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Abstract Answer Set Programming (ASP) is an approach to declarative problem solving,
combining a rich yet simple modeling language with high performance solving capacities.
We here develop an ASP-based approach to Curriculum-Based Course Timetabling (CB-
CTT), one of the most widely studied course timetabling problems. The resulting teaspoon
system reads a CB-CTT instance of a standard input format and converts it into a set of
ASP facts. In turn, these facts are combined with a first-order encoding for CB-CTT solv-
ing, which can subsequently be solved by any off-the-shelf ASP systems. We establish the
competitiveness of our approach by empirically contrasting it to the best known bounds ob-
tained so far via dedicated implementations. Furthermore, we extend the teaspoon system
to multi-objective course timetabling and consider minimal perturbation problems.

Keywords Educational Timetabling · Course Timetabling · Answer Set Programming ·
Multi-objective Optimization ·Minimal Perturbation Problems

1 Introduction

Educational timetabling (Burke and Petrovic, 2002; Lewis, 2007; Schaerf, 1999) is gener-
ally defined as the task of assigning a number of events, such as lectures and examinations,
to a limited set of timeslots (and perhaps rooms), subject to a given set of hard and soft
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constraints. Hard constraints must be strictly satisfied. Soft constraints must not necessar-
ily be satisfied but the overall number of violations should be minimal. The educational
timetabling problems can be classified into three categories: school timetabling, examina-
tion timetabling, and course timetabling. In this paper, we focus on curriculum-based course
timetabling (CB-CTT; (Bettinelli et al, 2015)), one of the most studied course timetabling
problems.

The CB-CTT problems have been used in the third track of the second international
timetabling competition (ITC-2007; (Di Gaspero et al, 2007; McCollum et al, 2010)). A
web portal1 for CB-CTT has been actively maintained by the ITC-2007 organizers (Bonutti
et al, 2012). The web site provides necessary infrastructures for benchmarking such as val-
idators, data formats, problem instances, solutions in different formulations (uploaded by
researchers), and visualizers. All problem instances on the web are based on real data from
various universities in Europe. The best known bounds on the web have been obtained by
state-of-the-art CB-CTT solving techniques including the winner algorithm of ITC-2007:
metaheuristics-based algorithms (Abdullah et al, 2012; Di Gaspero and Schaerf, 2003, 2006;
Geiger, 2012; Lü and Hao, 2010), Integer Programming (Lach and Lübbecke, 2012), hybrid
methods (Müller, 2009), SAT/MaxSAT (Achá and Nieuwenhuis, 2012), and many others.

However, each method has strength and weakness. Metaheuristics-based dedicated im-
plementations can quickly find better upper bounds, but cannot guarantee their optimality.
Although complete methods such as SAT can guarantee the optimality, it is costly to im-
plement a dedicated encoder from the CB-CTT problems in SAT. Integer Programming
has been widely used for CB-CTT solving, but in general it does not scale to large in-
stances in complex formulations. It is therefore particularly challenging to develop a univer-
sal timetabling solver which can efficiently find optimal solutions as well as better bounds
for a wide range of CB-CTT instances in different formulations at present.

Answer Set Programming (ASP; (Baral, 2003; Gelfond and Lifschitz, 1988; Niemelä,
1999)) is an approach to declarative problem solving. Recent advances in ASP open up a
successful direction to extend logic programming to be both more expressive as well as
more effective. ASP provides a rich language and is well suited for modeling combinatorial
(optimization) problems in Artificial Intelligence and Computer Science. Recent remark-
able improvements in the effectiveness of ASP systems have encouraged researchers to use
ASP for solving problems in diverse areas, such as automated planning, constraint satisfac-
tion, model checking, music composition, robotics, system biology, etc (Erdem et al, 2016).
However, so far, little attention has been paid to using ASP for timetabling.

In this paper, we describe an ASP-based approach for solving the CB-CTT problems
and present the resulting teaspoon system. The teaspoon system reads a CB-CTT instance
of a standard input format (Bonutti et al, 2012) and converts it into ASP facts. In turn, these
facts are combined with a first-order encoding for CB-CTT solving, which is subsequently
solved by an off-the-shelf ASP system, in our case clingo. Figure 1 shows the teaspoon
architecture.

The high-level approach of ASP has obvious advantages. First, the problems are solved
by general-purpose ASP systems rather than dedicated implementation. Second, the elabo-
ration tolerance of ASP allows for easy maintenance and modifications of encodings. And
finally, it is easy to experiment with advanced techniques in ASP solving such as core-guided
optimization, domain heuristics, and portfolios of prefabricated expert configurations (Geb-
ser et al, 2015a). However, the question is whether the high-level approach of teaspoon
matches the performance of dedicated systems. We empirically address this question by

1 http://tabu.diegm.uniud.it/ctt/
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Fig. 1 Architecture of teaspoon.

contrasting the performance of teaspoon with the best known bounds on the CB-CTT web
portal obtained by state-of-the-art CB-CTT solving techniques.

From the perspective of applying ASP to educational timetabling, an early work stud-
ied school timetabling with ASP (Faber et al, 1998). Recently, we showed in previous
work (Banbara et al, 2013) that ASP’s modeling language is well-suited for course timetabling
by providing a compact encoding for CB-CTT solving. However, at the same time, we ob-
served that a simple branch-and-bound optimization strategy is insufficient to decrease the
upper bounds of large instances in complex formulations. In this paper, we provide insights
into how more advanced solving techniques can be used to overcome this practical issue.

The main contributions of this paper are as follows.

1. We present a basic ASP encoding for solving CB-CTT problems, which is an enhance-
ment of our previous encoding (Banbara et al, 2013). This enhancement provides the
ability to use advanced ASP solving techniques such as core-guided optimization, do-
main heuristics, portfolios of prefabricated expert configurations, multi-criteria opti-
mization based on lexicographic ordering, and multi-shot ASP solving (Gebser et al,
2015a,b).

2. We extend the basic encoding in view of enhancing the scalability and flexibility of
solving (multi-criteria) CB-CTT problems. The extended teaspoon encodings have the
following features:

– A collection of optimized encodings for soft constraints
– Easy composition of different formulations
– Multi-criteria optimization based on lexicographic ordering

3. Our empirical analysis considers all 61 instances in 5 different formulations, which are
publicly available from the CB-CTT portal (61× 5 = 305 combinations in a total) 2.
Overall, teaspoon managed to either improve or reproduce the best known bounds for
182 combinations (59.7% in the total). In detail, teaspoon provided 54 better bounds, 16
new optima, and 128 same bounds, 35 of which were proven optimal for the first time.
Furthermore, teaspoon was able to produce upper bounds for very large instances in the
category erlangen with every formulation, and 24 of them were unsolvable before.

4. We also extend the teaspoon system to finding Pareto optimal solutions of multi-objective
course timetabling and consider minimal perturbation problems (Barták et al, 2004;
Müller et al, 2005; Rudová et al, 2011; Phillips et al, 2016) by utilizing multi-shot ASP
solving techniques (Gebser et al, 2015b).

All in all, the proposed declarative approach represents a significant contribution to the state-
of-the-art for CB-CTT.

2 As of July 20, 2017
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The rest of the paper is structured as follows. Section 2 provides the problem description
of CB-CTT. Although we give a brief introduction to ASP and its basic language constructs
in Section 3, we refer the reader to the literature (Baral, 2003; Gebser et al, 2012) for a
comprehensive treatment of ASP. Section 4 describes teaspoon’s fact format of CB-CTT
instances and then presents a basic teaspoon encoding for solving CB-CTT problems. Sec-
tion 5 presents a variety of features of extended teaspoon encodings for (multi-criteria) CB-
CTT solving. Section 6 provides a detailed empirical analysis of teaspoon features and per-
formance in contrast to the best known bounds obtained by state-of-the-art CB-CTT solving
techniques. Section 7 presents an extension of the teaspoon system to minimal perturbation
problems in course timetabling. Finally, a conclusion is given in Section 8.

2 Curriculum-based Course Timetabling

As mentioned, we focus on the curriculum-based course timetabling (CB-CTT) problems
used in the ITC-2007 competition. The problem description of CB-CTT presented here is
based on (Bonutti et al, 2012).

The CB-CTT instance consists mainly of curricula, courses, rooms, days, and periods
per day. A curriculum is a set of courses that shares common students. We refer to a pair
of day and period as timeslot. The CB-CTT problem is defined as the task of assigning
all lectures of each course into a weekly timetable, subject to a given set of hard and soft
constraints. Hard constraints must be strictly satisfied. Soft constraints are not necessarily
satisfied, but the sum of their violations should be minimal. A feasible solution of the prob-
lem is an assignment so that the hard constraints are satisfied. The objective of the problem
is to find a feasible solution with minimal penalty. The CB-CTT problem has the following
hard constraints.

H1. Lectures: All lectures of each course must be scheduled, and they must be assigned
to distinct timeslots.
H2. Conflicts: Lectures of courses in the same curriculum or taught by the same teacher
must be all scheduled in different timeslots.
H3. RoomOccupancy: Two lectures cannot take place in the same room in the same
timeslot.
H4. Availability: If the teacher of the course is unavailable to teach that course at a
given timeslot, then no lecture of the course can be scheduled at that timeslot.

The CB-CTT problem has the following soft constraints.

S1. RoomCapacity: For each lecture, the number of students that attend the course
must be less than or equal the number of seats of all the rooms that host its lectures.
The penalty points, reflecting the number of students above the capacity, are imposed on
each violation.
S2. MinWorkingDays: The lectures of each course must be spread into a given min-
imum number of days. The penalty points, reflecting the number of days below the
minimum, are imposed on each violation.
S3. IsolatedLectures: Lectures belonging to a curriculum should be adjacent to each
other in consecutive timeslots. For a given curriculum we account for a violation every
time there is one lecture not adjacent to any other lecture within the same day. Each
isolated lecture in a curriculum counts as 1 violation.
S4. Windows: Lectures belonging to a curriculum should not have time windows (peri-
ods without teaching) between them. For a given curriculum we account for a violation
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Table 1 Problem Formulations

Constraint UD1 UD2 UD3 UD4 UD5
H1. Lectures H H H H H
H2. Conflicts H H H H H
H3. RoomOccupancy H H H H H
H4. Availability H H H H H
S1. RoomCapacity 1 1 1 1 1
S2. MinWorkingDays 5 5 - 1 5
S3. IsolatedLectures 1 2 - - 1
S4. Windows - - 4 1 2
S5. RoomStability - 1 - - -
S6. StudentMinMaxLoad - - 2 1 2
S7. TravelDistance - - - - 2
S8. RoomSuitability - - 3 H -
S9. DoubleLectures - - - 1 -

every time there is one window between two lectures within the same day. The penalty
points, reflecting the length in periods of time window, are imposed on each violation.
S5. RoomStability: All lectures of a course should be given in the same room. The
penalty points, reflecting the number of distinct rooms but the first, are imposed on each
violation.
S6. StudentMinMaxLoad: For each curriculum the number of daily lectures should be
within a given range. The penalty points, reflecting the number of lectures below the
minimum or above the maximum, are imposed on each violation.
S7. TravelDistance: Students should have the time to move from one building to an-
other one between two lectures. For a given curriculum we account for a violation every
time there is an instantaneous move: two lectures in rooms located in different building
in two adjacent periods within the same day. Each instantaneous move in a curriculum
counts as 1 violation.
S8. RoomSuitability: Some rooms may be not suitable for a given course because of
the absence of necessary equipment. Each lecture of a course in an unsuitable room
counts as 1 violation.
S9. DoubleLectures: Some courses require that lectures in the same day are grouped
together (double lectures). For a course that requires grouped lectures, every time there
is more than one lecture in one day, a lecture non-grouped to another is not allowed.
Two lectures are grouped if they are adjacent and in the same room. Each non-grouped
lecture counts as 1 violation.

