
A Classification and Survey of Preference Handling
Approaches in Nonmonotonic Reasoning

James Delgrande
School of Computing Science

Simon Fraser University
Burnaby, B.C.

Canada V5A 1S6
jim@cs.sfu.ca

Torsten Schaub∗

Institut für Informatik
Universiẗat Potsdam
Postfach 90 03 27

D–14439 Potsdam, Germany
torsten@cs.uni-potsdam.de

Hans Tompits
Institut für Informationssysteme 184/3

Technische Universität Wien
Favoritenstraße 9–11

A–1040 Vienna, Austria
tompits@kr.tuwien.ac.at

Kewen Wang
School of Computing and
Information Technology

Griffith University
Brisbane, QLD 4111, Australia

K.Wang@cit.gu.edu.au

Abstract

In recent years, there has been a large amount of disparate work concerning the repre-
sentation and reasoning with qualitative preferential information by means of approaches to
nonmonotonic reasoning. Given the variety of underlying systems, assumptions, motivations,
and intuitions, it is difficult to compare or relate one approach with another. Here, we present
an overview and classification for approaches to dealing with preference. A set of criteria for
classifying approaches is given, followed by a set of desiderata that an approach might be ex-
pected to satisfy. A comprehensive set of approaches is subsequently given and classified with
respect to these sets of underlying principles.

1 Introduction

The notion ofpreferenceis pervasive in commonsense reasoning, in part because preferences con-
stitute a very natural and effective way of resolving indeterminate situations. In decision making,
for example, one may have various desiderata, not all of which can be simultaneously satisfied; in

∗ Affiliated with the School of Computing Science at Simon Fraser University, Burnaby, Canada.

1



such a situation, preferences among desiderata may allow one to come to an appropriate compro-
mise solution. In legal reasoning, laws may conflict. Conflicts may be resolved by principles such
as ruling that newer laws will have priority over less recent ones, and laws of a higher authority
will have priority over laws of a lower authority. For a conflict among these principles, one may
further decide that the “authority” preference takes priority over the “recency” preference.

Preference has a decidedly nonmonotonic flavour. Or, more accurately, it may be considered
as having afundamentalnonmonotonic aspect. Given a preference ordering, however constituted,
and some basic or case-specific information,Ψ, one may come up with a set of desired outcomes.
However, a superset of this case-specific information,Ψ ∪ Φ, may lead to a different set of de-
sired outcomes. For example, imagine feeding information into an automated financial advisor:
that one is a relatively cautious investor, that one has a long-term horizon, etc. Given these pref-
erences, a set of recommended mutual funds may be suggested by the automated advisor. If the
user subsequently states that they also prefer that their funds invest in environmentally and socially
responsible companies, then a different set of suggestions may well result.

In logic-based AI, a standard approach to handling preferences is to take an existing sys-
tem of nonmonotonic reasoning and, in one fashion or another, equip it with preferences.
For example, preferences are added in such a manner to default logic[Brewka,1994; Del-
grande and Schaub,2000a], autoepistemic logic[Konolige,1988; Rintanen,1994], circumscrip-
tion [McCarthy,1986; Lifschitz,1985], and logic programming[Zhang and Foo,1997a; Brewka
and Eiter,1999]. However, although the notion of “preference” is intuitively straightforward, there
is a surprising variety in how this notion is realised in various approaches. Thus, some approaches
take a preference ordering as expressing a “desirability” that a property be adopted while in others
the ordering expresses the order in which properties (or whatever) are to be considered. As we later
describe, some approaches conflate the notion ofinheritance of propertieswith the general notion
of preference. The outcome of course is that, depending on how the notion of preference is inter-
preted, different conclusions may be forthcoming. At the same time, while logical preference han-
dling already constitutes an indispensable means for legal reasoning systems (cf.[Gordon,1993;
Prakken,1997b]), it is also being used in other application areas such as intelligent agents and
e-commerce[Grosof,1999], and the resolution of grammatical ambiguities[Cui and Swift,2001].

In this paper, we survey various approaches to handling qualitative preference information that
have appeared in the literature. The intent is to consider ways in which the general notion of
preferencemay be interpreted in a system, and to classify and evaluate approaches based on cer-
tain criteria. We begin, in the next section, by considering a possible classification of preference
approaches. As well, we discuss a number of desiderata that an approach or system may be ex-
pected to satisfy. In the following section, we compare and contrast extant systems with respect to
these criteria, concentrating on points of interest illustrated by a particular approach. An appendix
contains a comprehensive survey of individual approaches.

2 Comparing Approaches to Preference

In this section, we consider a number of ways in which approaches to representing and reasoning
with preferences can be compared. In the first subsection, we consider ways toclassifyapproaches

2



to preference—that is, relatively neutral criteria by which approaches may be distinguished or
compared. In the second subsection, we suggest possibledesideratafor approaches, or properties
that an approach ideally will satisfy.1

Informally, a preference relation will be a binary relation< between objects of a specific type
(formulas, rules, sets of objects, etc.). Most often,< will be a partial order. The idea is that objects
with higher precedence or preference are to be asserted (concluded, applied,. . .) over lower ranked
objects. Thus, forδ2 < δ1, if δ1 andδ2 are in conflict, one might expect, all other things being
equal, that the higher-ranked objectδ1 will be asserted over the lower,δ2.2 Different approaches
have further interpreted or constrained the relation< in a multitude of ways; it is the purpose of
this paper then to try to provide some framework, or perspective, to these various approaches.

There is one large and important class of preference-like relations that we do not discuss here,
that associated withinheritance of properties. Essentially, in inheritance of properties, the prefer-
ence ordering is determined by thespecificityof antecedent information. As well, with inheritance,
one only infers properties from the most specific applicable subclass. Consider rules concerning
primary means of locomotion: “animals normally walk”, “birds normally fly”, “penguins normally
swim”. If we learn that some object is a penguin (and so a bird and animal), then we would want
to apply the highest-ranked default and, all other things being equal, conclude that it swims. How-
ever, if the penguin in question is hydrophobic, and so does not swim, we would not want to inherit
the next most specific conclusion, that it flies, and so in this case we would conclude nothing about
locomotion. However, in a preference ordering, one would try to apply the next default and so,
again all other things being equal, conclude that the penguin flies. So inheritance of properties
leads to quite different behaviour from preference orderings, as we interpret them here. We re-
fer the reader to[Delgrande and Schaub,2000b] for a full discussion; a survey of approaches to
inheritance reasoning is given by Horty[1994].

2.1 Classifying Approaches to Preference

We describe here a number of ways in which approaches to preference may be classified. For ease
of exposition and concreteness, we will most often use default logic[Reiter,1980]3 to illustrate
various concepts. Thus, we may write

: red

red
<

: blue

blue
<

: green

green
(1)

to show a preference over colours, implemented as an ordering on default rules. However, it should
be emphasised that this is for illustration only; we have no particular preference for default logic.
Some other system could be the “host” system as well, preferences need not be on rules, and so
on. Similarly, a phrase such as “a higher-ranked rule is applied” is simply an abbreviation for the
much more cumbersome “a higher-ranked object (be it a rule, term, formula, set, etc.) is applied
(concluded, asserted, etc.)”.

1Note, however, that the difference between a criterion and desideratum is not necessarily a clear-cut distinction.
2Note that some approaches use< in the opposite sense to us.
3Very briefly, a default ruleA : B

C can be interpreted as “ifA is provable andB is consistent with what is believed,
then concludeC”.

3



We have the following set of not-necessarily independent criteria for classifying approaches to
preference:

Host system Previously (during the 1990’s) default logic[Reiter,1980] was by-and-large the
host system of choice, in that the majority of approaches to adding preferences added them to
default logic. More recently the emphasis has shifted to logic programs, and in particular extended
logic programs. Likely this change reflects a general shift in focus in the research community,
from default logic being the most popular nonmonotonic reasoning formalism, to the emergence
of extended logic programs and answer set programming. The main facet that can be said about
the “underlying system” is that it is easier to compare approaches that use the same base system.
As well, a specific approach to preference may be “ported” from one underlying system to another,
as for example is done in the methods of Delgrande and Schaub[2000a; 2003] and Brewka and
Eiter [1999; 2000]. Thus, in the case of[Brewka and Eiter,1999; 2000], an approach to dealing
with preferences was first proposed for answer set programming; this was subsequently expressed
using default logic as the host system.

Meta-level vs. object-level preferences Most commonly, given some underlying host system, a
preference ordering is imposed “externally” on rules of the system. For example, a default theory
(D, W ) may be extended to apreferred default theory(D, W, <) where< ⊆ D × D gives a
preference ordering on how rules may be applied. Alternatively, preferences may be imposed
at the object-level. For example, in the approach of Delgrande and Schaub[2000a], constants
representing names are associated with the default rules. Instead of a relationδ2 < δ1 between
default rules, one can now assertn2 ≺ n1 between the corresponding names, where≺ is a (new)
binary relation in the object language.

In the first case, for meta-level preferences, the underlying host system is used more or less as
a black box by an enveloping preference system. Thus, for a preferred default theory(D, W, <),
the standard meta-level approach is to generate the full set of extensions of the underlying de-
fault theory(D, W ), order these extensions according to the relation<, and then choose the most
preferred extension(s). In contrast, an object-level approach to preference allows the use of pref-
erences within the object theory. Thus, in a default theory(D, W ), one could have the symbol<
appear among formulas inW andD. In the approach of Delgrande and Schaub[2000a], for exam-
ple, a default theory(D, W ) that used the (object-level) symbol≺ to express preferences among
named default rules inD, is mapped to a second theory(D′, W ′) such that the symbol≺ does not
appear in(D′, W ′), yet the extensions of(D′, W ′) correspond in a precise sense to the≺-maximal
extensions of(D, W ).

