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Abstract

We introduce a new flexible paradigm of grounding and solving in Answer Set Programming (ASP), which
we refer to as multi-shot ASP solving, and present its implementation in the ASP system clingo.

Multi-shot ASP solving features grounding and solving processes that deal with continuously changing
logic programs. In doing so, they remain operative and accommodate changes in a seamless way. For instance,
such processes allow for advanced forms of search, as in optimization or theory solving, or interaction
with an environment, as in robotics or query-answering. Common to them is that the problem specification
evolves during the reasoning process, either because data or constraints are added, deleted, or replaced. This
evolutionary aspect adds another dimension to ASP since it brings about state changing operations. We
address this issue by providing an operational semantics that characterizes grounding and solving processes
in multi-shot ASP solving. This characterization provides a semantic account of grounder and solver states
along with the operations manipulating them.

The operative nature of multi-shot solving avoids redundancies in relaunching grounder and solver
programs and benefits from the solver’s learning capacities. clingo accomplishes this by complementing
ASP’s declarative input language with control capacities. On the declarative side, a new directive allows for
structuring logic programs into named and parameterizable subprograms. The grounding and integration of
these subprograms into the solving process is completely modular and fully controllable from the procedural
side. To this end, clingo offers a new application programming interface that is conveniently accessible via
scripting languages. By strictly separating logic and control, clingo also abolishes the need for dedicated
systems for incremental and reactive reasoning, like iclingo and oclingo, respectively, and its flexibility goes
well beyond the advanced yet still rigid solving processes of the latter.

Under consideration for publication in Theory and Practice of Logic Programming (TPLP)

1 Introduction

Standard Answer Set Programming (ASP; (Baral 2003)) follows a one-shot process in computing
stable models of logic programs. This view is best reflected by the input/output behavior of
monolithic ASP systems like dlv (Leone et al. 2006) and (original) clingo (Gebser et al. 2011) that
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take a logic program and output its stable models. Internally, however, both follow a fixed two-step
process. First, a grounder generates a (finite) propositional representation of the input program.
Then, a solver computes the stable models of the propositional program. This rigid process stays
unchanged when grounding and solving with separate systems. In fact, up to series 3, clingo
was a mere combination of the grounder gringo and the solver clasp. Although more elaborate
reasoning processes are performed by the extended systems iclingo (Gebser et al. 2008) and
oclingo (Gebser et al. 2011) for incremental and reactive reasoning, respectively, they also follow
a pre-defined control loop evading any user control. Beyond this, however, there is substantial need
for specifying flexible reasoning processes, for instance, when it comes to interactions with an
environment (as in assisted living, robotics, or with users), advanced search (as in multi-objective
optimization, planning, theory solving, or heuristic search), or recurrent query answering (as in
hardware analysis and testing or stream processing). Common to all these advanced forms of
reasoning is that the problem specification evolves during the respective reasoning processes,
either because data or constraints are added, deleted, or replaced.

For mastering such complex reasoning processes, we propose the paradigm of multi-shot ASP
solving in order to deal with continuously changing logic programs. In contrast to the traditional
single-shot approach, where an ASP system takes a logic program, computes its answer sets,
and exits, the idea is to consider evolving grounding and solving processes. Such processes
lead to operative ASP systems that possess an internal state that can be manipulated by certain
operations. Such operations allow for adding, grounding, and solving logic programs as well
as setting truth values of (external) atoms. The latter does not only provide a simple means for
incorporating external input but also for enabling or disabling parts of the current logic program.
These functionalities allow for dealing with changing logic programs in a seamless way. To
capture multi-shot solving processes, we introduce an operational semantics centered upon a
formal definition of an ASP system state along with its (state changing) operations. Such a state
reflects the relevant information gathered in the system’s grounder and solver components. This
includes (i) a collection of non-ground logic programs subject to grounding, (ii) the ground logic
programs currently held by the solver, (iii) and a truth assignment of externally defined atoms.
Changing such a state brings about several challenges absent in the single-shot case, among them,
contextual grounding and logic program composition.

Given that the theoretical foundations of multi-shot solving are a means to an end, we interleave
their presentation with the corresponding features of ASP system clingo. This new generation of
clingo1 offers novel high-level constructs for realizing multi-shot ASP solving. This is achieved
within a single ASP grounding and solving process that avoids redundancies otherwise caused by
relaunching grounder and solver programs and benefits from the learning capacities of modern
ASP solvers. To this end, clingo complements ASP’s declarative input language by manifold
control capacities. The latter are provided by an imperative application programming interface
(API) implemented in C. Corresponding bindings for Python and Lua are available and can also
be embedded into clingo’s input language (via the #script directive). On the declarative side,
clingo offers a new directive #program that allows for structuring logic programs into named and
parametrizable subprograms. The grounding and integration of these subprograms into the solving
process is completely modular and fully controllable from the procedural side. For exercising

1 Multi-shot solving was introduced with the clingo 4 series by Gebser et al. (2014). However, we describe its functionali-
ties in the context of the current clingo 5 series. The advance from series 4 to 5 only smoothed some multi-shot related
interfaces but left the principal functionality unaffected.
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control, the latter benefits from a dedicated library furnished by clingo’s API, which does not only
expose grounding and solving functions but moreover allows for continuously assembling the
solver’s program. This can be done in combination with externally controllable atoms that allow
for enabling or disabling rules. Such atoms are declared by the #external directive. Hence, by
strictly separating logic and control, clingo abolishes the need for special-purpose systems for
incremental and reactive reasoning, like iclingo and oclingo, respectively, and its flexibility goes
well beyond the advanced yet still rigid grounding and solving processes of such systems. In fact,
clingo’s multi-shot solving capabilities rather enable users to engineer novel forms of reasoning,
as we demonstrate by four case studies.

The rest of the paper is organized as follows. Section 2 provides a brief account of formal
preliminaries. Section 3 gives an informal overview on the new features of clingo in order to pave
the way for their formal underpinnings presented in Section 4. There, we lay the formal foundations
of multi-shot solving and present its aforementioned operational semantics. In Section 5, we
illustrate the power of multi-shot ASP solving in several use cases and highlight some features of
interest. We use Python throughout the paper to illustrate the multi-shot functionalities of clingo’s
API. Further API-related aspects are described in Section 6. Section 7 gives an empirical analysis
of some selected features of multi-shot solving with clingo. Finally, we relate our approach to the
literature in Section 8 before we conclude in Section 9.

2 Formal preliminaries

A (normal2) rule r is an expression of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an,

where ai, for 0 ≤ m ≤ n, is an atom of the form p(t1, . . . , tk), p is a predicate symbol of arity k,
also written as p/k, and t1, . . . , tk are terms, built from constants, variables, and functions. Letting
h(r) = a0, B(r) = {a1, . . . , am,∼am+1, . . . ,∼an}, B(r)+ = {a1, . . . , am}, and B(r)− =

{am+1, . . . , an}, we also denote r by h(r) ← B(r). A rule is called fact, whenever B(r) = ∅.
A (normal) logic program P is a set (or list) of rules (depending on whether the order of rules
matters or not). We write H(P ) = {h(r) | r ∈ P} and A(P ) = H(P )∪

⋃
r∈P (B(r)+∪B(r)−)

to denote the set of all head atoms and atoms occurring in P , respectively. A term, atom, rule, or
program is ground if it does not contain variables.

We denote the set of all ground terms constructible from constants (including all integers) and
function symbols by T , and let C stand for the subset of symbolic (i.e. non-integer) constants.
The ground instance of P , denoted by grd(P ), is the set of all ground rules constructible from
rules r ∈ P by substituting every variable in r with some element of T . We associate P with its
positive atom dependency graph

G(P ) = (A(grd(P )), {(a0, a) | r ∈ grd(P ), h(r) = a0, a ∈ B(r)+})

and call a maximal non-empty subset of A(grd(P )) inducing a strongly connected subgraph3

of G(P ) a strongly connected component of P .
A set X of ground atoms is a model of P , if h(r) ∈ X , B(r)+ * X , or B(r)− ∩X 6= ∅ holds

2 For the sake of simplicity, we confine our formal elaboration to normal logic programs.
Multi-shot solving with clingo also works with disjunctive logic programs.

3 That is, each pair of atoms in the subgraph is connected by a path.
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for every r ∈ grd(P ). Moreover, X is a stable model of P (Gelfond and Lifschitz 1988), if X is
a ⊆-minimal model of {h(r)← B(r)+ | r ∈ grd(P ), B(r)− ∩X = ∅}.

Following Oikarinen and Janhunen (2006), a module P is a triple (P, I,O) consisting of a
ground logic program P along with sets I and O of ground input and output atoms such that

1. I ∩O = ∅,
2. A(P ) ⊆ I ∪O, and
3. H(P ) ⊆ O.

We also denote the constituents of P = (P, I,O) by P (P) = P , I(P) = I , and O(P) = O. A
set X of ground atoms is a stable model of a module P, if X is a (standard) stable model of
P (P) ∪ {a← | a ∈ I(P) ∩X}.

Two modules P1 and P2 are compositional, if

1. O(P1) ∩O(P2) = ∅ and
2. O(P1) ∩ C = ∅ or O(P2) ∩ C = ∅

for every strongly connected component C of P (P1) ∪ P (P2).

In other words, all rules defining an atom must belong to the same module. And any positive
recursion is within modules; no positive recursion is allowed among modules.

Provided that P1 and P2 are compositional, their join is defined as the module

P1 t P2 = (P (P1) ∪ P (P2), (I(P1) \O(P2)) ∪ (I(P2) \O(P1)), O(P1) ∪O(P2)) .

The module theorem (Oikarinen and Janhunen 2006) shows that a set X of ground atoms is
a stable model of P1 t P2 iff X = X1 ∪ X2 for stable models X1 and X2 of P1 and P2,
respectively, such that X1∩(I(P2)∪O(P2)) = X2∩(I(P1)∪O(P1)).4 For example, the modules
P1 = ({a ← ∼c; c ← ∼b}, {b}, {a, c}) and P2 = ({b ← a}, {a}, {b}) are compositional, and
combining their stable models, {a, b} and {c} for P1 as well as {a, b} and ∅ for P2, yields the
stable models {a, b} and {c} of P1 t P2 = (P (P1) ∪ P (P2), ∅, {a, b, c}). Unlike that, P′1 =

({a ← b; c ← ∼a}, {b}, {a, c}) and P2 are not compositional because the strongly connected
component {a, b} of P (P′1) ∪ P (P2) includes a ∈ O(P′1) and b ∈ O(P2). Moreover, {a, b} is a
stable model of P′1 and P2, but not of P (P′1) ∪ P (P2).

An assignment v over a set A of ground atoms is a function v : A → {t, f, u} whose range
consists of truth values, standing for true, false, and undefined. Given an assignment v, we define
the sets V x = {a ∈ A | v(a) = x} for x ∈ {t, f, u}. In what follows, we represent partial
assignments like v either by (V t, V f ) or (V t, V u) by leaving the respective variables with default
values implicit.

Finally, we use typewriter font and symbols :- and not instead of← and ∼, respectively,
whenever we deal with source code accepted by clingo. In such a case, we also make use of
extended language constructs like integrity or cardinality constraints, all of which can be reduced
to normal logic programs, as detailed in the literature (cf. (Simons et al. 2002)).

3 Multi-shot solving with clingo at a glance

Let us begin with an informal overview of the central features and corresponding language
constructs of clingo’s multi-shot solving capacities.

4 Note that the module theorem is strictly stronger than the splitting set theorem (Lifschitz and Turner 1994). For instance,
there is no non-trivial splitting set of P1 t P2, since neither {a} nor {b} is one.
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A key feature, distinguishing clingo from its predecessors, is the possibility to structure (non-
ground) input rules into subprograms. To this end, a program can be partitioned into several
subprograms by means of the directive #program; it comes with a name and an optional list of
parameters. Once given in the input, the directive gathers all rules up to the next such directive (or
the end of file) within a subprogram identified by the supplied name and parameter list. As an
example, two subprograms base and acid(k) can be specified as follows:

1 a(1).
2 #program acid(k).
3 b(k).
4 c(X,k) :- a(X).
5 #program base.
6 a(2).

Listing 1: Logic program with #program declarations

Note that base is a dedicated subprogram (with an empty parameter list): in addition to the rules
in its scope, it gathers all rules not preceded by any #program directive. Hence, in the above
example, the base subprogram includes the facts a(1) and a(2), although, only the latter is in
the actual scope of the directive in Line 5. Without further control instructions (see below), clingo
grounds and solves the base subprogram only, essentially, yielding the standard behavior of ASP
systems. The processing of other subprograms such as acid(k) is subject to explicitly given
control instructions.

For such customized control over grounding and solving, a main routine (taking a control
object representing the state of clingo as argument, here prg) can be supplied. For illustration, let
us consider two Python main routines:5

7 #script(python)
8 def main(prg):
9 prg.ground([("base",[])])

10 prg.solve()
11 #end.

7 #script(python)
8 def main(prg):
9 prg.ground([("acid",[42])])

10 prg.solve()
11 #end.

While the control program on the left matches the default behavior of clingo, the one on the right
ignores all rules in the base program but rather contains a ground instruction for acid(k) in
Line 8, where the parameter k is to be instantiated with the term 42. Accordingly, the schematic
fact b(k) is turned into b(42), no ground rule is obtained from ‘c(X,k) :- a(X)’ due to
lacking instances of a(X), and the solve command in Line 10 yields a stable model consisting
of b(42) only. Note that ground instructions apply to the subprograms given as arguments,
while solve triggers reasoning w.r.t. all accumulated ground rules.

In order to accomplish more elaborate reasoning processes, like those of iclingo and oclingo or
other customized ones, it is indispensable to activate or deactivate ground rules on demand. For
instance, former initial or goal state conditions need to be relaxed or completely replaced when
modifying a planning problem, e.g., by extending its horizon. While the predecessors of clingo
relied on the #volatile directive to provide a rigid mechanism for the expiration of transient
rules, clingo captures the respective functionalities and customizations thereof in terms of the
#external directive. The latter goes back to lparse (Syrjänen 2001) and was also supported by

5 The ground routine takes a list of pairs as argument. Each such pair consists of a subprogram name (e.g. base or
acid) and a list of actual parameters (e.g. [] or [42]).
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clingo’s predecessors to exempt (input) atoms from simplifications (and fixing them to false). As
detailed in the following, the #external directive of clingo provides a generalization that, in
particular, allows for a flexible handling of yet undefined atoms.

For continuously assembling ground rules evolving at different stages of a reasoning process,
#external directives declare atoms that may still be defined by rules added later on. In terms
of module theory, such atoms correspond to inputs, which (unlike undefined output atoms) must
not be simplified. For declaring input atoms, clingo supports schematic #external directives
that are instantiated along with the rules of their respective subprograms. To this end, a directive
like

#external p(X,Y) : q(X,Z), r(Z,Y).

is treated similar to a rule ‘p(X,Y) :- q(X,Z), r(Z,Y)’ during grounding. However, the
head atoms of the resulting ground instances are merely collected as inputs, whereas the ground
rules as such are discarded.

