ed.; IJCAI/AAAI Press: Washington, DC, USA, 2011; pp. 294–300.

26. de Wilde, B.; ter Mors, A.; Witteveen, C. Push and Rotate: A Complete Multi-agent Pathfinding Algorithm. J. Artif. Intell. Res.
2014, 51, 443–492. [CrossRef]

http://dx.doi.org/10.1016/S0004-3702(02)00187-X
https://potassco.sourceforge.net/
http://dx.doi.org/10.3233/FI-2016-1398
http://dx.doi.org/10.1017/S1471068417000242
http://dx.doi.org/10.1016/S0004-3702(02)00186-8
http://dx.doi.org/10.1145/367766.368168
http://dx.doi.org/10.3233/AIC-190621
http://dx.doi.org/10.1613/jair.4171
http://dx.doi.org/10.1016/j.artint.2021.103574
http://dx.doi.org/10.1016/j.artint.2014.11.001
http://dx.doi.org/10.1016/j.artint.2014.11.006
http://dx.doi.org/10.1613/jair.4447

Algorithms 2023, 16, 216 61 of 62

27. Li, J.; Ruml, W.; Koenig, S. EECBS: A bounded-suboptimal search for multi-agent path finding. In Proceedings of the Thirty-
Fifth AAAI Conference on Artificial Intelligence, Virtual Event, 2–9 February 2021; AAAI Press: Washington, DC, USA, 2021;
pp. 12353–12362. [CrossRef]

28. Barer, M.; Sharon, G.; Stern, R.; Felner, A. Suboptimal variants of the conflict-based search algorithm for the multi-agent
pathfinding problem. In Proceedings of the Seventh Annual Symposium on Combinatorial Search, Prague, Czech Republic,
15–17 August 2014; AAAI Press: Washington, DC, USA, 2021.

29. Thayer, J.T.; Ruml, W. Bounded suboptimal search: A direct approach using inadmissible estimates. In Proceedings of the
Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona, Spain, 16–22 July; Walsh, T., Ed.; IJCAI/AAAI
Press: Washington, DC, USA, 2011; pp. 674–679.

30. Ma, H.; Harabor, D.; Stuckey, P.J.; Li, J.; Koenig, S. Searching with consistent prioritization for multi-agent path finding. In
Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019;
AAAI Press: Washington, DC, USA, 2019; pp. 7643–7650. [CrossRef]

31. Silver, D. Cooperative pathfinding. In Proceedings of the First Artificial Intelligence and Interactive Digital Entertainment
Conference, Marina Del Rey, CA, USA, 1–5 June 2005; AAAI Press: Washington, DC, USA, 2005; pp. 117–122.

32. Ma, H.; Koenig, S. Optimal Target Assignment and Path Finding for Teams of Agents. In Proceedings of the Fifteenth International
Conference on Autonomous Agents and Multiagent Systems (AAMAS’16), Singapore, 9–13 May 2016; Jonker, C., Marsella, S.,
Thangarajah, J., Tuyls, K., Eds.; ACM Press: New York, NY, USA, 2016; pp. 1144–1152.

33. Ma, H.; Wagner, G.; Felner, A.; Li, J.; Kumar, T.; Koenig, S. Multi-Agent Path Finding with Deadlines. In Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI’18), Stockholm, Sweden, 13–19 July 2018; Lang, J.,
Ed.; IJCAI: CA, USA, 2018; pp. 417–423.

34. Ma, H.; Kumar, T.; Koenig, S. Multi-Agent Path Finding with Delay Probabilities. In Proceedings of the Thirty-First National
Conference on Artificial Intelligence (AAAI’17), San Francisco, CA, USA, 4–9 February 2017; Satinder, P., Markovitch, S., Eds.;
AAAI Press: Washington, DC, USA, 2017; pp. 3605–3612.

35. Li, J.; Tinka, A.; Kiesel, S.; Durham, J.W.; Kumar, T.S.; Koenig, S. Lifelong multi-agent path finding in large-scale warehouses.
In Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence, Virtual Event, 2–9 February 2021; AAAI Press:
Washington, DC, USA, 2021; pp. 11272–11281.

36. Andreychuk, A.; Yakovlev, K.; Atzmon, D.; Stern, R. Multi-Agent Pathfinding with Continuous Time. In Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI’19), Macao, China, 10–16 August 2019; Kraus, S.,
Ed.; IJCAI: CA, USA, 2019; pp. 39–45.

37. Barták, R.; Svancara, J. On SAT-Based Approaches for Multi-Agent Path Finding with the Sum-of-Costs Objective. In Proceedings
of the Twelfth International Symposium on Combinatorial Search (SOCS’19), Napa, CA, USA, 16–17 July 2019; Surynek, P., Yeoh,
W., Eds.; AAAI Press: Cambridge, MA, USA, 2019; pp. 10–17.

38. Surynek, P. Multi-Agent Path Finding with Continuous Time and Geometric Agents Viewed through Satisfiability Modulo
Theories (SMT). In Proceedings of the Twelfth International Symposium on Combinatorial Search (SOCS’19), Napa, CA, USA,
16–17 July 2019; Surynek, P., Yeoh, W., Eds.; AAAI Press: Cambridge, MA, USA, 2019; pp. 200–201.