External, or meta-level preferences, have the advantage that they are (usually) easier to realise:
either the underlying inference relation is modified to take into account preferences, or else the
underlying approach is used as a black box by a higher-level preference system. On the other
hand, the object-level approach allows one to formalise preferenceswithin a theory, instead of
abouta theory. As well, the object-level approach is more flexible. For example one may cancel
preferences or apply preferences in a context; thusA ⊃ {¬}(n2 ≺ n1) could be used to assert that
if A is true then it is (not) the case thatn2 ≺ n1. As a second example, one could have preferences

4



apply by default; thus, the rule
A : n2 ≺ n1

n2 ≺ n1

asserts that ifA is true, then by default we have the preferencen2 ≺ n1.

Static vs. dynamic preferences A closely-related distinction to the preceding concerns whether
preferences arestatic, or fixed at the time the theory is specified, ordynamic, and so can be deter-
mined “on the fly”. An approach with external preferences will, of necessity, have static prefer-
ences. For object-level preferences, these preferences could be either static or dynamic. Consider
default logic: an approach with static, object-level preferences would have preferences appearing
only in the world knowledgeW . Otherwise preferences appearing inD would be (potentially)
dynamic, since their applicability would be determined in the course of determining an exten-
sion of the theory. In the case of extended logic programs, an approach with static, object-level
preferences, would have preferences appearing only as ground facts (i.e., as rules of the form
(n2 ≺ n1)←).

Properties of the preference ordering The majority of approaches assume that the relation<
is a (irreflexive) partial order; this seems to be the minimal notion that would justify the use of the
term “preference”. However, one might go on and impose further conditions, such as connectivity
or (in the case of infinite orderings) well-foundedness. Some approaches assume that< is a total
order, since orderings of this kind are easier to deal with. As an intermediate approach between
these two possibilities, as we describe subsequently, in some approaches< is assumed to be a
partial order, but this is extended to a set of total orders before applying the preference relation.

What is the preference ordering an ordering on? Obviously, a preference ordering< is a
binary relation on objects of some given type. An issue then concerns thespecific kindof objects
that< is a binary relation on. Although seemingly clear-cut, there are some subtleties here.

First, in default logic or extended logic programs, preferences would naturally be on the rules
in a theory. However, we have already noted one distinction: in an external (meta-level) preference
relation, the preferences are indeed on the rules themselves. In an object-level preference relation,
the preferences are expressed on constants naming the rules; it is then up to the implementer of
such an approach to ensure that these constants do indeed denote the rules in question.

Second, there is a distinction between what a user would regard as a preference, and how the
preference would be implemented. Thus, it makes sense to think informally of preferences as being
on formulas: for example, one might wish to express that green things are preferred to blue things,
which are preferred to red. This could be expressed within a first-order language by predicates
such aspref (green(x), blue(x)) andpref (blue(x), red(x)). Thus preferences would be expressed
on (reified) formulas such asgreen(x). However, for implementation, such a preference relation
might be translated into an existing approach. Given the fundamental nonmonotonic character of
reasoning with preferences, the “target” system would be an existing approach to nonmonotonic
reasoning, itself equipped with a notion of preference. Hence, the preferences above might be

5



translated into a suitably-quantified version of something along the lines of (1). So, the underlying
reasoning machinery might make use of (in this case) default logic.

Such a general approach has a number of advantages, including adherence to a knowledge
engineering principle that says a user should only be given the power that they need for expressing
a problem. As well, here the preference relationpref (·, ·) would be translated into preferences on
normaldefaults which might then come with improved complexity characteristics over preferences
on general rules. However, the specification of such a “knowledge engineered” language remains
largely for future research.

For default logic and extended logic programs, preference one way or another are generally
expressed on the rules. Exceptions to this include[Sakama and Inoue,2000], wherein preferences
are given directly onatomsof the language, along with others such as[Pradhan and Minker,1996;
Lifschitz,1985]. As well, we note that for a general approach to preference, an account of prefer-
ence onsetsof objects will be needed. For example, in purchasing a car, one might wish to express
that a car that is safe and economical is preferred to one that is just safe, which in turn is preferred
to one that is safe and powerful. Thus, perhaps:{

: s

s
,

: p

p

}
<

{ : s

s

}
<

{ : s

s
,

: e

e

}
.

The idea of the above theory is that all the defaults in a set of rules must be applicable before the
set itself is considered to be applied.

Prescriptive vs. descriptive preferences The intuition behind a preference ordering is that
higher-ranked rules are to be applied before lower-ranked ones. A major distinction as to how
this can be done concerns whether< specifies the order in which defaults are to be applied, or
provides a notion of “desirability” that a rule be applied. Consider again default logic: In apre-
scriptive interpretation, the ordering< specifies the order in which defaults are to be considered
for application. Thus, one applies (if possible) the most preferred default(s), the next most pre-
ferred, and so on. In adescriptiveinterpretation, the preference order represents a ranking on
desired outcomes: the desirable (or: preferred) situation is one where the most preferred default(s)
are applied.4 The distinction between these interpretations is illustrated in the following exam-
ple [Brewka and Eiter,2000]:

: a

a
<

: ¬b

¬b
<

a : b

b
. (2)

Assume that there is no initial world knowledge. In a prescriptive interpretation, one would fail
to apply the most preferred default (viz.a : b

b
) since the antecedent is not provable. However, one

might expect to apply the two lesser-preferred defaults, giving an extension containing{a,¬b}.5
In a descriptive interpretation, one might observe that by applying the least-preferred default, the
most preferred default can be applied; this yields an extension containing{a, b}.

4This is not necessarily a cut-and-dried distinction; for example,[Brewka and Eiter,2000] contains elements of
both.

5This is obtained, for instance, in the approaches of Baader and Hollunder[1993a], Brewka[1994], and Marek and
Truszczýnski [1993]; the approach of Delgrande and Schaub[2000a] yields no “preferred” extension.

6



A full discussion of this distinction is given by Delgrande and Schaub[2000a]. We briefly
recapitulate two salient points here. First, a descriptive interpretation relies on a “global” view of
the preference relation<, in that lower-ranked rules may be applied in order to allow the appli-
cation of higher-ranked rules. This in turn implies that a descriptive interpretation is most easily
implemented by a meta-level approach, for example, in terms of how well a (standard) extension
satisfies the preference ranking. In contrast, with a prescriptive object-level approach, we can po-
tentially axiomatise within a theory how different preference orders interact; see[Delgrande and
Schaub,2000a] for details.

Second, a prescriptive interpretation comes, in some sense, with more representational force,
and allows a tighter characterisation of a domain. That is, a prescriptive interpretation forces a
knowledge-base designer to be explicit about what things should be applied in what order. A
descriptive interpretation, on the other hand, is more declarative, in the sense that it gives a wish
list of preferences which may or may not be meaningful. This is illustrated by the example in (2),
where the defaulta : b

b
has highest priority, but this default can only be applied if the prerequisite is

proved; one way that this can come about is by applying the lower-ranked default: a
a

. But this in
turn implies that: a

a
should be considered first and so have higher priority thana : b

b
. As well, there

is no situation in whicha : b
b

can be applied and: a
a

cannot. Thus, the inference structure of default
logic would seem to dictate that: a

a
not be ranked belowa : b

b
. Yet, this is what the order< in (2)

stipulates.

From preferences to preferred results Given a theory and a set of (object- or meta-level) pref-
erences, the standard reasoning task is to generate a set of preferred outcomes. In default logic or
extended logic programs, a preferred set of outcomes would be part of an extension or answer set.
The set of all extensions or answer sets would represent the possible sets of preferred outcomes
when there is ambiguity in the underlying theory.

The preceding prescriptive/descriptive distinction represents a broad characterisation of meth-
ods that may be employed for defining preferred extensions. With respect to the preference order-
ing <, there are also two different strategies:

1. One may define preferred extensions in terms of total orders extending the given partial order
< (as, e.g., done in the approach of Brewka[1994]). Each such total order then is used to
generate a preferred extension.

2. One may define preferred extensionsdirectly from the ordering<, unmediated by implied
total orderings.

This second case has two realisations:

(a) define preferred extensions as (standard) extensions of the preference-free theory satis-
fying additional conditions in accord with< (e.g.,[Sakama and Inoue,2000]);

(b) define preferred extensions directly from< without reference to the preference-free
theory (e.g.,[Delgrande and Schaub,2000a]).

Clearly, the last possibility appears on the surface to be the most appealing, since it involves neither
extraneous extensions nor specialisations of the preference ordering. On the other hand, there has

7



been no work (that we are aware of) comparing the adequacy of these broad characterizations
either from a formal or a pragmatic viewpoint.6

2.2 Evaluating Approaches to Preference

This subsection discusses a number of desiderata that an approach may be expected to satisfy.
To begin with, Brewka and Eiter[1999] propose two “principles” argued to constitute a minimal
requirement for preference handling in rule-based systems. While the principles are formulated
with respect to static preferences, the second need not be[Delgrandeet al.,2003]. These principles
are expressed with respect to rule-based systems. Thus, approaches such as default logic and logic
programming are most naturally covered by these principles, although they are also applicable, for
example, to a circumscriptive abnormality theory with preferences.

Principle I: Let B1 andB2 be two extensions7 of a prioritised theory(T,<) generated by rules
R∪{δ1} andR∪{δ2}, where rulesδ1, δ2 6∈ R. If δ1 is preferred overδ2, thenB2 is not a preferred
extension ofT .

The term “generated” is crucial in Principle I: For extensionB, a ruleδ is a generating rule just if
its prerequisites are inB and it is not defeated byB.