Once grounded, the truth value of external atoms can be changed via the clingo API (until the
atoms becomes defined by corresponding rules). By default, the initial truth value of external atoms
is set to false. For example, with clingo’s Python API, assign_external(self,p(a,b),True)6

can be used to set the truth value of the external atom p(a,b) to true. Among others, this can
be used to activate and deactivate rules in logic programs. For instance, the integrity constraint
‘:- q(a,c), r(c,b), p(a,b)’ is ineffective whenever p(a,b) is false.

4 Multi-shot solving

Having set the practical stage in the previous section, let us now turn to posing the formal foun-
dations of multi-shot ASP solving. We begin with a characterization of grounding subprograms
with external directives in the context of previously grounded subprograms. This provides us
with a formal account of the interplay of ground routines with #program and #external
directives. Next, we show how module theory can be used for characterizing the composition of
ground subprograms during multi-shot solving. This gives us a precise idea on the successive logic
programs contained in the ASP solver at each invocation of solve. Finally, all this culminates in
an operational semantics for multi-shot solving in terms of state-changing operations.

The concepts introduced in this section are mainly illustrated by succinct, technical examples.
More illustration is provided in the next section discussing several use cases in detail.

4.1 Parameterizable subprograms

A program declaration is of form

#program n(p1, . . . , pk) (1)

where n, p1, . . . , pk are symbolic constants. We call n the name of the declaration and p1, . . . , pk
its parameters. For simplicity, we suppose that different occurrences of program declarations with
the same name also share the same parameters (although this is not required by clingo). In this
way, each name is associated with a unique parameter specification.

6 In order to construct atoms, symbolic terms, or function terms, respectively, the clingo API
function Function has to be used. Hence, the expression p(a,b) actually stands for
Function("p", [Function("a"), Function("b")]).
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The scope of a program declaration in a list of rules and declarations consists of the set of all
rules and non-program declarations following the directive up to the next program declaration
or the end of the list.7 In Listing 1, the scope of the declaration in Line 2 consists of b(k)
and ‘c(X,k) :- a(X)’, while that in Line 5 contains a(2). Given a list R of (non-ground)
rules and declarations along with a non-integer constant n, we define R(n) as the set of all
(non-ground) rules and (non-program) declarations in the scope of all occurrences of program
declarations with name n. We often refer to R(n) as a subprogram of R. All rules and non-
program declarations outside the scope of any (explicit) program declaration are thought of being
implicitly preceded by a ‘#program base’ declaration. Hence, if R consists of Line 1–6 above,
we get8 R(base) = {a(1)← , a(2)← } and R(acid) = {b(k)← , c(X, k)← a(X)}. Each
such list R induces a collection (R(c))c∈C of (non-disjoint) subprograms (most of which are
empty). For example, all subprograms obtained from Line 1–6 are empty, except for base and
acid.

Given a name n with associated parameters p1, . . . , pk, the instantiation of subprogram R(n)

with terms t1, . . . , tk results in the set R(n)[p1/t1, . . . , pk/tk], obtained by replacing in R(n)

each occurrence of pi by ti for 1 ≤ i ≤ k.9 For instance, R(acid)[k/42] consists of b(42) and
‘c(X,42) :- a(X)’.

4.2 Contextual grounding

The definition of a program’s ground instance grd(P ) depends on P and its underlying set of
terms. For instance, grounding accordingly program R(base) ∪R(acid)[k/42] yields

{a(1)← , a(2)← } ∪ {b(42)← } ∪


c(1, 42) ← a(1),

c(2, 42) ← a(2),

c(42, 42) ← a(42)

 (2)

In practice,10 however, rules are grounded relative to a set of atoms, which we refer to as an atom
base. In our example, this avoids the generation of the irrelevant rule ‘c(42, 42) ← a(42)’. To
see this, note that the relevance of instances of ‘c(X, 42)← a(X)’ depends upon the available
ground atoms of predicate a/1. Now, grounding first R(base) establishes — in addition to
grd(R(base)) — the atom base {a(1), a(2)}. Grounding then R(acid)[k/42] relative to this
atom base, yields

{b(42)← } ∪
{

c(1, 42) ← a(1),

c(2, 42) ← a(2)

}
(3)

because only rule instances are created if their positive body literals either belong to the atom base
or are derivable through other rules instances.11 Hence, rule c(42, 42)← a(42) is dropped. This
is made precise in view of our purpose in the following definition.

7 That is, the end of file in practice.
8 We drop the typewriter font, whenever our emphasis shifts to a more formal context.
9 clingo uses a more general instantiation process involving unification and arithmetic evaluation; see (Gebser et al. 2015)

for details.
10 In one-shot grounding, a program is partitioned via the strongly connected components of its dependency graph.
11 This is a simplification of semi-naive database evaluation (Abiteboul et al. 1995), used in ASP grounding compo-

nents (Kaufmann et al. 2016). Notably, this technique allows for dealing with recursive function symbols and guarantees
termination for a wide class of programs, P , even though their ground instantiation grd(P ) is infinite.
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Given a set R of (non-ground) rules and two sets C,D of ground atoms, we define an instantia-
tion of R relative to atom base C as a ground program grdC(R) over atom base D subject to the
following conditions:

D = C ∪H(grdC(R)) (4)

grdC(R) ⊆ {h(r)← B(r)+ ∪ {∼a | a ∈ B(r)− ∩D} |
r ∈ grd(R), B(r)+ ∪ {h(r)} ⊆ D}

(5)

grdC(R) ∪Q and grd(R) ∪Q have the same stable models (6)

where Q = {{a} ← | a ∈ C \H(grd(R))}.12
Atom base D gives the extension of C obtained by grounding R relative to C. To this end,

Condition (4) limits D to atoms either belonging to C or emerging as heads of rules in grdC(R),
while Condition (5) projects grd(P ) to D by reducing its rules to those parts possibly relevant
to stable models, as expressed in (6). The exact scope of the obtained atom base D as well as
grdC(R) are left open to account for potential simplifications during grounding.13 The correctness
of the specific scope is warranted by Condition (6)

We capture the composition of ground programs below in Section 4.4 in terms of modules. To
this end, note that the choices in Q mimic the role of input atoms of modules. In fact, Condition (6)
is equivalent to requiring that the modules (grdC(R), C \H(grd(R)), H(grd(R))) and (grd(R),

C \H(grd(R)), H(grd(R))) have the same stable models.
Resuming our example, we see that grd{a(1),a(2)}(R(acid)[k/42]) corresponds to the rules

in (3). Together with grd∅(R(base)), the resulting program is equivalent to grd(R(base) ∪
R(acid)[k/42]), viz. the rules in (2).

For further illustration, consider R = {a(X)← f(X), e(X); b(X)← f(X),∼e(X)} along
with C = {f(1), f(2), e(1)}. Focusing on relevant (parts of) rule instances relative to C leads to

grdC(R) =

{
a(1)← f(1), e(1) b(1)← f(1),∼e(1)

b(2)← f(2)

}
over D = C ∪ {a(1), b(1), b(2)}. In particular, note that an inapplicable rule instance including
e(2) is dropped, while ∼e(2) is simplified away to thus obtain the last of the above ground rules.

Although grdC(R) reflects a potential simplification of the full ground program grd(R), both
can likewise be augmented with additional rules. Moreover, the restriction of the resulting atom
base preserves equivalence. The next result makes this precise in terms of module theory.

Proposition 1
Let R be a set of (non-ground) rules, let grdC(R) be an instantiation of R relative to a set C of
ground atoms, and let P be a module.

If P and (grd(R), C \ H(grd(R)), H(grd(R))) are compositional, then P and (grdC(R),

C \H(grd(R)), H(grd(R))) are compositional as well, where P t (grd(R), C \H(grd(R)),

H(grd(R))) and P t (grdC(R), C \H(grd(R)), H(grd(R))) have the same stable models.

12 A choice rule (Simons et al. 2002) of the form {a} ← corresponds to (normal) rules a← ∼a′ and a′ ← ∼a, where
a′ is a fresh atom.

13 In fact, the instantiation process of clingo iteratively extends an atom base by heads of rules whose positive body atoms
are contained in it. Moreover, the finite instantiation of a program like {a(9); b(1); b(X+1) ← b(X),∼a(X)}
relies on the evaluation of ∼a(X) during grounding, allowing clingo to stop the successive generation of rule instances
at b(10)← b(9),∼a(9).
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Proof
Assume that P and (grd(R), C \H(grd(R)), H(grd(R))) are compositional. By the construction
of grdC(R) in (5), G(grdC(R)) is a subgraph of G(grd(R)), which implies that P and (grdC(R),

C\H(grd(R)), H(grd(R))) are compositional as well. As (grd(R), C\H(grd(R)), H(grd(R)))

and (grdC(R), C \H(grd(R)), H(grd(R))) are equivalent by the condition in (6), the module
theorem (Oikarinen and Janhunen 2006) yields that P t (grd(R), C \H(grd(R)), H(grd(R)))

and P t (grdC(R), C \H(grd(R)), H(grd(R))) have the same stable models.

More illustration of contextual grounding is given throughout the following sections.

4.3 Extensible logic programs

We define a (non-ground) logic program R as extensible, if it contains some (non-ground) external
declaration of the form

#external a : B (7)

where a is an atom and B a rule body.
As an example, consider the extensible program in Listing 2.

1 #external e(X) : f(X), X < 2.
2 f(1..2).
3 a(X) :- f(X), e(X).
4 b(X) :- f(X), not e(X).

Listing 2: Extensible logic program

For grounding an external declaration as in (7), we treat it as a rule a ← B, ε where ε is
a distinguished ground atom marking rules from #external declarations. Formally, given
an extensible program R, we define the collection Q of rules corresponding to #external
declarations as follows.

Q = {a← B, ε | (#external a : B) ∈ R}
R′ = {a← B ∈ R}

With these, the ground instantiation of an extensible logic program R relative to an atom base C

is defined as a ground logic program P associated with a set E of ground atoms, where

P = {r ∈ grdC∪{ε}(R
′ ∪Q) | ε /∈ B(r)} (8)

E = {h(r) | r ∈ grdC∪{ε}(R
′ ∪Q), ε ∈ B(r)} (9)

For simplicity, we refer to P and E as a logic program with externals, and we drop the reference
to R and C whenever clear from the context. Note that after grounding, the special atom ε appears
neither in P nor E. In fact, P is a logic program over C ∪ E ∪H(P ).

Given the set E of externals, P can alternatively be defined as grdC∪E(R
′).

Grounding the program in Listing 2 relative to an empty atom base yields the below program
with a single external atom, viz. e(1):

1 f(1). f(2).
2 a(1) :- f(1), e(1).
3 b(1) :- f(1), not e(1).
4 b(2) :- f(2).
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Note how externals influence the result of grounding. While occurrences of e(1) remain un-
touched, the atom e(2) is unavailable and thus set to false according to the condition in (5). In
practice, even more simplifications are applied during grounding. For instance, in clingo, the
established truth of f(1) and f(2) leads to their removal in the bodies in Line 2–4.

Logic programs with externals constitute a major building block of multi-shot solving. Hence,
before addressing their composition within a more elaborate formal framework, let us provide
some semantic underpinnings. The stable models of such programs are defined relative to a
truth assignment on the external atoms. For a program P with externals E, we define the set
I = E \H(P ) as input atoms of P . That is, input atoms are externals that are not overridden
by rules in P . Then, given P along with a partial assignment V = (V t, V u) over I , we define
the stable models of P w.r.t. V as the ones of P ∪ ({a← | a ∈ V t} ∪ {{a} ← | a ∈ V u}) to
capture the extension of P with respect to a truth assignment to the input atoms in I . Note that
the externals in E remain implicit in the domain of V . For instance, the above program P with
externals E = {e(1)} has a stable model including a(1) but excluding b(1) w.r.t. assignment
({e(1)}, ∅), and vice versa with (∅, ∅).

Further examples involving external atoms are given in Listings 3, 7, 10, 11, and 14 below.

4.4 Composing logic programs with externals

The assembly of (ground) subprograms can be characterized by means of module theory. Program
states are captured by modules whose input and output atoms provide the respective atom
base. Successive grounding instructions result in modules to be joined with the modules of the
corresponding program states.

Given an atom base C, a (non-ground) extensible program R yields the module

R(C) = (P, (C ∪ E) \H(P ), H(P )) (10)

via the ground program P with externals E obtained by grounding R relative to C.14 For example,
grounding the extensible program in Listing 2 w.r.t. the empty atom base results in the module in
(11). 


f(1)←
f(2)←
a(1)← f(1), e(1)

b(1)← f(1),∼e(1)
b(2)← f(2)

 , {e(1)} ,


f(1), f(2),

a(1),

b(1), b(2)


 (11)

Given the induction of modules from extensible programs w.r.t. to atom bases in (10), we define
successive program states in the following way.

The initial program state is given by the empty module P0 = (∅, ∅, ∅).
The program state succeeding a module Pi is captured by the module

Pi+1 = Pi t Ri+1(I(Pi) ∪O(Pi)) (12)

where Ri+1(I(Pi) ∪ O(Pi)) gives the result of grounding an extensible program R relative to
the atom base I(Pi) ∪ O(Pi) as defined in (10). Note that P (Ri+1(I(Pi) ∪ O(Pi))) is a logic

14 Note that E \H(P ) consists of atoms stemming from #external declarations that have not been “overwritten” by
any rules in P .
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program over I(Pi+1) ∪O(Pi+1) with externals E such that

I(Pi+1) ∪O(Pi+1) = (I(Pi) ∪O(Pi)) ∪ E ∪H(P (Ri+1(I(Pi) ∪O(Pi))))).

This reflects the atom base of programs with externals discussed after equations (8) and (9). From
a practical point of view, the modules Pi and Pi+1 represent the program state of clingo before and
after the (i+1)-st execution of a ground command in a main routine. And Ri+1(I(Pi)∪O(Pi))

captures the result of the (i+1)-st ground command applied to an extensible program relative
to the atom base provided by Pi. Notably, the join leading to Pi+1 can be undefined in case the
constituent modules are non-compositional. At system level, compositionality is only partially
checked. clingo, or more precisely clasp, respectively, issues an error message when atoms become
redefined but no cycle check over modules is done.

Interestingly, input atoms induced by externals can also be used to incorporate future informa-
tion. To see this, consider the following rules (extracted from Listing 10):15

1 #program s(i).
2 #external a(i).

4 { q(i) }.
5 a(i-1) :- q(i).
6 a(i-1) :- a(i).
7 :- a(i), q(i).

