
Noname manuscript No.
(will be inserted by the editor)

Knowledge-Based Multi-Criteria Optimization to Support
Indoor Positioning

Alessandra Mileo · Torsten Schaub · Davide

Merico · Roberto Bisiani

Received: date / Accepted: date

Abstract Indoor position estimation constitutes a central task in home-based as-

sisted living environments. Such environments often rely on a heterogeneous collection

of low-cost sensors whose diversity and lack of precision has to be compensated by

advanced techniques for localization and tracking. Although there are well established

quantitative methods in robotics and neighboring fields for addressing these problems,

they lack advanced knowledge representation and reasoning capacities. Such capabili-

ties are not only useful in dealing with heterogeneous and incomplete information but

moreover they allow for a better inclusion of semantic information and more general

homecare and patient-related knowledge. We address this problem and investigate how

state-of-the-art localization and tracking methods can be combined with answer set

programming, as a popular knowledge representation and reasoning formalism. We re-

A. Mileo
Digital Enterprise Research Institute
National University of Ireland, Galway
Galway
Ireland
E-mail: alessandra.mileo@deri.org

T. Schaub
Institut für Informatik, Universität Potsdam
August-Bebel-Str. 89
D–14439 Potsdam
E-mail: torsten@cs.uni-potsdam.de

D. Merico
NOMADIS Research Lab, Dept. of Informatics, Systems and Communication
University of Milan-Bicocca
viale Sarca 336/14
I–20126 Milan
E-mail: davide.merico@disco.unimib.it

R. Bisiani
NOMADIS Research Lab, Dept. of Informatics, Systems and Communication
University of Milan-Bicocca
viale Sarca 336/14
I–20126 Milan
E-mail: roberto.bisiani@disco.unimib.it

2

port upon a case-study and provide a first experimental evaluation of knowledge-based

position estimation both in a simulated as well as in a real setting.

Keywords Knowledge Representation · Answer Set Programming · Wireless Sensor

Networks · Localization · Tracking

1 Introduction and Motivation

The continuous progress of computing and communication technology is leading to-

wards the realization of living environments pervaded by a high number of invisible

devices affecting and improving all aspects of our lives. A crucial issue in these scenarios

is to know the physical location of users, since it represents the basis for context-aware

and user-centered systems. The problem of indoor position estimation includes two

aspects: localization and tracking.

Localization (also referred to as position estimation) is commonly addressed by

acquiring the distance from three or more points of known positions and then combining

them applying specific methods such as (multi)teration in order to deduce the location

of unknown object. The distance can be computed by measuring variations of signal

intensity or by timing the latency from transmission to reception.

The accuracy of positioning systems can significantly vary depending on the used

technologies and user requirements. It is common for systems based on Wi-Fi (or

similar) technologies to give results within an accuracy of a few meters in 2D. On the

other hand, more accurate systems exist providing up to a few centimeters in 3D (e.g.

exploiting ultra wide frequency bands). Given the low cost of infrastructure and their

flexibility, localization systems based on Wireless Sensor Networks (WSN) are a good

starting point for tackling the localization problem in home environments. However,

when data is noisy and incomplete due to delays, breakdowns, errors in transmission,

and alike, their lack of precision in position estimation needs to be supported and

compensated.

Tracking is concerned with how the position of moving objects changes in time; it

takes into account knowledge about previous positions and a model of movement to

estimate the expected (more plausible) position.

Localization and Tracking represent fundamental issues for several WSN applica-

tions and therefore they are much worked-on problems. References [20,12,22] give a

good introduction to these issues.

Different estimation methods can be used to tackle the problem of node localization,

such as Maximum Likelihood, Maximum A Posteriori, Least Squares, Moving Average

filter, Kalman filter, and Particle filter [8,19,18]. Although many of these algorithms

give good results in terms of accuracy and precision, only Particle Filters (PFs) can

be easily extended to deal with the problem of target tracking [10]. Therefore, PFs are

the most popular and commonly used methods for tackling the problem of tracking.

For this reason, we consider in our preliminary experimental evaluation results of PFs

as representative of a wider class of similar but less effective techniques.

Particle Filters discretize the probability distribution function of the position of the

mobile object. Unlike Kalman Filters, they do not approximate the probabilities using

only Gaussian distributions, thus we have to impose less conditions to be able to apply

the algorithm. The possible positions of the mobile object are represented as a set of

particles, each of which has an associated weight. The distribution of these particles in

3

space gives the most likely positions. Probabilistic approaches to tracking such as PF

strongly depend on the specific sensors used and they are mainly based on quantitative

cost functions for computing weights. One of the main limitations of these methods is

the difficulty to identify within the same model the right global cost function combining

heterogeneous sensor data with other criteria like movement, speed, and alike. Another

aspect is that the introduction of new sensor information is not straightforward and

requires a lot of customization to properly extend the model.

In order to address these limitations, we propose an alternative and innovative

approach to support indoor localization and tracking. Our solution is based on An-

swer Set Programming (ASP), a declarative logic programming framework, combining

a compact, flexible, and expressive modeling language with high computational per-

formance. The knowledge representation and reasoning capacities of ASP provide us

with the following advantages:

– a knowledge-based level of multi-sensor fusion for position estimation,

– definition of qualitative criteria to combine sensor data and domain-related knowl-

edge for tracking (such as a motion model of the target), and

– easy customization and extensibility of existing solutions in a more flexible way

whenever new technology or new sensor-data become available.

The main advantage of using ASP is to deal with incomplete information, stemming

from faulty or diverging sensors, and thus to improve the scalability of the whole

system. ASP does not only deal with missing sensor data but it also allows us to

exploit semantic information for distinguishing the most plausible among varied sensor

data.

Our approach is based on a low-cost and energy-aware localization infrastructure.

The data collected by each specific type of sensor is processed by traditional algorithms

for feature extraction and aggregation. On top of the aggregation phase, a further level

of knowledge-based sensor fusion is in charge of combining heterogeneous sensor data

to associate it to specific properties or semantic information referred to as metrics in

Section 3: best proximity, best support, best move and best coherence.

In an very precise setting, the best (highest) proximity would be enough to identify

the location with reasonable precision. This is the case for Ultra Wide Band-based

systems [15,16]. In a low-cost and low-precision system as ours, we cannot rely only

on RSSI, but we need to use more data sources (i.e. more sensors) and additional

properties of these data in order to compensate for the noisiness of proximity sensors

and validate their coherence with the context when estimating the position.

The best support metric has to do with the fact that, ideally, the more sensor

data we have from a location, the highest the probability of the person being in that

location. This is not always true, but our multicriteria approach makes it possible to

reason about when and how we can rely on a property (or a combination of properties)

to validate a location.

The best move metric has been introduced to take into account the model the

movement of the object to be tracked, thus validating sensor data that best complies

with the motion model of the object. The inclusion of a motion model is traditionally

used in Particle Filter algorithms to better estimate the position of moving objects

[14], but it is encoded within the probabilistic model, while we suggest a more flexible

approach to take it into account. In our experiment, we are tracking humans, which

move across close locations. For this reason, we use the shortest distance between two

nearby locations to identify the best move. This simple motion model can be enriched by

4

considering speed and direction, enhancing even more the flexibility of the multicriteria

approach.

As for the best coherence metric, it measures how coherent a set of sensor data is

for a location, according to how many sensor data we expect to be associated with

that location. This percentage turns out to better characterize plausible locations if

compared to the simpler notion of ”best support”, because it takes into account the

impact of false positives.