Principle II: Let B be a preferred extension of a prioritised theory(T,<) and δ a rule such
that at least one prerequisite ofδ is not inB. Then,B is a preferred extension of(T ∪ {δ}, <′)
whenever<′ agrees with< on priorities among rules inT .

Thus, adding a nonapplicable rule in a preferred extension does not make the extension nonpre-
ferred, so long as prior preferences are not changed.

While Principle I is widely accepted, descriptive approaches do not satisfy Principle II in gen-
eral. Indeed, a typical descriptive approach violating Principle II is the method proposed by Rinta-
nen[1998b] for adding preferences in default logic. Let us consider the following example taken
from [Rintanen,1998b]:

δ1 = a : b
b

;

δ2 = :¬a
¬a

;

δ3 = : a
a

.

Here,E = Th({¬a}) is a preferred extension of({δ2, δ3}, {δ3 < δ2}) under Rintanen’s se-
mantics andδ1 is inapplicable with respect toE. However,E = Th({¬a}) is not a preferred
extension of({δ1, δ2, δ3}, {δ3 < δ2, δ2 < δ1}), and thus Principle II is violated.

6This is not totally accurate, since the complexity of various decision problems is known for the major approaches.
However, even if we make the eminently reasonable assumption that complexity reflects expressibility, this still says
nothing about practical issues.

7We prefer the term “extension” to “belief set” as used by Brewka and Eiter[1999]. In using “extension” we do
not presuppose anything about the underlying system.

8



Complexity For the major approaches to nonmonotonic reasoning, the complexity of general de-
cision problems of interest is known. One might argue that adding preferences to a given approach
should not change the worst-case complexity of a given problem, in the sense that the correspond-
ing versions of these problems, specified with and without preferences, respectively, reside in the
same complexity class. Thus, consider a decision problem such as:

Is C a member of all extensions of theoryT?

Arguably, it would be desirable that the overall worst-case complexity does not change if “all
extensions” is replaced by “all preferred extensions”. The intuition is that if the complexity does
change, then substantial additional machinery has been added to the underlying formalism in order
to implement preferences.

However, one might argue the opposite. Thus, a possible counterargument is that the introduc-
tion of preferences enhances the descriptive power of an existing approach, and so it should come
as no surprise that the addition of preferences increases the overall worst-case complexity.

It is interesting to note that, of all the approaches that we have identified as being clearly
descriptive (viz.[Rintanen,1998b; Sakama and Inoue,2000; Inoue and Sakama,1999; Ryan,1992];
see also the appendix to this paper), all have higher complexity than their host system. Informally,
this may be explained by the fact that descriptive approaches to preference are inherently global
in nature, in that the application of a (preferred) rule may depend on the application of other,
possibly less preferred, rules. A prescriptive approach, on the other hand, can often be regarded as
restricting the order of rule application so to accord with the given preference relation.

Properties of the host system with and without preferences For another desideratum, in
adding preferences to an approach, the original approach should be changed “minimally” in that,
by and large, properties of the approach (at least those unrelated to notions of preference) should
remain unaffected. This leads to two specific subcriteria.

• Is a preferred extension an extension of the theory without preferences?Thus in a
default theory with static preferences(D, W, <), one might expect that an extension of this
theory also be an extension of the theory without preferences(D, W ). For a circumscriptive
abnormality theory with preferences, one might expect that its circumscription implies the
circumscription without preferences.

Similarly, in general, a preferred answer set of an extended logic program should be also
an answer set of the extended logic program without preference. However, there are some
application domains which require modifications of standard extensions, for example, up-
dating logic programs[Eiteret al.,2000] and resolving conflicts caused by classical negation
[Buccafurriet al.,2002]. In addition, if the preference relation< is empty, the reference
theory should have the same extensions as the theory without preferences.

• Do the properties of the original system remain?This criterion can actually be seen as
a collection of criteria: An approach comes with certain formal properties; arguably, the
approach with preferences should maintain the same formal properties (unless there is a

9



good reason not to). For example, normal default theories guarantee the existence of exten-
sions. It would seem reasonable that a normal default theory with preferences also guaran-
tee the existence of extensions. In fact, most prescriptive approaches, e.g.,[Delgrande and
Schaub,2000a], fail to satisfy this, whenever a preference contradicts an intrinsic application
order, as in: A

A
< A : B

B
.8

3 Representative Approaches

In Section 2, we set out some features that a preference semantics might have. In the following, we
will review several selected approaches according to their host systems. We assume that the reader
is familiar with the standard nonmonotonic formalisms, including default logic, circumscription,
and answer set programming.

3.1 Default Logic with Preference

A number of approaches have been proposed to add preference in Reiter’s default logic. In this
subsection, we review some representative approaches.

Concerning work in default logic, Delgrande and Schaub[2000b] have argued that Reiter and
Criscuolo[1981], Etherington and Reiter[1983], and Delgrande and Schaub[1994] address prop-
erty inheritance. In particular, these approaches are based on the idea of resolving conflicts by
appeal to specificity information. Hence, for non-conflicting rules, they may produce inappropri-
ate results when used for preferences. For instance, take

a : b

b
<

c : d

d

along withW = {a, c,¬d}. While one expects a single extension containingb, the aforecited
approaches would replace the first rule either by

a : b ∧ ¬c

b
or

a : b ∧ (c ⊃ d)

b
,

neither of which would be applicable for providingb.
As we explained before, there aredescriptiveandprescriptiveinterpretations for preference. In

the former case, one has a “wish list” where the intent is that one way or another the highest-ranked
defaults be applied. In the latter case, the ordering reflects the order in which defaults should be
applied.

Rintanen[1995] addresses descriptive preference orders in normal default theories (this despite
the paper’s title and examples, which would indicate that the paper deals with property inheritance).
An order on extensions is defined as follows. A default ruleA : B

B
is applied in extensionE just

if A, B ∈ E. ExtensionE is preferred overE ′ iff there is aδ ∈ D applied inE but not in

8This again suggests that an interesting area for future research would be to address what general principles should
govern preferences. Thus, one may be able to disallow, in a principled fashion, a preference such as the preceding.

10



E ′ such that ifδ′ is preferred overδ andδ′ is applied inE ′ then it is also applied inE. In this
approach, preference on extensions is given in terms of a total order on preferences among rules;
consequently, given a partial order on rules, all total orders that preserve the original partial order
must be taken into account. Moreover, in principle, all extensions have to be considered, and then
the preferred extension is found via additional tests. Consider an ordered theory where we just
have the preference: B(x)

B(x)
< : A(x)

A(x)
along with∀x(¬A(x) ∨ ¬B(x)). Clearly, the number of total

orders resulting from this partial order will be exponential in the number of instances ofA andB.
Similarly, the number of extensions in the unordered theory will be exponential in the number of
instances.

Rintanen actually introduced several variants of his basic approach in which preference on
extensions is specified in somewhat different ways. In particular, he introduced a notion of prefer-
ence which is defined in terms ofnon-defeateddefaults instead of applied ones (a defaultA : B

B
is

defeated in an extensionE iff A,¬B ∈ E). As well, the restriction that only normal default rules
are considered is dropped in a subsequent paper[Rintanen,1998b].

For prescriptive approaches, Baader and Hollunder[1993a] and Brewka[1994] present priori-
tised variants of default logic in which the iterative specification of an extension is modified. A
default is only applicable at an iteration step if no default with higher priority is applicable. The
primary difference between these approaches rests on the number of defaults applicable at each
step. While Brewka allows only for applying a single default that is maximal with respect to a total
extension of<, Baader and Hollunder allow for applying all most preferred defaults at each step.

In contrast, Delgrande and Schaub[1997; 2000a] translate priorities into standard default the-
ories. In this approach, preferences are expressed using anordered default theory, consisting of
default rules, world knowledge, and an ordering, reflecting preference, on the default rules. The
preferences are assumed to beprescriptive, that is specifying the order in which rules must be
applied. In this approach, an ordered default theory is transformed into a second, standard (that
is, without preferences) default theory wherein the preferences are nonetheless respected, in that
defaults are applied in the prescribed order. In an elaboration of the approach, an ordered default
theory is allowed, where preference information is specified as part of an overall default theory.
Here, one may specify preferences that hold by default, in a particular context, or give preferences
among preferences.

3.2 Logic Programs with Preference

There have been numerous proposals for expressing preferences in extended logic programs, in-
cluding [Brewka,1996; Brewka and Eiter,1999; Buccafurriet al.,1999; Delgrandeet al.,2003;
Eiter et al.,2000; Gelfond and Son,1997; Sakama and Inoue,1996; Wanget al.,2000; Zhang and
Foo,1997a]. For our purposes, it is enough to view an extended logic program as a syntactically
restricted default theory, having an empty background theory, and only rules of the form

L1 ∧ · · · ∧ Lm : ¬Lm+1, . . . ,¬Ln

L0

whereLi for 0 ≤ i ≤ n is a literal.

11



Similarly as for default logic, the approaches in logic programming with preference usually
fall into one of two categories. Approaches in one category employ meta-formalisms for char-
acterising “preferred answer sets”. For instance, some approaches in this category generate the
preferred answer sets by stipulating additional conditions, reflecting the given preference order, on
the standard answer sets of the preference-free program, e.g., as done in the method proposed by
Brewka and Eiter[1999]. The approaches in the second category translate an ordered logic pro-
gram into an ordinary logic program such that the preferred answer sets of the former correspond
to the answer sets of latter. This method actually provides an implementation of the corresponding
preferred answer sets based on extant logic programming systems. The approaches of Delgrande
et al. [2003] and Gelfond and Son[1997] fall into this category.