These rules give rise to the module Si(C) given as follows.

{q(i)} ←
a(i− 1) ← q(i)

a(i− 1) ← a(i)

← a(i), q(i)

 , (C ∪ {a(i)}) \ {a(i− 1), q(i)}, {a(i− 1), q(i)}

 (13)

We observe that the input atom a(i) of Si(C) is defined in Si+1(C). Proceeding as in (12) by
letting R be S, each module Pi has a single input atom a(i) and output atoms {a(0), . . . , a(i−
1), q(1), . . . , q(i)}; it yields i + 1 stable models, either the empty one or one of the form
{a(0), . . . , a(j− 1), q(j)} for 1 ≤ j ≤ i. In the latter models, the truth of an atom like a(0) relies
on that of q(j), occurring in a subsequently joined module whenever j ≥ 2.

The next result provides a characterization of sequences of program states in terms of their
constituent subprograms and their associated external atoms. The well-definedness of a sequence
depends upon their compositionality, as defined in Section 2.

Proposition 2
Let (Ri)i>0 be a sequence of (non-ground) extensible programs, and let Pi+1 be the ground
program with externals Ei+1 obtained from Ri+1 and I(Pi) ∪ O(Pi) for i ≥ 0, where P0 =

(∅, ∅, ∅) and Pi+1 is defined as in (12), and Ri+1 is defined as in (10) for i ≥ 0.
If Pi and Ri+1(I(Pi) ∪O(Pi)) are compositional for some j ≥ 0 and all j > i ≥ 0, then

1. P (Pj) =
⋃j

i>0 Pi

2. I(Pj) =
⋃j

i>0 Ei \
⋃j

i>0 H(Pi)

3. O(Pj) =
⋃j

i>0 H(Pi)

15 Similar to the n-Queens problem, putting a queen (q) on position i attacks (a) positions 1, . . . , i − 1, and no other
queen may be put there.
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Proof
For P0 = (∅, ∅, ∅), we have that P (P0) = I(P0) = O(P0) = ∅, and assume that P (Pj) =⋃j

i>0 Pi, I(Pj) =
⋃j

i>0 Ei\
⋃j

i>0 H(Pi), and O(Pj) =
⋃j

i>0 H(Pi) for some j ≥ 0. According
to (8)–(10) and (12), Rj+1(I(Pj) ∪ O(Pj)) is the module (Pj+1, (I(Pj) ∪ O(Pj) ∪ Ej+1) \
H(Pj+1), H(Pj+1)), where

Pj+1 = {r ∈ grdI(Pj)∪O(Pj)∪{ε}({a← B ∈ Rj+1} ∪
{a← B, ε | (#external a : B) ∈ Rj+1}) | ε /∈ B(r)}

Ej+1 = {h(r) | r ∈ grdI(Pj)∪O(Pj)∪{ε}({a← B ∈ Rj+1} ∪
{a← B, ε | (#external a : B) ∈ Rj+1}), ε ∈ B(r)}

Provided that Pj and Rj+1(I(Pj) ∪O(Pj)) are compositional, their join is defined as

Pj+1 =


⋃j+1

i>0 Pi,⋃j
i>0 Ei \

⋃j+1
i>0 H(Pi) ∪ (

⋃j+1
i>0 Ei ∪

⋃j
i>0 H(Pi)) \

⋃j+1
i>0 H(Pi),⋃j+1

i>0 H(Pi)


That is, P (Pj+1) =

⋃j+1
i>0 Pi, I(Pj+1) =

⋃j+1
i>0 Ei\

⋃j+1
i>0 H(Pi), and O(Pj+1) =

⋃j+1
i>0 H(Pi).

The ground rules in P (Ri+1(I(Pi) ∪O(Pi))) are obtained by grounding Ri+1 relative to the
atom base I(Pi) ∪O(Pi), viz. the previously gathered input and output atoms. Unlike this, the
full ground program grd(Ri+1) takes all ground terms into account; this includes all integers.
Thus, for example, grounding the extensible program in Listing 2 in full yields an infinite module:



f(1)←
f(2)←
a(1)← f(1), e(1)

b(1)← f(1),∼e(1)
a(2)← f(2), e(2)

b(2)← f(2),∼e(2)
a(3)← f(3), e(3)

b(3)← f(3),∼e(3)
. . .


, {e(1)} ,


f(1), f(2),

a(1), a(2), a(3), . . .

b(1), b(2), b(3), . . .




(14)

Both this module and the one in (11) obtained by contextual grounding possess two stable models:
X1 = {e(1), f(1), f(2), a(1), b(2)} and X2 = {f(1), f(2), b(1), b(2)}. However, when joined
with the module ({e(2) ←}, ∅, {e(2)}), the stable models of (11) turn into X1 ∪ {e(2)} and
X2 ∪ {e(2)}, while (14) yields X1 \ {b(2)} ∪ {e(2), a(2)} and X2 \ {b(2)} ∪ {e(2), a(2)}.
This mismatch results from the fact that the atom e(2) was removed from (11) when grounding
relative to atom base {e(1)}. The subsequent definition of e(2) in module ({e(2)←}, ∅, {e(2)})
is thus stripped of any logical relation to the rules in (11). Such differences can be eliminated
by stipulating H(grd(Rj+1)) ∩

⋃j
i>0 A(grd(Ri)) ⊆ I(Pj) for a sequence (Ri)i>0 of extensible

programs and all j ≥ 0, where the program state Pj is obtained through contextual grounding.
This condition rules out the join conducted in our example. But even so, full and contextual
grounding would still be imbalanced. For example, the module in (11) can be joined with modules
defining a(3), b(3), . . . , while doing the same with (14) violates compositionality. Not to mention
that infinite ground programs as in (14) cannot be utilized in practice. This discussion shows
the influence of contextual grounding on inputs, outputs, and resulting ground programs. Hence,
some care has to be taken when writing interacting subprograms. Actually, apart from the ones
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in Section 5.2, all following modules obtained by grounding parametrized programs satisfy the
above condition and have the same solutions no matter which form of grounding is used.

4.5 State-based characterization of multi-shot solving

For capturing multi-shot solving, we must account for sequences of system states, involving
information about the programs kept within the grounder and the solver. To this end, we define a
simple operational semantics based on system states and associated operations.

An ASP system state is a triple (R,P, V ) where

• R = (Rc)c∈C is a collection of extensible (non-ground) logic programs,16

• P is a module,
• V = (V t, V u) is a three-valued assignment over I(P).

When solving with P, the input atoms in I(P) are taken to be false by default, that is, V f =

I(P) \ (V t ∪ V u). This can still be altered by dedicated directives as illustrated below.
As informal examples for ASP system states, consider the ones obtained from the program in

Listing 1 after separately grounding subprograms base and acid (while replacing k with 42),
respectively:

((R(base), R(acid)), ({a(1)← , a(2)← }, ∅, {a(1), a(2)}), (∅, ∅)) (15)

((R(base), R(acid)), ({b(42)← }, ∅, {b(42)}), (∅, ∅)) (16)

Given that the program in Listing 1 has no external declarations, no truth values can be assigned.
This is different in states obtained from the program in Listing 2. Grounding this yields the state

((R(base)),Rb, (∅, ∅)) (17)

where Rb is the module given in (11). Furthermore, we have set the external atom e(1) to false.
The way such states are obtained from non-ground logic programs is made precise next.

ASP system states can be created and modified by the following operations.
Function create partitions a program into subprograms.

create(R) : 7→ (R,P, V )

for a list R of (non-ground) rules and declarations where

• R = (R(c))c∈C
• P = (∅, ∅, ∅)
• V = (∅, ∅)

Each subprogram R(c) gathers all rules and non-program directives in the scope of c.
The respective subprograms can be extended by function add with rules as well as external

declarations.

add(R) : (R1,P, V ) 7→ (R2,P, V )

for a list R of (non-ground) rules and declarations where

• R1 = (Rc)c∈C and R2 = (Rc ∪R(c))c∈C

16 Note that Rc is merely an indexed set and thus different from R(c).
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Obviously, we have add(R)(create(∅)) = create(R). Note that add only affects non-ground
subprograms and thus ignores compositionality issues since they appear on the ground level.

Function ground instantiates the designated subprograms in R and binds their parameters. The
resulting ground programs along with their external atoms are then joined with the ones captured
in the current state — provided that they are compositional.

ground((n, tn)n∈N ) : (R,P1, V1) 7→ (R,P2, V2)

for a collection (n, tn)n∈N of pairs of non-integer constants N ⊆ C and term tuples tn ∈ T kn

of arity kn where

• P2 = P1 t R(I(P1) ∪O(P1))

and R(I(P1) ∪O(P1)) is the module obtained as in (10) from

— extensible program
⋃

n∈N Rn[p1/t1, . . . , pkn/tkn ] where tn = (t1, . . . , tkn) and

— atom base I(P1) ∪O(P1)

for (Rc)c∈C = R

• V t
2 = {a ∈ I(P2) | V1(a) = t }

V u
2 = {a ∈ I(P2) | V1(a) = u}

A few more technical remarks are in order. First, note that a previous external status of an atom is
eliminated once it becomes defined by a ground rule. This is accomplished by module composition,
namely, the elimination of output atoms from input atoms. Second, note that jointly grounded
subprograms are treated as a single logic program. In fact, while ground((c,pc), (c,pc))(s) and
ground((c,pc))(s) yield the same result, ground((c,pc))(ground((c,pc))(s)) leads to two non-
compositional modules whenever normal rules are contained in Rc. Finally, note that new inputs
stemming from just added external declarations are set to false in view of V f

2 = I(P2)\(V t
2 ∪V u

2 ).
The above functionality lets us now formally characterize the states in (15) and (16). By

abbreviating the logic program in Listing 1 with R, the system state in (15) results from
ground((base, ()))(create(R)), while ground((acid, (42)))(create(R)) yields (16). More-
over, observe the difference between grounding subprogram acid before base and vice versa.
While the ground program comprised in

ground((base, ()))(ground((acid, (42)))(create(R)))

only consists of the facts {b(42)← , a(1)← , a(2)← }, the one contained in

ground((acid, (42)))(ground((base, ()))(create(R)))

includes additionally the rules {c(1, 42) ← a(1); c(2, 42) ← a(2)}. This difference is due to
contextual grounding (cf. Section 4.2). While in the first case rule c(X, 42)← a(X) is grounded
w.r.t. atom base {b(42)}, it is grounded relative to {a(1), a(2), b(42)} in the second case. Such
effects are obviously avoided when jointly grounding both subprograms, as in

ground((base, ()), (acid, (42)))(create(R)) .

The next function allows us to change the truth assignment of input atoms.

assignExternal(a, v) : (R,P, V1) 7→ (R,P, V2)

for a ground atom a and v ∈ {t, u, f} where

• if v = t

— V t
2 = V t

1 ∪ {a} if a ∈ I(P), and V t
2 = V t

1 otherwise
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— V u
2 = V u

1 \ {a}
• if v = u

— V t
2 = V t

1 \ {a}
— V u

2 = V u
1 ∪ {a} if a ∈ I(P), and V u

2 = V u
1 otherwise

• if v = f

— V t
2 = V t

1 \ {a}
— V u

2 = V u
1 \ {a}

While the default truth value of input atoms is false, making them undefined results in a choice.
Note that assignExternal only affects input atoms, that is, “non-overwritten” externals atoms. If
an atom is not external, then assignExternal has no effect.

With this function, we can now characterize the system state in (17). Abbreviating the program
in Listing 2 with R, system state (17) is issued by

assignExternal(e(1), f)(ground((base, ()))(create(R))) . (18)

The resulting state is the same as the previous one, obtained from ground((base, ()))(create(R)),
since external atoms are assigned false by function ground.

Function releaseExternal removes the external status from an atom and sets it permanently to
false, otherwise this function has no effect.

releaseExternal(a) : (R,P1, V1) 7→ (R,P2, V2)

for a ground atom a where

• P2 = (P (P1), I(P1) \ {a}, O(P1) ∪ {a}) if a ∈ I(P1), and P2 = P1 otherwise
• V t

2 = V t
1 \ {a}

• V u
2 = V u

1 \ {a}

Note that releaseExternal only affects input atoms; defined atoms remain unaffected. The addition
of a to the output makes sure that it can never be re-defined, neither by a rule nor an external
declaration. A released (input) atom is thus permanently set to false, since it is neither defined by
any rule nor part of the input atoms, and is also denied both statuses in the future.

The following properties shed some light on the interplay among the previous operations. For
an ASP system state s and v, v′ ∈ {t, f, u}, we have

1. releaseExternal(a)(releaseExternal(a)(s)) = releaseExternal(a)(s)

2. releaseExternal(a)(assignExternal(a, v)(s)) = releaseExternal(a)(s)

3. assignExternal(a, v)(releaseExternal(a)(s)) = releaseExternal(a)(s)

4. assignExternal(a, v)(assignExternal(a, v′)(s)) = assignExternal(a, v)(s)

Finally, solve leaves the system state intact and outputs a possibly filtered set of stable models
of the logic program with externals comprised in the current state (cf. Section 4.3). This set is
general enough to define all basic reasoning modes of ASP.

solve((At, Af )) : (R,P, V ) 7→ (R,P, V )

outputs the set

XP,V = {X | X is a stable model of P (P) w.r.t. V such that At ⊆ X and Af ∩X = ∅}
(19)
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To be more precise, a state like (R,P, V ) comprises the ground logic program P (P) with external
atoms I(P). The latter constitutes the domain of the partial assignment V . Recall from Section 4.3
that the stable models of P (P) w.r.t. V are given by the stable models of the program P (P) ∪
{a← | a ∈ V t} ∪ {{a} ← | a ∈ V u}. In addition to the assignment V on input atoms, we
consider another partial assignment (At, Af ) over an arbitrary set of atoms for filtering stable
models; they are commonly referred to as assumptions.17 Note the difference among input atoms
and (filtering) assumptions. While a true input atom amounts to a fact, a true assumption acts as an
integrity constraint.18 Thus, a true assumption must not be unfounded, while a true external atom
is exempt from this condition. Also, undefined input atoms are regarded as false, while undefined
assumptions remain neutral. Finally, at the solver level, input atoms are a transient part of the
representation, while assumptions only affect the assignment of a single search process.

For illustration, observe that applying solve() to the system state in (17) leaves the state
unaffected and outputs a single stable model containing b(1). Unlike this, no model is obtained
from solve((∅, {b(1)}))((17)). For a complement, solve()(assignExternal(e(1), u)((17)))
outputs two models, one with a(1) and another with b(1).