The ASP based reasoning process follows the common generate and test methodol-

ogy in (i) generating the space of possible positions according to semantic data aggrega-

tion criteria and (ii) exploring the search space by applying efficient solving techniques

to compensate for the lack of information and to enforce constraint satisfaction and

optimization.

For validating our approach we collected a considerable amount of sensor data by

resorting to a simulation tool generating large sets of sensor data reflecting entire days

of a person’s household activities, matching real sensors installed in our lab. In the

evaluation of our approach, we also generated and collected data in a real setting and

compared results obtained on simulated data with the accuracy of our approach on

real sensor data.

The properties of the environment and the characteristics of sensor data are de-

scribed in Section 2, both considering the simulated setting and the real setting. Sec-

tion 3 formalizes the localization and tracking problem in terms of properties of loca-

tions, metrics, reward functions and optimization criteria used to estimate a position.

Section A introduces the ASP formalism and investigates our modeling and reason-

ing strategies, while results of our simulated and real experiments are presented in

Section 5. A short discussion follows in Section 6.

2 Sensor Data for Indoor Positioning

In order to position an object or a device in an environment, the basic step is to use

a reference point to determine the distance (or the angle) between the device and the

reference point itself. Supposing that both device and reference objects can transmit

radio signals, distances can be approximated by using the Receiver Signal Strength

Indicator (RSSI). RSSI is based on the degradation of radio signals while traveling in

space. The fact that no additional hardware is necessary to obtain RSSI leads to a very

broad usage of this indicator.

In addition to RSSI, we use Passive Infrared (PIR) and Range Finders (RF). PIR is

used to catch the movements of a person (or an object) that has a different temperature

with respect to the surroundings while RF uses sonar to provide the distance of an

object from the sensor.

We considered two different settings to collect sensor data and to test performance

and effectiveness of knowledge-based indoor positioning. In a preliminary setting, we

simulated the generation of sensor data, while in a further step we collected data of a

person moving through our lab in order to validate the accuracy of our approach on

real sensor data.

The remainder of this section describes both scenarios in terms of how the envi-

ronment is represented and how sensor data are produced in each setting.

5

2.1 Data Simulation

In order to generate simulated RSSI, RF, PIR, and environmental sensor data, we

implemented an agent-based data-generation tool using the Recursive Porous Agent

Simulation Toolkit (Repast Simphony or Repast for short)1.

Following a taxonomy of selected Agent-Based Modeling Tools [11], we chose to

design and implement our data generation tool using Repast because it turned out to

be the best combination of ease of model development and modeling power. Exploiting

the Repast features, we are able to efficiently generate large data sets simulating days

of the household activities of a person and corresponding sensor values.

We exploited the Repast simulator in order to generate data as close as possible

to that of a real scenario. We obtained a sensor model for every data source (RSSI,

PIR and Range finder) using real data and extended the simulator in order to generate

data according to the sensor model modified by a small gaussian white noise.

The simulation scenario is represented by a Repast model that describes three grid-

based projections and one network-based projection. The three N×M grid projections

are used to define (i) the floor plan (walls, rooms, and areas), (ii) the position of

localization sensors, and (iii) the position of environmental sensors together with how

they propagate to adjacent cells. The network-based projection defines two undirected

weighted graphs having FloorCell agents as nodes. The first graph is mainly used for

the movement of the Person agent computed using Dijkstra’s shortest path algorithm,

where weights are used to avoid movements across wall cells.

The second grid projection is mainly used during the RSSI-data generation to

verify if a direct line-of-sight between the person and the localization sensors exists.

This information is useful in order to better simulate the RSSI propagation model. For

this, the weights in the second grid projection are computed without considering walls.

The line-of-sight information is computed comparing the results of the shortest path

algorithm obtained using the two graphs. These results differ only if there is a wall

between the localization sensor and a person.

The simulation scenario is specified in an XML-based scenario-definition file2. This

scenario file is used to dynamically populate projections during the initialization phase

of the Repast simulator, and it defines the following aspects of the simulation context:

environment: according to what is specified in this file, a FloorCell agent can be

a wall, part of a room-area, or a passage (a cell connecting two areas of different

rooms);

localization sensors: in addition to the sensor position on the grid and its orien-

tation, the definition specifies the behavior of the passive-infrared and movement

sensors in terms of cells covered;

environmental sensors: during the data-generation phase, these sensors can read

the temperature, humidity and brightness values;

light and heat sources: these elements define the properties of the objects that are

used to manage and propagate the state of light and heat throughout the simulation

scenario using a controlled flooding algorithm [7,21]; the position and the initial

status of windows and light switches is also defined.

1 http://repast.sourceforge.net
2 Note that Repast can load the required initialization data in several ways (e.g. using agent

definitions directly stored in a relational database or in text files).

6

Fig. 1 Repast S Displays for Simulation

Floor Plan Sensor Plan

In addition, we provide an XML file containing a detailed list of actions we want

the agent Person to perform. The actual version of the simulation tool include three

types of elementary actions: going to a specific position in the grid, changing the state

of lights and opening/closing doors and windows.

The data-generation is driven by two different event schedulers that are used to: (i)

simulate the behaviour of the person and generate corresponding RSSI, PIR, and RF

sensor data, (ii) simulate light, temperature, and humidity evolution during the day.

At every simulation tick, the LocalizationSensor agents compute RSSI, PIR, and

RF considering the position of the agent Person in the floor plan. The measurement

computation takes into account the model of every sensor: the radio propagation model

for RSSI values and the presence of the person in a cell covered by the sensor for PIR

and RF. EnvironmentalSensor agents generate temperature, humidity and light mea-

surements periodically examining the state of the associated EnvironmentCell agent.

All measurements are stored in a relational database.

The DayManager and HeatManager agents are used to manage the evolution of

daylight and external temperature and humidity during the data-generation. Using the

schedule we mentioned before, they modify the state of LightSources and HeatSources

objects, which in turn modify the state of the associated LightCells and HeatCells

objects.

Figure 1 shows the Repast toolkit executing different projection displays: the left

side shows the main projection, walls (squares) and the person (dot); the right side

gives the projection of sensor data, showing the light sources (circles), environmental

sensors (crosses) and floor cells (squares).

In the first experimental evaluation, we did not consider environmental data, but

they can be easily introduced as additional sensor information to disambiguate unclear

locations through optimization criteria, as mentioned in Section 4.3.

7

Base
Node

...

B

Data-Gathering Node

Mobile Node
Zone 1

Zone N

Base
Node

A

Master/Base
 Node

Zone 2

Fig. 2 Hierarchical Network Organization: the Infrastructure nodes and the Mobile nodes

2.2 Real Data Gathering

In order to gather localization information for tracking mobile nodes (or tags) and ac-

quiring environmental data in the surrounding of the tags, we rely on a Data Gathering

System, called DiGS [9]. Each node in DiGS is part of a Wireless Sensor Network (WSN)

and constitutes a small hardware system consisting of a wireless microcontroller with

several kinds of sensors. The WSN used in DiGS is organized hierarchically. The en-

vironment, where the data gathering is performed, is divided into several zones (or

rooms) each containing a cluster of nodes.