The fundamental idea of the approach due to Brewka and Eiter[1999] is to provide a selection
function such that, given an ordinary answer setS, one can further check ifS is “preferred” in a
similar way as the case of ordinary answer sets (without preference). However, this cannot be done
in a straightforward way with a partial order. So, one has to produce all the total orders that are
compatible with the original partial order. The main reason for this is to resolve conflicts caused
by multiple answer sets in the presence of preference information. As a consequence, the resulting
semantics allows more preferred answer sets than some other approaches (for example[Delgrande
et al.,2003; Schaub and Wang,2001]). In general, there are prioritised logic programs which have
no preferred answer sets, albeit their preference-free versions do possess standard answer sets. For
example, if(Π, <) is the following ordered program

r1 = c ← not b ;
r2 = b ← not a

(3)

with r1 > r2, thenΠ has the unique answer set{b} but it is not preferred. For this reason, the
authors propose another version of preferred answer sets calledweakly preferred answer sets.

Rather than modifying the Gelfond-Lifschitz transformation, the approach introduced by
Schaub and Wang[2001] defines a prioritised version of the immediate consequence operator
and thus defines a new answer set semantics for logic programs. The prioritised immediate con-
sequence operator is designed to derive new information by first applyingthe most preferred rules
that are applicable at each step of inference, unlike the standard immediate consequence operator
which appliesevery rulethat is applicable. Moreover, the less preferred rules still have chance to
be applied only if they are applicable at later steps. As a result, one obtains a theory of alternating
fixed points for logic programs with preference. There are two dimensions of flexibility in this
approach since we can define different semantics by different sets of alternating fixed points as
well as modifying the preference strategy in the prioritised immediate consequence operator.

The compilation technique of Delgrande, Schaub, and Tompits[2003] has its roots in an
approach proposed for default logic[Delgrande and Schaub,1997; 2000a]. The idea of this
approach is to select those answer sets of the program that can be generated in an “order
preserving way”. This allows to enforce the ordering information during the construction
of answer sets. In contrast to the default-logic approach of Delgrande and Schaub[1997;
2000a], in which the notion of an order-preserving extension is defined for static preference or-
derings only, and the encoding of dynamic preferences relies on an additional predicate⊀, ex-
pressing non-preference between two (names of) rules, the framework of Delgrandeet al. [2003]

12



is specified right from the beginning for the dynamic case, and static preferences are just a special
instance of dynamic ones. Furthermore, Delgrande and Schaub[1997; 2000a] are primarily con-
cerned with aspecificpreference strategy, whilst one of the goals of Delgrandeet al. [2003] is to
demonstrate the flexibility of the framework by providing encodings fordiffering preference strate-
gies. Lastly, in contradistinction to other preference approaches requiring dedicated algorithms,
the existence of readily available solvers for the answer set semantics, likedlv [Eiter et al.,1997;
1998] or smodels [Niemel̈a and Simons,1997], makes a realization of this approach straightfor-
ward.

Concerning the above described preference approaches, for a given statically ordered logic
program(Π, <), the following results can be shown[Schaub and Wang,2001]:

1. Every answer set preferred in the sense of[Delgrandeet al.,2003] is also preferred by[Wang
et al.,2000; Schaub and Wang,2001].

2. Every answer set preferred in the sense of[Wanget al.,2000; Schaub and Wang,2001] is also
preferred by[Brewka and Eiter,1999].

3. Every answer set preferred in the sense of[Brewka and Eiter,1999] is an answer set.

In no instance do we obtain the converse. Thus, these preference approaches form a hierarchy of
successively-weaker notions of preference.

Although Gelfond and Son[1997] use defaults rather than logic program rules in their ap-
proach to handle preference, the host system of their approach is actually logic programs with
classical negation and thus we deal with this approach in the current section. Similar to the compi-
lation technique of Delgrande and Schaub[1997; 2000a] and Delgrandeet al. [2003], Gelfond and
Son also specify preference over rules in the object language. Like defeasible logic[Nute,1987],
their approach divides rules into two categories (definite rules and default rules) and actually pro-
vides a multi-sorted logical language for nonmonotonic reasoning in extended logic programs with
preference. In particular, different approaches to preference can be specified by different sets of
preference axioms.

Rather than introducing yet another preference semantics, Eiteret al.[2003] deal with a method
to implement different preference-handling strategies by means of a meta-interpreter technique.
In this approach, a meta-interpreter of ordinary extended logic programs is first given and it is
further extended for each preference semantics by adding new meta-program rules which specify
the preference strategy. Therefore, this approach separates the representation of answer sets and
preference strategy. In addition, the meta-program rules in this approach are mainly designed to
express iterative recursive definitions. As a result, this approach admits the capturing of different
preference semantics for extended logic programs; in particular, those introduced by Brewka and
Eiter [1999], Delgrandeet al. [2003], and Schaub and Wang[2001].

Zhang and Foo[1997a] present an operational semantics for ordered logic programs based
on an iterative reduction to standard programs. The approach admits both static and dynamic
preferences, in which the dynamic case is reduced to the static one. Interestingly, the semantics
has a certain nondeterministic flavour in the sense that an ordered program may be reduced in
more than one way to a standard program. As shown by Zhang[2003a], the somewhat elaborate

13



semantics results in a worst-case complexity which lies at the second level of the polynomial hier-
archy. Thus, it is intrinsically harder than standard answer set semantics, providing the polynomial
hierarchy does not collapse. This semantics has been applied to specifyingupdates of logic pro-
grams[Zhang,2003b] (we discuss update semantics which are related to preference methods in
Section 3.5 below).

The method of Sakama and Inoue[1996] has the interesting feature that the given preference
order is not a relation between (names of) rules, as in the previous frameworks, but represents a
relation betweenliterals.9 This relation is used to determine a preference relation on the answer
sets of a disjunctive logic program. Intuitively, an answer setX1 is at least as preferable as an
answer setX2 iff there are literalsL1 ∈ (X1 \ X2) andL2 ∈ (X2 \ X1) such thatL1 has at least
the priority ofL2, and there is no literalL′

2 ∈ (X2 \X1) which has strictly higher priority thanL1.
An answer setX is preferred iff there is no other answer set which is strictly preferred overX.
The minimality criterion on answer sets makes this approach (presumably) harder than standard
answer set semantics for disjunctive logic programs, yielding a worst-case complexity which lies
at the third level of the polynomial hierarchy.

Besides the approaches to introducing preferences over rules and literals, Brewka[2002] in-
vestigates the problem of specifying preference over disjunction by introducing a new connective
calledordered disjunction. In Brewka’s approach, alternative, ranked options for problem solu-
tions can be represented by ordered disjunctions in rule heads. For example, the ordered disjunc-
tion A×B means: if possibleA, but if A is not possible then at leastB. As a result, the disjunction
in rule heads is employed to select preferred answer sets of a program.

Buccafurri, Leone, and Rullo[1999] introduced a language for preference handling called
disjunctive ordered logic, which includes classical negation but not default negation. This language
is subsequently extended to include default negation as well[Buccafurri et al.,2002]. In their
approach, preference is interpreted as theinheritanceof objects, and conflicts are resolved by
favouring more specific rules according to the inheritance hierarchy. The definition of preferred
answer sets is given by incorporating preference into the Gelfond-Lifschitz transformation of the
original program. Since preference is mainly employed to resolve conflicts caused by classical
negation, and a preferred answer set in this approach may not be an ordinary answer set, it is
more reasonable to classify it as anupdate semantics. We furthermore note that the language of
disjunctive ordered logic has the same complexity as its underlying host language (viz., disjunctive
logic programs).

There are also some attempts to extend the well-founded semantics to logic programs with pref-
erence[Brewka,1996; Schaub and Wang,2002]. Finally, other preference-based approaches, with-
out the use of default negation, include[Dimopoulos and Kakas,1995; Pradhan and Minker,1996],
as well as the framework of defeasible logics[Nute,1987; 1994] and plausible logic[Billington
and Rock,2001].

9Cf. [Geffner and Pearl,1992] for another approach to preferences on literals.

14



3.3 Autoepistemic Logic and Preference

Autoepistemic logic[Moore,1985] belongs to the family of modal nonmonotonic logics, capturing
the behaviour of an ideally rational agent reasoning about its own beliefs. Although being one of
the central formal approaches to nonmonotonic reasoning, it currently receives less attention in
the AI community, arguably due to a lack of publicly available solvers. In any case, prioritised
versions of autoepistemic logic have been defined in the late 1980’s and early 1990’s.

To begin with, inhierarchic autoepistemic logic[Konolige,1988], the introspection ability of
an autoepistemic agent is restricted. More specifically, sets of formulas are divided into a num-
ber of layers such that, on layern, the formulaLmA (m < n) refers to believingA on layerm.
Conflicts are resolved on the basis that, for each layered set of formulas, only one stable expan-
sion10 is obtained. It was shown by Przymusinska[1989] that hierarchic autoepistemic logic can
be embedded in standard autoepistemic logic.

A somewhat more general preference-handling formalism for autoepistemic logic is put
forth by Rintanen[1994], based on similar ideas as his later approach for prioritised default
logic [Rintanen,1995]. In his approach, referred to asprioritised autoepistemic logic, Rintanen
defines aprioritisation as a pair〈S, <〉, whereS is a set of modal formulas and< is a transitive
and asymmetric relation overS. Intuitively, the elements ofS represent those beliefs which are
relevant for determining the total beliefs an agent is going to choose on the basis of a given au-
toepistemic theory, and, as usual,A < B expresses that the agent is more reluctant to accept the
belief A than the beliefB. Formally, given a prioritisation〈S, <〉 and a theoryT , a stable expan-
sionE of T is 〈S, <〉-preferred iff there is a strict total order<′ of S extending< such that for
all stable expansionsE ′ of T it holds thatA ∈ E \ E ′ implies that there is someB with B <′ A
satisfyingB ∈ E ′ \ E, for all formulasA ∈ S. Analogously as for Rintanen’s default logic ap-
proach, prioritised autoepistemic logic represents a decidedly descriptive approach to preference
and yields a higher complexity than the underlying host system.