A formulation is defined as a specific set of soft constraints together with the weights
associated with each of them. The five formulations UD1–UD5 have been proposed so far.
UD1 is the most basic formulation among them (Di Gaspero and Schaerf, 2003). UD2 is a
well known formulation used in the ITC-2007 competition (Di Gaspero et al, 2007). UD3,
UD4, and UD5 have been recently proposed to capture more different scenarios (Bonutti
et al, 2012). These formulations focus on student load (UD3), double lectures (UD4), and
travel cost (UD5), respectively. The weights of soft constraints in each formulation is shown
in Table 1. The symbol ‘H’ stands for inclusion in a formulation as hard constraint. The
symbol ‘-’ stands for exclusion from a formulation.

In this paper, we formulate the CB-CTT problem as a single-objective combinatorial
optimization problem whose objective function is to minimize the weighted sum of penalty
points in the same manner as ITC-2007, as well as a multi-criteria optimization prob-
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lem based on lexicographic ordering. Furthermore, we consider a multi-objective course
timetabling problem combining CB-CTT and Minimal Perturbation Problem.

3 Answer Set Programming

Answer Set Programming (ASP; (Baral, 2003; Gelfond and Lifschitz, 1988; Niemelä, 1999))
is a popular tool for declarative problem solving due to its attractive combination of a high-
level modeling language with high-performance search engines.

In ASP, problems are described as logic programs, which are sets of rules of the form:

a0 :- a1,...,am,not am+1,...,not an.

where 0 ≤ m ≤ n and each ai is a propositional atom for 0 ≤ i ≤ n. The connectives ‘:-’
and ‘,’ stand for ‘if’ and ‘and’, respectively. The connective ‘not’ stands for default nega-
tion. Each rule is terminated by a period ‘.’. A literal is an atom a or not a. The intuitive
meaning of the rule is that a0 must be true if a1, . . . , am are true and if am+1, . . . , an are
false. Semantically, a logic program induces a collection of so-called answer sets, which
are distinguished models of the program determined by answer sets semantics; see (Gelfond
and Lifschitz, 1988) for details.

We call a rule a fact if the body of the rule (right of ‘:-’) is empty, and we often skip
‘:-’ when writing facts. A rule is called an integrity constraint if the head of the rule (left
of ‘:-’) is empty.

a0.

:- a1,...,am,not am+1,...,not an.

A fact is unconditionally true, i.e., it belongs to every answer set. An integrity constraint is
considered as a rule that filters solution candidates, meaning that the conjunction of literals
in its body must not hold.

To facilitate the use of ASP in practice, several extensions have been developed. First
of all, rules with first-order variables are viewed as shorthand for the set of their ground in-
stances. Further language constructs include conditional literals and cardinality constraints
(Niemelä, 1999). The former are of the form a:b1,...,bm, the latter can be written as
s {c1,...,cn} t, where a and bi are possibly default-negated literals and each c j is a con-
ditional literal; s and t provide lower and upper bounds on the number of satisfied literals
in the cardinality constraint. Note that either s or t can be omitted. That is, s {c1,...,cn}

and {c1,...,cn} t represent at-least-s and at-most-t constraints respectively. The practical
value of both constructs becomes apparent when used with variables. For instance, a condi-
tional literal like a(X):b(X) in a rule’s antecedent expands to the conjunction of all instances
of a(X) for which the corresponding instance of b(X) holds. Similarly, 2 {a(X):b(X)} 4

is true whenever at least two and at most four instances of a(X) (subject to b(X)) are true. A
useful3 shortcut are expressions of the form N = {c1,...,cn} that binds N to the number of
satisfied conditional literals c j. Finally, objective functions minimizing the sum of weights
w j of conditional literals c j are expressed as #minimize {w1:c1,. . .,wn:cn}. 4

For solving a problem instance of a problem class in ASP, we encode the problem in-
stance as a set of ASP facts and the problem class as a set of ASP rules. In turn, the facts

3 Care must be taken whenever such expressions are evaluated during solving (rather than grounding).
4 Syntactically, each wj can be an arbitrary term. In fact, often tuples are used rather than singular weights

to ensure a multi-set property; in such a case the summation only applies to the first element of selected
tuples.
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Fig. 2 Undirected graph having 6 nodes and 11 edges

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5). edge(2,6).
edge(3,4). edge(3,5). edge(3,6). edge(4,5). edge(5,6).

Listing 1 ASP facts representing the graph of Figure. 2 (graph.lp)

1 col(r). col(b). col(g).

3 1 { color(X,C) : col(C) } 1 :- node(X).
4 :- edge(X,Y), color(X,C), color(Y,C).

6 #show color/2.

Listing 2 ASP rules for graph coloring (color.lp)

$ clingo graph.lp color.lp
clingo version 5.0.0
Reading from graph.lp ...
Solving...
Answer: 1
color(2,b) color(1,g) color(3,b) color(4,r) color(5,g) color(6,r)
SATISFIABLE

Models : 1+
Calls : 1
Time : 0.001s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s

Listing 3 Solving a graph coloring problem (graph.lp and color.lp)

are combined with the rules, and the result is subsequently solved by an off-the-shelf ASP
system that returns an answer set representing a solution to the original problem.

As an example, let us consider a graph coloring problem. The problem consists in find-
ing assignments of colors to nodes such that no two nodes connected by an edge have the
same color. A problem instance is given by a graph as in Figure 2. It is represented as facts
of predicates node/1 and edge/2 in Listing 1. The 3-colorability problem class is encoded
in Listing 2. Line 1 provides the available colors as facts. Line 3 and 4 express the actual
colorability problem. The predicate color(X,C) is used to express that a node X is colored
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Name: Toy
Courses: 4
Rooms: 3
Days: 5
Periods_per_day: 4
Curricula: 2
Min_Max_Daily_Lectures: 2 3
UnavailabilityConstraints: 8
RoomConstraints: 3

COURSES:
SceCosC Ocra 3 3 30 1
ArcTec Indaco 3 2 42 0
TecCos Rosa 5 4 40 1
Geotec Scarlatti 5 4 18 1

ROOMS:
rA 32 1
rB 50 0
rC 40 0

Listing 4 A toy instance of the ectt format

CURRICULA:
Cur1 3 SceCosC ArcTec TecCos
Cur2 2 TecCos Geotec

UNAVAILABILITY_CONSTRAINTS:
TecCos 2 0
TecCos 2 1
TecCos 3 2
TecCos 3 3
ArcTec 4 0
ArcTec 4 1
ArcTec 4 2
ArcTec 4 3

ROOM_CONSTRAINTS:
SceCosC rA
Geotec rB
TecCos rC

END.

with C. The rule in Line 3 generates for each node X a set of candidate assignments subject to
the condition that there is exactly one color C such that color(X,C) holds. In detail, the con-
ditional literal color(X,C):col(C) in the cardinality constraint expands to the conjunction
of color(X,r), color(X,b), and color(X,g), since the facts col(r), col(b), and col(g)

unconditionally hold. That is, line 3 expresses that each node X must be colored with exactly
one color among red (r), blue (b), and green (g). The integrity constraint in Line 4 expresses
that all connected nodes X and Y must not be colored with the same color C, since, as men-
tioned above, the conjunction of literals in its body must not hold. Line 6 is a directive, that
is, a meta statement advising the ASP system to project answer sets onto instances of pred-
icate color/2. An answer set computed by the ASP system clingo is shown in Listing 3; it
represents a coloring of node 1 with green, 2 and 3 with blue, 4 with red, 5 with green, and
6 with red.

Modern ASP systems like clingo first translate user-defined logic programs (with vari-
ables) into equivalent ground (that is, variable-free) programs, and then compute the answer
sets of the ground programs. Particularly, the former task is called grounding. The founda-
tions and algorithms underlying the technology of clingo are described in detail in (Gebser
et al, 2012).

4 The teaspoon Approach

We begin with describing teaspoon’s fact format of CB-CTT instances and then present a
basic teaspoon encoding for solving the CB-CTT problems 5.

4.1 Fact Format

Listing 4 shows a toy instance of the ectt format, which is a standard input format of CB-
CTT instances (Bonutti et al, 2012). The format has headers that represent basic entities,

5 teaspoon: TimEtabling with Answer Set PrOgrammiNg
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1 name("Toy"). courses(4). rooms(3). days(5). periods_per_day(4). curricula(2).
2 min_max_daily_lectures(2,3). unavailabilityconstraints(8). roomconstraints(3).

4 course("SceCosC","Ocra",3,3,30,1). course("ArcTec","Indaco",3,2,42,0).
5 course("TecCos","Rosa",5,4,40,1). course("Geotec","Scarlatti",5,4,18,1).

7 room(rA,32,1). room(rB,50,0). room(rC,40,0).

9 curricula("Cur1","SceCosC"). curricula("Cur1","ArcTec"). curricula("Cur1","TecCos").
10 curricula("Cur2","TecCos"). curricula("Cur2","Geotec").

12 unavailability_constraint("TecCos",2,0). unavailability_constraint("TecCos",2,1).
13 unavailability_constraint("TecCos",3,2). unavailability_constraint("TecCos",3,3).
14 unavailability_constraint("ArcTec",4,0). unavailability_constraint("ArcTec",4,1).
15 unavailability_constraint("ArcTec",4,2). unavailability_constraint("ArcTec",4,3).

17 room_constraint("SceCosC",rA). room_constraint("Geotec",rB). room_constraint("TecCos",rC).

Listing 5 ASP facts representing the toy instance of Listing 4

1 assigned("SceCosC",rB,3,0). assigned("SceCosC",rB,2,2). assigned("SceCosC",rB,4,2).
2 assigned("ArcTec", rB,3,1). assigned("ArcTec", rB,0,2). assigned("ArcTec", rB,1,2).
3 assigned("TecCos", rB,0,1). assigned("TecCos", rB,0,3). assigned("TecCos", rB,1,3).
4 assigned("TecCos", rB,2,3). assigned("TecCos", rB,4,3). assigned("Geotec", rA,4,1).
5 assigned("Geotec", rA,0,2). assigned("Geotec", rA,1,2). assigned("Geotec", rA,2,2).
6 assigned("Geotec", rA,4,2).

Listing 6 Solution (partial answer set) of the toy instance in UD2

followed by five blocks, COURSES, ROOMS, CURRICULA, UNAVAILABILITY_CONSTRAINTS, and
ROOM_CONSTRAINTS.

ASP facts representing the toy instance are shown in Listing 5. There exists a one-to-
one correspondence between ASP fact format and the ectt format except for the CURRICULA
block. The facts in Line 1–2 correspond to the ectt headers and express that the instance
named Toy consists of 4 courses, 3 rooms, 2 curricula, 8 unavailability constraints, and 3
room constraints. The weekly timetable consists of 5 days and 4 periods per day, which start
from 0. The fact min_max_daily_lectures(2,3) expresses the minimum and maximum
numbers of daily lectures for each curriculum, and is used to specify S6.

Each fact of predicate course/6 in Line 4–5 corresponds to a line of the COURSES block.
A fact course(C,T,N,MWD,M,DL) expresses that a course C taught by a teacher T con-
sists of N lectures, which must be spread into MWD days. The number of students attending
the course C is M. The course C requires double lectures if DL = 1. Each fact of predi-
cate room/3 in Line 7 corresponds to a line of the ROOMS block. A fact room(R,CAP,BLD)

expresses that a room R in a building BLD has a seating capacity of CAP.
A fact curricula(CUR, C) in Line 9–10 expresses that a course C belongs to a

curriculum CUR. Each fact of predicate unavailability_constraint/3 in Line 12–15
corresponds to a line of the UNAVAILABILITY_CONSTRAINTS block, and is used to specify
H4. A fact unavailability constraint(C,D,P) expresses that a course C is not avail-
able at a period P on a day D. Each fact of predicate room_constraint/2 in Line 17
corresponds to a line of the ROOM_CONSTRAINTS block, and is used to specify S8. A fact
room constraint(C,R) expresses that a room R is not suitable for a course C.

Listing 6 shows an optimal solution with zero penalty of the toy instance in the UD2
formulation. Each atom assigned(C,R,D,P) is intended to express that a lecture of a
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1 c(C) :- course(C,_,_,_,_,_). t(T) :- course(_,T,_,_,_,_).
2 r(R) :- room(R,_,_). cu(Cu) :- curricula(Cu,_).
3 d(0..D-1) :- days(D). ppd(0..P-1) :- periods_per_day(P).