As shown in Figure 2, every zone contains at least:

– a base node, in a fixed and known location, mostly used for network coordination

but also with its own sensing capabilities;

– several data-gathering nodes (also fixed) used for localization and for improving

the accuracy of the data gathering;

– zero to many mobile nodes (the “tags”);

One of the base nodes is connected to a host computer and is called Master Node

and behaves as a gateway towards the outside world. In this setting, base nodes manage

data routing towards the master node using common WSN routing algorithms [13]. For

large installation we considered the use of multi-gateway approaches. All the algorithms

used in the DiGS system have been implemented using the IEEE 802.15.4 protocol and

have been tested in a real setting with up to ten mobile nodes active in the same zone

at the same time.

Further details about the hardware and the software used for our experiments can

be found in [9].

The environment in which the target moves is a room in our lab; it is represented

as a N × M grid in which each cell is a square of 0.25 × 0.25 centimeters. There

are five sensors generating RSSI, PIR and RF in the room, placed as illustrated in

Figure 3. There are five sensors placed along the walls, gathering RSSI, PIR and RF.

The dimension of the room is 5 × 5 meters. In the real setting, RSSI is filtered using

8

Fig. 3 Map of the Nomadis Lab T036 used for Real Data Gathering

triangulation but no further probabilistic techniques are applied to aggregate data.

This should give us a better idea of the accuracy of the knowledge-based sensor fusion.

The PIR sensor has a typical rated detection distance of 5 m when the difference in

temperature between the person and the background is more than 4◦C. The detectable

movement speed ranges from 0.5 to 1.5 m/s. The horizontal detection range (in degrees)

is 100, whereas the vertical one is 82. This means that for each sensor device in the

room, we have that the PIR signal covers a horizontal area that is 100 degrees wide,

up to the opposite wall, and the RF signal covers all the cells along a straight line in

front of it, up to the opposite wall.

During data collection in the real setting, we took as ground-truth the position

computed by a Ubisense system3. The latter requires a long and detailed calibration

process but its average localization performance is very interesting: an accuracy of 25

cm in 3D is attained for the 95% of the measurements whereas an accuracy of 14 cm

is attained 50% of the times.

Details about how real instances have been created and analyzed are provided in

Section 5.2.

3 The Localization and Tracking Problem

In this section we provide a formal description of the problem at hand, namely local-

ization and tracking of a person moving in an indoor environment. In order to do that,

we first describe the localization scenario and then give a definition of the problem in

terms of how to select a location for a target at a given time. The description provided

in this section does not depend on the specific implementation but it is needed to better

understand the complexity of the problem at hand, as well as to present clear argu-

3 The Ubisense RTLS, http://www.ubisense.net/

9

ments in favour of the knowledge-based approach in terms of flexibility, easy modeling

and efficiency.

In our general formalization, we consider the environment as a discrete space repre-

sented by a grid of positions. Each possible position in our space can thus be represented

as a cell that is identified by coordinates 〈x, y〉 on the grid. A cell can be part of (i) an

area of a room (ii) a passage between two rooms or (iii) a wall.

To be more precise, we consider a set C of cells of form 〈x, y〉, where x, y are integers

over a finite domain. The set of cells contains distinguished subsets, identifying rooms

(Ri)i∈I , areas (Aj)j∈J , passages (Pk)k∈K , and walls W . Cells are grouped into rooms

and areas according to the following specification.

– rooms are disjoint set of cells, that is,

Ri ⊂ C for i ∈ I and Ri ∩Rj = ∅ for i 6= j ∈ I

– areas are disjoint set of cells, that is,

Aj ⊂ C for j ∈ J and Aj ∩Ak = ∅ for j 6= k ∈ J

– an area can be contained in one room only, that is,

Aj ⊂ Ri and Aj ⊂ Rk implies i = k for all j ∈ J, i, k ∈ I

– a room may contain multiple areas, that is,⋃
j∈J′ Aj ⊂ Ri for some J ′ ⊆ J and each i ∈ I

Note that there can be cells of a room that are in none of the areas of the room.

Cells that do not belong to any room and are adjacent to cells belonging to two

different rooms are referred to as passages.

– A set of cells P ⊂ C is a passage between two rooms R1 and R2, if we have for

all 〈x, y〉 ∈ P and i = 1, 2 that there is some 〈x + j, y + k〉 ∈ Ri such that

〈x1 + j′, y1 + k′〉 ∈ P for all j′ < j or k′ < k.

Finally, a cell c ∈ C can also be unreachable or invalid (e.g. cells identified as part

of a wall). We identify these cells as being part of a set W ⊂ C.

Sensors are placed in the environment so that they can detect proximity (RSSI),

movement (PIR), or distance (RF) in a subset of cells. Such cells are said to be covered

by the respective sensor (formally denoted by the static property coveredS(c) below).

As mentioned in the previous sections, dynamic sensor data that are used for po-

sitioning at a given time step t are attached to locations 〈x, y〉. There are three kinds

of dynamic sensor information we consider in our experiments:

– RSSI or proximity signals are processed so as to return a set of locations where

the mobile node is reached by the signal, associated to a likelihood, ranging from

1 to 100.

We use RSSI t to denote cells reached by the proximity signal with likelihood l at

time t, that is,

RSSI t ⊆ {(c, l, t) : c ∈ C, 1 ≤ l ≤ 100} .

10

– PIR or movement detectors are associated to a set of locations where the movement

has been detected.

We use PIRt to denote cells where a movement signal has been detected at time t,

that is,

PIRt ⊆ {(c, t) : c ∈ C} .

– RF or range finders are associated to a set of locations that are at a given distance

from the RF sensor that produces the data.

We use RF t to denote cells reached by the range finder signal at time t, that is,

RF t ⊆ {(c, t) : c ∈ C} .

The problem of localization and tracking is concerned with the combination of all

sensor information in a time interval, and with their interpretation for selecting the

best candidate position at each time step. In order to characterize a subset of cells

that are plausible positions at a given time t, we define c as a candidate position at

time t if c ∈ RSSI t ∪ PIRt ∪ RF t. Such cells are often referred to as locations. For

identifying the positions representing best locations according to the available sensor

information, we identify four properties (referred to as metrics) of locations, and we

use these properties to characterize sets of (valid) locations as follows:

Best Proximity metric identifies location(s) with the highest closeness:

Pt = {c : (c, l, t) ∈ RSSI t such that l = max{l′ : (c′, l′, t) ∈ RSSI t, c′ 6∈W } }

Best Support metric identifies location(s) with the highest support:

St = {c : (c, t) ∈ RF t ∪ PIRt such that

supportt(c) = max{supportt(c′) : (c′, t) ∈ RF t ∪ PIRt, c′ 6∈W } }

where supportt(c) = |(PIRt ∪ RF t) ∩ {(c, t)}| for c ∈ C.

Best Move metric identifies plausible location(s) at time t that are closest to a can-

didate location at time t− 1:

M0 = c0

Mt = {c : (c, t) ∈ RSSI t ∪ RF t ∪ PIRt such that

dist(c,Mt−1) = min{dist(c′,Mt−1) : (c′, t) ∈ RSSI t ∪ RF t ∪ PIRt, c′ 6∈W }}

where c0 is the initial position and for C′ ⊆ C

dist(〈x1, y1〉, C′) = min{|x1 − x2|+ |y1 − y2| : 〈x2, y2〉 ∈ C′} .