3.4 Prioritised Circumscription

Circumscription[McCarthy,1980] is one of the best-known formalisms of nonmonotonic reason-
ing. Prioritised circumscription[McCarthy,1986; Lifschitz,1985] is an alternative way of intro-
ducing circumscription by means of an ordering on tuples of predicates satisfying an axiom. To
compute prioritised circumscription, Gelfond and Lifschitz[1988] present a compilation of priori-
tised circumscription into logic programs. The shortcoming of this method is that there is a class
of prioritised circumscription which their method cannot treat. To overcome this problem, sev-
eral researchers provide methods which transform prioritised circumscription into extended logic
programs[Chen,1997; Wakaki and Satoh,1997].

We note in passing that Shoham[1987; 1988] introduced a generalisation of circumscription,
referred to as thepreferential modelsmethod, in which the minimisation technique, as expressed by
the circumscription schema, need not be based on some elaboration of the subset relation; rather,
it employs any strict partial order over models. We refer the interested reader to[Makinson,1994]
for a survey on this line of research.

10Recall that a stable expansion corresponds to an extension in default logic.

15



3.5 Preference and Updating Logic Programs

In recent years, several approaches for updating logic programs with (sets of) rules have been
proposed[Alfereset al.,1998; 2000; Sakama and Inoue,1999; Zhang and Foo,1997b; 1998; Eiter
et al.,2002]. In order to resolve conflicts between new and old information, the update information
is assigned, in some sense, higher priority over the current knowledge. However, we note that
updating and adding preference relations to logic programs are distinct notions. For example, if
a given knowledge base consists of a single facta ← which is updated by another fact¬a ←,
then a proper update mechanism yields a consistent result having{¬a} as the unique answer
set. However, in a preference approach, assigning the rule¬a ← a higher preference overa ←
still generally results in an inconsistent program. Furthermore, as illustrated by this example, a
distinguished feature of update semantics is that answer sets of the updated program are in general
not answer sets of the original program. Consequently, a combination of updates and preferences
yields in general an extended framework. In what follows, we discuss update approaches in which
explicit preferences are employed. We further note that an implicit (or explicit) preference to
new information is also used in methods for belief revision; however, we shall not pursue such
approaches here (cf., e.g.,[Gärdenfors and Rott,1995] for a survey on belief revision methods).

In the update approach of Eiteret al. [2002], following the general paradigm of Alfereset
al. [1998], update information is given in the form of sequences(Π1, . . . , Πn) of logic programs,
where eachΠi is assumed to update the information given by the initial sequence(Π1, . . . , Πi−1).
Such sequences of programs are given a declarative semantics by means of a syntactic transforma-
tion to anupdate program, which is a single extended logic program in an extended language, based
on acausal rejection principle. The resultant semantics properly generalises the usual answer set
semantics for single logic programs. Alternatively, the update semantics can be described in terms
of a modified Gelfond-Lifschitz transformation, which results from the standard construction by
removal of rejected rules. For capturing the rejection principle, information about rule rejection is
explicitly represented at the object level via rejection atoms. It is shown that this update semantics
is equivalent to a fragment of inheritance programs proposed by Buccafurriet al. [2002].

An integrated framework combining updates and preferences is proposed by Alferes and
Pereira[2000], based ondynamic logic programs[Alfereset al.,1998] and the preference semantics
due to Brewka and Eiter[1999]. In this approach, a new language is defined, modeling sequences
(Π1, . . . , Πn) of programs resulting from consecutive updates of an initial program, together with
a priority relation among the rules of all successive programs. The priority relation is itself subject
to update. This integrated approach is based on the idea that both preferences and updates elimi-
nate rules: preferences eliminate less preferred rules, selecting among the available stable models,
and updates eliminate rules overruled by other ones, in order to generate new models. Preferences
require a strict partial order on rules, while updates require a linear temporal order, or other distinct
linear structures, allowing nevertheless the production of a tree of linear updating sequences.

In this framework, preferences may be enacted on the results of updates, whereas updates may
be used for the purpose of changing preferences. Preferences are under this view intended to select
further rules after computing the results of updates. Intuitively, starting from the semantics of
updates (discarding rejected rules), the semantics of preferences is defined (discarding unpreferred
rules) according to the method of Brewka and Eiter[1999] and aiming at a combination of the two.

16



An integrated semantics is then formulated for both of them.
Zhang and Foo[1997b] describe the update of a knowledge base of ground literals by means of

a prioritised logic program over the same language. An update is itself a prioritised logic program
over an extended language, consisting of the following elements: (i) a programΠ containing initial
knowledge rules, inertia rules, and update rules; (ii) a naming functionN for rules in the resulting
program; and (iii) a partial order< containing a pairr < r′ for each inertia ruler and each update
rule r′ in the new program, stating higher priority of inertia rules.

The possible resulting knowledge base is defined on the basis of the answer sets of the resulting
program as follows: if it has no answer set, then the updated knowledge base coincides with the
initial one; if its answer set is the set of all literals in the extended language (i.e., if we have
inconsistency), then the updated knowledge base is given by the set of ground literals of the original
language; if it has a consistent answer set, then the updated knowledge base is given by the set of
ground literals of the original language such that the corresponding literal in the extended language
belongs to the answer set of the resulting program. It is shown that the introduced definitions satisfy
the minimal change property with respect to set inclusion.

In a subsequent paper[Zhang and Foo,1998], the problem of updates is addressed if both
old and new knowledge is encoded as an extended logic program. The idea in updating the initial
program with respect to the new one is to first eliminate contradictory rules from the initial program
with respect to the new one, and then to solve conflicts between the remaining rules by means of a
suitable prioritised logic program.

3.6 Other Approaches to Preference

Abduction is usually defined as inferring the best or most reasonable explanation (or hypothesis)
for a given set of facts. It is a form of nonmonotonic reasoning, since explanations which are
consistent in a given context may become inconsistent when new information is obtained. Logic-
based abduction especially has attracted a great deal of interest, due to progress in logic pro-
gramming and nonmonotonic reasoning. A logic-based abductive framework can be formalised
asF = (T,O,H,`), whereT is the background theory, given by a logical theory (like, e.g., a
set of formulas or a logic program), an observationO is a set of atomic formulas, and the set of
abduciblesH contains possible individual hypotheses. The task of abduction is to find a subsetS
of H such thatT ∪S ` O andT ∪S is consistent. Usually, multiple explanations are obtained and
thus an important issue in abduction is how to select the most reasonable explanation.

An approach to deal with preferences in the context of abduction is introduced by Eiter and
Gottlob [1995]. In this method, the set of abducibles is partitioned into different levels based on
preference and thus explanations containing the most preferable hypotheses are selected.

Priority logic, due to You, Wang, and Yuan[2001], provides a form of argumentation-based
framework with preference, where a theory (or a program) is a pair consisting of a rule set and a
priority relation among rules. If a ruleδ has higher priority over another ruleδ′, then the applica-
tion of δ will block the application ofδ′. This interpretation of preference is different from most
approaches in logic programming and default logic. In fact, the most difficult issue in adding pref-
erence into argumentative reasoning is how to define a reasonable preference among arguments

17



based on preference among rules. Obviously, this problem is not solved either in priority logic. In
addition, there is no default negation in priority logic.

4 Conclusion

We have presented an overview and classification of approaches to dealing with preference in
nonmonotonic reasoning. A set of criteria for classifying approaches is first given, followed by a set
of desiderata that an approach might be expected to satisfy. A comprehensive set of approaches is
subsequently given and classified in Appendix A with respect to these sets of principles. The intent
is to provide some structure on the area, so that seemingly unrelated systems may be compared or
related with each other.

Acknowledgements The authors would like to thank the anonymous referees for valuable com-
ments which helped to improve the paper. The first author was supported in part by a Canadian
NSERC Discovery Grant. The second author was partially supported by the German Science
Foundation (DFG) under grant FOR 375/1 and SCHA 550/6, TP C. The collaboration of the sec-
ond and third author was partially funded by the Information Society Technologies program of
the European Commission, Future and Emerging Technologies under the IST-2001-37004 WASP
project. The third author was partially supported by the Austrian Science Fund (FWF) under grant
N Z29-INF.

A Appendix: Classification Summary

In this appendix, we provide a brief summary of selected approaches to incorporating preferences
in nonmonotonic logics and logic programs. This summary is of necessity incomplete for two
reasons:

1. Due to a large number of references, some approaches have not been included. This does
not suggest that these approaches are less important, but rather that their general direction or
salient features are illustrated by other work.

2. Each approach is summarised by several attributes, primary among them “preference”,
“strategy”, “approach”, “complexity”, and “distinguished properties”. In this last attribute,
we include adherence to Brewka and Eiter’s two principles. However, it is not known for
some approaches whether they satisfy these two principles. As well, on occasion, the com-
plexity level of an approach is not known. In these cases, the corresponding attributes are
omitted or incomplete.

Furthermore, the results given below are either directly obtained from the cited references or
are obtained from[Brewka and Eiter,1999; Delgrande and Schaub,2000a; Delgrandeet al.,2003;
Rintanen,1998a; 1998b].