5 % H1.Lectures
6 N { assigned(C,D,P) : d(D), ppd(P) } N :- course(C,_,N,_,_,_).

8 % H2.Conflicts
9 :- not { assigned(C,D,P) : course(C,T,_,_,_,_) } 1, t(T), d(D), ppd(P).

10 :- not { assigned(C,D,P) : curricula(Cu,C) } 1, cu(Cu), d(D), ppd(P).

12 % H3.RoomOccupancy
13 1 { assigned(C,R,D,P) : r(R) } 1 :- assigned(C,D,P).
14 :- not { assigned(C,R,D,P) : c(C) } 1, r(R), d(D), ppd(P).

16 % H4.Availability
17 :- assigned(C,D,P), unavailability_constraint(C,D,P).

19 % Additional constraints (can be omitted)
20 :- not { assigned(C,D,P) : c(C) } N, d(D), ppd(P), rooms(N).

Listing 7 Encoding of hard constraints

course C is assigned to a room R at a period P on a day D. We can observe from Line 1
that the lectures of the course SceCosC are assigned to the room rB at the first period (0) on
Thursday (3), the third period (2) on Wednesday (2), and the third period (2) on Friday (4)

4.2 First-Order Encoding

The teaspoon encoding of hard constraints (H1–H4) is shown in Listing 7. The expressive
power of ASP’s modelling language enables us to express each hard constraint individually
by just one or two ASP rules. As mentioned, the atom assigned(C,R,D,P) expresses that
a lecture of a course C is assigned to a room R at a period P on a day D, and a solution
is composed of a set of these assignments. The atom assigned(C,D,P) dropping R from
assigned(C,R,D,P) is also introduced, since we do not always have to take the room
information into account to specify the hard constraints except H3.

Given an instance expressed in our fact format, the first four rules in Line 1–2 generate
c(C), t(T), r(R), and cu(Cu) for each course C, teacher T, room R, and curriculum Cu. The
next two rules in Line 3 generate d(0) . . . d(D-1) and ppd(0) . . . ppd(P-1) expressing that
the days range from 0 to D-1, and the periods per day range from 0 to P-1.

For H1, the rule in Line 6, for every course C having N lectures, generates a set of
candidate assignments subject to the condition that there are exactly N lectures such that
assigned(C,D,P) holds.

For H2, the rule in Line 9 enforces that, for every teacher T, day D, and period P, there is
at most one course C taught by T such that assigned(C,D,P) holds. In detail, if t(T), d(D),
and ppd(P) hold, this integrity constraint tells us that the at-most-one constraint represented
by ‘{ assigned(C,D,P) : course(C,T,_,_,_,_) } 1’ must be true as well in order to
prevent its body from being satisfied. In the similar way, the rule in Line 10 enforces that,
for every curriculum Cu, day D, and period P, there is at most one course C that belongs to
Cu such that assigned(C,D,P) holds.

For H3, if assigned(C,D,P) holds, the rule in Line 13 generates a solution candidate
subject to the condition that there is exactly one room R such that assigned(C,R,D,P)
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1 % S1.RoomCapacity
2 penalty("RoomCapacity",assigned(C,R,D,P),(N-Cap)*weight_of_s1) :-
3 assigned(C,R,D,P), course(C,_,_,_,N,_), room(R,Cap,_), N > Cap.

5 % S2.MinWorkingDays
6 working_day(C,D) :- assigned(C,D,P).
7 penalty("MinWorkingDays",course(C,MWD,N),(MWD-N)*weight_of_s2) :-
8 course(C,_,_,MWD,_,_), N = { working_day(C,D) }, N < MWD.

10 % S3.IsolatedLectures
11 scheduled_curricula(Cu,D,P) :- assigned(C,D,P), curricula(Cu,C).
12 penalty("IsolatedLectures",isolated_lectures(Cu,D,P),weight_of_s3) :-
13 scheduled_curricula(Cu,D,P),
14 not scheduled_curricula(Cu,D,P-1), not scheduled_curricula(Cu,D,P+1).

16 % S4.Windows
17 penalty("Windows",windows(Cu,D,P1,P2),(P2-P1-1)*weight_of_s4) :-
18 scheduled_curricula(Cu,D,P1), scheduled_curricula(Cu,D,P2), P1 + 1 < P2,
19 not scheduled_curricula(Cu,D,P) : P = P1+1..P2-1.

21 % S5.RoomStability
22 using_room(C,R) :- assigned(C,R,D,P).
23 penalty("RoomStability",using_room(C,N),(N-1)*weight_of_s5) :-
24 c(C), N = { using_room(C,R) }, N > 1.

26 % S6.StudentMinMaxLoad
27 penalty("StudentMinMaxLoad",student_min_max_load(Cu,D,N,many),(N-Max)*weight_of_s6) :-
28 cu(Cu), d(D), N = { scheduled_curricula(Cu,D,P) },
29 min_max_daily_lectures(Min,Max), N > Max.
30 penalty("StudentMinMaxLoad",student_min_max_load(Cu,D,N,few),(Min-N)*weight_of_s6) :-
31 cu(Cu), d(D), N = { scheduled_curricula(Cu,D,P) },
32 min_max_daily_lectures(Min,Max), 0 < N, N < Min.

34 % S7.TravelDistance
35 penalty("TravelDistance",instantaneous_move(Cu,C1,C2,D,P,P+1),weight_of_s7) :-
36 curricula(Cu,C1), curricula(Cu,C2), assigned(C1,R1,D,P), assigned(C2,R2,D,P+1),
37 room(R1,_,BLG1), room(R2,_,BLG2), BLG1 != BLG2.

39 % S8.RoomSuitability
40 penalty("RoomSuitability",assigned(C,R,D,P),weight_of_s8) :-
41 assigned(C,R,D,P), room_constraint(C,R).

43 % S9.DoubleLectures
44 penalty("DoubleLectures",non_grouped_lecture(C,R,D,P),weight_of_s9) :-
45 course(C,_,_,_,_,1), d(D), 2 { assigned(C,D,PPD) },
46 assigned(C,R,D,P), not assigned(C,R,D,P-1), not assigned(C,R,D,P+1).

48 % Objective function
49 #minimize { P,C,S : penalty(S,C,P) }.

Listing 8 Encoding of soft constraints and objective function

holds. The rule in Line 14 enforces that, for every room R, day D, and period P, there is at
most one course C such that assigned(C,R,D,P) holds.

For H4, the rule in Line 17 enforces that a course C is not assigned at a period P on a
day D if unavailability_constraint(C,D,P) holds, since the conjunction of literals in
its body must not hold.

The rule in Line 20 expresses that for each timeslot (D and P) the number of lectures
assigned must be less than or equal to the number of rooms (N). This rule is an implied con-
straint and can be omitted, but we keep it as an additional rule for performance improvement
of some problem instances.
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The teaspoon encoding of soft constraints (S1–S9) and an objective function is shown
in Listing 8. We introduce a penalty atom penalty(Si,V,C), which is intended to express
that a constraint Si is violated by V and its penalty cost is C. The constants denoted by
weight_of_* indicate the weights associated with each soft constraint defined in Table 1.
Once again, each soft constraint Si is compactly expressed by just one or two ASP rules in
which the head is of the form penalty(Si,V,C), and a violation V and its penalty cost C
are detected and calculated respectively in the body. That is, for each violation V of Si, an
atom penalty(Si,V,C) is generated. Optimal solutions can be obtained by minimizing the
number of penalty atoms in Line 49.

We explain S1–S3 that compose the basic UD1 formulation. For S1, the rule in Line 2–
3, for every course C that N students attend and room R that has a seating capacity of Cap,
generates a penalty atom with the cost of (N-Cap)*weight_of_s1 if a lecture of course C

is assigned to the room R whose seating capacity (Cap) is less than the number of attendees
(N).

For S2, the rule in Line 6 generates an auxiliary atom working_day(C,D) which ex-
presses that a course C is given on a day D, if assigned(C,D,P) holds. The rule in Line
7–8, for every course C whose lectures must be spread into MWD days, generates a penalty
atom with the cost of (MWD-N)*weight_of_s2, if the number of days (N) in which a course
C spread is less than MWD.

For S3, the rule in Line 11 generates an auxiliary atom scheduled_curricula(Cu,D,P)

which expresses that a curriculum Cu is scheduled at a period P on a day D, if assigned(C,D,P)
holds. The rule in Line 12–14, for every curriculum Cu, day D, and period P, generates a
penalty atom with the cost of weight_of_s3, if a curriculum Cu is scheduled at a period P

on a day D, but not at both P-1 and P+1 within the same day D.

5 Extensions

We here extend the basic teaspoon encoding presented in Section 4 in view of enhancing the
scalability and flexibility of solving (multi-criteria) CB-CTT problems. For scalability, we
describe a collection of optimized teaspoon encodings for soft constraints in Section 5.1. For
flexibility, we present significant extensions for easy composition of different formulations
in Section 5.2 as well as for multi-criteria optimization based on lexicographic ordering in
Section 5.3. And finally, we discuss the possibility of multi-shot ASP solving with teaspoon
and illustrate a neighborhood search using (a part of) legacy timetables in Section 5.4.

5.1 Optimized encodings for soft constraints

The basic encoding in Section 4 precisely reflects the definition of CB-CTT constraints, but
fails to scale to large instances in complex formulations like UD5 due to expensive ground-
ing. To solve this practical issue, we present optimized encodings for the soft constraints
S2. MinWorkingDays, S4. Windows, S6. StudentMinMaxLoad, and S7. TravelDistance.

For S7, the rule in Line 35–37 of Listing 8 generates a penalty atom with the constant
cost of weight_of_s7 if both assigned(C1,R1,D,P) and assigned(C2,R2,D,P+1) hold
for two courses C1 and C2 that belong to the same curriculum Cu, day D, and period P, and
rooms R1 and R2 located in different buildings. This rule is very expensive when grounding
due to its combinatorial blow-up caused by many variables. This issue can be improved by
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1 % S7.TravelDistance
2 scheduled_curricula(Cu,B,D,P) :- assigned(C,R,D,P), curricula(Cu,C), room(R,_,B).
3 penalty("TravelDistance",instantaneous_move(Cu,D,P,P+1),weight_of_s7) :-
4 scheduled_curricula(Cu,BLG1,D,P), scheduled_curricula(Cu,BLG2,D,P+1), BLG1 != BLG2.

6 % S7.TravelDistance
7 penalty("TravelDistance",instantaneous_move(Cu,D,P,P+1),weight_of_s7) :-
8 cu(Cu), d(D), ppd(P), ppd(P+1),
9 #count { B : assigned(C,R,D,(P;P+1)), curricula(Cu,C), room(R,_,B) } > 1.

11 % S4.Windows
12 dp(1;-1).
13 scheduled_curricula(Cu,D,P) :- assigned(C,D,P), curricula(Cu,C).
14 scheduled_curricula_chain(Cu,D,P, DP) :- scheduled_curricula(Cu,D,P), ppd(P+DP), dp(DP).
15 scheduled_curricula_chain(Cu,D,P+DP,DP) :- scheduled_curricula_chain(Cu,D,P,DP), ppd(P+DP).
16 penalty("Windows",windows(Cu,D,P),weight_of_s4) :-
17 scheduled_curricula_chain(Cu,D,P,-1),
18 not scheduled_curricula(Cu,D,P),
19 scheduled_curricula_chain(Cu,D,P,1).

21 % S2.MinWorkingDays
22 working_day(C,D) :- assigned(C,D,P).
23 wd_counter(C,M,-1,0) :- course(C,_,_,M,_,_).
24 wd_counter(C,M,D,N+1) :- wd_counter(C,M,D-1,N), working_day(C,D), N+1 <= M.
25 wd_counter(C,M,D,N+0) :- wd_counter(C,M,D-1,N), d(D), N <= M.
26 penalty("MinWorkingDays",course(C,N),weight_of_s2) :-
27 course(C,_,_,M,_,_), N = 1..M, days(D), not wd_counter(C,M,D-1,N).