Best Coherence metric identifies location(s) with the highest coherence:

Ct = {c : (c, t) ∈ RSSI t ∪ RF t ∪ PIRt such that

coherencet(c) = max{coherencet(c′) : (c′, t) ∈ RSSI t ∪ RF t ∪ PIRt, c′ 6∈W } }

where for c ∈ C

11

coherencet(c) =

|(PIRt∪RF t)∩{(c,t)}|∗100
|covereds(c),s∈{PIR,RF}| if {covereds(c), s ∈ {PIR,RF}} 6= ∅

0 if {covereds(c), s ∈ {PIR,RF}} = ∅,
PIRt ∪ RF t 6= ∅

n ∈ N if {covereds(c), s ∈ {PIR,RF}} = ∅,
PIRt ∪ RF t = ∅

and n is a natural number expressing a more sensor-dependent notion of coherence

referred to the reliability of our RSSI signals only. In our convention, it expresses

the percentage of an RSSI value to indicate a correct location only on the basis of

the signal strength.

We recall that covereds(c) is the property of c being covered by sensor s.

Example 1 We illustrate how sets of locations satisfying the above properties are iden-

tified in a concrete example.

Let C = {〈x, y〉, x = 1..10, y = 1..10} be the set of cells in our domain, and W = ∅
be the set of invalid cells. At a given time t, the following sensor data are collected

about RSSI signals:

RSSI t = {(〈2, 3〉, 10, t), (〈1, 4〉, 20, t), ((〈2, 4〉, 50, t), (〈2, 5〉, 5, t))}

Based on these information, best proximity is represented by Pt = {〈2, 4〉}
Let’s now assume we collected additional sensor data at time t, namely:

RF t = {(〈2, 4〉, t), (〈1, 4〉, t)} PIRt = {(〈2, 3〉, t), (〈1, 4〉, t)}

We obtain, for these locations, that:

supportt(〈1, 4〉) = 2 supportt(〈2, 4〉) = 1 supportt(〈2, 3〉) = 1

which gives us St = {〈1, 4〉}.
Now consider that Mt−1 = {〈1, 3〉}, and we want to find the best move. We start

by computing distances, and we obtain:

dist(〈2, 3〉, 〈1, 3〉) = 1 dist(〈1, 4〉, 〈1, 3〉) = 1

dist(〈2, 4〉, 〈1, 3〉) = 2 dist(〈2, 5〉, 〈1, 3〉) = 3

thus Mt = {〈2, 3〉, 〈1, 4〉}.
In order to identify locations with the best coherence property, we need to take

into account static information about which location is covered by which sensor. Let

us consider the following scenario:

coveredRF (〈1, 4〉) coveredPIR(〈1, 4〉) coveredRF (〈2, 4〉) coveredPIR(〈2, 4〉)

obtaining

12

coherencet(〈1, 4〉) = 2∗100
2 = 100

coherencet(〈2, 4〉) = 1∗100
2 = 50

coherencet(〈2, 3〉) = 0

This gives us, as a result, that Ct = {〈1, 4〉}.

In order to solve the localization and tracking problem for every time step t of the

interval under consideration, we need to select the best position among the plausible

ones for every time step. In principle, whenever proximity values (RSSI) are available,

we consider them as candidate solutions among which we select the best one. When

this is not the case, all other available sensor data (PIR and RF in our experimental

setting) should be considered to select the best candidate location.

Due to the incompleteness and noisiness of sensor data, we combine properties and

metrics described earlier in this section in order to describe how we want to characterize

the solution.

We identify four combination of properties (or optimization criteria) defining the

following sets of possible locations c at time t:

O1
t = Mt ∩ Ct
O2

t = Ct
O3

t = Mt

O4
t = (RSSI t ∪ RF t ∪ PIRt) \ (W × {t})

We introduce a preference relation among locations by imposing a ranking on the

above criteria:Oi
t is preferred toOj

t , whenever i < j. This relation is specified according

to the combination of properties we prefer to be verified by the location that is selected

as the final solution to the localization and tracking problem. Accordingly, we can

finally define the solution to the localization and tracking problem:

Lt =

Pt ∩ Oi

t if RSSI t 6= ∅ and Oj
t = ∅ for each j < i

St ∩ Oi
t if RSSI t = ∅ and Oj

t = ∅ for each j < i

∅ otherwise

Example 2 Let us consider the scenario illustrated in Example 1. Locations are iden-

tified by our optimization criteria are as follows.

O1
t =Mt ∩ Ct = {〈1, 4〉}
O2

t = Ct = {〈1, 4〉}
O3

t =Mt = {〈1, 4〉, 〈2, 3〉}
O4

t = RSSI t ∪ RF t ∪ PIRt = {〈2, 3〉, 〈2, 4〉, 〈2, 5〉, 〈1, 4〉}

As a result, we obtain

Lt = Pt ∩ O1
t = {〈1, 4〉}

Note that solution can be influenced by our ordering of criteria as well as by the

presence of invalid cells. In fact, if we had that W = {〈1, 4〉}, this would change our

properties on sets of locations as follows:

Pt = {〈2, 4〉} St = {〈2, 4〉, 〈2, 3〉} Mt = {〈2, 3〉} Ct = {〈2, 4〉}

13

As a consequences, we would obtain

O1
t = ∅ O2

t = {〈2, 4〉} O3
t = {〈2, 3〉} O4

t = {〈2, 3〉, 〈2, 4〉, 〈2, 5〉}

and, as result Lt = Pt ∩ O2
t = {〈2, 4〉}.

All in all, in our formal specification, whenever the best move metric is applied,

we select the best location at each time step t depending on the location selected

at time step t − 1. In this way we prefer steady solutions. An alternative approach

would be to specify the tracking problem using global optimization over the entire (or

partial) temporal interval. As we will better illustrate in Section A, our knowledge-

based approach is flexible and expressive enough to make this adaptation possible with

little effort.

4 Knowledge-Based Indoor Positioning

In this section, we illustrate how we implemented the localization and tracking problem

formalized in Section 3 in the knowledge-based framework of Answer Set Programming

(ASP). See Appendix A for a brief introduction to ASP.

As a general principle, we recall that RSSI values as well as other sensor information

are aggregated with ad-hoc algorithms for feature analysis.

The knowledge-based support to localization and tracking tackles the problem that

data gathered by sensors may be noisy even after aggregation, but their combination

may yield a more reliable interpretation. The expressive power of ASP is used to dis-

ambiguate unclear situations (e.g., where the person is) by combining heterogeneous

data sources and using defaults and qualitative optimization to select the best can-

didates. To do this, the localization scenario and the sensor data are represented as

logic predicates, while qualitative criteria are specified and combined using logic rules

to reason about localization and tracking.

4.1 ASP Basics

We assume the reader to be familiar with the terminology and basic definitions of ASP

(see [2] for details). In what follows, we rely on the language supported by grounders

lparse [17] and Gringo [6], providing normal and choice rules, cardinality and integrity

constraints, as well as aggregates and optimization statements. As usual, rules with

variables are regarded as representatives for all respective ground instances.

4.2 Modeling the Localization and Tracking Problem in ASP

The logical description of the localization scenario is provided in terms of interesting

properties of the sensed information. The space is a grid where each cell (or location)

c = 〈x, y〉 is identified by the term loc(X,Y). Each cell can be associated to (i) a

room/area, (ii) a passage, or (i) a wall, and it is attached to some static properties.

The association and the properties formally defined in Section 3 are mapped into logic

predicates as detailed in Table 1, where c = 〈X,Y 〉.