From the viewpoint of operational semantics, a multi-shot ASP solving process can be associ-
ated with a sequence of operations (ok)k∈K , which induce a sequence (Rk,Pk, Vk)k∈K of ASP
system states where

1. o0 = create(R) for some logic program R

2. (R0,P0, V0) = o0
3. (Rk,Pk, Vk) = ok((Rk−1,Pk−1, Vk−1)) for k > 0

Note that only o0 creates states while all others map states to states.
For capturing the result of multi-shot solving in terms of stable models, we consider the

sequence of sets of stable models obtained at each solving step. More precisely, given a sequence
of operations and system states as above, a multi-shot solving process can be associated with
the sequence (XPj ,Vj

)j∈K,oj=solve((At
j ,A

f
j ))

of sets of stable models, where XP,V is defined w.r.t.

(At, Af ) as in (19).
All of the above state operations have almost literal counterparts in clingo’s APIs. For in-

stance, the Control class of the Python API for capturing system states provides the methods
__init__, add, ground, assign_external, release_external, and solve.19

4.6 Example

Let us demonstrate the above apparatus via the authentic clingo program in Listing 3.

1 #external p(1;2;3).
2 p(0) :- p(3).
3 p(0) :- not p(0).

5 #program succ(n).

17 In clingo, or more precisely in clasp, such assumptions are the principal parameter to the underlying solve function
(see below). The term assumption traces back to Eén and Sörensson (2003); it was used in ASP by Gebser et al. (2008).

18 That is, the difference between ‘a←’ and ‘← ∼a’.
19 For a complete listing of functions and classes available in clingo’s Python API,

see https://potassco.org/clingo/python-api/current/clingo.html

https://potassco.org/clingo/python-api/current/clingo.html
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6 #external p(n+3).
7 p(n) :- p(n+3).
8 p(n) :- not p(n+1), not p(n+2).

10 #script(python)
11 from clingo import Function
12 def main(prg):
13 prg.ground([("base", [])])
14 prg.assign_external(Function("p", [3]), True)
15 prg.solve()
16 prg.assign_external(Function("p", [3]), False)
17 prg.solve()
18 prg.ground([("succ", [1]),("succ", [2])])
19 prg.solve()
20 prg.ground([("succ", [3])])
21 prg.solve()
22 #end.

Listing 3: Example with #external and #program declarations controlled by a main
routine in Python (simple.lp)

This program consists of two subprograms, viz. base and succ given in Line 1–3 and 5–8,
respectively. Note that once the rule in Line 3 is internalized no stable models are obtained
whenever its body is satisfied. Since we use the main routine in Line 10–22 within a #script
environment, an initial clingo object is created for us and bound to variable prg (cf. Line 12).
This amounts to an implicit call of create(R), where R is the list of (non-ground) rules and
declarations in Line 1–8 in Listing 3.20

The initial clingo object gathers all rules and external declarations in the scope of the subpro-
grams base and succ; its state is captured by

(R0,P0, V0) = ((R(base), R(succ)), (∅, ∅, ∅), (∅, ∅)) .

where R(base) and R(succ) consist of the non-ground rules and external declarations in Line 1–3
and 5–8, respectively. Empty subprograms are omitted.

The initial program state induces the atom base I(P0) ∪O(P0) = ∅.
The ground instruction in Line 13 takes the extensible logic program R(base) along with

the empty base of atoms and yields the ground program P1 with externals E1, where

P1 = {p(0)← p(3); p(0)← ∼p(0)}
E1 = {p(1), p(2), p(3)} .

This results in the module R1(∅) = (P1, E1, {p(0)}), whose join with P0 yields

P1 = P0 t R1(∅) = ({p(0)← p(3); p(0)← ∼p(0)}, {p(1), p(2), p(3)}, {p(0)}) .

We then obtain the system state

(R1,P1, V1) = (R0,P0 t R1(∅), V0) .

20 Further clingo objects could be created with create(∅) and then further augmented and manipulated.
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While the input atoms p(1), p(2), and p(3) are assigned (by default) to false by V1, the
instruction in Line 14 switches the value of p(3) to true. And we obtain the system state

(R2,P2, V2) = (R0,P1, ({p(3)}, ∅)) .

Applying the solve instruction in Line 15 leaves the state intact and outputs the stable model
{p(0), p(3)} of P2 w.r.t. V2. Note that making p(3) true leads to the derivation of p(0), which
blocks the rule in Line 3.

Next, the instruction in Line 16 turns p(3) back to false, which puts the ASP system into the
state

(R3,P3, V3) = (R0,P1, (∅, ∅)) .

The last change withdraws the derivation of p(0) and no stable model is obtained from P3 w.r.t.
V3 in Line 17.

The ground instruction in Line 18 instantiates the rules and external declarations of subpro-
gram succ(n) in Line 5–8 twice. Once the parameter n is instantiated with 1 and once with 2.
This yields the extensible logic program R4 = R(succ)[n/1] ∪ R(succ)[n/2]. This program
is then grounded relative to I(P3) ∪O(P3) = {p(1), p(2), p(3)} ∪ {p(0)}, which results in the
following ground program with externals and resulting module:

P4 =

{
p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
E4 = {p(4), p(5)}

and R4(I(P3) ∪O(P3)) =

(
P4,

{
p(0), p(4),

p(3), p(5)

}
,

{
p(1),

p(2)

})
Joining the latter with the program module P3 of the previous system state yields P4 =

P3 t R4(I(P3) ∪O(P3)), or more precisely:

P4 =

({
p(0)← p(3); p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(0)← ∼p(0); p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(4),

p(3), p(5)

}
,

{
p(0), p(1),

p(2)

})
This puts the ASP system into the state

(R4,P4, V4) = (R0,P3 t R4(I(P3) ∪O(P3)), V3) .

The subsequent solve command in Line 19 leaves the state intact but returns no stable models
for P4 w.r.t. V4.

Then, clingo proceeds in Line 20 with the ground instruction instantiating R(succ)[n/3]

relative to the atom base I(P4) ∪O(P4) = {p(0), p(1), p(2), p(3), p(4), p(5)}. This results in
the following ground program with externals and induced module:

P5 = {p(3)← p(6); p(3)← ∼p(4),∼p(5)}
E5 = {p(6)}

and R5(I(P4) ∪O(P4)) =

(
P5,

{
p(0), p(1), p(2),

p(4), p(5), p(6)

}
, {p(3)}

)
With the latter, we obtain the system state

(R5,P5, V5) = (R0,P4 t R5(I(P4) ∪O(P4)), V3)
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where

P5 =


p(0)← p(3); p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(0)← ∼p(0); p(2)← p(5); p(2)← ∼p(3),∼p(4);

p(3)← p(6); p(3)← ∼p(4),∼p(5)

 ,


p(4),

p(5),

p(6)

 ,


p(0), p(1),

p(2),

p(3)


 .

Finally, the solve command in Line 21 yields the stable model {p(0), p(3)} of module P5

w.r.t. assignment (∅, ∅).
The result of the ASP solving process induced by program simple.lp from Listing 3 is given

in Listing 4. The parameter 0 instructs clingo to compute all stable models upon each invocation
of solve.21

$ clingo simple.lp 0
clingo version 4.5.4
Reading from simple.lp
Solving...
Answer: 1
p(3) p(0)
Solving...
Solving...
Solving...
Answer: 1
p(3) p(0)
SATISFIABLE

Models : 2
Calls : 4
Time : 0.008s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s

Listing 4: Running the program in Listing 3 with clingo

Each such invocation is indicated by ‘Solving...’. We see that stable models are only obtained
for the first and last invocation. Semantically, our ASP solving process thus results in a sequence
of four sets of stable models, namely ({{p(0), p(3)}}, ∅, ∅, {{p(0), p(3)}}).

The above example illustrates the customized selection of (non-ground) subprograms to in-
stantiate upon ground commands. For a convenient declaration of input atoms from other
subprogram instances, schematic #external declarations are embedded into the grounding
process. Given that they do not contribute ground rules, but merely qualify (undefined) atoms
that should be exempted from simplifications, #external declarations only contribute to the
signature of subprograms’ ground instances. Hence, it is advisable to condition them by domain
predicates22 (Syrjänen 2001) only, as this precludes any interferences between signatures and
grounder implementations. As long as input atoms remain undefined, their truth values can be
freely picked and modified in-between solve commands via assign_external instructions.
This allows for configuring the inputs to modules representing system states in order to select
among their stable models. Unlike that, the predecessors iclingo and oclingo of clingo always
assigned input atoms to false, so that the addition of rules was necessary to accomplish switching
truth values as in Line 14 and 16 above. However, for a well-defined semantics, clingo like its
predecessors builds on the assumption that modules resulting from subprogram instantiation are

21 In fact, clingo’s API allows for changing solver configurations in between successive solver calls.
22 Domain and built-in predicates have unique extensions that can be evaluated entirely by means of grounding.
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compositional, which essentially requires definitions of atoms and mutual positive dependencies
to be local to evolving ground programs (cf. (Gebser et al. 2008)).

5 Using multi-shot solving in practice

After fixing the formal foundations of multi-shot solving and sketching the corresponding clingo
constructs, let us now illustrate their usage in several case studies.

5.1 Incremental ASP solving

As mentioned, the new clingo series fully supersedes its special-purpose predecessors iclingo
and oclingo. To illustrate this, we give below a Python implementation of iclingo’s control loop,
corresponding to the one shipped with clingo.23 Roughly speaking, iclingo offers a step-oriented,
incremental approach to ASP that avoids redundancies by gradually processing the extensions to a
problem rather than repeatedly re-processing the entire extended problem (as in iterative deepening
search). To this end, a program is partitioned into a base part, describing static knowledge
independent of the step parameter t, a cumulative part, capturing knowledge accumulating with
increasing t, and a volatile part specific for each value of t. These parts are delineated in iclingo by
the special-purpose directives #base, ‘#cumulative t’, and ‘#volatile t’. In clingo, all
three parts are captured by #program declarations along with #external atoms for handling
volatile rules. More precisely, our exemplar relies upon subprograms named base, step, and
check along with external atoms of form query(t).

We illustrate this approach by adapting the Towers of Hanoi encoding by Gebser et al. (2012) in
Listing 5. The problem instance in Listing 6 as well as Line 2 in 5 constitute static knowledge and
thus belong to the base program. The transition function is described in the subprogram step
in Line 4–15 of Listing 5. Finally, the query is expressed in Line 18; its volatility is realized by
making the actual goal condition ‘goal_on(D,P), not on(D,P,t)’ subject to the truth
assignment to the external atom query(t). For convenience, this atom is predefined in Line 33
in Listing 7 as part of the check program (cf. Line 32). Hence, subprogram check consists of a
user- and predefined part. Since the encoding of the Towers of Hanoi problem is fairly standard,
we refer the interested reader to the literature (Gebser et al. 2012) and devote ourselves in the
sequel to its solution by means of multi-shot solving.

Grounding and solving of the program in Listing 6 and 5 is controlled by the Python script in
Listing 7. Lines 5–11 fix the values of the constants imin, imax, and istop. In fact, the setting
in Line 9 and 11 relieves us from adding ‘-c imin=0 -c istop="SAT"’ when calling
clingo. All three constants mimic command line options in iclingo. imin and imax prescribe
a least and largest number of iterations, respectively; istop gives a termination criterion. The
initial values of variables step and ret are set in Line 13. The value of step is used to
instantiate the parametrized subprograms and ret comprises the solving result. Together, the
previous five variables control the loop in Lines 14–29.

The subprograms grounded at each iteration are accumulated in the list parts. Each of its
entries is a pair consisting of a subprogram name along with its list of actual parameters. In the

23 The source code is also available in clingo’s examples. The code for incremental solving is in https://github.
com/potassco/clingo/tree/master/examples/clingo/iclingo and the Towers of Hanoi example
in https://github.com/potassco/clingo/tree/master/examples/gringo/toh.

https://github.com/potassco/clingo/tree/master/examples/clingo/iclingo
https://github.com/potassco/clingo/tree/master/examples/clingo/iclingo
https://github.com/potassco/clingo/tree/master/examples/gringo/toh
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1 #program base.
2 on(D,P,0) :- init_on(D,P).

4 #program step(t).
5 1 { move(D,P,t) : disk(D), peg(P) } 1.

7 move(D,t) :- move(D,P,t).
8 on(D,P,t) :- move(D,P,t).
9 on(D,P,t) :- on(D,P,t-1), not move(D,t).

10 blocked(D-1,P,t) :- on(D,P,t-1).
11 blocked(D-1,P,t) :- blocked(D,P,t), disk(D).

13 :- move(D,P,t), blocked(D-1,P,t).
14 :- move(D,t), on(D,P,t-1), blocked(D,P,t).
15 :- disk(D), not 1 { on(D,P,t) } 1.

17 #program check(t).
18 :- goal_on(D,P), not on(D,P,t), query(t).

20 #show move/3.

Listing 5: Towers of Hanoi incremental encoding (tohE.lp)

1 peg(a;b;c).
2 disk(1..4).
3 init_on(1..4,a).
4 goal_on(1..4,c).

Listing 6: Towers of Hanoi instance (tohI.lp)

very first iteration, the subprograms base and check(0) are grounded. Note that this involves
the declaration of the external atom query(0) and the assignment of its default value false. The
latter is changed in Line 28 to true in order to activate the actual query. The solve call in Line 29
then amounts to checking whether the goal situation is already satisfied in the initial state. As
well, the value of step is incremented to 1.

As long as the termination condition remains unfulfilled, each following iteration takes the
respective value of variable step to replace the parameter in subprograms step and check
during grounding. In addition, the current external atom query(t) is set to true, while the
previous one is permanently set to false. This disables the corresponding instance of the integrity
constraint in Line 18 of Listing 5 before it is replaced in the next iteration. In this way, the query
condition only applies to the current horizon.

An interesting feature is given in Line 24. As its name suggests, this function cleans up atom
bases used during grounding. That is, whenever the truth value of an atom is ultimately determined
by the solver, it is communicated to the grounder where it can be used for simplifications in
subsequent grounding steps. The call in Line 24 effectively removes atoms from the current atom
base (and marks some atoms as facts, which might lead to further simplifications).
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1 #script (python)

3 from clingo import Function

5 def get(val, default):
6 return val if val != None else default

8 def main(prg):
9 imin = get(prg.get_const("imin"), 1)

10 imax = prg.get_const("imax")
11 istop = get(prg.get_const("istop"), "SAT")

13 step, ret = 0, None
14 while ((imax is None or step < imax) and

15 (step == 0 or step < imin or (
16 (istop == "SAT" and not ret.satisfiable) or

17 (istop == "UNSAT" and not ret.unsatisfiable) or

18 (istop == "UNKNOWN" and not ret.unknown)))):
19 parts = []
20 parts.append(("check", [step]))
21 if step > 0:
22 prg.release_external(Function("query", [step-1]))
23 parts.append(("step", [step]))
24 prg.cleanup()
25 else:
26 parts.append(("base", []))
27 prg.ground(parts)
28 prg.assign_external(Function("query", [step]), True)
29 ret, step = prg.solve(), step+1
30 #end.