18



A.1 Preference in Default Logic

[Baader and Hollunder,1992; 1993b]:

Preference: preference on rules; static preference; strict partial order

Strategy: selection function on extensions; prescriptive

Approach: meta-level; integrating preference information into the quasi-inductive defini-
tion of a default extension

Complexity: same level as host system

Distinguished properties: (1) each preferred extension is also an extension without prefer-
ence; (2) Brewka and Eiter’s Principle I is violated, while Principle II holds

[Brewka and Eiter,2000]:

Preference: preference on rules; static preference (plus extension to dynamic case); strict
partial order

Strategy: selection function on extensions; semi-prescriptive

Approach: meta-level; consider all total orderings, each of which is “applied”

Complexity: same level as host system

Distinguished properties: (1) each preferred extension is also an extension without prefer-
ence; (2) Brewka and Eiter’s Principle I and II are satisfied

Related work: extension of[Brewka and Eiter,1999]; Delgrandeet al. [2000] give transla-
tion into standard default logic

[Delgrande and Schaub,1997; 2000a]:

Preference: preference on rules; dynamic preference; strict partial order

Strategy: selection function on extensions; prescriptive

Approach: meta-level (compiling an ordered default theory into an ordinary one); apply the
preference ordering “directly”

Complexity: same level as host system

Distinguished properties (1) each preferred extension is also an extension without prefer-
ence; (2) Brewka and Eiter’s Principle I and II are satisfied

Related work: [Delgrandeet al.,2003]

[Rintanen,1995; 1998b]:

Preference: preference on rules; static preference; strict partial order

Strategy: selection function on extensions; descriptive

Approach: meta-level; lexicographic comparison of extensions (derive a lexicographic or-
dering from the total order on defaults); apply the preference ordering “directly”

19



Complexity: higher level than host system

Distinguished properties: Brewka and Eiter’s Principle I is satisfied, while Principle II is
satisfied only by those variants of the approach in which preferred extensions are de-
fined in terms of non-defeated defaults instead of applied ones

A.2 Preference in Logic Programming

[Brewka and Eiter,1999]:

Host system: extended logic programs under answer sets

Strategy: selection function on answer sets; semi-prescriptive

Preference: preference on rules; static preference; strict partial order

Approach: meta-level; consider all total orderings, each of which is “applied”

Complexity: same level as host system

Distinguished properties: (1) each preferred answer set is also a standard answer set;
(2) Brewka and Eiter’s Principle I and II are satisfied

Related work: Delgrandeet al. [2000; 2003] and Eiteret al. [2003] give translations into
standard logic programs and implementation

[Delgrandeet al.,2003]:

Host system: extended logic programs under answer sets

Strategy: selection function on answer sets; prescriptive

Preference: preference on rules; dynamic preference; strict partial order

Approach: object level (compiling an ordered logic program into an ordinary one); apply
the preference ordering “directly”

Complexity: same level as host system

Distinguished properties: (1) each preferred answer set is also a standard answer set;
(2) Brewka and Eiter’s Principle I and II are satisfied

Related work: [Delgrande and Schaub,1997; 2000a]

Implementation: www.cs.uni-potsdam.de/ ∼torsten/plp

[Grosof,1997]:

Host system: acyclic extended logic programs

Strategy: prescriptive

Preference: preference on rules; dynamic preference; strict partial order only on stratified
logic programs

Approach: meta-level; apply the preference ordering “directly”

20



Complexity: same level as host system

Distinguished properties: (1) each ordered logic program without recursion has a unique
model; (2) Brewka and Eiter’s Principle I and II are satisfied

Related work: IBM CommonRules project

Implementation: ebusiness.mit.edu/bgrosof/

[Schaub and Wang,2001; Wanget al.,2000]:

Host system: extended logic programs under answer sets, regular sets, and well-founded
model

Strategy: selection function on answer sets; prescriptive

Preference: preference on rules; static preference; strict partial order

Approach: meta-level; apply the preference ordering “directly”; modify the immediate con-
sequence operator; each semantics is defined as a special class of the alternating fixed
points

Complexity: same level as host system

Distinguished properties: (1) each preferred answer set is also a standard answer set;
(2) the well-founded model is correct with respect to the preferred answer sets;
(3) Brewka and Eiter’s Principle I and II are satisfied

Related work: [Baader and Hollunder,1992; 1993b; Schaub and Wang,2002]

Implementation: www.cs.uni-potsdam.de/ ∼torsten/plp

[Zhang and Foo,1997a]:

Host system: extended logic programs under answer sets

Strategy: modified answer sets

Preference: preference on rules; dynamic preference; strict partial order

Approach: meta-level; program transformation

Complexity: higher level than host system

Distinguished properties: Brewka and Eiter’s Principle I and II are satisfied

Implementation: www.cit.uws.edu.au/ ∼yan/plps.html

[Gelfond and Son,1997]:

Host system: logic programs under answer sets

Strategy: modified answer sets; prescriptive

Preference: preference on rules; dynamic preference, arbitrary order

Approach: object level, meta-interpretation; apply the preference ordering “directly”

21



Complexity: same level as host system

[Sakama and Inoue,2000]:

Host system: extended logic programs (with disjunction) under answer sets

Strategy: selection function on answer sets; descriptive

Preference: preference on literals;11 static preference; strict partial order

Approach: meta-level; given preference ordering induces a preference relation on exten-
sions

Complexity: higher level than host system

Distinguished properties: Brewka and Eiter’s Principle II is violated, while Principle I
holds

[Buccafurri et al.,1996; 1999; 2002; Laenens and Vermeir,1990; Leone and Rossi,1993]:

Host system: ordered logic

Strategy: modified answer sets; prescriptive

Preference: preference on rules (calledinheritance hierarchy); static preference; strict par-
tial order

Approach: meta-level; apply the preference ordering “directly”

Complexity: same level as host system

[Kakas et al.,1994]:

Host system: logic programs without negation as failure (LPwNF); limited form of classical
negation

Strategy: modified answer sets

Preference: preference on rules; strict preference; strict partial order

Approach: meta-level; prioritised argumentation; apply the preference ordering “directly”

Distinguished properties: LPwNF can characterize default negation

[Dimopoulos and Kakas,1995]:

Host system: extension of LPwNF

Strategy: modified answer sets

Preference: preference on rules; static preference; strict partial order

Approach: meta-level; prioritised argumentation; apply the preference ordering “directly”

11While preference is defined on literals, we can definer1 < r2 iff head(r1) < head(r2), as the authors suggest
(wherehead(·) denotes the head of a logic program rule).

22



[Pradhan and Minker,1996]:

Host system: definite logic programs

Strategy: modified answer sets

Preference: preference on atoms; static preference; strict partial order

Approach: meta-level; employ preference to resolve conflicts between different logic pro-
grams; apply the preference ordering “directly”

[Cui and Swift,2001]:

Host system: logic grammars under well-founded model

Strategy: prescriptive

Preference: preference on rules; dynamic preference; strict partial order

Approach: meta-level; apply the preference ordering “directly”;

Complexity: same level as host system

Implementation: www.cs.sunysb.edu/ ∼tswift/interpreters.html

[Brewka,1996]:

Host system: logic programs under well-founded semantics

Strategy: prescriptive

Preference: preference on rules; dynamic preference; strict partial order

Approach: meta-level; apply the preference ordering “directly”

Complexity: same level as host system

[Prakken,1997a]:

Host system: logic programs

Strategy: prescriptive

Preference: preference on rules; strict partial order

Approach: meta-level; argumentation-based; apply the preference ordering “directly”

A.3 Preference in Autoepistemic Logic

[Konolige,1988]:

Preference: layered sets of formulas

Strategy: descriptive

Approach: meta-level; generate all stable expansions layer by layer; apply the preference
ordering “directly”

23



Distinguished properties: Przymusinska[1989] gives an embedding into standard au-
toepistemic logic

[Rintanen,1994]:

Preference: preference on formulas; static preference; strict partial order

Strategy: selection function on extensions; descriptive

Approach: meta-level; ordering on formulas induces an ordering on stable expansions; ap-
ply the preference ordering via extended total orders

Complexity: higher level than host system

A.4 Prioritised Circumscription

[Lifschitz,1985]:

Host system: circumscription

Strategy: meta-level; preorder (preferences induce strata)

Preference: static preference, preference on special-purpose predicates, viz.ab(·) predi-
cates

Approach: meta-level; generate all extensions

Related work: Chen[1997], Gelfond and Lifschitz[1988], and Wakaki and Satoh[1997]
provide compilations from preferred circumscription into logic programs

A.5 Preference and Updating Logic Programs

[Alferes and Pereira,2000]:

Host system: dynamic logic programs

Strategy: semi-prescriptive

Preference: preference on rules; static preferences; strict partial order

Approach: meta-level

Distinguished properties: extends update mechanism of Alfereset al. [1998] by allowing
preferences between rules, using the preference approach of Brewka and Eiter[1999]

[Zhang and Foo,1997b; 1998]:

Host system: extended logic programs

Strategy: modified answer sets

Preference: preference on rules

Approach: meta-level; program transformation

Distinguished properties: describes the update of a logic program using the preference
approach of Zhang and Foo[1997a]

24



A.6 Preference in Other Nonmonotonic Formalisms

[Inoue and Sakama,1999]:

Host system: abduction

Strategy: selection function on minimal explanations; descriptive

Preference: static preference, preference on abducibles (literals)

Approach: meta-level; consider all extensions; apply the preference ordering “directly”

Complexity: higher level than host system

Related work: semantics is equivalent to the preferred answer set semantics of Sakama and
Inoue[2000]

[Nute,1987; 1994; Billington,1993; Antoniouet al.,2000]:

Host system: defeasible logic

Strategy: prescriptive

Preference: preference on rules; static preference; arbitrary order

Approach: meta-level; integrating preference into resolution procedure

[You et al.,2001]:

Host system: priority logic (prioritised argumentation)

Strategy: deriving preference on arguments from rule preference

Preference: preference on rules; static preference; arbitrary order

Approach: meta-level; consider all acceptable arguments and apply additional tests

Complexity: higher level than host system

Related work: prioritised argumentation is also studied by Dimopoulos and Kakas[1995]
and Prakken[1997a]

[Ryan,1992]:

Host system: classical logic (ordered theory presentations)

Strategy: descriptive

Preference: preference on formulas; static preference; strict partial order

Approach: meta-level; consider additional tests on models in accord to given order; apply
the preference ordering “directly”

Complexity: higher level than host system

25



References

[Alferes and Pereira, 2000] J. Alferes and L. Pereira. Updates plus Preferences. In M. Aciego,
I. de Guzḿan, G. Brewka, and L. Pereira, editors,Proc. 7th European Workshop on Logics in
Artificial Intelligence(JELIA 2000), volume 1919 ofLecture Notes in Computer Science, pages
345–360. Springer, 2000.