29 % S6.StudentMinMaxLoad
30 abc(M,min) :- min_max_daily_lectures(M,_).
31 abc(M,max) :- min_max_daily_lectures(_,Max), periods_per_day(Ppd), M=Ppd-Max.
32 abc(Cu,D,P) :- assigned(C,D,P), curricula(Cu,C).
33 abc_counter(Cu,D,-1, 0,min) :- cu(Cu), d(D).
34 abc_counter(Cu,D,-1, 0,max) :- cu(Cu), d(D).
35 abc_counter(Cu,D, P,N+1,min) :-
36 abc_counter(Cu,D,P-1,N,min), abc(Cu,D,P), N+1 <= M, abc(M,min).
37 abc_counter(Cu,D, P,N+1,max) :-
38 abc_counter(Cu,D,P-1,N,max), ppd(P), not abc(Cu,D,P), N+1 <= M, abc(M,max).
39 abc_counter(Cu,D, P,N+0,MM) :-
40 abc_counter(Cu,D,P-1,N,MM), ppd(P), N <= M, abc(M,MM).
41 abc_counter(Cu,D,min) :- abc(Cu,D,P).
42 abc_counter(Cu,D,max) :- cu(Cu), d(D).
43 penalty("StudentMinMaxLoad",student_min_max_load(Cu,D,N),weight_of_s6) :-
44 cu(Cu), d(D), N = 1..M, periods_per_day(P), abc(M,MM), abc_counter(Cu,D,MM),
45 not abc_counter(Cu,D,P-1,N,MM).

Listing 9 A collection of optimized encodings for S2, S4, S6, and S7

taking into account that for every curriculum Cu, room R, day D, and period P, there is at
most one course C that belongs to Cu such that assigned(C,R,D,P) holds.

In view of this, an optimized encoding of S7 is shown in Line 2–4 of Listing 9. The dif-
ference from the basic one is that a new predicate scheduled_curricula/4 is introduced.
The atom scheduled_curricula(Cu,B,D,P) is intended to express that a curriculum Cu is
scheduled in a building B at a period P on a day D. The rule in Line 2 generates an atom
scheduled_curricula(Cu,B,D,P) if assigned(C,R,D,P) holds for every curriculum Cu,
course C that belongs to Cu, room R located in a building B, day D, and period P. The rule in
Line 3–4 produces a penalty atom with the constant cost of weight_of_s7 for every curricu-
lum Cu, day D, and period P, if a curriculum Cu is scheduled in different buildings at period
P and P+1 within the same day D. Another optimized encoding of S7 is shown in Line 7–
9 of Listing 9. The difference from the other two is that it utilizes cardinality constraints
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1 % S8.RoomSuitability (soft constraint)
2 penalty("RoomSuitability",assigned(C,R,D,P),W,Prior) :-
3 assigned(C,R,D,P), room_constraint(C,R), soft_constraint("RoomSuitability",W,Prior).

5 % S8.RoomSuitability (hard constraint)
6 :- assigned(C,R,D,P), room_constraint(C,R), hard_constraint("RoomSuitability").

8 % H4.Availability (soft constraint)
9 penalty("Availability",assigned(C,D,P),W,Prior) :-

10 assigned(C,D,P), unavailability_constraint(C,D,P),
11 soft_constraint("Availability",W,Prior).

13 % H4.Availability (hard constraint)
14 :- assigned(C,D,P), unavailability_constraint(C,D,P), hard_constraint("Availability").

Listing 10 Extended encoding of S8 and H4

soft_constraint("RoomCapacity", 1, 0). soft_constraint("MinWorkingDays", 1, 0).
soft_constraint("Windows", 1, 0). soft_constraint("StudentMinMaxLoad", 1, 0).
hard_constraint("RoomSuitability"). soft_constraint("DoubleLectures", 1, 0).

Listing 11 The UD4 formulation

for counting the number of buildings which are used by two lectures belonging the same
curriculum in two adjacent periods within the same day.

An optimized encoding of S4 is shown in Line 12–19 of Listing 9. The newly intro-
duced atom scheduled_curricula_chain(Cu,D,P,DP) is intended to express that there
is a course in curriculum Cu scheduled before a period P in a day D if DP = -1, or else if
DP = 1 the course in Cu is scheduled after P. The rule in Line 16–19 generates a penalty
atom with the constant cost of weight_of_s4 for every curriculum Cu, day D, and period P,
if there is a time window P for Cu in a day D.

In the basic encoding, the soft constraints S2 and S6 are expressed by using ASP’s car-
dinality constraints. These rules can be optimized by using state-of-the-art SAT encoding
techniques for Boolean cardinality constraints. We used Sinz’s sequential counter encod-
ing (Sinz, 2005), and the resulting encodings are shown in Line 22–27 for S2 and Line 30–
45 for S6. For S2, the atom wd counter(C,M,D,N) is intended to express that the number
of lectures scheduled from day 0 to D for a course C whose lectures must be spread into
M days is greater than or equal to N. The rule in Line 26–27 generates a penalty atom with
the constant cost of weight_of_s2 for every course C whose lectures must be spread into M

days, if the number of lectures for C scheduled in the whole days is less than M. The basic
rules of S6 is optimized in a similar way.

5.2 Easy composition of different formulations

Problem modeling is particularly challenging in the real-world course timetabling, since
different institutions have their own needs and policies, and formulations (sets of constraints)
may change from institution to institution and from time to time (McCollum, 2007). In this
view, we present a design for easy composition of different formulations.

In order to easily activate or deactivate each soft constraint and switch it from soft
to hard, we introduce new predicates soft_constraint/3 and hard_constraint/1. The
atom soft constraint(Si,Wi,Li) is intended to express that Si is a soft constraint to be
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soft_constraint("RoomCapacity", 1, 0). soft_constraint("MinWorkingDays", 1, 0).
soft_constraint("IsolatedLectures", 1, 0). soft_constraint("Windows", 1, 0).
soft_constraint("RoomStability", 1, 0). soft_constraint("StudentMinMaxLoad", 1, 0).
soft_constraint("TravelDistance", 1, 0). soft_constraint("RoomSuitability", 1, 0).
soft_constraint("DoubleLectures", 1, 0).

Listing 12 Formulation consisting of all soft constraints (S1–S9) with the weights of all 1s

#minimize { P@L,C,S : penalty(S,C,P,L) }.

Listing 13 Objective function with priority levels for lexicographic optimization

soft_constraint("RoomCapacity", 1, 6). soft_constraint("Windows", 2, 5).
soft_constraint("MinWorkingDays", 5, 4). soft_constraint("TravelDistance", 2, 3).
soft_constraint("StudentMinMaxLoad", 2, 2). soft_constraint("IsolatedLectures", 1, 1).

Listing 14 The UD5 formulation with different priority levels

activated. Wi and Li respectively represent the weight and the priority level associated with
Si. The priority level Li is used for lexicographic optimization explained later. The atom
hard constraint(Si) is intended to express that Si is activated as a hard constraint. We
refer to these atoms as constraint atoms.

Listing 10 shows extended encodings of S8.RoomSuitability and H4.Availability with
constraint atoms. For S8, the rule in Line 2–3 is the same as before except that an in-
stance of soft_constraint/3 is added. Note that the penalty atom in its head is extended
to penalty/4 with a priority level Li. The integrity constraint in Line 6 expresses S8 as a
hard constraint by dropping the penalty atom in the head in Line 2–3. On the other hand, it
is also possible to switch constraints in the opposite direction, that is, from hard to soft. For
example, to define H4 as a soft constraint, we only have to add a penalty atom to the head of
the rule in Line 17 of Listing 7. An extended encoding of H4 with constraint atoms is shown
in Line 8–14 of Listing 10. The other constraints can be extended in a similar way.

The idea of constraint atoms allows for easy composition of different formulations, since
any combination of constraints can be represented as a set of ASP facts. Consequently, it
enables a timetable keeper to experiment with different formulations at a purely declarative
level. For example, ASP facts representing the UD4 formulation are shown in Listing 11.
And also, we show exhaustive formulation consisting of all soft constraints (S1–S9) with
the weights of all set to 1 in Listing 126. These two examples represent single-objective
weighted-sum formulations, since the priority levels are all 0.

5.3 Multi-criteria optimization based on lexicographic ordering

A well-known multi-criteria optimization strategy called lexicographic ordering (Marler and
Arora, 2004) has been implemented in clingo. It enables us to optimize criteria in a lexico-
graphic order based on their priorities. We here extend the teaspoon encoding for supporting
such multi-criteria optimization.

6 Surprisingly, the teaspoon system was able to find an optimal solution of comp11 in this formulation.



16 Mutsunori Banbara et al.

This extension can be done by adding priority levels to the #minimize function, as can
be seen in Listing 13. The variable L on the right-hand side of @ stands for a priority level,
where greater levels are more significant than smaller ones. Usually, solutions can be repre-
sented in the form of a utility vector (p1, p2, . . . , pn), where each pi is a value representing
the penalty of a soft constraint.

Such lexicographic optimization is quite useful, since it enables a timetable keeper to
experiment with different (pre-defined) priority levels of soft constraints. On the other hand,
the optimality of multi-criteria optimization with lexicographic ordering does not always
coincide with that of single-objective weighted-sum one. However, optimal solutions as well
as better vectors obtained by lexicographic optimization can often correspond to feasible
ones with smaller penalty in the original single-objective setting.

For illustration, Listing 14 shows an UD5 formulation with lexicographic optimization
in which the priority levels of soft constraints are ordered as S1 > S4 > S2 > S7 > S6 > S3.
In this case, the optimal solution of the ITC-2007 instance comp13 is (S1,S4,S2,S7,S6,S3) =
(0,0,0,0,112,35). This optimum corresponds to a smaller bound 112+ 35 = 147 than the
best known one in the CB-CTT portal obtained by single-objective weighted-sum optimiza-
tion. A more detailed analysis of lexicographic optimization is shown in Section 6.3.

5.4 Discussion towards multi-shot ASP solving with teaspoon

Suppose that a (part of) legacy timetable is represented as a set of ASP facts of predicate
legacy/1. ASP-based neighborhood search is implemented by only one rule:

#heuristic assigned(C,R,D,P) : legacy(assigned(C,R,D,P)). [1,true]

The special statement #heuristic is used to express various modifications to clingo’s
heuristic treatment of atoms. This rule expresses a preference for both making a decision
on assigned(C,R,D,P) and assigning it to true if legacy(assigned(C,R,D,P)) holds for
every course C, room R, day D, and period P.

Incremental SAT solving has recently been recognized as an important technique for
many problems such as model checking and planning (Eén and Sörensson, 2003). From
an ASP perspective, such multi-shot ASP solving is also available in clingo (Gebser et al,
2015b). It enables us to handle problem specifications which evolve during the reasoning
process, because either data or constraints are added, deleted, or replaced.

For (multi-criteria) CB-CTT solving, multi-shot ASP solving with teaspoon can be
promising. This is because it provides an incremental solving framework for finding op-
timal solutions as well as better bounds, while varying a set of constraints, switching them
from hard to soft, varying the priority level of objectives, and searching neighborhoods by
using a (part of) legacy timetables.

6 The teaspoon System

The teaspoon system accepts a standard input format, viz. ectt (Bonutti et al, 2012). For
this, we implemented a simple converter that provides us with the resulting CB-CTT in-
stance in teaspoon’s fact format. In turn, these facts are combined with the teaspoon en-
coding, which is subsequently solved by the ASP system clingo that returns an assignment
representing a solution to the original CB-CTT instance.
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6.1 Overview of Experiments

Our empirical analysis considers all instances in different formulations (UD1–UD5), which
are publicly available from the CB-CTT portal. The benchmark set ITC-2007 consists of
21 instances denoted by comp*, DDS-2008 of 7 instances by DDS*, Test of 5 instances by
test*, Erlangen of 6 instances by erlangen*, EasyAcademy of 12 instances by EA*, Udine
of 9 instances by Udine*, and the newest addition UUMCAS A131. We ran them on a cluster
of Linux machines equipped with dual Xeon E5520 quad-core 2.26 GHz processors and 48
GB RAM. We imposed a limit of 3 hours and 20GB. We used clingo 5 7 for our experiments.