32 #program check(t).
33 #external query(t).

Listing 7: Python script implementing iclingo functionality in clingo (inc.lp)

The result of each call to solve is printed by clingo. In our example, the solver is called 16
times before a plan of length 15 is found:

$ clingo inc.lp tohE.lp tohI.lp 0
clingo version 4.5.4
Reading from inc.lp ...
Solving...
[...]
Solving...
Answer: 1
move(4,b,1) move(3,c,2) move(4,c,3) move(2,b,4) move(4,a,5) \
move(3,b,6) move(4,b,7) move(1,c,8) move(4,c,9) move(3,a,10) \
move(4,a,11) move(2,c,12) move(4,b,13) move(3,c,14) move(4,c,15)
SATISFIABLE

Models : 1
Calls : 16
Time : 0.020s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
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step Operation Line
create(TOH) 8

0 ground(((base, ()), (check, (0)))) 27
assignExternal(query(0), t) 28
solve((∅, ∅)) 29

1 releaseExternal(query(0)) 22
ground(((step, (1)), (check, (1)))) 27
assignExternal(query(1), t) 28
solve((∅, ∅)) 29

...
k releaseExternal(query(k−1)) 22

ground(((step, (k)), (check, (k)))) 27
assignExternal(query(k), t) 28
solve((∅, ∅)) 29

Fig. 1: Trace of Listing 8 in terms of operations

CPU Time : 0.020s

Listing 8: Running the programs in Listing 5 and 6 with clingo

For a complement, we give in Figure 1 a trace of the Python script in terms of the operations de-
fined in Section 4.5. We let TOH stand for the combination of programs tohI.lp and tohE.lp
in Listing 5 and 6. Without setting any constants in Listing 7, the sequence stops at the first k ≥ 0

for which solve((∅, ∅)) yields a stable model. Each k-th invocation of solve((∅, ∅)) is applied to
a system state consisting of

1. the non-ground programs R(base), R(check), and R(step),
2. the module obtained by

(a) composing the ground subprograms of base, check(0),
check(l), and step(l) for 1 ≤ l ≤ k,

having

(b) the single input atom query(k), and
(c) output atoms stemming from

i all ground rule heads in the subprograms and

ii all released variables query(l) for 1 ≤ l ≤ k,

and
3. a partial assignment mapping query(k) to true.

Note that all released atoms query(l) are undefined and set to false under stable models
semantics. Hence, among all instances of the integrity constraint in Line 18 in Listing 5, only the
k-th one is effective.

5.2 n-Queens problem

In this section, we consider the well-known n-Queens problem. However, in contrast to the
classical setting, we aim at solving series of problems of increasing size.
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5.2.1 Encoding incremental cardinality constraints

The n-Queens problem can be expressed in terms of cardinality constraints, that is, there is exactly
one queen per row and column, and there is at most one queen per diagonal. Hence, for addressing
this problem incrementally, we have to encode such constraints in an incremental way.24 To
this end, let us elaborate our encoding technique in a slightly simpler setting. Let 1, . . . , n be a
sequence of adjacent positions, such as a row, column, or diagonal, and let q1, . . . , qn be atoms
indicating whether a queen is on position 1, . . . , n of such a sequence, respectively.25

We begin with a simple way to encode at-most-one constraints for an increasing set of positions
n. The corresponding program, Q≤1i , is given in Listing 9.

1 #program step(i).
2 { q(i) }.
3 a(i) :- q(i-1).
4 a(i) :- a(i-1).
5 :- a(i), q(i).

Listing 9: Incremental encoding of at-most-one constraints

We use q(i) to represent qi as well as auxiliary variables of form a(i) to indicate that position
i is attacked by a queen on a position j ≤ i. The idea is to join the instantiation of Q≤1n with the
previous program modules whenever a new position n is added. With this addition a queen may
be put on position n in Line 2. Position n is attacked if either the directly adjacent position or
another connected position is occupied by a queen (Line 3 and 4). Finally, a queen must not be
placed on an attacked position (Line 5).

Let us make this precise by means of the operations introduced in Section 4.5. At first,
create(Q≤1i ) yields a state comprising R(step), an empty module, and an empty assignment.
Applying ground((step, (1))) to the resulting state yields the module

P1 = ({{q1} ←}, ∅, {q1})

and leaves R(step) as well as the assignment intact.26 Note that grounding Q≤11 relative to the
empty atom base produces no instances of the rules in lines 3 to 5.

Applying ground((step, (2))) to the resulting state yields the module

P2 = ({{q1} ←}, ∅, {q1}) t



{q2} ←
a2 ← q1

← a2, q2

 , {q1}, {q2, a2}



=



{q1} ←
{q2} ←
a2 ← q1

← a2, q2

 , ∅, {q1, q2, a2}


Grounding Q≤12 relative to the output atoms {q1} of P1 produces no instance of the rule in Line 4.

24 The source code can also be found in clingo’s examples: https://github.com/potassco/clingo/tree/
master/examples/clingo/incqueens

25 Such sequences are successively build for rows, columns, and diagonals via predicate target/6 in Listing 11.
26 Since neither is changed in the sequel, we concentrate on the evolution of the program module.

https://github.com/potassco/clingo/tree/master/examples/clingo/incqueens
https://github.com/potassco/clingo/tree/master/examples/clingo/incqueens
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Each subsequent application of ground((step, (n))) for n ≥ 3 yields the ground program
in (23).

{q1} ← (20)

{q2} ← a2 ← q1 ← a2, q2 (21)

{q3} ← a3 ← q2 a3 ← a2 ← a3, q3 (22)
...

...
...

...

{qn} ← an ← qn−1 an ← an−1 ← an, qn (23)

Accordingly, the corresponding join Pn = Q≤11 t · · · tQ≤1n comprises the union of the programs
in (20), (21), and (22) to (23); it has no inputs but outputs {q1, . . . , qn} ∪ {a2, . . . , an}. Then, X
is a stable model of Pn iff X = ∅ or X = {qi, ai+1, . . . , an} for some 1 ≤ i ≤ n. This shows
that Pn captures the set of all subsets of {q1, . . . , qn} containing at most one qi.

Let us now turn to an incremental encoding delineating all singletons in {q1, . . . , qn}. Unlike
above, the program, viz. Q=1

i , in Listing 10 uses external atoms to capture attacks from prospective
board positions.

1 #program step(i).
2 #external a(i).
3 { q(i) }.
4 a(i-1) :- q(i).
5 a(i-1) :- a(i).
6 :- a(i), q(i).
7 :- not a(1), not q(1), i=1.

Listing 10: Incremental encoding of exactly-one constraints

As in Listing 9, each instantiation of Q=1
i allows for placing a queen at position i or not. Unlike

there, however, attacks are now propagated in the opposite direction, either by placing a queen
at position i or an attack from a position beyond i. The latter is indicated by the external atom
a(i), which becomes defined in Q=1

i+1. As in Listing 9, Line 6 denies an installation of a queen
at i while it is attacked.

Applying ground((step, (1))) to the state resulting from create(Q=1
i ) yields the module

P1 = ({{q1} ←, ← a1, q1, ← ∼a1,∼q1}, {a1}, {q1})

No ground rule was produced from Line 4 and 5. Note that the external declaration led to the
input atom a1. Each subsequent application of ground((step, (n))) for n ≥ 2 yields the ground
program in (26).

{q1} ← ← a1, q1 ← ∼ a1, ∼ q1 (24)

{q2} ← a1 ← q2 a1 ← a2 ← a2, q2 (25)

{q3} ← a2 ← q3 a2 ← a3 ← a3, q3

...
...

...
...

{qn} ← an−1 ← qn an−1 ← an ← an, qn (26)

Accordingly, the corresponding join Pn = Q=1
1 t · · · tQ=1

n comprises the union of the programs
in (24), and (25) to (26); it has input {an} and outputs {q1, . . . , qn} ∪ {a1, . . . , an−1}. Then, X
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is a stable model of Pn iff X = {a1, . . . , ai−1, qi} for some 1 ≤ i ≤ n. That is, the stable models
of Pn are in a one-to-one correspondence to one element subsets of {q1, . . . , qn}.

Interestingly, the last encoding can be turned into one for an at-most one-constraint by omitting
Line 7, and into an at-least-one constraint by removing Line 6. Note that the integrity constraint in
Line 7 cannot simply be added to the encoding in Listing 9 because it encodes the attack direction
the other way round. One could add ‘:- not a(i), not q(i), query(i).’ subject
to the query atom. But this has the disadvantage that the constraint would have to be retracted
whenever the query atom becomes permanently false. The encoding in Listing 10 ensures that all
constraints in the solver (including learnt constraints) can be reused in successive solving steps.

Finally, note that by using step, both encodings can by used with the built-in incremental
mode, described in the previous section.

5.2.2 An incremental encoding

In what follows, we use the above encoding schemes to model the n-Queens problem. As
mentioned, we aim at solving series of differently sized boards. Given that larger boards subsume
smaller ones, an evolving problem specification can reuse ground rules from previous clingo states
when the size increases. To this end, we view the increment of n to n+ 1 as the addition of one
more row and column. The basic idea of our incremental encoding is to interconnect the previous
and added board cells so that each of them has a unique predecessor or successor in either of the
four attack directions of queens, respectively. Each such connection scheme amounts to a sequence
of adjacent positions, as used above in Section 5.2.1. The four schemes obtained in our setting
are depicted in Figure 2a–d. Direct links are indicated by arrows to target cells with a (white
or black) circle. Paths represent the respective ways of attack across several board extensions.
They concretise the sequences discussed in the previous section. Attacks from prospective board
positions are indicated by black circles (and implemented as external atoms), the ones from the
board by white ones. Figure 2a illustrates the scheme for backward diagonals. It connects cells
of the uppermost previous row to corresponding attacked cells in a new column; the latter are in
turn linked to the new cells they attack in the row above. For instance, position (2, 2) is linked to
(3, 1) which is itself linked to (1, 3). Note that this scheme ensures that, starting from the middle
of any backward diagonal, all cells that are successively added (and belong to the same backward
diagonal) are on a path. Such a path follows the board evolution and is directed from previous to
newly added cells, where white circles in arrow targets indicate the presence of attacking cells on
the board when their respective target cells are added. This orientation is analogous to the above
encoding of at-most-one constraints. The schemes for attacks along forward diagonals, horizontal
rows, and vertical columns are shown in Figure 2b, c, and d. Notably, the latter two (partially) link
new cells to previous ones, in which case the targets are highlighted by black circles. At the level
of modules, links from cells that may be added later on give rise to input atoms.

As mentioned, the n-Queens problem can be expressed in terms of cardinality constraints,
requiring that there is exactly one queen per row and column and at most one per diagonal.
The idea is to use the incremental encodings from Section 5.2.1 in combination with the four
connection schemes depicted in Figure 2a–d. The first encoding, capturing at-most-one constraints,
is used for each diagonal, and the second one, handling exactly-one constraints, for each row and
column. The resulting clingo encoding is given in Listing 11. Let us first outline its structure in
relation to the ideas presented in Section 5.2.1. The rules in lines 7-13 gather linked positions
for at-most- and exactly-one constraints in the predicate target/6. The choice rule in Line 15
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Fig. 2: Attack target links among cells of successive n-Queens boards up to size 4

places queens on the new column and row. The rules in lines 17 and 18 determine which cells are
attacked. The rule in line 20 ensures the at-most-one condition for rows, columns, and diagonals.
And finally the rules in lines 22-23 ensure the at-least-one condition for rows and columns.

Let us make this precise in what follows. After declaring queen/2 as the output predicate to be
displayed, the (sub)program board(n) provides rules for extending a board of size n−1 to n ≥
1. To this end, the #external directives in Line 4 and 5 declare atoms representing horizontal
and vertical attacks on cells in the n-th column or row as inputs, respectively. This is analogous to
the use of external atoms in Listing 10. Such atoms match the targets of arrows leading to cells
with black circles in Figure 2c and d. For instance, attack(2,1,h) and attack(2,2,h)
as well as attack(1,2,v) and attack(2,2,v) are the inputs to board(n/2). These
external atoms express that cells at the horizontal and vertical borders can become targets of
attacks once the board is extended beyond size 2. The instances of target(X,Y,X’,Y’,D,n)
specified in Line 7–13 provide links from cells (X,Y) to targets (X’,Y’) along with directions D
leading from or to some newly added cell in the n-th column or row. These instances correspond
to arrows shown in Figure 2a–d, yet omitting those to border cells such that attack(X’,Y’,D)
is declared as input in Line 4 and 5, also highlighted by black circles in Figure 2c and d. Queens
at newly added cells in the n-th column or row are enabled via the choice rule in Line 15, and the
links provided by instances of target(X,Y,X’,Y’,D,n) are utilized in Line 17 and 18 for
deriving attack(X’,Y’,D) in view of a queen at cell (X,Y) or any of its predecessors in the
direction indicated by D. For instance, the following ground rules, simplified by dropping atoms
of the domain predicate target/6, capture horizontal attacks along the first row of a board of
size 4:

attack(1,1,h) :- queen(2,1). attack(1,1,h) :- attack(2,1,h).
attack(2,1,h) :- queen(3,1). attack(2,1,h) :- attack(3,1,h).
attack(3,1,h) :- queen(4,1). attack(3,1,h) :- attack(4,1,h).

Note that a queen represented by an instance of queen(X,1), for 2 ≤ X ≤ 4, propagates to
cells on its left via an implication chain deriving attack(X’,1,h) for every 1 ≤ X’ < X.
Moreover, the fact that the cell at (4,1) can be attacked from the right when increasing the
board size is reflected by the input atom attack(4,1,h) declared in board(n/4). Given
that attacks are propagated analogously for other rows and directions, instances of the integrity
constraint in Line 20 prohibit a queen at cell (X’,Y’) whenever attack(X’,Y’,D) signals
that some predecessor in either direction D has a queen already. The integrity constraints in
Line 22 and 23 additionally require that each row and column contains some queen. In view of the
orientations of horizontal and vertical links, as displayed in Figure 2c and d, non-emptiness can
be recognized from a queen at or an attack propagated to the first position in a row or column, no
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1 #show queen/2.

3 #program board(n).
4 #external attack(n,1..n,h).
5 #external attack(1..n,n,v).

7 target(n, X, X, n, b,n) :- X = 1..n-1. % diagonal b
8 target(Y, n-1,n, Y-1,b,n) :- Y = 2..n-1. % diagonal b
9 target(X, n-1,X+1,n, f,n) :- X = 1..n-1. % diagonal f

10 target(n-1,Y, n, Y+1,f,n) :- Y = 1..n-2. % diagonal f
11 target(X, n, X-1,n, h,n) :- X = 2..n. % horizontal
12 target(n, Y, n-1,Y, h,n) :- Y = 1..n-1. % horizontal
13 target(Y, X, Y, X-1,v,n) :- target(X,Y,X-1,Y,h,n). % vertical

15 { queen(1..n,n); queen(n,1..n-1) }.