[Alfereset al., 1998] J. Alferes, J. Leite, L. Pereira, H. Przymusinska, and T. Przymusinski. Dy-
namic Logic Programming. In A. Cohn, L. Schubert, and S. Shapiro, editors,Proc. 6th Int.
Conf. on Principles of Knowledge Representation and Reasoning(KR’98), pages 98–111. Mor-
gan Kaufmann, 1998.

[Alfereset al., 2000] J. Alferes, J. Leite, L. Pereira, H. Przymusinska, and T. Przymusinski. Dy-
namic updates of non-monotonic knowledge bases.Journal of Logic Programming, 45(1–
3):43–70, 2000.

[Antoniouet al., 2000] G. Antoniou, D. Billington, G. Governatori, and M. J. Maher. Defeasible
logic versus logic programming without negation as failure.Journal of Logic Programming,
42(1):47–57, 2000.

[Baader and Hollunder, 1992] F. Baader and B. Hollunder. Embedding defaults into terminolog-
ical knowledge representation formalisms. In B. Nebel, C. Rich, and W. Swartout, editors,
Proceedings of the Third International Conference on the Principles of Knowledge Representa-
tion and Reasoning, pages 306–317, Cambridge, MA, October 1992.

[Baader and Hollunder, 1993a] F. Baader and B. Hollunder. How to prefer more specific defaults
in terminological default logic. In R. Bajcsy, editor,Proceedings of the International Joint
Conference on Artificial Intelligence, pages 669–674. Morgan Kaufmann Publishers, 1993.

[Baader and Hollunder, 1993b] F. Baader and B. Hollunder. How to prefer more specific defaults
in terminological default logic. Technical Report RR-92-58, DFKI, December 1993.

[Billington and Rock, 2001] D. Billington and A. Rock. Propositional plausible logic: Introduc-
tion and implementation.Studia Logica, 67:243–269, 2001.

[Billington, 1993] D. Billington. Defeasible logic is stable.Journal of Logic and Computation,
3(4):379–400, 1993.

[Brewka and Eiter, 1999] G. Brewka and T. Eiter. Preferred answer sets for extended logic pro-
grams.Artificial Intelligence, 109(1-2):297–356, 1999.

[Brewka and Eiter, 2000] G. Brewka and T. Eiter. Prioritizing default logic. In St. Hölldobler,
editor,Intellectics and Computational Logic—Papers in Honour of Wolfgang Bibel, pages 27–
45. Kluwer Academic Publishers, 2000.

26



[Brewka, 1994] G. Brewka. Adding priorities and specificity to default logic. In L. Pereira and
D. Pearce, editors,European Workshop on Logics in Artificial Intelligence (JELIA’94), Lecture
Notes in Artificial Intelligence, pages 247–260. Springer Verlag, 1994.

[Brewka, 1996] G. Brewka. Well-founded semantics for extended logic programs with dynamic
preferences.Journal of Artificial Intelligence Research, 4:19–36, 1996.

[Brewka, 2002] Gerhard Brewka. Logic programming with ordered disjunction. InProceedings
of the Eighteenth National Conference on Artificial Intelligence and Fourteenth Conference on
Innovative Applications of Artificial Intelligence(AAAI/IAAI’02), pages 100–105. AAAI Press,
2002.

[Buccafurriet al., 1996] F. Buccafurri, N. Leone, and P. Rullo. Stable models and their computa-
tion for logic programming with inheritance and true negation.Journal of Logic Programming,
27:5–43, 1996.

[Buccafurriet al., 1999] F. Buccafurri, N. Leone, and P. Rullo. Semantics and expressiveness of
disjunctive ordered logic.Annals of Mathematics and Artificial Intelligence, 25:311–337, 1999.

[Buccafurriet al., 2002] F. Buccafurri, W. Faber, and N. Leone. Disjunctive logic programs with
inheritance.Theory and Practice of Logic Programming, 2(3):293–321, 2002.

[Chen, 1997] J. Chen. Embedding prioritized circumscription into logic programs. InProc. of the
10th International Symposium on Foundations of Intelligent Systems(ISMIS’97), LNAI 1325,
pages 50–59. Springer-Verlag, 1997.

[Cui and Swift, 2001] B. Cui and T. Swift. Preference logic grammars: Fixed-point semantics and
application to data standardization.Artificial Intelligence, 138(1-2):117–147, 2001.

[Delgrande and Schaub, 1994] J. Delgrande and T. Schaub. A general approach to specificity in
default reasoning. In J. Doyle, P. Torasso, and E. Sandewall, editors,Proceedings of the Fourth
International Conference on the Principles of Knowledge Representation and Reasoning, pages
146–157. Morgan Kaufmann Publishers, 1994.

[Delgrande and Schaub, 1997] J. Delgrande and T. Schaub. Compiling reasoning with and about
preferences into default logic. In M. Pollack, editor,Proceedings of the International Joint
Conference on Artificial Intelligence, pages 168–174. Morgan Kaufmann Publishers, 1997.

[Delgrande and Schaub, 2000a] J. Delgrande and T. Schaub. Expressing preferences in default
logic. Artificial Intelligence, 123(1-2):41–87, 2000.

[Delgrande and Schaub, 2000b] J.P. Delgrande and T. Schaub. The role of default logic in knowl-
edge representation. In J. Minker, editor,Logic-Based Artificial Intelligence, pages 107–126.
Kluwer Academic Publishers, 2000.

27



[Delgrandeet al., 2000] J. Delgrande, T. Schaub, and H. Tompits. A compilation of Brewka and
Eiter’s approach to prioritization. In M. Ojeda-Aciego, I. Guzmán, G. Brewka, and L. Pereira,
editors, Proceedings of the European Workshop on Logics in Artificial Intelligence(JELIA
2000), volume 1919 ofLecture Notes in Artificial Intelligence, pages 376–390. Springer-Verlag,
2000.

[Delgrandeet al., 2003] J. Delgrande, T. Schaub, and H. Tompits. A framework for compiling
preferences in logic programs.Theory and Practice of Logic Programming, 3(2):129–187,
2003.

[Dimopoulos and Kakas, 1995] Y. Dimopoulos and C. Kakas. Logic programming without nega-
tion as failure. In J. Lloyd, editor,Proceedings of the International Symposium of Logic Pro-
gramming, pages 369–383. The MIT Press, 1995.

[Eiter and Gottlob, 1995] T. Eiter and G. Gottlob. The complexity of logic-based abduction.Jour-
nal of the ACM, 42:3–42, 1995.

[Eiteret al., 1997] T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. A Deductive System
for Non-monotonic Reasoning. InProceedings of the 4th International Conference on Logic
Programming and Nonmonotonic Reasoning(LPNMR’97), pages 363–374, 1997.

[Eiteret al., 1998] T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. The KR System
dlv: Progress Report, Comparisons and Benchmarks. InProceedings of the 6th International
Conference on Principles of Knowledge Representation and Reasoning(KR’98), pages 406–
417, 1998.

[Eiteret al., 2000] T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. Considerations on updates
of logic programs. InProceedings of the Seventh European Workshop on Logics in Artificial
Intelligence(JELIA’2000), volume 1919 ofLecture Notes in Artificial Intelligence, pages 2–20.
Springer-Verlag, 2000.

[Eiteret al., 2002] T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On properties of update se-
quences based on causal rejection.Theory and Practice of Logic Programming, 2(6):711–767,
2002.

[Eiteret al., 2003] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. Computing preferred answer sets
by meta-interpretation in answer set programming.Theory and Practice of Logic Programming,
3(4–5):463–498, 2003.

[Etherington and Reiter, 1983] D.W. Etherington and R. Reiter. On inheritance hierarchies with
exceptions. InProceedings of the AAAI National Conference on Artificial Intelligence, pages
104–108. Morgan Kaufmann Publishers, 1983.

[Gärdenfors and Rott, 1995] P. G̈ardenfors and H. Rott. Belief revision. In D. Gabbay, C. Hogger,
and J. Robinson, editors,Handbook of Logic in Artificial Intelligence and Logic Programming,
volume 4, pages 36–132. Oxford University Press, 1995.

28



[Geffner and Pearl, 1992] H. Geffner and J. Pearl. Conditional entailment: Bridging two ap-
proaches to default reasoning.Artificial Intelligence, 53(2-3):209–244, 1992.

[Gelfond and Lifschitz, 1988] M. Gelfond and V. Lifschitz. Compiling circumscription theories
into logic programs. InProceedings of the AAAI National Conference on Artificial Intelligence,
pages 455–459. The MIT Press, 1988.

[Gelfond and Son, 1997] M. Gelfond and T. Son. Reasoning with prioritized defaults. In J. Dix,
L. Pereira, and T. Przymusinski, editors,Third International Workshop on Logic Programming
and Knowledge Representation, volume 1471 ofLecture Notes in Computer Science, pages
164–223. Springer-Verlag, 1997.