Since clingo utilizes a variety of techniques and parameters guiding the search, we
explored several configurations. We focused on parameters concerning optimization and
configurations from clingo’s portfolio. Preliminary benchmarks on the ITC-2007 instances
eliminated suboptimal configurations. Furthermore, configurations were only considered if
they had so-called “unique solutions” on the whole benchmark set. A solution for a config-
uration is called unique if there is no other configuration that has a better objective value or
proven optimality for the same value. One configuration was automatically determined by
piclasp 1.2.1, a configurator for clingo based on smac (Hutter et al, 2011). The parameter
space was restricted to optimization related parameters and portfolio configurations. The
ITC-2007 instances served as training set8 and each solver run was limited to 600 seconds.

We determined the following 15 configurations: BB0, BB0-HEU3-RST, BB2, BB2-TR,
Dom5, USC1, USC11, USC11-CR, USC11-JP, USC13, USC13-CR, USC13-HEU3-RST-HD
(LRND), USC3-JP, USC15, USC15-CR which consist of a variety of clingo’s search options:

– BBn: Model-guided branch-and-bound approach traditionally used for optimization in
ASP. The idea is to iteratively produce models of descending cost until the optimal is
found by establishing unsatisfiability of finding a model with lower cost. Parameter n
controls how the cost is step-wise reduced, either strict lexicographically, hierarchically,
exponentially increasing or exponentially decreasing.

– USCn: Core-guided optimization techniques originated in MaxSAT (Biere et al, 2009).
Core-guided approaches rely on successively identifying and relaxing unsatisfiable cores
until a model is obtained. The parameter n indicates what refinements and algorithms are
used, e.g. algorithms oll (Andres et al, 2012), pmres (Narodytska and Bacchus, 2014),
the combination of both with disjoint core preprocessing (Marques-Silva and Planes,
2007) and whether the constraints used to relax an unsatisfiable core are added as im-
plications or equivalences. For n > 8, a technique called stratification (Ansótegui et al,
2013) is enabled. Stratification refines lower bound improving algorithms on handling
weighted instances. The idea is to focus at each iteration on soft constraints with higher
weights by properly restricting the set of rules added to the solving process. The goal is
to faster obtain a better bound without having to prove optimality.

– HEU3: Enables optimization-oriented model and sign heuristic.
– RST: The solver performs a restart after every intermediate model that was found.
– DOM5: Atoms that are used in the optimization statement are preferred as decision

variables in the solving algorithm and the sign heuristic tries to make those atoms true.
The technique used to modify the variables is called domain-specific heuristic and is
presented in (Gebser et al, 2013).

7 We used revision r10140 of the current development branch available at https://potassco.org/.
8 We are aware that the training set is included in the test set. The decision was made since no separate

instance set was available and we wanted to record results for all instances and configurations.
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Table 2 Comparison between different clingo configurations

Configuration Mean rank #Optima #Unsolved #Unique
VBS-ASP 12288.25 125 7 -
Best 14-way configuration 12370.44 125 7 -
Best 13-way configuration 12452.64 125 7 -
Best 12-way configuration 12596.48 125 7 -
Best 11-way configuration 12760.86 125 7 -
Best 10-way configuration 13004.02 125 7 -
Best 9-way configuration 13281.43 125 7 -
Best 8-way configuration 13589.65 125 7 -
Best 7-way configuration 13921.00 125 7 -
Best 6-way configuration 14510.06 125 7 -
Best 5-way configuration 15171.03 125 7 -
Best 4-way configuration 16354.07 122 7 -
Best 3-way configuration 17732.37 122 7 -
Best 2-way configuration 19606.93 122 7 -
USC11-JP 23321.47 122 8 20
USC11 23866.24 119 7 6
BB0-HEU3-RST 23960.18 77 7 23
USC13 24206.02 116 7 3
USC15 24250.30 117 7 2
USC13-CR 24324.16 116 23 5
USC15-CR 24343.91 118 22 4
USC11-CR 24377.86 116 23 3
USC13-HEU3-RST-HD (LRND) 24602.89 115 7 9
BB2-TR 24896.40 79 8 28
USC3-JP 25179.12 125 127 6
BB0 25281.20 73 7 14
USC1 25810.42 118 134 2
BB2 26662.98 78 7 6
Dom5 27310.77 76 160 7

– LRND: Refers to the configuration automatically learned by piclasp. For space reasons,
the configuration is referred to as LRND from here on out.

– CR: Refers to clingo’s configuration crafty that is geared towards crafted problems.
– HD: Refers to clingo’s configuration handy that is geared towards larger problems.
– JP: Refers to clingo’s configuration jumpy that uses more aggressive defaults.
– If neither CR, JP or HD is specified, clingo’s default configuration for ASP problems

tweety is taken. This configuration was determined by piclasp and refined manually. For
more information on clingo’s search configurations, see (Gebser et al, 2015a).

We introduce the notion of k-way configurations. A k-way configuration is a set of k
configurations, chosen from the 15 aforementioned configurations. The result of a k-way
configuration for each instance is the best result among the k configurations in the set. For ex-
ample, {USC1,BB0,USC11} is a 3-way configuration with the best results between USC1,
BB0 and USC11. Intuitively, 1-way configurations are equal to the 15 configurations listed
above and the only 15-way configuration is equal to the virtual best solver, referred to as
VBS-ASP.

6.2 Evaluation of Basic Encoding

At first, we analyze the difference between the configurations using the basic encoding. To
this end, Table 2 contrasts the results obtained from clingo’s different configurations, the
best k-way configurations where 2 ≤ k ≤ 14, as well as the virtual best configuration VBS-
ASP. The configurations are ordered by the mean rank that was calculated as suggested in
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Table 3 Best k-way configurations

XXXXXXXConfiguration
k 2 3 4 5 6 7 8 9 10 11 12 13 14 #Included in best

BB0-HEU3-RST × × × × × × × × × × × × × 13
USC11-JP × × × × × × × × × × × × × 13
BB2-TR × × × × × × × × × × × × 12
USC13-CR × × × × × × × × × × × 11
USC11 × × × × × × × × × × 10
BB0 × × × × × × × × × 9
LRND × × × × × × × × 8
USC3-JP × × × × × × × 7
Dom5 × × × × × × 6
BB2 × × × × × 5
USC15-CR × × × × 4
USC13 × × × 3
USC11-CR × × 2
USC15 × 1

the ITC-2007 9. Since there was no distance to feasibility available, it was assumed to be
the same for all configurations and instances. Table 2 also displays the number of optimal
solutions, unsolved instances and unique solutions for each configuration.

The highest-ranked single (viz. 1-way) configuration was USC11-JP, though USC3-JP
obtained the highest number of optimal solutions among the single configurations. Overall,
core-guided strategies with stratification (USCn with n> 8) seem to provide a good trade-off
between providing intermediate solutions with good upper bounds and proving optimality.
The only model-driven configuration among the top single configuration is BB0-HEU3-RST.
The optimization-tailored heuristics and frequent restarts seem to improve convergence of
the objective function value, but do not help in proving optimality, since, despite its high
rank, the configuration found the third least optimal solutions.

No smaller best j-way configuration was able to beat or be as good as a best i-way con-
figuration where j < i. Adding more configurations continuously improves the mean rank
and the total number of 125 optimal solutions is reached with combining five configurations.
Since the mean rank takes into account the individual ranking of the objective value for each
instance, the large distance in mean rank between the best single configuration (USC11-
JP) and the best virtual configuration (VBS-ASP) indicates that the different instances are
sensitive to different configurations.

Table 3 shows which single configurations are included in the best k-way configurations.
Each column represents one best k-way configuration and each row a single configuration.
A × indicates that the configuration is included in the best k-way configuration in that row.
The last column shows how many times the configuration in that row was in a best k-way
configuration. The rows are ordered in descending order by the times the configuration in
the row was included in a best k-way configuration. The only single configuration that is not
contained in any k-way configuration is USC1. For example, the best 5-way configuration is
{BB0-HEU3-RST,USC11-JP,BB2-TR,USC13-CR,USC11}.

All best k-way configurations are contained in best k + 1-way configurations for all
2 ≤ k ≤ 13 in the table. So increasing k boils down to adding a configuration that provides
upper bounds improving the ranking in an optimal way. USC11-JP and BB0-HEU3-RST are
included in all best k-way configurations. This correlates with the individual ranking of the
single configurations, where USC11-JP placed first and BB0-HEU3-RST third respectively.
However, the next configuration added, viz. BB2-TR, has the most unique solutions but is

9 http://www.cs.qub.ac.uk/itc2007/index_files/ordering.htm

http://www.cs.qub.ac.uk/itc2007/index_files/ordering.htm
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individually ranked 10th. Unique solutions provide a definite improvement of the mean rank,
because it is guaranteed to improve the rank of at least a number of instances equal to the
number of unique solutions. Though, the correlation of the order of configurations added
and number of unique solutions is not exact. A new configuration that adds upper bounds
for an instance that tie for first place also improve the overall mean rank. Other examples
of this observation are Dom5, ranked last but included in 6 best k-way configurations, and
USC15, ranked 5th but only in one best k-way configuration. Dom5 has seven and USC15
two unique solutions.

Information about the best k-way configurations can be used to optimally configure a
multi-threaded portfolio configuration whenever k threads are available. The results show
that each instance is configuration-sensitive, and combining configurations in an optimal
way improves the results significantly.

The time in seconds of finding optimal solutions for each combination of instance and
formulation with VBS-ASP is shown in Table 4. After the individual times for each for-
mulation, the next row shows the number of optimal solutions and the average time for
the preceding formulation. The table below shows the overall number of optimal solution
and the average time for all combinations. The overall average of 225.82 seconds is low
compared to the time limit of 3 hours. With increasing formulation number, the number of
optimal solutions decreases and, except for UD4, the average time increases.

We can observe from Table 2 that seven instances remained unsolved via the basic en-
coding for all configurations. Among them, the six erlangen instances in the UD5 formu-
lation could not be grounded within a day and solving was therefore not possible. The new
instances UUMCAS A131 in UD5 exceeded the memory limit of 20GB while solving.

6.3 Evaluation of Optimized and Extended Encodings

We evaluate the optimized encoding from Section 5.1 and the extended encoding using
lexicographic optimization in Section 5.3. We utilize all 61 instances in the UD5 formulation
as benchmark set. This is because UD5 is the hardest formulation and includes revised soft
constraints: S2,S4,S6 and S7. To showcase the usefulness of the best k-way configurations,
we use the clingo’s parallel search via multi-threading (Gebser et al, 2015a) and configure 8
threads using the best 8-way configuration. Since 8 cores are available, every thread will be
able to run the instance simultaneously. Grounding and solving respectively were limited to
3 hours and 20GB memory usage10.

Table 5 compares the basic encoding with the optimized encoding. The columns display
in order the mean rank to compare the quality of the solutions, the average grounding time
in seconds (denoted by T), the number of grounding timeouts (denoted by #TO), the number
of optimal solutions, and the number of unsolved instances.

The optimized encoding is able to solve all 61 instances. In contrast, the basic encoding
cannot find any feasible solutions for 11 instances due to the grounding timeouts for 6 and
the solving timeouts for 5. The optimized encoding drastically reduces the grounding time
compared to the basic encoding. While the number of optima obtained is identical, the lower
mean rank shows that the optimized encoding improved upon the objective values obtained
by the basic encoding.