17 attack(X’,Y’,D) :- target(X,Y,X’,Y’,D,n), queen(X,Y).
18 attack(X’,Y’,D) :- target(X,Y,X’,Y’,D,n), attack(X,Y,D).

20 :- target(X,Y,X’,Y’,D,n), attack(X’,Y’,D), queen(X’,Y’).

22 :- not queen(1,n), not attack(1,n,h).
23 :- not queen(n,1), not attack(n,1,v).

25 #script(python)
26 def main(prg):
27 n = 0
28 for bound in prg.get_const("calls").arguments:
29 while n < bound.arguments[1].number:
30 n += 1
31 prg.ground([("board", [n])])
32 if n >= bound.arguments[0].number:
33 print(’SIZE {0}’.format(n))
34 prg.solve()
35 #end.

Listing 11: clingo program for successive n-Queens solving (queens.lp)

matter to which size the board is extended later on. The incremental development of these rules is
illustrated in Figure 3 for the first row of a board (abbreviating predicates by their first letter). It is
interesting to observe that the rules generated at each step in lines 15 to 22 correspond to the ones
in (24) to (26).

Importantly, instantiations of board(n) with different integers for n define distinct (ground)
atoms, and the non-circularity of paths according to the connection schemes in Figure 2a–d
excludes mutual positive dependencies (between instances of attack(X’,Y’,D)). Hence, the
modules induced by different instantiations of board(n) are compositional and can be joined to
successively increase the board size.

The Python main routine in Line 25–35 of Listing 11 controls the successive grounding and
solving of a series of boards. To this end, an ordered list of non-overlapping integer intervals is to be
provided on the command-line. For example, -c calls="list((1,1),(3,5),(8,9))"
leads to successively solving the n-Queens problem for board sizes 1, 3, 4, 5, 8, and 9. As long as
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the upper limit of some interval is yet unreached, the board size is incremented by one in Line 30
and, in view of the ground instruction in Line 31, taken as a term for instantiating board(n).
However, solving is only invoked in Line 34 if the current size lies within the interval of interest.
Provided that this is the case for any particular n ≥ 1, the sequence of issued ground instructions
makes sure that the current clingo state corresponds to the module obtained by instantiating and
joining the subprograms board(n/i), for 1 ≤ i ≤ n, in increasing order. Since all ground rules
accumulated in such a state are relevant (and not superseded by permanently falsifying the body)
for n-Queens solving, there is no redundancy in instantiating board(n/i) for each 1 ≤ i ≤ n,
even when the provided integer intervals do not include i and i-Queens solving is skipped. For
instance, -c calls="list((1,1),(3,5),(8,9))" specifies a series of six boards to
solve, while the subprogram board(n) is successively instantiated with nine different terms for
parameter n. In fact, the main routine in Line 25–35 automates the assembly of subprograms
needed to process an arbitrary yet increasing sequence of board sizes.

The result of running the program in Listing 11 with clingo is given in Listing 12.

$ clingo queens.lp -c calls="list((1,1),(3,5),(8,9))"
clingo version 4.5.4
Reading from queen.alt.lp
SIZE 1
Solving...
Answer: 1
queen(1,1)
SIZE 3
Solving...
SIZE 4
Solving...
Answer: 1
queen(2,1) queen(1,3) queen(4,2) queen(3,4)
SIZE 5
Solving...
Answer: 1
queen(2,1) queen(3,3) queen(1,4) queen(5,2) queen(4,5)
SIZE 8
Solving...
Answer: 1
queen(2,1) queen(1,4) queen(5,2) queen(3,5) queen(7,3) \
queen(6,7) queen(8,6) queen(4,8)
SIZE 9
Solving...
Answer: 1
queen(3,2) queen(1,3) queen(6,4) queen(5,6) queen(7,1) \
queen(2,7) queen(8,5) queen(4,8) queen(9,9)
SATISFIABLE

Models : 5+
Calls : 6
Time : 0.013s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.010s

Listing 12: Running the program in Listing 11 with clingo
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5.3 Ricochet Robots

In practice, ASP systems are embedded in encompassing software environments and thus need
means for interaction. Multi-shot ASP solvers can address this by allowing a reactive procedure
to loop on solving while acquiring changes to the problem specification. In this section, we want
to illustrate this by modeling the popular board game of Ricochet Robots. Our particular focus lies
on capturing the underlying round playing through the procedural-declarative interplay offered by
clingo.

Ricochet Robots is a board game for multiple players designed by Alex Randolph.27 A board
consists of 16×16 fields arranged in a grid structure having barriers between various neighboring
fields (see Figure 4 and 5). Four differently colored robots roam across the board along either hor-
izontally or vertically accessible fields, respectively. Each robot can thus move in four directions.
A robot cannot stop its move until it either hits a barrier or another robot. The goal is to place
a designated robot on a target location with a shortest sequence of moves. Often this involves
moving several robots to establish temporary barriers. The game is played in rounds. At each
round, a chip with a colored symbol indicating the target location is drawn. Then, the specific
goal is to move the robot with the same color on this location. The player who reaches the goal
with the fewest number of robot moves wins the chip. The next round is then played from the end
configuration of the previous round. At the end, the player with most chips wins the game.

5.3.1 Encoding Ricochet Robots

The following encoding28 and fact format follow the ones of Gebser et al. (2013).
An authentic board configuration of Ricochet Robots is shown in Figure 4 and represented as

facts in Listing 13. The dimension of the board is fixed to 16 in Line 1. As put forward by Gebser
et al. (2013), barriers are indicated by atoms with predicate barrier/4. The first two arguments
give the field position and the last two the orientation of the barrier, which is mostly east (1,0)
or south (0,1).29 For instance, the atom barrier(2,1,1,0) in Line 3 represents the vertical
wall between the fields (2,1) and (3,1), and barrier(5,1,0,1) stands for the horizontal wall
separating (5,1) from (5,2).

1 dim(1..16).

3 barrier( 2, 1, 1,0). barrier(13,11, 1,0). barrier( 9, 7,0, 1).
4 barrier(10, 1, 1,0). barrier(11,12, 1,0). barrier(11, 7,0, 1).
5 barrier( 4, 2, 1,0). barrier(14,13, 1,0). barrier(14, 7,0, 1).
6 barrier(14, 2, 1,0). barrier( 6,14, 1,0). barrier(16, 9,0, 1).
7 barrier( 2, 3, 1,0). barrier( 3,15, 1,0). barrier( 2,10,0, 1).
8 barrier(11, 3, 1,0). barrier(10,15, 1,0). barrier( 5,10,0, 1).
9 barrier( 7, 4, 1,0). barrier( 4,16, 1,0). barrier( 8,10,0,-1).

10 barrier( 3, 7, 1,0). barrier(12,16, 1,0). barrier( 9,10,0,-1).
11 barrier(14, 7, 1,0). barrier( 5, 1,0, 1). barrier( 9,10,0, 1).

27 http://en.wikipedia.org/wiki/Ricochet_Robot
28 Alternative ASP encodings of the game were studied by Gebser et al. (2013), and used for comparing various ASP solving

techniques. More disparate encodings resulted from the ASP competition in 2013, where Ricochet Robots was included
in the modeling track. ASP encodings and instances of Ricochet Robots are available at https://potassco.org/
doc/apps/2016/09/20/ricochet-robots.html. There is also visualizer for the problem among the clingo
examples: https://github.com/potassco/clingo/tree/master/examples/clingo/robots

29 Symmetric barriers are handled by predicate stop/4 in Line 4 and 5 of Listing 15.

http://en.wikipedia.org/wiki/Ricochet_Robot
https://potassco.org/doc/apps/2016/09/20/ricochet-robots.html
https://potassco.org/doc/apps/2016/09/20/ricochet-robots.html
https://github.com/potassco/clingo/tree/master/examples/clingo/robots
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Fig. 4: Visualization of solving goal(13) from initially cornered robots

12 barrier( 7, 8, 1,0). barrier(15, 1,0, 1). barrier(14,10,0, 1).
13 barrier(10, 8,-1,0). barrier( 2, 2,0, 1). barrier( 1,12,0, 1).
14 barrier(11, 8, 1,0). barrier(12, 3,0, 1). barrier(11,12,0, 1).
15 barrier( 7, 9, 1,0). barrier( 7, 4,0, 1). barrier( 7,13,0, 1).
16 barrier(10, 9,-1,0). barrier(16, 4,0, 1). barrier(15,13,0, 1).
17 barrier( 4,10, 1,0). barrier( 1, 6,0, 1). barrier(10,14,0, 1).
18 barrier( 2,11, 1,0). barrier( 4, 7,0, 1). barrier( 3,15,0, 1).
19 barrier( 8,11, 1,0). barrier( 8, 7,0, 1).

Listing 13: The Board (board.lp)

Listing 14 gives the sixteen possible target locations printed on the game’s carton board
(cf. Line 3 to 18). Each robot has four possible target locations, expressed by the ternary predicate
target. Such a target is put in place via the unary predicate goal that associates a number with
each location. The external declaration in Line 1 paves the way for fixing the target location from
outside the solving process. For instance, setting goal(13) to true makes position (15,13) a
target location for the yellow robot.

1 #external goal(1..16).

3 target(red, 5, 2) :- goal(1). % red moon
4 target(red, 15, 2) :- goal(2). % red triangle
5 target(green, 2, 3) :- goal(3). % green triangle
6 target(blue, 12, 3) :- goal(4). % blue star
7 target(yellow, 7, 4) :- goal(5). % yellow star
8 target(blue, 4, 7) :- goal(6). % blue saturn
9 target(green, 14, 7) :- goal(7). % green moon

10 target(yellow,11, 8) :- goal(8). % yellow saturn
11 target(yellow, 5,10) :- goal(9). % yellow moon
12 target(green, 2,11) :- goal(10). % green star
13 target(red, 14,11) :- goal(11). % red star
14 target(green, 11,12) :- goal(12). % green saturn
15 target(yellow,15,13) :- goal(13). % yellow star
16 target(blue, 7,14) :- goal(14). % blue star
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17 target(red, 3,15) :- goal(15). % red saturn
18 target(blue, 10,15) :- goal(16). % blue moon

20 robot(red;green;blue;yellow).
21 #external pos((red;green;blue;yellow),1..16,1..16).

Listing 14: Robots and targets (targets.lp)

Similarly, the initial robot positions can be set externally, as declared in Line 21. That is,
each robot can be put at 256 different locations. On the left hand side of Figure 4, we cor-
nered all robots by setting pos(red,1,1), pos(blue,1,16), pos(green,16,1), and
pos(yellow,16,16) to true.

Finally, the encoding in Listing 15 gives a non-incremental encoding with a fixed horizon,
following the one by Gebser et al. (2013, Listing 2).

1 time(1..horizon).
2 dir(-1,0;1,0;0,-1;0,1).

4 stop( DX, DY,X, Y ) :- barrier(X,Y,DX,DY).
5 stop(-DX,-DY,X+DX,Y+DY) :- stop(DX,DY,X,Y).

7 pos(R,X,Y,0) :- pos(R,X,Y).

9 1 { move(R,DX,DY,T) : robot(R), dir(DX,DY) } 1 :- time(T).
10 move(R,T) :- move(R,_,_,T).

12 halt(DX,DY,X-DX,Y-DY,T) :- pos(_,X,Y,T), dir(DX,DY),
13 dim(X-DX), dim(Y-DY), not stop(-DX,-DY,X,Y), T < horizon.

15 goto(R,DX,DY,X,Y,T) :- pos(R,X,Y,T), dir(DX,DY), T < horizon.
16 goto(R,DX,DY,X+DX,Y+DY,T) :- goto(R,DX,DY,X,Y,T),
17 dim(X+DX), dim(Y+DY), not stop(DX,DY,X,Y), not halt(DX,DY,X,Y,T).

19 pos(R,X,Y,T) :- move(R,DX,DY,T), goto(R,DX,DY,X,Y,T-1),
20 not goto(R,DX,DY,X+DX,Y+DY,T-1).
21 pos(R,X,Y,T) :- pos(R,X,Y,T-1), time(T), not move(R,T).

23 :- target(R,X,Y), not pos(R,X,Y,horizon).

25 #show move/4.

Listing 15: Simple encoding for Ricochet Robots (ricochet.lp)

The first lines in Listing 15 furnish domain definitions, fixing the sequence of time steps
(time/1)30 and two-dimensional representations of the four possible directions (dir/2). The
constant horizon is expected to be provided via clingo option -c (e.g. ‘-c horizon=20’).
Predicate stop/4 is the symmetric version of barrier/4 from above and identifies all blocked
field transitions. The initial robot positions are fixed in Line 7 (in view of external input).

At each time step, some robot is moved in a direction (cf. Line 9). Such a move can be
regarded as the composition of successive field transitions, captured by predicate goto/6 (in
Line 15–17). To this end, predicate halt/5 provides temporary barriers due to robots’ po-
sitions before the move. To be more precise, a robot moving in direction (DX,DY) must

30 The initial time point 0 is handled explicitly.
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halt at field (X-DX,Y-DY) when some (other) robot is located at (X,Y), and an instance
of halt(DX,DY,X-DX,Y-DY,T) may provide information relevant to the move at step T+1
if there is no barrier between (X-DX,Y-DY) and (X,Y). Given this, the definition of goto/6
starts at a robot’s position (in Line 15) and continues in direction (DX,DY) (in Line 16–17) unless
a barrier, a robot, or the board’s border is encountered. As this definition tolerates board traversals
of length zero, goto/6 is guaranteed to yield a successor position for any move of a robot R in
direction (DX,DY), so that the rule in Line 19–20 captures the effect of move(R,DX,DY,T).
Moreover, the frame axiom in Line 21 preserves the positions of unmoved robots, relying on the
projection move/2 (cf. Line 10).

Finally, we stipulate in Line 23 that a robot R must be at its target position (X,Y) at the last
time point horizon. Adding directive ‘#show move/4.’ further allows for projecting stable
models onto the extension of the move/4 predicate.

The encoding in Listing 15 allows us to decide whether a plan of length horizon exists. For
computing a shortest plan, we may augment our decision encoding with an optimization directive.
This can be accomplished by adding the part in Listing 16.
27 goon(T) :- target(R,X,Y), T = 0..horizon, not pos(R,X,Y,T).

29 :- move(R,DX,DY,T-1), time(T), not goon(T-1), not move(R,DX,DY,T).

31 #minimize{ 1,T : goon(T) }.