14

Logic Predicate (Static) Formal Description

cell(X,Y,Room,Area) c ∈ Area, Area ⊂ Room
passage(X,Y,R1,R2) c ∈ P, P is a passage between R1 and R2
wall(X,Y) c ∈W
sensed type(S) S ∈ {PIR,RF}
covered(movement,loc(X,Y)) coveredPIR(c)
covered(distance,loc(X,Y)) coveredRF (c)

Table 1 Logic Predicates representing static properties of cells

Logic Predicate (Dynamic) Formal Description Sensor Data

sensed(rssi,loc(X,Y),T,P) c ∈ RSSIt Proximity signal
sensed(pir,loc(X,Y),T) c ∈ PIRt Movement detector
sensed(rf,loc(X,Y),T) c ∈ RFt Distance detector

Table 2 Logic Predicates representing sensor data collected at each time step

A location is invalid as a candidate solution when it is a wall 4:

invalid(loc(X,Y)) :- wall(X,Y).

Dynamic sensor information associated to locations can come from (i) processed

RSSI values with an associated percentage of likelihood, (ii) movement detectors (PIR),

and (iii) distance measures (RF). Logic predicates representing dynamic sensor data

are listed in Table 2.

At each time step, a cell c becomes a candidate location L at time T when any of

the sensor information (RSSI, PIR or RF) has been received for that location, unless

it is found to be invalid via invalid(L). This allows us to immediately reduce the set

of possible solutions to the positions for which at least one sensor signal is available.

The corresponding ASP code is as follows:

location(L,T) :- sensed(rssi,L,T,P), not invalid(L).

location(L,T) :- sensed(S,L,T), not invalid(L).

Besides the information about received sensor data at a given time step T for a

location L, dynamic properties of support, distance measure between two consequent

admissible moves, and coherence for a location as a candidate position at a give time

step are mapped into logic predicates as illustrated in the first part of Table 3.

Discrete time is in seconds and sensor data are opportunely aggregated and pro-

vided when values change beyond a given threshold.

Earlier in this section, we mentioned that positions obtained by processing RSSI

signals represent the initial set of candidate solutions to the problem of estimating

the actual position. When this information is missing, tracking the person on the grid

becomes more difficult and the solution space can be huge because the model of move-

ment may produce a higher number of possibilities. We have to face this problem not

4 The characterization of invalid locations can be easily extended by introducing appropriate
predicates and rules in the declarative ASP framework

15

Logic Predicate (Properties) Formal Description

support(loc(X,Y), N, T) supportt(〈X,Y 〉) = N
dist(loc(X1, Y1), loc(X2, Y2), D) dist(〈X1, Y1〉, 〈X2, Y2〉) = D
coherence(loc(X,Y), T, C) coherencet(〈X,Y 〉) = C

Logic Predicate (Metrics) Formal Description

best move(loc(X,Y), T) 〈X,Y 〉 ∈ Mt

best coherence(loc(X,Y), T) 〈X,Y 〉 ∈ Ct
max support(loc(X,Y), N, T) 〈X,Y 〉 ∈ St, supportt〈X,Y 〉 = N
max proximity(loc(X,Y), P, T) 〈X,Y 〉 ∈ Pt, (〈X,Y 〉, P, T) ∈ RSSIt

Table 3 Logic Predicates representing dynamic properties and optimization metrics

only in case of malfunctioning sensors, but also when the RSSI processing cannot pro-

vide acceptable candidate positions for several sequential time steps. In such settings,

the ASP-based reasoning process is flexible enough to compensate noisy and missing

sensor values, reasoning about the qualitative analysis of the available information, as

detailed in the next subsection.

4.3 Multi-Criteria Optimization in ASP

The solution to a localization and tracking problem is based on the definition of prop-

erties we want to be verified for candidate solutions according to available sensor data.

In order to combine all these properties and find the best solution(s), in Section 3

we introduced best proximity, best support, best move and best coherence optimization

metrics, combined into four optimization criteria Oi, i = 1..4.

The best proximity metric considers positions provided by RSSI that have the high-

est likelihood P . Unfortunately it is not always true that the higher the likelihood

associated to RSSI, the closer the candidate position is to the real one; for this reason

we define optimization criteria that do not take the best proximity into account to

validate candidate positions.

Rather, best proximity is used as a reward function to select a location L once

Oi is identified as the most preferred optimization criteria and locations Li ∈ Oi are

the preferred ones. When RSSI signals are not available, a different reward function

is used, which is closely related to the notion of support for a location Li ∈ Oi: the

higher the support for Li, the better Li is as a candidate position for criterion Oi.

Optimization metrics are expressed in form of logic predicates as indicated in the

second part of Table 3.

Best Coherence maximizes the value of the coherence property, which is a percentage

indicating how many of the sensor signals covering a location L are effectively

captured for that location at time T ; if L is not covered by any sensor signal other

than the RSSI, its coherence is fixed at 80% for all time steps, according to a

probabilistic model of our proximity radio signals; in the same way, coherence is

16

equal to 0 at time T if L is covered by at least one sensor (different than RSSI), and

no sensor value other than RSSI is captured at time T for location L, as follows

from the definition of coherence given in Section (3).

The correspondent ASP encoding uses aggregates as follows:

ex_support(N,L) :- N = #count [covered(S,L) : sensed_type(S)], location(L,T), N>0.
support_dom(N) :- ex_support(N,L).
p_support(L,T,C) :- C = #count [sensed(S,L,T) : covered(S,L)], location(L,T),

not invalid(L), C>0.
p_support_dom(C) :- p_support(L,T,C).
coherence(L,T,P) :- p_support(L,T,C), P=(100*C)/N, ex_support(N,L).
coherence(L,T,C) :- not p_support(L,T,C), ex_support(N,L), location(L,T),

not invalid(L), p_support_dom(C).
coherence(L,T,80):- not p_support(L,T,C), not ex_support(N,L), location(L,T),

not invalid(L), p_support_dom(C), support_dom(N).

most_coherent_time(T,M) :- M = #max [coherence(L,T,C) : coherence(L,T,C) = C],
time(T), M>=0.

best_coherence(L,T) :- most_coherent_time(T,C), coherence(L,T,C).

Best Move property identifies the location L at any time step T for which the distance

between L and the location L1 at time step T − 1 is minimum.

The ASP encoding is as follows:

distance(D,loc(X,Y),T) :- location(loc(X,Y),T), at(loc(U,V),T-1), D = #abs(X-U) + #abs(Y-V).

distance(D,T) :- distance(D,L,T).
dist(X,T) :- distance(X,T).
dist(X-1,T) :- dist(X,T), X>0.

neg_smallest(X+1,T) :- dist(X+1,T), distance(X,T).
neg_smallest(X,T) :- dist(X,T), neg_smallest(X-1,T).

best_distance(D,T) :- distance(D,T), not neg_smallest(D,T).
best_movement(L,T) :- distance(D,L,T), best_distance(D,T).

The specification of properties and metrics in ASP makes it straightforward to imple-
ment the criteria defined in Section 3 as follows:

criterion(1..4).

criterion(1,L,T) :- location(L,T), best_movement(L,T), best_coherence(L,T).
criterion(2,L,T) :- location(L,T), best_coherence(L,T).
criterion(3,L,T) :- location(L,T), best_movement(L,T).
criterion(4,L,T) :- location(L,T).

The preference relation between two criteria is defined by their numbering such as

Oi is preferred to Oj (Oi � Oj) when i > j.