10 As mentioned, modern ASP systems like clingo first translate logic programs (with variables) into equiv-
alent ground (that is, variable-free) programs, and then compute the answer sets of the ground programs. The
former is called grounding, and the latter is called solving.
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Table 4 VBS-ASP : the times of finding optimal solutions

Instance Formulation Time (sec.)
comp02 UD1 2191.82
comp04 UD1 1.00
comp06 UD1 24.43
comp07 UD1 9.66
comp08 UD1 1.48
comp10 UD1 1.43
comp11 UD1 0.24
comp13 UD1 8.72
comp14 UD1 8.90
comp16 UD1 3.30
comp17 UD1 76.88
comp19 UD1 5.72
comp20 UD1 90.86
DDS1 UD1 953.51
DDS2 UD1 0.37
DDS3 UD1 0.19
DDS5 UD1 1.34
DDS6 UD1 1.78
DDS7 UD1 0.27
EA01 UD1 1.90
EA02 UD1 0.45
EA04 UD1 2.60
EA05 UD1 1.60
EA06 UD1 0.51
EA07 UD1 4.23
EA08 UD1 1.42
EA09 UD1 1.51
EA10 UD1 0.39
EA11 UD1 0.38
EA12 UD1 0.48
test2 UD1 1.89
test3 UD1 9.95
toy UD1 0.01
Udine1 UD1 3.44
Udine2 UD1 1.89
Udine3 UD1 1.71
Udine4 UD1 5.02
Udine5 UD1 1.61
Udine6 UD1 1.08
Udine7 UD1 1.0
Udine8 UD1 589.89
Udine9 UD1 2.60
#42 UD1 95.66

Instance Formulation Time (sec.)
comp02 UD2 5457.97
comp04 UD2 1.89
comp06 UD2 113.57
comp07 UD2 369.27
comp08 UD2 2.56
comp10 UD2 29.17
comp11 UD2 0.41
comp13 UD2 21.25
comp14 UD2 15.91
comp16 UD2 8.24
comp17 UD2 515.23
comp19 UD2 26.46
comp20 UD2 92.86
DDS1 UD2 230.39
DDS2 UD2 0.43
DDS3 UD2 0.24
DDS5 UD2 1.81
DDS6 UD2 13.98
DDS7 UD2 0.35
EA01 UD2 2.04
EA02 UD2 0.56
EA04 UD2 2.99
EA05 UD2 1.45
EA06 UD2 0.59
EA07 UD2 4.98
EA08 UD2 1.64
EA09 UD2 2.23
EA10 UD2 0.58
EA11 UD2 0.34
EA12 UD2 0.59
test2 UD2 8.37
toy UD2 0.01
Udine1 UD2 3.24
Udine2 UD2 3.21
Udine3 UD2 5.41
Udine4 UD2 3.56
Udine5 UD2 2.00
Udine6 UD2 1.26
Udine7 UD2 1.64
Udine8 UD2 372.09
Udine9 UD2 2.81
#41 UD2 178.62

Instance Formulation Time (sec.)
comp02 UD3 4123.27
comp04 UD3 1.19
comp06 UD3 2.98
comp07 UD3 16.11
comp08 UD3 5.67
comp09 UD3 267.69
comp10 UD3 1.98
comp11 UD3 0.44
comp14 UD3 1.39
comp16 UD3 1.76
comp17 UD3 2.12
comp18 UD3 2.12
comp20 UD3 137.79
DDS6 UD3 1.52
test2 UD3 0.35
test3 UD3 0.58
test4 UD3 3827.19
toy UD3 0.02
Udine4 UD3 15.65
#19 UD3 442.54
comp04 UD4 2.12
comp06 UD4 48.63
comp07 UD4 38.93
comp08 UD4 15.87
comp10 UD4 7.51
comp11 UD4 0.92
comp14 UD4 7.51
comp16 UD4 5.85
comp17 UD4 688.32
comp20 UD4 3388.42
DDS6 UD4 3.17
test2 UD4 1.46
test3 UD4 2.49
toy UD4 0.02
Udine4 UD4 27.69
#15 UD4 282.59
comp04 UD5 32.62
comp08 UD5 77.70
comp11 UD5 9.55
DDS5 UD5 137.60
test2 UD5 2365.18
test3 UD5 1142.12
toy UD5 0.02
Udine4 UD5 140.63
#8 UD5 488.18

#Optimal solutions Average time (sec.)
#125 225.82

Table 5 Comparison between different encodings for UD5

Encoding Mean rank Grounding #Optima #Unsolved
T (sec.) #TO

optimized 1.43 21 0 9 0
basic 1.57 1121 6 9 11
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Table 6 The benchmark results of lexicographic optimization

Instance Time (sec.) The best utility vector The sum of The best of basic
(S1, S4, S2, S7, S6, S3) utility vector and optimized

comp01 10800.00 (4, 18, 55, 48, 40, 16) 181 19
comp02 10800.00 (0, 0, 10, 34, 138, 49) 231 338
comp03 70.71 (0, 0, 15, 0, 132, 57) 204 238
comp04 7.16 (0, 0, 0, 0, 38, 18) 56 49
comp05 10800.00 (0, 48, 145, 454, 534, 197) 1378 1081
comp06 10800.00 (0, 2, 10, 0, 52, 24) 88 253
comp07 10800.00 (0, 0, 0, 0, 190, 66) 256 603
comp08 16.27 (0, 0, 0, 0, 44, 21) 65 55
comp09 529.40 (0, 0, 20, 0, 122, 54) 196 215
comp10 10800.00 (0, 0, 0, 0, 54, 19) 73 285
comp11 0.85 (0, 0, 0, 0, 0, 0) 0 0
comp12 10800.00 (0, 0, 80, 838, 674, 304) 1896 1135
comp13 4824.58 (0, 0, 0, 0, 112, 35) 147 276
comp14 1280.85 (0, 0, 0, 0, 56, 28) 84 67
comp15 3027.78 (0, 0, 15, 48, 134, 57) 254 379
comp16 10800.00 (0, 0, 0, 120, 228, 90) 438 784
comp17 10800.00 (0, 0, 0, 80, 190, 82) 352 391
comp18 10800.00 (0, 0, 5, 0, 228, 109) 342 228
comp19 10800.00 (0, 0, 10, 42, 216, 79) 347 283
comp20 10800.00 (0, 0, 0, 420, 208, 76) 704 1098
comp21 1342.53 (0, 0, 10, 0, 110, 46) 166 215
DDS1 10800.00 (0, 1640, 135, 1618, 976, 293) 4662 4912
DDS2 10800.00 (0, 26, 0, 24, 96, 4) 150 165
DDS3 10800.00 (0, 0, 0, 0, 22, 0) 22 22
DDS4 10800.00 (15, 2362, 25, 1030, 672, 673) 4777 2384
DDS5 66.13 (0, 0, 0, 0, 88, 2) 90 76
DDS6 10800.00 (0, 0, 0, 258, 178, 73) 509 864
DDS7 10800.00 (0, 0, 0, 0, 64, 2) 66 218
EA01 10800.00 (0, 0, 45, 62, 180, 26) 313 645
EA02 10800.00 (0, 0, 5, 26, 132, 3) 166 487
EA03 10800.00 (0, 0, 10, 128, 470, 53) 661 1750
EA04 10800.00 (0, 0, 0, 0, 18, 0) 18 18
EA05 10800.00 (0, 0, 0, 0, 14, 0) 14 14
EA06 10800.00 (0, 0, 10, 64, 182, 7) 263 479
EA07 10800.00 (0, 0, 0, 0, 490, 21) 511 1681
EA08 10800.00 (0, 0, 0, 0, 40, 0) 40 40
EA09 10800.00 (0, 0, 0, 0, 46, 3) 49 48
EA10 10800.00 (0, 0, 0, 0, 228, 17) 245 298
EA11 10800.00 (0, 0, 0, 0, 40, 0) 40 73
EA12 10800.00 (0, 0, 0, 0, 26, 2) 28 40
erlangen2011 2 10800.00 (0, 0, 396, 165, 8052, 3740) 12353 17034
erlangen2012 1 10800.00 (0, 0, 6042, 70, 14938, 10413) 31463 28236
erlangen2012 2 10800.00 (0, 0, 11066, 75, 14792, 12029) 37962 37103
erlangen2013 1 10800.00 (0, 0, 6176, 75, 13724, 9472) 29447 28997
erlangen2013 2 10800.00 (0, 0, 7320, 80, 13664, 10531) 31595 30533
erlangen2014 1 10800.00 (0, 0, 7374, 95, 12158, 9356) 28983 28655
test1 10800.00 (218, 78, 140, 142, 84, 101) 763 532
test2 245.86 (0, 0, 0, 0, 16, 8) 24 20
test3 102.28 (0, 0, 40, 0, 78, 39) 157 68
test4 10800.00 (0, 0, 35, 0, 164, 79) 278 401
toy 0.18 (0, 0, 0, 0, 0, 0) 0 0
Udine1 10800.00 (0, 0, 0, 0, 220, 14) 234 420
Udine2 10800.00 (0, 0, 0, 0, 104, 27) 131 264
Udine3 562.73 (0, 0, 0, 0, 34, 3) 37 37
Udine4 5.43 (0, 0, 2, 0, 88, 36) 126 106
Udine5 10800.00 (0, 0, 0, 0, 70, 8) 78 99
Udine6 10800.00 (0, 0, 0, 0, 36, 0) 36 41
Udine7 10800.00 (0, 0, 0, 0, 64, 0) 64 72
Udine8 10800.00 (0, 0, 0, 0, 132, 38) 170 172
Udine9 10800.00 (0, 0, 0, 15, 38, 3) 56 86
UUMCAS A131 10800.00 (0, 7844, 0, 5108, 5414, 1333) 19699 19930
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Next, we employ multi-criteria optimization based on lexicographic ordering of the soft
constraints as described in Section 5.3. In our experiment, the soft constraints of the UD5
formulation are ordered as seen in Listing 14, viz. S1 > S4 > S2 > S7 > S6 > S3. We use the
optimized version of the soft constraints S2,S4,S6 and S7.

Table 6 shows the benchmark results of lexicographic optimization. The columns display
in order the solving time in seconds, the best utility vector of objective values which are
ordered by priority levels, the sum of the vector constituting the single-objective point of
view, and the best bounds obtained from the basic and optimized encodings with the single-
objective weighted-sum optimization. The solving times of instances for which we were
able to find the optimal vectors are highlighted in bold. The better bounds of the last two
columns (viz. the single-objective case) are also highlighted.

The results show that teaspoon is capable of efficiently solving the multi-criteria op-
timization problem. It manages to find 15 optimal vectors. Furthermore, it obtains higher
quality single-objective solutions for 33 instances. Note that the optimality of lexicographic
optimization does not always entail that of the single-objective case, as can be seen for the
instance comp04.

6.4 Comparison with other approaches

We compare the performance of teaspoon with other approaches. Table 7 11 contrasts the
best results of teaspoon including optimized encoding and lexicographic optimization, with
the best known ones on the CB-CTT web portal 12 The symbols ‘>’ and ‘=’ indicate that
teaspoon produced improved and the same bounds respectively, compared to the previous
best known bounds. If followed by a superscript ‘∗’, these symbols indicate that teaspoon
proved the optimality of the obtained bounds. That is, the symbol “>∗” indicates that we
found and proved a new optimal solution. The symbol ‘n.a’ indicates that the result was not
available on the web before.

The basic encoding succeeded either in improving the bounds or producing the same
bounds for 172 combinations (56.4% in the total), compared with the previous best known
bounds. More precisely, the basic encoding was able to improve the bounds for 42 combi-
nations and to prove that 15 of them are optimal. That is, we found and proved new optimal
solutions for 15 combinations. It was also able to produce the same bounds for 130 combi-
nations and to prove for the first time that 35 of them are optimal.

The optimized encoding produced one more new optimal solution, provided 7 better
bounds, and produced the same bounds for 4 more instances. Furthermore, teaspoon was
able to produce upper bounds for very large instances in the category erlangen with every
formulation, and 24 of them were unsolvable before. Additionally, teaspoon was able to
improve the bounds of 4 instances and achieve the same bound for one instance via lexico-
graphic optimization.

Overall, teaspoon managed to either improve or reproduce the best known bounds for
182 combinations (59.7% in the total). In detail, teaspoon provided 54 better bounds, 16
new optima, and 128 same bounds, 35 of which were proven optimal for the first time.