Listing 16: Encoding part for optimization (optimization.lp)

The rule in Line 27 indicates whether some goal condition is (not) established at a time point.
Once the goal is established, the additional integrity constraint in Line 29 ensures that it remains
satisfied by enforcing that the goal-achieving move is repeated at later steps (without altering
robots’ positions). Note that the #minimize directive in Line 31 aims at few instances of
goon/1, corresponding to an early establishment of the goal, while further repetitions of the
goal-achieving move are ignored. Our extended encoding allows for computing a shortest plan
of length bounded by horizon. If there is no such plan, the problem can be posed again with
an enlarged horizon. For computing a shortest plan in an unbounded fashion, we can take
advantage of incremental ASP solving, as illustrated in Section 5.1.

Apart from the two external directives that allow us to vary initial robot and target positions,
the four programs constitute an ordinary ASP formalization of a Ricochet Robots instance. To
illustrate this, let us override the external directives by adding facts accounting for the robot and
target positions on the left hand side of Figure 4. The corresponding call of clingo is shown in
Listing 17.31

1 $ clingo board.lp targets.lp ricochet.lp optimization.lp \
2 -c horizon=10 \
3 <(echo "pos(red,1,1). pos(green,16,1). \
4 pos(blue,1,16). pos(yellow,16,16). \
5 goal(13).")

Listing 17: One-shot solving with clingo

1 move(blue,0,-1,1) move(blue,1,0,2) move(blue,0,1,3) \
2 move(blue,1,0,4) move(yellow,0,-1,5) move(blue,0,-1,6) \

31 Note that rather than using input redirection, we also could have passed the five facts via a file.
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3 move(blue,1,0,7) move(yellow,0,1,8) move(yellow,-1,0,9) \
4 move(yellow,-1,0,10)

Listing 18: Stable model projected onto the extension of the move/4 predicate

The resulting one-shot solving process yields a(n optimal) stable model containing the extension of
the move/4 predicate given in Listing 18. The move atoms in Line 1–4 of Listing 18 correspond
to the plan indicated by the colored arrows at the bottom of the left hand side of Figure 4. That is,
the blue robot starts by going north, east, south, and east, then the yellow one goes north, the blue
one resumes and goes north and east, before finally the yellow robot goes south (bouncing off the
blue one) and lands on the target by going west. This leads to the situation depicted on the right
hand side of Figure 4. Note that the tenth move (in Line 4) is redundant since it merely replicates
the previous one because the goal was already reached after nine steps.

5.3.2 Playing in rounds

Ricochet Robots is played in rounds. Hence, the next goal must be reached with robots placed at
the positions resulting from the previous round. For example, when pursuing goal(4) in the
next round, the robots must start from the end positions given on the right hand side of Figure 4.
The resulting configuration is shown on the left hand side of Figure 5. For one-shot solving, we

Fig. 5: Visualization of solving goal(4) from robot positions after having solved goal(13)

would re-launch clingo from scratch as shown in Listing 17, yet by accounting for the new target
and robot positions by replacing Line 3–5 of Listing 17 by the following ones.

3 <(echo "pos(red,1,1). pos(green,16,1). \
4 pos(blue,16,10). pos(yellow,15,13). \
5 goal(4)." )

Unlike this, our multi-shot approach to playing in rounds relies upon a single32 operational
clingo control object that we use in a simple loop:

32 In general, multiple such control objects can be created and made to interact via Python.
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1. Create an operational control object (containing a grounder and a solver object)
2. Load and ground the programs in Listing 13, 14, 15, and optionally 16

(relative to some fixed horizon) within the control object
3. While there is a goal, do the following

(a) Enforce the initial robot positions
(b) Enforce the current goal
(c) Solve the logic program contained in the control object

The control loop is implemented in Python by means of clingo’s Python API. This module
provides grounding and solving functionalities.33 As mentioned in Section 2, both modules
support (almost) literal counterparts to ‘Create’, ‘Load’, ‘Ground’, and ‘Solve’. The “enforcement”
of robot and target positions is more complex, as it involves changing the truth values of externally
controlled atoms (mimicking the insertion and deletion of atoms, respectively).

The resulting Python program is given in Listing 19. Line 1 imports the clingo module. We
are only using three classes from the module, which we directly pull into the global namespace to
avoid qualification with “clingo.” and so to keep the code compact.

Line 3–34 show the Player class. This class encapsulates all state information including
clingo’s Control object that in turn holds the state of the underlying grounder and solver. In the
Player’s __init__ function (similar to a constructor in other object-oriented languages) the
following member variables are initialized:

last positions This variable is initialized upon construction with the starting positions of
the robots. During the progression of the game, this variable holds the initial starting positions
of the robots for each turn.

last solution This variable holds the last solution of a search call.
undo external We want to successively solve a sequence of goals. In each step, a goal has to

be reached from different starting positions. This variable holds a list containing the current
goal and starting positions that have to be cleared upon the next step.

horizon We are using a bounded encoding. This (Python) variable holds the maximum number
of moves to find a solution for a given step.

ctl This variable holds the actual object providing an interface to the grounder and solver. It
holds all state information necessary for multi-shot solving along with heuristic information
gathered during solving.

As shown in Line 4–13, the constructor takes the horizon, initial robot positions, and the
files containing the various logic programs. clingo’s Control object is created in Line 9–
10 by passing the option -c to replace the logic program constant horizon by the value of
the Python variable horizon during grounding. Finally, the constructor loads all files and
grounds the entire logic program in Line 11–13. Recall from Section 2 that all rules outside the
scope of #program directives belong to the base program. Note also that this is the only time
grounding happens because the encoding is bounded. All following solving steps are configured
exclusively via manipulating external atoms.

The solve method in Line 15–24 starts with initializing the search for the solution to the
new goal. To this end, it first undos in Line 16–17 the previous goal and starting positions
stored in undo_external by assigning False to the respective atoms. In the following

33 An analogous module is available for Lua.
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1 from clingo import Control, Model, Function

3 class Player:
4 def __init__(self, horizon, positions, files):
5 self.last_positions = positions
6 self.last_solution = None
7 self.undo_external = []
8 self.horizon = horizon
9 self.ctl = Control(

10 [’-c’, ’horizon={0}’.format(self.horizon)])
11 for x in files:
12 self.ctl.load(x)
13 self.ctl.ground([("base", [])])

15 def solve(self, goal):
16 for x in self.undo_external:
17 self.ctl.assign_external(x, False)
18 self.undo_external = []
19 for x in self.last_positions + [goal]:
20 self.ctl.assign_external(x, True)
21 self.undo_external.append(x)
22 self.last_solution = None
23 self.ctl.solve(on_model=self.on_model)
24 return self.last_solution

26 def on_model(self, model):
27 self.last_solution = model.symbols(atoms=True)
28 self.last_positions = []
29 for atom in model.symbols(atoms=True):
30 if (atom.name == "pos" and

31 len(atom.arguments) == 4 and

32 atom.arguments[3].number == self.horizon):
33 self.last_positions.append(
34 Function("pos", atom.arguments[:-1]))

36 horizon = 15
37 encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
38 positions = [Function("pos", [Function("red"), 1, 1]),
39 Function("pos", [Function("blue"), 1, 16]),
40 Function("pos", [Function("green"), 16, 1]),
41 Function("pos", [Function("yellow"), 16, 16])]
42 sequence = [Function("goal", [13]),
43 Function("goal", [4]),
44 Function("goal", [7])]

46 player = Player(horizon, positions, encodings)
47 for goal in sequence:
48 print player.solve(goal)

Listing 19: The Ricochet Robot Player (ricochet.py)
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lines 19 to 21, the next step is initialized by assigning True to the current goal along with
the last robot positions; these are also stored in undo_external so that they can be taken
back afterwards. Finally, the solve method calls clingo’s ctl.solve to initiate the search.
The result is captured in variable last_solution. Note that the call to ctl.solve takes
ctl.on_model as (keyword) argument, which is called whenever a model is found. In other
words, on_model acts as a callback for intercepting models. Finally, variable last_solution
is returned at the end of the method.

The last function of the Player class is the on_model callback. As mentioned, it intercepts
the (final) models computed by the solver, which can then be inspected via the functions of the
Model class. At first, it stores the shown atoms in variable last_solution in Line 27.34 The
remainder of the on_model callback extracts the final robot positions from the stable model.
For that, it loops in Line 29–34 over the full set of atoms in the model and checks whether their
signatures match. That is, if an atom is formed from predicate pos/4 and its fourth argument
equals the horizon, then it is appended to the list of last_positions after stripping its
time step from its arguments.

As an example, consider pos(yellow,15,13,20), say the final position of the yellow
robot on the right hand side of Figure 4 at an horizon of 20. This leads to the addition
of pos(yellow,15,13) to the last_positions. Note that pos(yellow,15,13) is
declared an external atom in Line 21 of Listing 14. For playing the next round, we can thus make
it True in Line 20 of Listing 19. And when solving, the rule in Line 7 of Listing 15 allows us to
derive pos(yellow,15,13,0) and makes it the new starting position of the yellow robot, as
shown on the left hand side of Figure 5.

Line 36–44 show the code for configuring the player. They set the search horizon, the
encodings to solve with, and the initial positions in form of clingo terms. Furthermore,
we fix a sequence of goals in Line 42–44. In a more realistic setting, either some user interaction
or a random sequence might be generated to emulate arbitrary draws.

1 $ python ricochet.py
2 [move(red,0,1,1), move(red,1,0,2), move(red,0,1,3), ...]
3 [move(blue,0,-1,1), move(blue,1,0,2), move(blue,0,1,3), ...]
4 [move(green,0,1,1), move(green,1,0,2), move(green,1,0,3), ...]

Listing 20: Multi-shot solving with clingo’s Python API

Finally, Line 46–48 implement the search for sequences of moves that solve the configuration
given above. For each goal in the sequence, a solution is plainly printed, as engaged in
Line 48. The three lists in Listing 20 represent solutions to the three goals in Line 42–44. The
clingo library does not foresee any output, which must thus be handled by the scripting language.
Note also that the first list represents an alternative solution to the one given in Listing 18.

5.4 Optimization

Another innovative feature of clingo is its incremental optimization. This allows for adapting
objective functions along the evolution of a program at hand. A simple example is the search for
shortest plans when increasing the horizon in non-consecutive steps. To see this, recall that literals
in minimize statements (and analogously weak constraints) are supplied with a sequence of terms

34 In view of ‘#show move/4.’ in Listing 15, this only involves instances of move/4, while all true atoms are included
via the argument Model.ATOMS in Line 29.
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of the form w@p,~t, where w and p are integers providing a weight and a priority level and ~t is a
sequence of terms (cf. (Calimeri et al. 2012)). As an example, consider the subprogram:35

#program cumulativeObjective(t).
#minimize{ W@P,X,Y,t : move(X,Y,W,P,t) }.

When grounding and solving cumulativeObjective(t) for successive values of t, the
solver’s objective function (per priority level P) is gradually extended with new atoms over
move/5, and all previous ones are kept.

For enabling the removal of literals from objective functions, we can use externals:

#program volatileObjective(t).
#external activateObjective(t).
#minimize{ W@P,X,Y,t : move(X,Y,W,P,t), activateObjective(t) }.

The subprogram volatileObjective(t) behaves like cumulativeObjective(t) as
long as the external atom activateObjective(t) is true. Once it is set to false, all atoms
over move/5 with the corresponding term for t are dismissed from objective functions.

6 Application program interfaces

This section provides some further selected functionalities of clingo’s APIs; detailed descriptions
can be found at potassco.org. Currently, clingo provides APIs in C, C++, Lua, and Python,
all sharing the same functionality. A tutorial on using the Python API for multi-shot and theory
solving was given by Kaminski et al. (2017).

The theory reasoning capabilities of clingo are described by Gebser et al. (2016). In brief, clingo
provides generic means for incorporating theory reasoning. They span from theory grammars
for seamlessly extending its input language with theory expressions to a simple interface for
integrating theory propagators into its solver component. Multi-shot solving for selected theories
is described by Banbara et al. (2017) and Janhunen et al. (2017).

The central role in multi-shot solving is played by control objects capturing the system states of
grounders and solvers, as introduced in Section 4.5. While the control object created by invoking
clingo from the command line is passed as argument to the main routine, further such objects can
be created with the constructor Control. Examples for both settings can be found in Line 8 of
Listing 7 and Line 9 and 10 of Listing 19, respectively. In general, this allows multiple independent
clingo objects to coexist and communicate with each other.

clingo’s interface can be structured into three parts.

Parsing. A simple but very useful feature of clingo’s API is that it allows us to leverage the parser
of its grounding component gringo to obtain an abstract syntax tree (AST) of the non-ground
program. More precisely, the interface allows for both obtaining an AST of a full-fledged logic
program and adding such a program in form of an AST. This provides an easy way of applying
program transformations on the non-ground level without any burden of parsing input programs
in their full generality. This feature is exploited by the systems asprin (Brewka et al. 2015b) for
expressing preferences and anthem36 for formula extraction.

35 The same applies to a weak constraint of form ‘:~ move(X,Y,W,P,t). [W@P,X,Y,t]’.
36 https://github.com/potassco/anthem

potassco.org
https://github.com/potassco/anthem
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Grounding. A basic functionality of clingo objects is to incrementally augment non-ground
programs by loading programs from file or adding them in string form. An example of the former
can be found in Line 12 of Listing 19; the latter is accomplished by the counterpart of add, defined
in Section 4.5. Notably, this functionality allows for adding dynamically generated programs.

More fine-grained control is provided by the low level part of the interface. This allows, for
instance, for inspecting the result of grounding and adding ground rules in the intermediate ASP
format aspif (cf. (Kaminski et al. 2017)). In this way, one can iterate over all ground atoms and
inspect them individually, or implement eager constraint translations by adding new (theory)
atoms on demand. Also, symbols can be injected during grounding via external functions, similar
to value invention (Calimeri et al. 2007).

Solving. The principal solve method can be shaped in various ways. For instance, we have seen
in Listing 19 how on_model can act as a callback for intercepting models. More precisely, for
each stable model found during a call to solve(on_model=f), a model object is passed to
function f, whose implementation can then access and inspect the model. An example consists of
the addition of constraints whenever a model is found,37 as in optimization tasks, or final tests
on model candidates. Similarly, solve can by supplied with assumptions, as detailed in (19).
For instance, the call solve(assumptions=[(Function("a"), True)]) only admits
stable models containing atom a. Moreover, clingo provides an asynchronous interface, which is
particularly useful in reactive settings. Here, solving is done in the background and interruptible at
any time. For example, this allows to accommodate scenarios where agents have to stay responsive
even though solving has not yet finished. Finally, it is worth mentioning that dedicated parts of
the API allow for configurating search and extracting solver statistics. In combination with the
aforementioned on_model callback this allows for re-configuring search in view of the statistics
gathered during the search for the last model.