This ordering is motivated by the fact that we want to obtain the solution satisfying

all metrics as the best option, but whenever such a solution does not exist, we prefer

to give up the movement model and consider coherence as more reliable5. Alternative

combinations are also possible and this can be useful to compare them in order to

understand which property seems to be stronger or which sensor data appears to be

more reliable.

5 Note that this is one of the possible choices. We can easily change the ordering between
criteria to see how reliable our sensors are.

17

When new sensor information is introduced, we can easily re-define or extend the

list of properties, metrics and criteria. An example can be the introduction of environ-

mental data in the definition of coherence: to take such data into account, we just have

to introduce it in the notion of support. We can also specify them as a different prop-

erty in case we want to define a separate optimization criteria that will be less/more

preferred than the existing ones. This flexibility is a clear advantage of the declarative

knowledge-based approach.

In order to implement optimization on ordered criteria, we compute two reward

functions represented by the highest proximity and the highest support for a criterion

Oi at time T , respectively.

The best location L for a time step T is represented by predicate best location(L, T)

and it can now be identified by selecting the best value returned by the application of

the most preferred criterion.

% reward functions
max_value(C,B,T) :- max_proximity(C,B,T).
max_value(C,B,T) :- max_support(C,B,T).

% overall preferences
best_value(C,B,T) :- max_value(C,B,T), not worse_value(C,T).
worse_value(C,T) :- max_value(C,B,T), max_value(C1,B1,T), C1<C.

best_location(L,T) :- best_value(C,B,T), criterion(C,L,T), sensed(rssi,L,T,B).
best_location(L,T) :- best_value(C,N,T), criterion(C,L,T), sensed(S,L,T),

not has_rssi(T).
has_rssi(T) :- sensed(rssi,L,T,P).

Once all properties, metrics and criteria have been expressed, our problem specifi-

cation generates the space of solutions and then selects the best one via optimization.

This is done by applying the generate and test approach of ASP: a cardinality con-

straint specifies that for each time step T , exactly one location is selected (generating

part) and an integrity constraint specifies that a selected location L for a time step T

has to be the best location for T (testing part) as follows:

1 [at(L,T) : location(L)] 1 :- time(T).
:- at(L,T), not best_location(L,T).

The actual implementation is evaluated using the solver Clasp [5] on grounded logic

programs obtained by using Gringo [6] as a grounder. Clasp relies on modern Boolean

Constraint Technology, matching the performance of state-of-the-art SAT solvers.

5 The Experimental Evaluation

In the evaluation of our approach, we focus our attention on the following three aspects

that will be discussed for both the simulated and the real setting.

Accuracy. According to [21], accuracy is the degree to which the random variation

is centered on the true value. The overall accuracy of results is determined via

the Mean Absolute Error (MAE) proposed in [3] for measuring the accuracy of

localization with respect to the true ground position. MAE is very similar to the

common Root Mean Square and consists of computing the residual error between

18

the estimated and actual node positions for every node in the network, sum them

and average the result, as shown in the following equation:

MAE =

∑n
i=1

√
(xi − x̄i)2 + (yi − ȳi)2

n
(1)

where (x̄i, ȳi) are the coordinates of the target’s estimated positions and (xi, yi)

the true ground ones.

Fault tolerance. An interesting property we want to verify in our approach is how

robust it is against missing data; this aspect is discussed by analyzing the impact

of missing data on the accuracy.

Effectiveness. In order to validate the effectiveness of optimization criteria, we illus-

trate how they can help in reducing noise and filtering localization results provided

by RSSI, PIR and RF in the real test setting.

Accuracy and fault tolerance are discussed for the simulated setting and confirmed

by experiments on real data, while the effectiveness is clearer if we look at the real

setting where initial data are more noisy and error prone.

5.1 Results on Simulated Data

The first experimental evaluation of our knowledge-based approach to position estima-

tion is carried out on data generated by the simulation tool as described in Section 2.1.

Our experiments are based on the generation of several test instances of different

size using the agent-based simulation toolkit Repast Simphony. According to the size

of the instance we want to generate, we simulate movements of a person across one

or more rooms of the house through one or more midpoints. Repast applies a simple

shortest-path algorithm for simulation, based on the map of the environment and

realistic motion model. The instance size is determined by the number of time steps

which corresponds to the number of moves, given that each move is associated to a new

time step. In our analysis, we make the assumption that the number of sensors (thus

the amount of sensor data received at each time step) is fixed according to a given

sampling rate, and it is linear in the number of rooms and doors in the environment

(we consider putting four to six sensors per room plus one sensor for each passage).

For this reason, we did not consider the amount of data produced by sensors at each

time step as a factor that may impact performance.

The MAE indexes obtained through Particle Filters (PF) based on the RSSI signals

only, are compared with the MAE index obtained by ASP using RSSI signals, Range

Finder (RF), and Passive Infrared (PIR) measurements.

Results are illustrated in Figure 4, where we plot both MAE obtained by Particle

Filter and MAE obtained by the ASP multi-criteria approach on instances of several

size, from 20 to 180 time steps. MAE is expressed in meters and the instance size is

expressed in terms of subsequent time stamps.

We can observe that the introduction of additional (noisy) data sources considered

in the ASP-enhanced approach, still give us a lower MAE for small instances, where

size is smaller than 50 time steps. This can be explained by the fact that the PF

algorithm re-allocates the particles used for position estimation at each time step; as a

consequence, it is common that on small instances the particles are still a bit sparse and

the precision of the algorithm is lower. For a similar reason, the MAE index obtained

19

0	

0,2	

0,4	

0,6	

0,8	

1	

1,2	

1,4	

1,6	

1,8	

0	 50	 100	 150	 200	

MAE	 Par0cle	 Filter	

MAE	 ASP	

Instance	 size	

m
et
er
s	

Fig. 4 Accuracy of ASP vs PF on simulated data

by the PF algorithm slightly decreases as size rises: on bigger instances, particles tends

to converge on the more plausible positions, resulting in higher accuracy.

A similar behavior is observed for the MAE of the ASP curve, validating the ability

of the approach to merge heterogeneous sensor data for indoor positioning, including

them in the model in a flexible way.

In general both MAEs tend to decrease (with ASP being slightly more accurate)

and converge. More extensive experiments are needed to better characterize MAE’s

curves, but our preliminary analysis aims at showing how the localization and tracking

problem can be successfully solved in a more flexible, declarative and extensible way.

We have been able to obtain acceptable results compared to traditional approaches,

but in a framework where the problem is easier to model and can be adapted and used

to test properties of sensors such as their reliability, as well as properties of the target,

such as the movement model.

Another aspect we took into account is robustness, evaluated in terms of how the

accuracy can be affected by missing data.

A lack of data can either be caused by sensors not properly transmitting or by a too

sparse set of particles, so that the PF algorithm cannot provide candidate positions.

Considering missing data scenarios is interesting in view of the fact that we want our

approach to be able to provide candidate solutions even in case of malfunctioning

sensors or weak PF results.

In order to evaluate robustness, we used the same instances generated in the simu-

lated setting, randomly removing 5% and 10% of the sensor data. Results of all three

versions of the instances are illustrated in Figure 5.

The main aspect proving robustness of our approach can be seen if we consider the

almost total overlapping of the three curves in Figure 5: on instances of the smaller

size, the MAE index is slightly higher with 10% of missing sensor data (as one may

intuitively expect), but this phenomenon gets stable on bigger instances where missing

data up to 10% do not affect accuracy.