Finally, we briefly compare the new results with our previous work (Banbara et al, 2013).
The 185 benchmark combinations in (Banbara et al, 2013) were a subset of ones in Table 7,

11 Among the six instances of erlangen, erlangen2011_2, erlangen2012_1, erlangen2012_2, and
erlangen2013_1 have been changed since 2014 due to the crush of the CB-CTT portal. We used new
version of these instances in Table 7. Note that our previous works (Banbara et al, 2013, 2016) used old ones.

12 http://tabu.diegm.uniud.it/ctt/ as of July 20 2017

http://tabu.diegm.uniud.it/ctt/
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Table 7 Comparison of teaspoon with other approaches

Instance
UD1 UD2 UD3 UD4 UD5

Best tea- Best tea- Best tea- Best tea- Best tea-
known spoon known spoon known spoon known spoon known spoon

comp01 4 = 4 5 = 5 8 = 8 6 9 11 19
comp02 12 =∗ 12 24 =∗ 24 12 =∗ 12 26 55 130 231
comp03 38 53 64 109 25 47 362 405 142 204
comp04 18 = 18 35 = 35 2 =∗ 2 13 =∗ 13 59 >∗ 49
comp05 219 504 284 624 264 556 260 459 570 1081
comp06 14 =∗ 14 27 = 27 8 =∗ 8 15 >∗ 9 85 88
comp07 3 = 3 6 = 6 0 = 0 3 =∗ 3 42 256
comp08 19 = 19 37 = 37 2 =∗ 2 15 =∗ 15 62 >∗ 55
comp09 54 63 96 169 8 =∗ 8 38 50 150 196
comp10 2 = 2 4 = 4 0 = 0 3 =∗ 3 72 73
comp11 0 = 0 0 = 0 0 = 0 0 = 0 0 = 0
comp12 239 343 294 456 51 114 99 388 483 1135
comp13 32 >∗ 31 59 = 59 22 50 41 111 148 > 147
comp14 27 =∗ 27 51 = 51 0 = 0 16 >∗ 14 95 > ∗ 67
comp15 38 53 62 109 16 22 30 68 176 254
comp16 11 =∗ 11 18 = 18 4 =∗ 4 7 =∗ 7 96 438
comp17 30 =∗ 30 56 = 56 12 =∗ 12 26 >∗ 21 155 352
comp18 34 48 61 81 0 = 0 27 46 137 228
comp19 32 >∗ 29 57 = 57 24 32 32 82 125 283
comp20 2 = 2 4 = 4 0 = 0 9 >∗ 3 124 704
comp21 43 94 74 124 6 = 6 36 76 151 166
DDS1 38 =∗ 38 48 = 48 2393 6036 2278 = 2278 1831 4662
DDS2 0 = 0 0 = 0 120 379 76 139 64 150
DDS3 0 = 0 0 = 0 22 = 22 11 = 11 22 = 22
DDS4 16 19 17 33 54 912 124 1825 96 2384
DDS5 0 = 0 0 = 0 54 117 163 488 88 >∗ 76
DDS6 0 = 0 0 = 0 0 = 0 0 = 0 96 509
DDS7 0 = 0 0 = 0 30 408 21 506 52 66
EA01 55 =∗ 55 65 =∗ 65 102 110 67 88 196 313
EA02 0 = 0 0 = 0 96 263 41 262 128 166
EA03 1 = 1 2 = 2 50 234 6936 > 816 90 661
EA04 0 = 0 0 = 0 18 21 9 695 18 = 18
EA05 0 = 0 0 = 0 14 = 14 7 8 14 = 14
EA06 5 =∗ 5 5 =∗ 5 42 156 27 336 99 263
EA07 0 = 0 0 = 0 206 1822 3884 > 1122 205 511
EA08 0 = 0 0 = 0 40 48 20 82 40 = 40
EA09 2 =∗ 2 4 =∗ 4 40 = 40 22 27 48 = 48
EA10 0 = 0 0 = 0 4 141 19 573 93 245
EA11 0 = 0 0 = 0 36 52 19 22 45 > 40
EA12 2 =∗ 2 4 =∗ 4 22 38 12 24 27 28
erlangen2011 2 n.a > 3909 4670 11167 n.a > 12790 n.a > 6097 n.a > 12353
erlangen2012 1 n.a > 7207 7862 12563 n.a > 18875 n.a > 14212 n.a > 28236
erlangen2012 2 n.a > 12140 8813 23817 n.a > 29169 n.a > 18741 n.a > 37103
erlangen2013 1 n.a > 9415 7359 17730 n.a > 20192 n.a > 8201 n.a > 28997
erlangen2013 2 n.a > 9901 8150 19839 n.a > 23285 n.a > 12682 n.a > 30533
erlangen2014 1 n.a > 9205 5981 18395 n.a > 20286 n.a > 8048 n.a > 28655
test1 212 328 224 404 200 299 208 413 232 532
test2 8 = 8 16 = 16 0 = 0 4 =∗ 4 20 =∗ 20
test3 35 = 35 67 113 18 =∗ 18 18 >∗ 17 97 >∗ 68
test4 27 91 73 156 12 >∗ 6 33 37 166 278
toy 0 = 0 0 = 0 0 = 0 0 = 0 0 = 0
Udine1 0 = 0 0 = 0 128 426 64 427 138 234
Udine2 4 = 4 8 =∗ 8 34 322 30 320 81 131
Udine3 0 = 0 0 = 0 24 88 19 67 54 >∗ 37
Udine4 35 = 35 64 = 64 24 =∗ 24 31 =∗ 31 108 >∗ 106
Udine5 0 = 0 0 = 0 44 338 23 145 47 78
Udine6 0 = 0 0 = 0 36 76 18 50 38 > 36
Udine7 0 = 0 0 = 0 64 94 32 62 64 = 64
Udine8 16 =∗ 16 31 >∗ 29 42 297 31 149 88 170
Udine9 18 = 18 21 =∗ 21 28 62 23 91 70 > 56
UUMCAS A131 n.a > 776 708 > 274 n.a > 28088 n.a > 10955 n.a > 19699



teaspoon: Solving the Curriculum-Based Course Timetabling Problems with ASP 25

penalty("ManhattanDistance",assigned(C,R,D,P),W,Prior) :-
legacy(assigned(C,R,D,P)),
not assigned(C,R,D,P),
change_constraint("ManhattanDistance",W,Prior).

Listing 15 ASP Encoding of the Manhattan distance

comprised of the 5 formulations for the categories comp, DDS, test and erlangen with-
out erlangen2013_2 and erlangen2014_1. Note that we ignore 20 combinations of all
erlangen instances for comparison, since these instances are old and different from ones
used in this paper. The teaspoon system was able to obtain the same or better bounds for 153
combinations (92.7% in the total). In detail, teaspoon improves bounds for 94 combinations
and proves optimality for 31 of them. For 59 combinations, the same bounds were produced
and 6 of them were confirmed to be optimal.

7 Multi-objective Course Timetabling considering Minimal Perturbation Problems

The Multi-Objective Discrete Optimization Problem (MODOP; (Ehrgott, 2005)) is a prob-
lem involving multiple objective functions that should be considered separately and opti-
mized simultaneously. It is therefore well suited for modeling many real world applications
involving multiple criteria, such as decision making, scheduling, automated planning, etc.
The goal of this problem is finding the Pareto front (viz. the set of Pareto optimal solutions)
defined by Pareto optimality. Usually, a Pareto optimal solution is expressed in the form of
utility vector (o1,o2, . . . ,on) where each oi is a value representing the optimization quality
of an objective. From a practical point of view, finding a promising subset of Pareto optimal
solutions is also important, since finding the Pareto front is known to be difficult.

The Minimal Perturbation Problem (MPP; (Sakkout and Wallace, 2000; Barták et al,
2004; Zivan et al, 2011)) can be generally defined as a problem aiming at solutions featuring
minimal perturbation with respect to an initial solution. For a given initial solution of the
original problem, a new problem, and a distance function that is used to compare a solutions
of the new problem with the initial solution, the goal of MPP is to find a solution of the new
problem with a minimal distance to the initial solution of the original problem. There exists
some work on MPP in course timetabling (Rudová et al, 2011; Müller et al, 2005; Phillips
et al, 2016). In this case, the goal is to find a feasible solution of a new timetabling problem
with minimal change usually defined by Manhattan distance to the legacy solution.

In this section, we extend the teaspoon system to solving multi-objective course timetabling
problems combining CB-CTT and MPP with two criteria optimality and stability. The first
criterion, optimality, is to minimize the penalty of soft constraints for CB-CTT solving. The
second criterion, stability, is to minimize the change from a legacy solution for MPP solving.
For a given legacy solution of the original CB-CTT problem, a new CB-CTT problem, and
a distance function, the goal is to find Pareto optimal solutions, that is, trade-off solutions
of the new problem with minimal penalty as well as with minimal change from the legacy
solution. We adopt the Manhattan distance as a distance function, which is widely used in
MPP research. Pareto optimal solutions of this problem are in the form of a utility vector
(o1,o2) in which o1 is a value for optimality representing the optimization quality, and o2 is
a value for stability representing the stabilization quality.
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soft_constraint("RoomCapacity", 1, p1).
soft_constraint("MinWorkingDays", 5, p1).
soft_constraint("IsolatedLectures", 2, p1).
soft_constraint("RoomStability", 1, p1).

change_constraint("ManhattanDistance", 1, p2).

Listing 16 The UD2 formulation with the Manhattan distance

For optimality, we can use teaspoon encodings presented in Section 4 and Section 5.
For stability, we explain teaspoon’s fact format of legacy solutions and then present an ASP
encoding of the following new constraint to capture the Manhattan distance:

C1. ManhattanDistance: The obtained timetable should be as similar as possible to
the legacy timetable. Each legacy assignment not in the obtained timetable counts as 1
violation.

A solution of CB-CTT is represented as a set of atoms of the predicate assigned/4 as can
be seen in Listing 6. Each atom assigned(C,R,D,P) expresses an assignment such that a
lecture of a course C is assigned to a room R at a period P on a day D. In a similar way, we
represent a legacy solution as a set of atoms of legacy(assigned(C,R,D,P)). The teaspoon
encoding of C1 is shown in Listing 15. For every course C, room R, day D, and period P, the
rule generates a penalty atom with the cost of W and with the priority level of Prior if an
assignment represented by assigned(C,R,D,P) is satisfied in the legacy solution, but not
in the obtained solution.

Our proposed approach can handle at least three types of differences between the origi-
nal and the new problems:

– Removal version : Remove some constraints from the original problem.
– Additional version : Add some new constraints to the original problem.
– Mixed version : Mix the removal and additional versions.

For illustration, let us consider a simple scenario for an additional version consisting
of a problem instance in UD1 as an original problem, its optimal solution as a legacy solu-
tion, and the same instance in UD2 as a new problem (S5. RoomStability is added). In this
scenario, the optimization criterion is changed from the original to the new problem due to
the additional soft constraint S5. Therefore, the optimization quality (viz. the penalty of soft
constraints) might be different between them depending on the instance. The stabilization
quality (viz. the change from the legacy solution) is the number of changed assignments.
Note that the number of possible changes is identical to the size of the legacy solution.