7 Experiments

The computational advantage of multi-shot solving lies in its avoidance of redundancies otherwise
caused by relaunching grounder and solver programs. Since the substantial savings on grounding
intense benchmarks have already been demonstrated (Gebser et al. 2008), we focus our empirical
analysis on the impact of our approach on solving. In particular, we want to investigate in how far
multi-shot solving can benefit from the learning capacities of modern ASP solvers and the reuse
of already gathered heuristic scores. To this end, we empirically evaluate the impact of clingo’s
multi-shot solving capacities on three planning benchmarks:38 Towers of Hanoi (cf. Section 5.1),
Ricochet Robots (cf. Section 5.3), and ASP encodings of PDDL problems (Dimopoulos et al.
2017).39 For either benchmark, we let clingo version 4.5.4 search for a shortest plan by incremen-
tally extending the horizon until the first plan is found. In particular, we consider multi-shot solving
by means of clingo’s built-in incremental mode (invoked by ‘#include <incmode>.’) in
four different settings:

37 A more sophisticated way is to use theory propagators adding constraints not just when a model is found but also during
the solver’s propagation; see (Gebser et al. 2016) for details.

38 The benchmarks are available at http://www.cs.uni-potsdam.de/wv/clingo/
benchmark-2017-05-26.tar.xz

39 PDDL stands for Planning Domain Definition Language and should indicate that our benchmarks were obtained by
translating benchmarks originally specified in PDDL and used by the planning community.

http://www.cs.uni-potsdam.de/wv/clingo/benchmark-2017-05-26.tar.xz
http://www.cs.uni-potsdam.de/wv/clingo/benchmark-2017-05-26.tar.xz
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• multi: keeping recorded nogoods as well as heuristic values between solver calls

• multi -heuristic: keeping recorded nogoods, but not heuristic values, between solver calls

• multi -nogoods: keeping heuristic values, but not recorded nogoods, between solver calls

• multi -heuristic -nogoods: keeping neither recorded nogoods nor heuristic values between
solver calls

We contrast these four settings to the traditional single-shot approach, denoted by single, where
clingo performs grounding and solving from scratch for each planning horizon. The experiments
were run sequentially on a Linux machine equipped with Xeon E5520 2.27GHz processors, limit-
ing wall-clock time to 3000 seconds per run without imposing any (effective) memory limit. clingo
was run in all experiments in its default configuration except for the option --forget-on-step
that allows for configuring the four settings above.

We portray our results in terms of cactus plots, in which the x-axes list instances ordered by
time (and conflicts) and the y-axes reflect times and conflicts, respectively. The magnitude of the
latter are given on top of the y-axis.

7.1 Towers of Hanoi

The upper plot in Figure 6 displays runtimes for each clingo setting in increasing order over 45
instances of the Towers of Hanoi benchmark. Most apparently, we observe that single-shot solving
performed in the single setting fails to complete any of the instances within the allotted 3000
seconds. This clearly shows that the redundancy of relaunching grounding and solving processes
from scratch for each horizon incurs non-negligible overhead here.

Somewhat unexpectedly, the multi-shot solving approaches in which recorded nogoods are
discarded between successive solver calls, viz. multi -nogoods and multi -heuristic -nogoods,
perform much better than single-shot solving and complete all 45 instances within the time limit.
On the one hand, this advantage is owed to incremental grounding, adding only new rule instances
when switching from one horizon to the next. On the other hand, we verified that solving steps
take the major share of runtime with each setting, and the numbers of conflicts plotted in the
lower part of Figure 6 exhibit substantial search reductions in multi-shot solving, even when
neither recorded nogoods nor heuristic values are kept. In fact, at the implementation level clingo
asserts unary nogoods and stores binary as well as ternary nogoods persistently in dedicated
data structures. Hence, such short nogoods remain available in multi-shot solving regardless of
settings and explain the gap to iterated single-shot solving, where respective information has to be
repeatedly retrieved from search conflicts at each solving step.

Keeping also long nogoods between solver calls, as done in the multi and multi -heuristic
settings, further reduces search conflicts and runtime by a factor of about 5 or 1.5, respectively.
This indicates a trade-off between memory demands and search savings due to recorded nogoods,
where the savings outweigh the overhead on the Towers of Hanoi benchmark. Unlike that, keeping
heuristic values does not pay off here, and the two -heuristic settings save some fraction of runtime
in comparison to their counterparts passing such values between solver calls. Although respective
gaps are modest, we conclude that biasing search to proceed as in previous solving steps does not
provide shortcuts for problems with an extended planning horizon.
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Fig. 6: Cactus plots for Towers of Hanoi benchmark

7.2 Ricochet Robots

The behavior of single- and multi-shot solving approaches on 38 instances of the Ricochet Robots
benchmark, plotted in Figure 7, parallels the previous observations. While the single setting is
able to complete 22 of the instances within the given time, the most successful multi-shot solving
approach, multi -heuristic -nogoods, solves all of them. In contrast to Towers of Hanoi above,
keeping long nogoods does not pay off here, as the lower plot in Figure 7 shows that they do not
significantly reduce the search conflicts at solving steps with an extended horizon. Hence, the two
-nogoods settings are ahead in terms of runtime as well as solved instances displayed in the upper
part of Figure 7. Moreover, we see that keeping or discarding heuristic values, the latter denoted
by -heuristic, does not make much difference, which again exposes that biasing the search process
in view of previous solving steps does not necessarily help for problem extensions.
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Fig. 7: Cactus plots for Ricochet Robots benchmark

7.3 PDDL Problems

The performance results displayed in Figure 8, summarizing 20 instances obtained by translating
planning problems from PDDL, also exhibit a significant gap separating single-shot from multi-
shot solving in its four settings. The behavior of the latter differs primarily w.r.t. the treatment
of long nogoods, where only the two -nogoods settings that discard them between solver calls
complete all instances in time. In fact, comparing runtimes in the upper and numbers of conflicts
in the lower part of Figure 8, it turns out that keeping such long nogoods incurs overhead without
bringing about (consistent) search savings in return. The reduced numbers of conflicts relative to
single-shot solving nevertheless indicate a substantial added value of keeping some nogoods, in
particular, short ones, between solver calls.
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Fig. 8: Cactus plots for PDDL benchmark

7.4 Observations

On all benchmarks the number of conflicts is lower in the multi settings compared to the single
one. This is due to the reuse of nogoods learnt from previous solving steps. In fact, the treatment
of nogoods had the greatest influence on the runtime in the multi settings. As regards long
nogoods, the sometimes unproportional overhead of keeping them, observed on the Ricochet
Robots benchmark and PDDL problems, suggests to strive in the future for adaptive filtering
mechanisms (beyond regular nogood deletion) assessing the relevance of recorded nogoods from
previous solving steps. Unlike that, clingo settings that differ in the treatment of heuristic values
only, i.e., pairs denoted with or without -heuristic, exhibit comparable behavior on all three
investigated benchmark problems, thus indicating that recorded nogoods play a more important
role upon successive solver calls.
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Our benchmarks were not very memory demanding. The peak memory consumption over all
benchmarks was 187 MB when multi-shot solving and only 150 MB in the single-shot setting.
Even though it might seem that the single-shot approach has a smaller memory footprint, the
multi-shot settings probably just held larger databases of learnt clauses leading to a slightly
higher memory consumption. With the selected benchmarks, the memory used by the grounding
component is negligible.

8 Related work

Although clingo (Gebser et al. 2011) already featured Lua as an embedded scripting language up
to series 3, its usage was limited to (deterministic) computations during grounding; neither were
library functions furnished by clingo 3.

Of particular interest is dlvhex (Eiter et al. 2012), an ASP system aiming at the integration
of external computation sources. For this purpose, dlvhex relies on higher-order logic programs
using external higher-order atoms for software interoperability. Such external atoms should not
be confused with clingo’s #external directive because they are evaluated via procedural
means during solving. Given this, dlvhex can be seen as an ASP modulo Theory solver, similar
to SAT modulo Theory solvers (Nieuwenhuis et al. 2006). In fact, dlvhex is build upon clingo
and follows the design of the ASP modulo CSP solver clingcon (Ostrowski and Schaub 2012) in
communicating with external “oracles” through clasp’s post propagation mechanism. In this way,
theory solvers are tightly integrated into the ASP system and have access to the solver’s partial
assignments. Unlike this, multi-shot solving only provides access to total (stable) assignments.
This is why clingo also offers full-fledged theory reasoning capabilities, dealing with partial
assignments (Gebser et al. 2016; Kaminski et al. 2017). Clearly, the above considerations also
apply to extensions of dlvhex, such as acthex (Fink et al. 2013). Furthermore, jdlv (Febbraro et al.
2012) encapsulates the dlv system to facilitate one-shot ASP solving in Java environments by
providing means to generate and process logic programs, and to afterwards extract their stable
models. embasp (Fuscà et al. 2016) provides a more recent and more general environment for
embedding ASP systems, including clingo and dlv, into external systems. Meanwhile the ASP
solver wasp (Alviano et al. 2015) also features a foreign language API, yet restricted to solving
functionalities. More precisely, it provides low-level functionalities to customize heuristics and
propagation (Dodaro et al. 2016; Dodaro et al. 2016).

The procedural attachment to the idp system (De Pooter et al. 2013; De Cat et al. 2014) builds
on interfaces to C++ and Lua. Like clingo, it allows for evaluating functions during grounding,
calling the grounder and solver multiple times, inspecting solutions, and reacting to external input
after search. The emphasis, however, lies on high-level control blending in with idp’s modeling
language, while clingo offers more fine-grained control over the grounding and solving process,
particularly aiming at a flexible incremental assembly of programs from subprograms.

In SAT, incremental solver interfaces from low-level APIs are common practice. Pioneering
work was done in minisat (Eén and Sörensson 2004), furnishing a C++ interface for solving
under assumptions. In fact, the clasp library underlying clingo builds upon this functionality to
implement incremental search (see (Gebser et al. 2008)). Given that SAT deals with propositional
formulas only, solvers and their APIs lack support for modeling languages and grounding. Unlike
this, the SAT modulo Theory solver z3 (de Moura and Bjørner 2008) comes with a Python API
that, similar to clingo, provides a library for controlling the solver as well as language bindings
for constraint handling. In this way, Python can be used as a modeling language for z3.
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9 Conclusion

The clingo system complements ASP’s declarative input language by control capacities expressed
either by embedded scripting languages or by importing clingo modules into imperative programs.
This is accomplished within a single integrated ASP grounding and solving process in which
a logic program may evolve over time. The addition, deletion, and replacement of programs is
controlled procedurally by means of clingo’s API. Applications that cannot be captured with
the standard one-shot approach of ASP but that require evolving logic programs are manifold.
Examples include unrolling a transition function as in planning, interacting with an environment as
in assisted living, robotics, or stream reasoning, interacting with a user exploring a domain, theory
solving, and advanced forms of search. Addressing these demands by providing a high-level API
yields a generic and transparent approach. Unlike this, previous systems, like iclingo and oclingo,
had a dedicated purpose involving rigid control procedures buried in monolithic programs. Rather
than that, the basic technology of clingo allows us to instantiate subprograms in-between solver
invocations in a fully customizable way. On the declarative side, the availability of program
parameters and the embedding of #external directives into the grounding process provide us
with a great flexibility in modeling schematic subprograms. In addition, the possibility of assigning
input atoms facilitates the implementation of applications such as query answering (Gebser et al.
2013) or sliding window reasoning (Gebser et al. 2012), as truth values can now be switched
without modifying logic programs.

The semantic underpinnings of our framework in terms of module theory capture the dynamic
combination of logic programs in a generic way. Although this eases the modular composition
of data structures, other choices are possible at the cost of higher maintenance. Note that the
difficulty of composing subprograms in ASP is due to its nonmonotonic nature; this is much
easier in monotonic approach such as SAT. Finally, it is interesting future work to investigate how
dedicated change operations that were so far only of theoretic interest, like updating (Alferes et al.
2002), forgetting (Zhang and Foo 2006), revising (Delgrande et al. 2008), or merging (Delgrande
et al. 2009) etc., can be put into practice within this framework. A first attempt at capturing the
update of logic programs was made by Sabuncu and Leite (2017).

The input language of clingo extends the ASP-Core-2 standard (Calimeri et al. 2012) and has
meanwhile been put in its entirety on solid semantic foundations (Gebser et al. 2015). Although we
have presented clingo for normal logic programs, we mention that it accepts (extended) disjunctive
logic programs processed via the multi-threaded solving approach of clasp (Gebser et al. 2013).
Since clingo embeds clasp series 3, it moreover features domain-specific heuristics (Gebser
et al. 2013) and optimization using unsatisfiable cores (Andres et al. 2012). clingo is freely
available at potassco.org, and its releases include many best practice examples illustrating
the aforementioned application scenarios.

Since its first release and accompanying publication (Gebser et al. 2014), clingo’s multi-shot
solving framework has been used for implementing several ASP-based reasoning systems, such as
asprin (Brewka et al. 2015a; Brewka et al. 2015b), aspic (Gebser et al. 2013), rosoclingo (Andres
et al. 2015), and dflat (Abseher et al. 2014); various forms of aggregates were implemented with it
by Alviano et al. (2015) and Alviano and Leone (2015). As well, dlvhex (Eiter et al. 2012) builds
upon clingo and its versatile API. This already hints at the potential impact of clingo’s multi-shot
ASP solving framework, and we believe that it constitutes a step towards putting more and more
applications into the reach of ASP.

Multi-shot ASP solving broadens the spectrum of applications of ASP. This also brings about the

potassco.org
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new user profile of ASP engineering that combines ASP modeling with traditional programming
for controlling an ASP solving process. This may lead to generic advanced forms of ASP solving
such as the incremental approach in Section 5.1 or be restricted to customized settings as with the
Ricochet Robots game in Section 5.3. Multi-shot solving enables users to engineer such novel
declarative systems on top of ASP. We believe that this new engineering facet is crucial to putting
ASP into practice.
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fruitful discussions on the paper. This work was partially funded by DFG grant SCHA 550/9.
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SYRJÄNEN, T. 2001. Lparse 1.0 user’s manual.
ZHANG, Y. AND FOO, N. 2006. Solving logic program conflict through strong and weak forgettings.

Artificial Intelligence 170, 8-9, 739–778.


	1 Introduction
	2 Formal preliminaries
	3 Multi-shot solving with clingo at a glance
	4 Multi-shot solving
	4.1 Parameterizable subprograms
	4.2 Contextual grounding
	4.3 Extensible logic programs
	4.4 Composing logic programs with externals
	4.5 State-based characterization of multi-shot solving
	4.6 Example

	5 Using multi-shot solving in practice
	5.1 Incremental ASP solving
	5.2 n-Queens problem
	5.3 Ricochet Robots
	5.4 Optimization

	6 Application program interfaces
	7 Experiments
	7.1 Towers of Hanoi
	7.2 Ricochet Robots
	7.3 PDDL Problems
	7.4 Observations

	8 Related work
	9 Conclusion
	References