We observe that in general the MAE index is stable when we remove data, probably

due to the fact that our knowledge-based approach makes it possible to estimate a

position by using the model of movement and the other metrics and optimization

criteria to reduce the search space, compensate for missing information, and propose

plausible estimations. Furthermore, in the ASP approach the position of the target can

20

Fig. 5 Robustness of ASP on simulated data

0	

0,2	

0,4	

0,6	

0,8	

1	

1,2	

1,4	

1,6	

0	 50	 100	 150	 200	

MAE	 ASP	

MAE	 ASP	 5%	

MAE	 ASP	 10%	

Instance	 size	

m
et
er
s	

be guessed according to the optimization criteria described in Section A, which turned

out to be more stable and flexible6 than particle re-distribution when there are missing

data.

We cannot estimate yet the persistence of robustness properties over higher percent-

age of missing data. In further analysis it would be interesting to estimate a threshold

telling us how far we can go in removing data before MAE starts to increase. Intuitively,

it depends on how many different kinds of sensor signals we have, and how noisy are

the data they produce: the higher the number of sensors or the noise, the higher the

threshold, while if we have lots of reliable sensor data, we would expect this threshold

to be lower.

5.2 Results on Real Data

In the real setting we generated instances for 4 different paths of a person moving

through our Lab as illustrated in Figure 6. In order to compensate for the eventual

small lack of precision of the Ubisense system taken as a ground-truth, we collected 10

repeated instances for each of the paths and computed the average position for each

time step.

The first aspect to be evaluated in the real setting is the accuracy. For each of the

paths, we compared the MAE index obtained by PF with the MAE index obtained by

ASP. For all paths, we obtained positioning with 50 centimeters average error, versus

more than 1.4 meters obtained by Particle Filter. Results are summarized in Table 4,

where the MAE is expressed in meters.

Data generation and data corruption in this setting is less controllable than in the

simulated scenario. For this reason we did not evaluate robustness but rather focused

on showing the effectiveness of the approach by comparing the ground-truth position

and the position estimated by PF and by ASP along time steps.

Results of this data analysis are reported in Figures 7 and 8 for Particle Filter and

ASP, respectively.

6 We can change the order of optimization criteria and their definition according to the
performances of our sensor devices.

21

Fig. 6 Movements of a target in the real setting

1. Clockwise Path 2. Anti-clockwise Path

3. Zig-zag Path 4. Random Path

Table 4 Accuracy results on real data

Path MAE (Particle) MAE (ASP)
RSSI Only RSSI, PIR, RF

Clockwise 1.553 0.478
Anti-clockwise 1.856 0.495

Zig-zag 1.611 0.453
Random 1.482 0.415

Consider that in the ASP results we mapped coordinates expressed in meters into

cells, where the dimension of each cell is 0.25 meters. Despite this mapping, in Figure 8

we can see how results of ASP are closer than results of PF to the ground-truth

positions. Smaller cells would make it possible to obtain higher accuracy and to verify

it more clearly on the plot.

6 Discussion

We presented a hybrid approach to indoor position estimation by combining and

extending quasi-standard quantitative methods in a knowledge-based yet qualitative

22

Fig. 7 Movements of a target in the real setting: PF results

0	

1	

2	

3	

4	

5	

6	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

M
et
er
s	

Meters	

Par/cle	 filter	 Ground-‐truth	

0 

1 

2 

3 

4 

5 

6 

0  1  2  3  4  5  6  7  8  9  10 

M
et
er
s 

Meters 

Par/cle filter  Ground‐truth 

Tracing Clockwise Path Tracing Anti-clockwise Path

0 

1 

2 

3 

4 

5 

6 

0  1  2  3  4  5  6  7  8  9  10 

M
et
er
s 

Meters 
Par/cle filter  Ground‐truth 

0 

1 

2 

3 

4 

5 

6 

0  1  2  3  4  5  6  7  8  9  10 

M
et
er
s 

Meters 
Par/cle filter  Ground‐truth 

Tracing Zig-zag Path Tracing Random Path

framework. To this end, we took advantage of the knowledge representation and rea-

soning capacities of ASP for providing a rich model combining various disconnected

sensor models with further semantic information, like a movement model and sensor

dependencies. The resulting ASP encoding combines the available heterogeneous sensor

data in a transparent and easily modifiable way and offers an impressive robustness in

dealing with noisy and (partially) absent sensor data, as indicated by our experiments.

The main idea is that if we can easily introduce additional sensors as data sources in

our model, missing data can be better compensated by the knowledge-based approach,

as long as the noisiness of data does not grow significantly with the number of sensors.

Time steps with no data do not determine a redistribution of the particles as in the PF

algorithm: in our approach, the position in a time step for which no data have been

collected, are guessed according to the knowledge-based optimization criteria applied

to tracking in previous and following time steps. Preliminary tests on simulated data

show that our approach can be as accurate as standard techniques based on particle

filters, while more recent tests on real data show that the knowledge-based approach is

66% more accurate. This difference is due to the fact that simulated data were “cleaner”

than the real ones, thus it was not possible to see the real improvement given by the

ASP approach in dealing with noisy and partial data.

The knowledge-based approach presented in this paper makes accuracy robust

against incomplete information as illustrated by our tests on simulated data. One may

argue that if data are not available for several time steps, the combinatorial explosion

of possible solutions can make the search process inefficient. Even in this case, opti-

23

Fig. 8 Movements of a target in the real setting: ASP results

0	

1	

2	

3	

4	

5	

6	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

M
et
er
s	

Meters	 Ground-‐truth	 ASP	 	

0 

1 

2 

3 

4 

5 

6 

0  1  2  3  4  5  6  7  8  9  10 

M
et
er
s 

Meters Ground‐truth  ASP  

Tracing Clockwise Path Tracing Anti-clockwise Path

0 

1 

2 

3 

4 

5 

6 

0  1  2  3  4  5  6  7  8  9  10 

M
et
er
s 

Meters 
Ground‐truth  ASP  

0 

1 

2 

3 

4 

5 

6 

0  1  2  3  4  5  6  7  8  9  10 

M
et
er
s 

Meters Ground‐truth  ASP  

Tracing Zig-zag Path Tracing Random Path

mization criteria can help selecting the best candidate positions in the search space

as the generate and test approach of ASP, guided by optimization criteria, makes it

possible to efficiently prune the search space and isolate only a subset of acceptable

solutions.

The effectiveness of our approach can be validated by observing that changing the

order of criteria could help evaluating the reliability of sensor data or the soundness

of the properties we defined according to commonsense knowledge. As an example, we

found out that values provided by PIR and RF sensors are very reliable, thus if we

switch criteria O2 and O3 giving higher preference to the movement model than the co-

herence property, the MAE slightly increases. We are now working on the specification

of additional criteria in order to further investigate this aspect.

Our approach makes it also easier to add new domain-knowledge in form of con-

straints or optimization measures, which can be used to strengthen the choice of some

candidate positions over others going beyond what sensor data tells us. The encoding

discussed in Section A allows for easy customization and extensibility. All in all, the

elaboration tolerance of the high-level ASP specification makes the major difference

of our approach to potential alternatives, and it seems hard to envisage in a purely

quantitative settings.