[Gordon, 1993] T. Gordon. The Pleading Game: An Artificial Intelligence Model of Procedural
Justice. Dissertation, Technische Hochschule Darmstadt, Alexanderstraße 10, D-64283 Darm-
stadt, Germany, 1993.

[Grosof, 1997] B. Grosof. Prioritized conflict handling for logic programs. In J. Maluszynsk,
editor,Logic Programming: Proceedings of the 1997 International Symposium, pages 197–211.
The MIT Press, 1997.

[Grosof, 1999] B. Grosof. Business rules for electronic commerce.http://www.research.
ibm.com/rules/papers.html , 1999. IBM Research.

[Horty, 1994] J. Horty. Some direct theories of nonmonotonic inheritance. In D. Gabbay, C. Hog-
ger, and J. Robinson, editors,Handbook of Logic in Artificial Intelligence and Logic Program-
ming, pages 111–187, 1994.

[Inoue and Sakama, 1999] K. Inoue and C. Sakama. Abducing priorities to derive intended con-
clusions. InProceedings of the International Joint Conference on Artificial Intelligence, pages
44–49. Morgan Kaufmann Publishers, 1999.

[Kakaset al., 1994] A. Kakas, P. Mancarella, and P. M. Dung. The acceptability semantics for
logic programs. In P. Van Hentenryck, editor,Proceedings of the International Conference on
Logic Programming, pages 504–519. The MIT Press, June 1994.

[Konolige, 1988] K. Konolige. Hierarchic autoepistemic theories for nonmonotonic reasoning. In
Proceedings of the AAAI National Conference on Artificial Intelligence, pages 439–443. Morgan
Kaufmann Publishers, 1988.

[Laenens and Vermeir, 1990] E. Laenens and D. Vermeir. A fixpoint semantics for ordered logic.
Journal of Logic and Computation, 1(2):159–185, 1990.

[Leone and Rossi, 1993] N. Leone and G. Rossi. Well-founded semantics and stratification for
ordered logic programs.New Generation Computing, 12(1):91–121, 1993.

[Lifschitz, 1985] V. Lifschitz. Closed-world databases and circumscription.Artificial Intelligence,
27:229–235, 1985.

29



[Makinson, 1994] D. Makinson. General patterns in nonmonotonic reasoning. In D. Gabbay,
C. Hogger, and J. Robinson, editors,Handbook of Logic in Artificial Intelligence and Logic
Programming, volume 1, pages 35–110. Oxford University Press, 1994.

[Marek and Truszczýnski, 1993] V. Marek and M. Truszczýnski. Nonmonotonic logic: context-
dependent reasoning. Artifical Intelligence. Springer-Verlag, 1993.

[McCarthy, 1980] J. McCarthy. Circumscription—a form of non-monotonic reasoning.Artificial
Intelligence, 13:27–39, 1980.

[McCarthy, 1986] J. McCarthy. Applications of circumscription to formalizing common-sense
knowledge.Artificial Intelligence, 28:89–116, 1986.

[Moore, 1985] R.C. Moore. Semantical considerations on nonmonotonic logic.Artificial Intelli-
gence, 25:75–94, 1985.

[Niemel̈a and Simons, 1997] I. Niemel̈a and P. Simons. Smodels: An Implementation of the Sta-
ble Model and Well-Founded Semantics for Normal Logic Programs. InProceedings of the 4th
International Conference on Logic Programming and Nonmonotonic Reasoning(LPNMR-97),
pages 420–429, 1997.

[Nute, 1987] D. Nute. Defeasible reasoning. InProceedings of the 20th Hawaii International
Conference on Systems Science, pages 470–477. IEEE Press, 1987.

[Nute, 1994] D. Nute. Defeasible logic. InHandbook of Logic in Artificial Intelligence and Logic
Programming, Vol. 3, pages 353–395. Oxford University Press, 1994.

[Pradhan and Minker, 1996] S. Pradhan and J. Minker. Using priorities to combine knowledge
bases.International Journal of Cooperative Information Systems, 5(2-3):333–364, 1996.

[Prakken, 1997a] H. Prakken. Argument-based logic programming with defeasible priorities.
Journal of Applied Non-classical Logics, 7:25–75, 1997.

[Prakken, 1997b] H. Prakken.Logical Tools for Modelling Legal Argument. Kluwer Academic
Publishers, 1997.

[Przymusinska, 1989] H. Przymusinska. The embeddability of hierarchic autoepistemic logic in
autoepistemic logic. InProceedings of the 4th International Symposium on Methodologies for
Intelligent Systems(ISMIS’89), pages 485–493. North-Holland, 1989.

[Reiter and Criscuolo, 1981] R. Reiter and G. Criscuolo. On interacting defaults. InProceed-
ings of the International Joint Conference on Artificial Intelligence, pages 270–276, Vancouver,
B.C., 1981.

[Reiter, 1980] R. Reiter. A logic for default reasoning.Artificial Intelligence, 13:81–132, 1980.

30



[Rintanen, 1994] J. Rintanen. Prioritized autoepistemic logic. In C. MacNish, D. Pearce, and
L. M. Pereira, editors,Proceedings of the European Workshop on Logics in Artificial Intelli-
gence, volume 838 ofLecture Notes in Artificial Intelligence, pages 232–246, Berlin, September
1994. Springer-Verlag.

[Rintanen, 1995] J. Rintanen. On specificity in default logic. InProceedings of the International
Joint Conference on Artificial Intelligence, pages 1474–1479, Montreal, 1995.

[Rintanen, 1998a] J. Rintanen. Complexity of prioritized default logics.Journal of Artificial
Intelligence Research, 9:423–461, 1998.

[Rintanen, 1998b] J. Rintanen. Lexicographic priorities in default logic.Artificial Intelligence,
106:221–265, 1998.

[Ryan, 1992] M. Ryan. Representing defaults as sentences with reduced priority. In B. Nebel,
C. Rich, and W. Swartout, editors,Proceedings of the Second International Conference on the
Principles of Knowledge Representation and Reasoning, pages 649–660. Morgan Kaufmann
Publishers, 1992.

[Sakama and Inoue, 1996] C. Sakama and K. Inoue. Representing priorities in logic programs. In
M. Maher, editor,Proceedings of the 1996 Joint International Conference and Symposium on
Logic Programming, pages 82–96, Cambridge, 1996. The MIT Press.

[Sakama and Inoue, 1999] C. Sakama and K. Inoue. Updating extended logic programs through
abduction. In M. Gelfond, N. Leone, and G. Pfeifer, editors,Proc. 5th Int. Conf. on Logic
Programming and Nonmonotonic Reasoning(LPNMR’99), volume 1730 ofLecture Notes in
Artificial Intelligence, pages 147–161. Springer, 1999.

[Sakama and Inoue, 2000] C. Sakama and K. Inoue. Prioritized logic programming and its appli-
cation to commonsense reasoning.Artificial Intelligence, 123(1-2):185–222, 2000.

[Schaub and Wang, 2001] T. Schaub and K. Wang. A comparative study of logic programs with
preference. In B. Nebel, editor,Proceedings of the International Joint Conference on Artificial
Intelligence, pages 597–602. Morgan Kaufmann Publishers, 2001.

[Schaub and Wang, 2002] T. Schaub and K. Wang. Preferred well-founded semantics for logic
programming by alternating fixpoints: Preliminary report. InProceedings of the Ninth Work-
shop on Non-Monotonic Reasoning(NMR’02), pagehttp://arxiv.org/abs/cs.AI/
0207060 , 2002.

[Shoham, 1987] Y. Shoham. A semantical approach to non-monotonic logics. InProceedings of
the Tenth International Joint Conference on Artificial Intelligence, pages 388–392, 1987.

[Shoham, 1988] Y. Shoham.Reasoning About Change: Time and Causation from the Standpoint
of Artificial Intelligence. The MIT Press, Cambridge, MA, 1988.

31



[Wakaki and Satoh, 1997] T. Wakaki and K. Satoh. Compiling circumscription into extended logic
programs. InProceedings of the International Joint Conference on Artificial Intelligence, pages
182–187. Morgan Kaufmann Publishers, 1997.

[Wanget al., 2000] K. Wang, L. Zhou, and F. Lin. Alternating fixpoint theory for logic programs
with priority. In Proceedings of the First International Conference on Computational Logic,
volume 1861 ofLecture Notes in Computer Science, pages 164–178. Springer-Verlag, 2000.

[You et al., 2001] J. You, X. Wang, and L. Yuan. Nonmonotonic reasoning as prioritized argu-
mentation.IEEE Transactions on Knowledge and Data Engineering, 13(6):968–979, 2001.

[Zhang and Foo, 1997a] Y. Zhang and N. Foo. Answer sets for prioritized logic programs. In
J. Maluszynski, editor,Proceedings of the International Symposium on Logic Programming
(ILPS’97), pages 69–84. MIT Press, 1997.

[Zhang and Foo, 1997b] Y. Zhang and N. Foo. Towards Generalized Rule-based Updates. In
Proc. 15th Int. Joint Conf. on Artificial Intelligence(IJCAI’97), volume 1, pages 82–88. Morgan
Kaufmann, 1997.

[Zhang and Foo, 1998] Y. Zhang and N. Foo. Updating Logic Programs. In H. Prade, editor,Proc.
13th Europ. Conf. on Artificial Intelligence(ECAI’98), pages 403–407. Wiley, 1998.

[Zhang, 2003a] Y. Zhang. Logic program based updates.http://www.cit.uws.edu.au/
˜yan/ , 2003. Draft.

[Zhang, 2003b] Y. Zhang. Two results for prioritized logic programs.Theory and Practice of
Logic Programming, 3(2):223–242, 2003.

32