39. Atzmon, D.; Stern, R.; Felner, A.; Wagner, G.; Barták, R.; Zhou, N. Robust Multi-Agent Path Finding and Executing. J. Artif. Intell.
Res. 2020, 67, 549–579. [CrossRef]

40. Ma, H.; Tovey, C.; Sharon, G.; Kumar, T.; Koenig, S. Multi-Agent Path Finding with Payload Transfers and the Package-Exchange
Robot-Routing Problem. In Proceedings of the Thirtieth National Conference on Artificial Intelligence (AAAI’16), Phoenix, AZ,
USA, 12–17 February 2016; Schuurmans, D., Wellman, M., Eds.; AAAI Press: Washington, DC, USA, 2016; pp. 3166–3173.

41. Hönig, W.; Kumar, T.; Cohen, L.; Ma, H.; Xu, H.; Ayanian, N.; Koenig, S. Multi-Agent Path Finding with Kinematic Constraints.
In Proceedings of the Twenty-Sixth International Conference on Automated Planning and Scheduling (ICAPS’16), London, UK,
12–17 June 2016; Coles, A., Coles, A., Edelkamp, S., Magazzeni, D., Sanner, S., Eds.; AAAI Press: Washington, DC, USA, 2016, pp.
477–485.

42. Erdem, E.; Kisa, D.; Öztok, U.; Schüller, P. A General Formal Framework for Pathfinding Problems with Multiple Agents. In
Proceedings of the Twenty-Seventh Conference on Artificial Intelligence, Bellevue, WA, USA, 14–18 July 2013; AAAI Press:
Cambridge, MA, USA, 2013; pp. 290–296.

43. Gebser, M.; Obermeier, P.; Otto, T.; Schaub, T.; Sabuncu, O.; Nguyen, V.; Son, T. Experimenting with robotic intra-logistics
domains. Theory Pract. Log. Program. 2018, 18, 502–519. [CrossRef]

44. Nguyen, V.; Obermeier, P.; Son, T.; Schaub, T.; Yeoh, W. Generalized Target Assignment and Path Finding Using Answer Set
Programming. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI’17), Melbourne,
Australia, 19–25 August 2017; Sierra, C., Ed.; IJCAI: CA, USA, 2017; pp. 1216–1223.

45. Gómez, R.; Hernández, C.; Baier, J. A Compact Answer Set Programming Encoding of Multi-Agent Pathfinding. IEEE Access
2021, 9, 26886–26901. [CrossRef]

46. Pianpak, P.; Son, T.; Toups, Z.; Yeoh, W. A distributed solver for multi-agent path finding problems. In Proceedings of the
First International Conference on Distributed Artificial Intelligence (DAI’19), Beijing, China, 13–15 October 2019; ACM Press:
New York, NY, USA, 2019; pp. 2:1–2:7.

http://dx.doi.org/10.1609/aaai.v35i14.17466
http://dx.doi.org/10.1609/aaai.v33i01.33017643
http://dx.doi.org/10.1613/jair.1.11734
http://dx.doi.org/10.1017/S1471068418000200
http://dx.doi.org/10.1109/ACCESS.2021.3053547

Algorithms 2023, 16, 216 62 of 62

47. Leet, C.; Li, J.; Koenig, S. Shard Systems: Scalable, Robust and Persistent Multi-Agent Path Finding with Performance Guarantees.
In Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, Virtual Event, 22 February–1 March 2022; AAAI
Press: Washington, DC, USA, 2022; pp. 9386–9395.

48. Pianpak, P.; Son, T.C. DMAPF: A Decentralized and Distributed Solver for Multi-Agent Path Finding Problem with Obstacles.
Electron. Proc. Theor. Comput. Sci. (EPTCS) 2021, 345, 99–112. [CrossRef]

49. Pianpak, P.; Son, T.C. Improving Problem Decomposition and Regulation in Distributed Multi-Agent Path Finder (DMAPF).
In Proceedings of the PRIMA 2022: Principles and Practice of Multi-Agent Systems, Valencia, Spain, 16–18 November 2022;
Springer-Verlag: Berlin/Heidelberg, Germany, 2023; pp. 156–172. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.4204/EPTCS.345.24
http://dx.doi.org/10.1007/978-3-031-21203-1_10

	Introduction
	Answer Set Programming
	Warehouse Delivery Problem
	Formalization
	Problem Formulation
	Solution Formulation

	Solution Quality

	Solving the Warehouse Delivery Problem
	Fact Format
	Task Assignment and Sequencing
	Step-Based Encoding
	Walk Assignment
	Conflict Detection and Resolution
	Projection
	Scheduling
	Stable Models of the Step-Based Encoding and Solutions to the Warehouse Delivery Problem

	Path-Based Encoding
	Advantages and Limitations
	Outline
	Path Creation
	Routing
	Conflict Detection and Resolution
	Scheduling
	Stable Models of the Path-Based and Step-Based Encodings

	Performance Enhancement via Shortest Path Information
	Lower-Bound Propagation
	Domain-Specific Heuristics
	Corridor-Based Routing

	Encoding Solution Quality

	Experiments
	Benchmarks
	Crafted Benchmark
	Industry Benchmark

	Encodings Variants
	Basic and Task Acyclicity Variants
	Shortest-Path Enhancements
	Move Routing Acyclicity Checking
	Pallet Replacement Time Bound
	A Note on Step Encoding Horizons

	Results
	From Step Encoding to Best Path-Base Encoding Variant
	Comparison of Path-Based Encoding Variants
	Comparison of Move Heuristics
	Runtime with Increasing Number of Tasks
	Runtime with Differing Robot Diameters
	Solution Quality with Pallet Replacement Time Bounds

	Related Work
	Conclusions
	References