A more general, though very important issue, is the trade-off between flexibility

and accuracy of the model. In order to investigate this aspect, we should make fur-

24

ther experiments on how additional sensor data as well as new criteria or different

optimizations may affect accuracy.

Finally, our current implementation accumulates data in hourly intervals. This

choice was guided by the fact that we wanted to consider a sufficiently long time window

where we can show both the power of ASP inference over a rich and error-prone data

instance, and the errors compensation obtained by multicriteria optimization approach

even when errors cumulate over a significantly long time window.

We plan to refine this to use the incremental ASP solver iClingo [4] in order to

provide a much more fine-grained approach to localization and tracking, eventually

aiming at real-time conditions.

A Answer Set Programming

This section provides a brief introduction to ASP (see [2] for details), a declarative paradigm for
knowledge representation and reasoning, offering a rich modeling language along with highly
efficient inference engines based on Boolean constraint solving technology. The basic idea of
ASP is to encode a problem as a logic program such that its answer sets represent solutions
to the original problem.

The methodology of writing programs in ASP follows a generate-and-test approach, in-
spired by intuitions on NP problems. That is, a “generating” part is meant to non-deterministically
provide solution candidates, while a “testing” part eliminates candidates violating some re-
quirements.7 In addition, one may specify optimization criteria via lexicographically ordered
objective functions.

Syntactically, a logic program is a set of rules of the form

h← a1, . . . , am,not am+1, . . . ,not an (2)

where ai, for 1 ≤ m ≤ n, is an atom of the form p(t1, . . . , tk), and t1, . . . , tk are terms, viz.,
constants, variables, or functions. In practice, ‘←’ is written as ‘:-’.

First-order representations, commonly used to encode problems in ASP, are only informally
introduced. The following example is taken from Section 4.3:

best_value(C,B,T) :- max_value(C,B,T), not worse_value(C,T).

This rule stands for all ground instantiated rules obtained by systematically replacing all
variables with appropriate constants and ground terms.8

For a rule r as in (2), the head h of r is either an atom, a cardinality constraint of the form
l {h1, . . . , hk}u in which l, u are integers and h1, . . . , hk are atoms, or the special symbol ⊥
(omitted in practice). If h is a cardinality constraint, we call r a choice rule, and an integrity
constraint if h = ⊥.

Examples of the two latter types of rules are given at the end of Section 4.3, viz.

1 [at(L,T) : location(L)] 1 :- time(T).
:- at(L,T), not best_location(L,T).

The cardinality constraint 1 [at(L,T) : location(L)] 1 contains a “conditional literal”,
in which the instantiation of L in at(L,T) is limited by the instances of location(L). Using
brackets rather than parentheses indicates a multi-set interpretation of the constituent literals.
For clarity, one may add the keyword #count. See [17,?] for a detailed description of the
language.

Semantically, the answer sets of a program are particular classical models of the program
satisfying a certain stability criterion (cf. [2]).

7 Note that this is only a methodological approach; it is neither syntactically required nor
computationally pursued.

8 Note that only finitely many ground rules are obtained although there are infinitely many
ground terms.

25

Acknowledgements The second author was partly funded by the German Science Founda-
tion (DFG) under grant SCHA 550/8-2.

The authors are grateful to Martin Gebser and Roland Kaminski for valuable suggestions
on improving ASP encodings.

References

1. The Ubisense RTLS. http://www.ubisense.net/
2. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge University Press (2003)
3. Broxton, M., Lifton, J., Paradiso, J.A.: Localization on the pushpin computing sensor net-

work using spectral graph drawing and mesh relaxation. SIGMOBILE Mobile Computer
and Communication Review 10 (2006)

4. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineer-
ing an incremental ASP solver. In: M. Garcia de la Banda, E. Pontelli (eds.) Proceedings
of the Twenty-fourth International Conference on Logic Programming (ICLP’08), lncs,
vol. 5366, pp. 190–205. springer (2008)

5. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A conflict-driven answer
set solver. In: Ninth International Conference on Logic Programming and Nonmonotonic
Reasoning, pp. 260–265. Springer-Verlag (2007)

6. Gebser, M., Schaub, T., Thiele, S.: Gringo : A new grounder for answer set programming.
In: LPNMR, pp. 266–271 (2007)

7. Hedetniemi, Hedetniemi, Liestman: A survey of gossiping and broadcasting in communi-
cation networks. NETWORKS: Networks: An International Journal 18 (1988)

8. Kalman, R.E.: A new approach to linear filtering and prediction problems. Transactions
of the ASME Journal of Basic Engineering (82 (Series D)), 35–45 (1960)

9. Merico, D.: Tracking with high-density, large-scale wireless sensor networks. Ph.D. thesis,
University of Milano-Bicocca, Dottorato di ricerca in INFORMATICA, 22 (2010-02-03).
URL http://hdl.handle.net/10281/7785

10. Nakamura, E.F., Loureiro, A.A.F., Frery, A.C.: Information fusion for wireless sensor net-
works: Methods, models, and classifications. ACM Comput. Surv. 39(3), 9 (2007)

11. North, M.J., Macal, C.M.: Managing Business Complexity: Discovering Strategic Solutions
with Agent-Based Modeling and Simulation. Oxford University Press, Inc., New York, NY,
USA (2007)

12. Patwari, N., Ash, J., Kyperountas, S., Hero A.O., I., Moses, R., Correal, N.: Locating the
nodes: cooperative localization in wireless sensor networks. Signal Processing Magazine,
IEEE 22(4), 54 – 69 (2005). DOI 10.1109/MSP.2005.1458287

13. Perkins, C.E., Royer, E.M.: Ad-hoc on-demand distance vector routing. In: Proceed-
ings of the Second IEEE Workshop on Mobile Computer Systems and Applications,
WMCSA ’99, pp. 90–. IEEE Computer Society, Washington, DC, USA (1999). URL
http://portal.acm.org/citation.cfm?id=520551.837511

14. Ristic, B., Arulampalam, S., Gordon, N.: Beyond the Kalman Filter: Particle Filters for
Tracking Applications. Artech House (2004)

15. Shen, Y., Win, M.: Fundamental limits of wideband localization #x2014; part i: A general
framework. Information Theory, IEEE Transactions on 56(10), 4956 –4980 (2010). DOI
10.1109/TIT.2010.2060110

16. Shen, Y., Wymeersch, H., Win, M.: Fundamental limits of wideband localization #x2014;
part ii: Cooperative networks. Information Theory, IEEE Transactions on 56(10), 4981
–5000 (2010). DOI 10.1109/TIT.2010.2059720

17. Syrjänen, T.: Lparse 1.0 user’s manual. http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
18. Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. MIT Press (2005)
19. Thrun, S., Fox, D., Burgard, W., Dallaert, F.: Robust monte carlo localization for mobile

robots. Artificial Intelligence 128(1-2), 99–141 (2001)
20. Tseng, Y.C., Kuo, S.P., Lee, H.W., Huang, C.F.: Location tracking in a wireless sensor

network by mobile agents and its data fusion strategies. Information Processing in Sensor
Networks 2634, 554–554 (2003)

21. Verdone, R., Dardari, D., Mazzini, G., Conti, A.: Wireless Sensor and Actuator Networks:
Technologies, Analysis and Design. Academic Press (2008)

22. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Com-
put. Surv. 38 (2006). DOI http://doi.acm.org/10.1145/1177352.1177355. URL
http://doi.acm.org/10.1145/1177352.1177355