ASP facts representing the UD2 formulation plus the Manhattan distance C1 are shown
in Listing 16. The constants p1 and p2 represent the priority levels of soft constraints in
lexicographic optimization. We can obtain two extreme Pareto optimal solutions by varying
those priority levels. If p1>p2, one extreme solution prioritizing optimality is computed.
If we change the priority level to p1<p2, another extreme solution prioritizing stability is
computed. To be specific, for comp13 instance, we can obtain two extreme Pareto optimal
solutions (59,185) and (233,0). In each solution, the first value is the penalty of soft con-
straints, and the second is the change from the legacy solution. Since the optimization quali-
ties of comp13 are 31 in UD1 and 59 in UD2, and the number of possible changes is 308, the
extreme solution (59,185) has the minimal penalty 59 but 60% of the legacy assignments
are changed. The solution (233,0) has the minimal change 0 but incurs higher penalty 233.
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Table 8 Pareto optimal solutions of bi-objective course timetabling problem combining CB-CTT and MPP

Instance #Possible Pareto optimal solutions #Optima
changes

comp02 283 (164,0) 1
comp04 286 (35,172), (197,0) 2
comp06 361 (225,0) 1
comp07 434 (246,0) 1
comp08 324 (223,0) 1
comp10 370 (206,0) 1
comp11 162 (0,39),(26,1),(25,2),(24,3),(23,4),(22,5),(21,6),(20,7),(27,0) 9
comp13 308 (59,185), (232,1), (233,0) 3
comp14 275 (209,0) 1
comp16 366 (224,0) 1
comp17 339 (234,0) 1
comp19 277 (198,0) 1
comp20 390 (208,0) 1
DDS1 900 (562,0) 1
DDS2 146 (0,48), (47,1),(46,2),(45,3), (48,0) 5
DDS3 206 (0,104), (96,1),(95,2), (97,0) 4
DDS5 560 (0,321), (298,1), (299,0) 3
DDS6 324 (172,0) 1
DDS7 254 (0,160), (133,1),(132,2), (134,0) 4
EA01 351 (65,179), (242,1), (243,0) 3
EA02 241 (0,133), (112,1),(111,2), (113,0) 4
EA04 688 (0,428), (379,1), (380,0) 3
EA05 275 (0,84), (82,1), (83,0) 3
EA06 300 (5,151), (127,1), (128,0) 3
EA07 653 (0,399), (381,1), (382,0) 3
EA08 486 (0,251), (225,1), (226,0) 3
EA09 423 (4,226), (223,1), (224,0) 3
EA10 284 (0,158), (124,1),(123,2), (125,0) 4
EA11 139 (0,52), (51,1),(1,51),(50,2), (52,0) 5
EA12 174 (4,73), (5,72),(76,1), (77,0) 4
test2 223 (130,0) 1
test3 252 (200,0) 1
toy 16 (0,7), (2,3),(4,1),(3,2),(1,5), (5,0) 6∗
Udine1 360 (180,0) 1
Udine2 383 (8,201), (205,1), (206,0) 3
Udine3 324 (180,0) 1
Udine4 201 (64,109), (167,1), (168,0) 3
Udine5 337 (0,162), (155,1), (156,0) 3
Udine6 329 (0,156), (148,1), (149,0) 3
Udine7 356 (0,188), (179,1), (180,0) 3
Udine8 400 (29,223), (241,1), (242,0) 3
Udine9 312 (21,166), (180,1), (181,0) 3

In the following, we explain how to find other Pareto optimal solutions. We iteratively
obtain Pareto optimal solutions by alternating between finding lexicographic optima and
restricting the objective functions using the values of said optima. The method consists of
two steps: (i) calculate lexicographic optimal solutions for p1>p2 or p2>p1; (ii) if solutions
have been found, restrict the search space to only allow for value vectors that are incompara-
ble to previous solutions and return to (i). Since all lexicographic optimal solutions are also
Pareto optimal and the solutions we iterate are incomparable by design to previous solu-
tions, all lexicographic optima found in (i) are also Pareto optimal. And also, we are sure to
obtain the Pareto front given enough time because we consider the whole search space in the
beginning. Reconsidering the example from before, we would obtain lexicographic optima
(59,185) and (233,0) in Step (i), then we restrict the search space by adding constraints
forcing optimality to be between 59 and 233 and stability to be between 0 and 185. Then,
we are able to find another Pareto optimal solution (232,1) via lexicographic optimization
for p2>p1 in the restricted search space.
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We implemented the proposed method for solving bi-objective course timetabling prob-
lems combining CB-CTT and MPP by using multi-shot ASP solving techniques and the
built-in lexicographic optimization in clingo. Our empirical analysis considers the same
scenario as discussed above. We used 42 instances in Table 4 for which optimal solutions
in UD1 were found. The computational environment is the same as in Section 6. As con-
figuration of clingo, we chose USC11-JP since it was the best 1-way configuration in the
single-objective optimization experiments.

Table 8 shows the Pareto optimal solutions that we were able to obtain. The first col-
umn contains the instance name. The second column displays the total number of possible
changes. The third and forth columns show a set of Pareto optimal solutions and its size
respectively. The third column is separated into three parts. The leftmost entry gives the ex-
treme Pareto optimal solution regarding optimality, the rightmost entry regarding stability,
and in between are the additional Pareto optimal solutions. A star ‘∗’ attached to the number
of optimal solutions indicates that the Pareto front has been found.

We were able to calculate the extreme Pareto optimal solutions for p2>p1 for all 42
instances and the extreme Pareto optimal solutions for p1>p2 for 26 instances. Finding the
former is trivial since it amounts to calculating the optimization quality of the legacy solution
taking the additional soft constraint S5 into consideration. The latter requires a more involved
optimization, first optimizing according to the soft constraints in UD2 and then finding the
optimal solution with the best stability. For 25 out of the 26 instances, we successfully
obtained an additional Pareto optimal solution, and for 9 instances, we computed 4 Pareto
optimal solutions or more. We can observe the completeness of our approach on the instance
toy since we were able to find the Pareto front.

Overall, the results show that we can leverage the efficient lexicographic optimization of
clingo and the information provided by the vectors of lexicographic optima to successfully
compute additional Pareto optimal solutions other than the extreme cases. With that, our
system provides a complete method for finding the Pareto front of multi-objective course
timetabling problem, as illustrated on the small instance toy.

Finally, we discuss some more details of our experimental results from a practical point
of view. In our experiments, we first calculated the extreme Pareto optimal solutions re-
garding stability and optimality giving both a time limit of 3 hours. Afterwards, we used
another 3 hours to enumerate additional Pareto optimal solutions. We showed that the pro-
posed method can find a small subset of Pareto optimal solutions for many real-world in-
stances. However, at the same time, we observed that the current implementation is insuffi-
cient to find a promising subset that includes solutions such that both criteria are reasonably
well-balanced (e.g., (Schwind et al, 2014)). As an example, let us see the result of DDS2

instance. We obtained five Pareto optimal solutions: (0,48), (47,1), (46,2), (45,3), and
(48,0). Again, in each solution, the first value is the penalty of soft constraints, and the sec-
ond is the change from the legacy solution. Since the optimization quality of DDS2 is 0 both
in UD1 and UD2, and the number of possible changes is 146, the extreme solution (0,48)
has the minimal penalty 0 but 33% of the legacy assignments are changed. The extreme
solution (48,0) has the minimal change 0 but incurs higher penalty 48 than the optimal
quality 0. The others (47,1), (46,2), and (45,3) are additional Pareto optimal solutions, but
the improvement from the complete stability (48,0) is small. This shows a limitation of our
approach at present. To overcome this issue, there might be at least two approaches. One is
spending more times, since our approach is complete, and we can find more Pareto optimal
solutions. Another is extending our approach with an advanced technique in MODOP solv-
ing based on P-minimal model generation (Soh et al, 2017). It would be promising because
P-minimal models can be efficiently computed by ASP.
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8 Conclusion

We presented an ASP-based approach for solving the curriculum-based course timetabling
(CB-CTT) problems. The resulting system teaspoon 13 is built upon general-purpose ASP
systems, in our case clingo. That is, teaspoon relies on high-level ASP encodings presented
in Section 4, 5, and 7 and delegates both the grounding and solving tasks to clingo.

The main features of our declarative approach are as follows:

Expressiveness. The expressive power of ASP’s modelling language enables us to com-
pactly express a wide variety of hard and soft constraints of CB-CTT as demonstrated
by a collection of teaspoon encodings. Given new constraints (e.g., Manhattan distance),
all we have to do is adding ASP rules.
Flexibility. teaspoon provides flexible lexicographic optimization and easy composi-
tion of different formulations, since any combination of constraints can be represented
as ASP facts. Consequently, it enables a timetable keeper to experiment with different
formulations as well as to optimize the obtained timetable with different priority levels
of soft constraints, at a purely declarative level.
Efficiency. Our empirical analysis considers all instances in five different formulations,
which are publicly available from the CB-CTT portal. We have contrasted the perfor-
mance of teaspoon with the best known bounds obtained so far via more dedicated im-
plementations. teaspoon demonstrated that our declarative approach allows us to com-
pete with state-of-the-art CB-CTT solving techniques.
Scalability. The optimized encoding drastically reduces the grounding time compared
to the basic encoding. Consequently, our declarative approach scales to large instances
in complex formulations, as demonstrated by the fact that teaspoon was able to find
upper bounds for very large instances in the category erlangen with every formulation,
and 24 of them were unsolvable before.
Extensibility. The high-level approach of ASP facilitates extensions and variations of
first-order encodings. From this viewpoint, we extended the teaspoon system to solving
multi-objective course timetabling problem combining CB-CTT and minimal perturba-
tion problems with two criteria of optimality and stability.

Perhaps the most relevant related works are problem encodings in Integer Program-
ming (Burke et al, 2010a,b, 2012; Lach and Lübbecke, 2012). These encodings use the
binary variables xC,D,P and/or xC,R,D,P that correspond to the predicate assigned/3 and/or
assigned/4 respectively. SAT/MaxSAT encodings (Achá and Nieuwenhuis, 2012) also use
the same binary variables. The major advantage of our approach is not only the compact and
flexible declarative representation gained by using ASP as a modeling language, but also the
high performance gained from the recent advanced techniques in ASP solving.

Our ASP-based approach can be applied to a wide range of timetabling problems such
as school timetabling, examination timetabling, and post-enrollment course timetabling.
Multi-objective optimization implemented in teaspoon can be further extended in selecting
a promising subset of Pareto optimal solutions by using an advanced technique in MODOP
solving based on P-minimal model generation (Soh et al, 2017). ASP-based large neighbor-
hood search (LNS) for course timetabling can be promising because a MaxSAT-based LNS
has been recently shown to be effective for high school timetabling (Demirovic and Musliu,
2017). For this, we developed a prototype implementing a simple neighborhood search using
multi-shot ASP solving with teaspoon. In a preliminary experiment on some comp instances

13 All source code is available from https://potassco.org/doc/apps/
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in UD5, the prototype was able to find new bounds for 33 for comp10, 135 for comp13, 142
for comp09, and 143 for comp21. We will investigate these possibilities, and the results will
be applied to representing and reasoning more practical timetabling problems.
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Burke EK, Marecek J, Parkes AJ, Rudová H (2012) A branch-and-cut procedure for the
Udine course timetabling problem. Annals of Operations Research 194(1):71–87



teaspoon: Solving the Curriculum-Based Course Timetabling Problems with ASP 31

Demirovic E, Musliu N (2017) MaxSAT-based large neighborhood search for high school
timetabling. Computers & OR 78:172–180

Di Gaspero L, Schaerf A (2003) Multi-neighbourhood local search with application to
course timetabling. In: Burke EK, Causmaecker PD (eds) Proceedings of the 4th Inter-
national Conference on the Practice and Theory of Automated Timetabling (PATAT’02),
Springer, Berlin Heidelberg, LNCS, vol 2740, pp 262–275

Di Gaspero L, Schaerf A (2006) Neighborhood portfolio approach for local search applied
to timetabling problems. Journal of Mathematical Modelling and Algorithms 5(1):65–89

Di Gaspero L, McCollum B, Schaerf A (2007) The second international timetabling com-
petition (ITC-2007): Curriculum-based course timetabling (track 3). Technical report,
Queen’s University, Belfast, United Kingdom
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Müller T, Rudová H, Barták R (2005) Minimal perturbation problem in course timetabling.
In: Burke EK, Trick MA (eds) Proceedings of the 5th International Conference on the
Practice and Theory of Automated Timetabling (PATAT’04), Springer, LNCS, vol 3616,
pp 126–146

Narodytska N, Bacchus F (2014) Maximum satisfiability using core-guided MaxSAT resolu-
tion. In: Brodley C, Stone P (eds) Proceedings of the Twenty-Eighth National Conference
on Artificial Intelligence (AAAI’14), AAAI Press, pp 2717–2723
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