
To appear in EPTCS.
c© Martin Gebser, Roland Kaminski, Torsten Schaub

This work is licensed under the
Creative Commons Attribution License.

aspcud: A Linux Package Configuration Tool Based on
Answer Set Programming

Martin Gebser Roland Kaminski Torsten Schaub∗

Universität Potsdam, Institut für Informatik

We present the Linux package configuration tool aspcud based on Answer Set Programming. In
particular, we detail aspcud’s preprocessor turning a CUDF specification into a set of logical facts.

1 Introduction

Answer Set Programming (ASP; [3]) owes its increasing popularity as a tool for Knowledge Represen-
tation and Reasoning (KRR; [11]) to its attractive combination of a rich yet simple modeling language
with high-performance solving capacities. The basic idea of ASP is to represent a given computational
problem by a logic program whose answer sets correspond to solutions, and then use an ASP solver for
finding answer sets of the program. This approach is closely related to the one pursued in propositional
Satisfiability Testing (SAT; [4]), where a given problem is encoded as a propositional theory such that
models represent solutions to the problem. Even though, syntactically, ASP programs resemble Prolog
programs, they are treated by rather different computational mechanisms, based on advanced Boolean
Constraint Satisfaction technology. Albeit SAT and ASP both focus on the generation of propositional
models, they differ regarding the semantics of negation, which is classical in SAT and by default in ASP.
The built-in completion of “negative knowledge” admits compact problem specifications in ASP, using
rules to describe the formation of solution candidates and integrity constraints to deny unintended ones.

Pioneering work on Linux package configuration was done by Tommi Syrjänen in [16], using ASP
for representing and solving configuration problems for the Debian GNU/Linux system. Following this
tradition, we developed the ASP-based Linux package configuration tool aspcud, leveraging modern ASP
technology for solving package configuration problems posed in the context of the mancoosi project [13].
As shown in Figure 1, aspcud comprises four components, all of which are freely available at [2] (and
via [15]). A given specification (in CUDF; [17]) is first preprocessed and mapped to a set of (logical)
facts; this step is explained in Section 2. As detailed in Section 3, the facts are then combined with one
or more (first-order) ASP encodings of the package configuration problem and jointly passed to the ASP
grounder gringo [7]. (Our ASP encodings, which are also presented in a companion paper [6] detailing
multi-criteria optimization capacities of the ASP solver clasp [8] and evaluating them on package con-
figuration problems, are provided here for completeness.) The instantiation of first-order variables upon
grounding results in a propositional logic program whose answer sets, representing problem solutions,
are in turn computed by clasp. The impact of preprocessing on residual problem size as well as solving
efficiency is empirically assessed in Section 4. (We do not vary solving strategies here; an experimental
comparison between different solving strategies can be found in [5, 6].) Finally, in Section 5, we discuss
and compare our methodology with related package configuration approaches.

∗Affiliated with the School of Computing Science at Simon Fraser University, Burnaby, Canada, and the Institute for Inte-
grated and Intelligent Systems at Griffith University, Brisbane, Australia.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 aspcud: A Linux Package Configuration Tool Based on Answer Set Programming

aspcud

Preprocessor

Encoding(s)

Grounder Solver SolutionCUDF

Figure 1: Workflow of aspcud.

2 Preprocessing

Our package configuration tool aspcud accepts input in Common Upgradability Description Format
(CUDF), developed in the mancoosi project to specify interdependencies of packages belonging to large
software distributions. The task of a package manager is to find admissible installations satisfying partic-
ular user requests, typically also taking into account soft criteria, such as minimal change of an existing
installation. While CUDF admits arithmetic expressions, package formulae, and virtual packages (see
below), aspcud’s preprocessor generates a flat representation of package interdependencies, so that they
can be conveniently handled by the ASP components of aspcud taking over afterwards. Below, we give
a quick overview of CUDF and optimization criteria, and then describe the generation of ASP facts.

2.1 Common Upgradability Description Format (CUDF)

The general schema of a “CUDF document” (with an optional preamble; cf. [17]) is as follows:

preamble
package: name1 package: name2 ... package: namen

version: vers1 version: vers2 ... version: versn request:
description1 description2 ... descriptionn description

The pairs (namel,versl) for 1≤ l≤ n identify installable packages along with positive integer versions;
they must be mutually distinct, that is, namel 6= namem or versl 6= versm must hold for all 1 ≤
l < m ≤ n. Then, the universe described by a CUDF document is the set U = {(name1,vers1),
(name2,vers2), . . . ,(namen,versn)} of pairs identifying installable versioned packages.

Each pair (namel,versl) can be accompanied with (optional) properties provided in
descriptionl . In the most general form, a statement in descriptionl looks as follows:

property: p11|p21|. . .|pk1, p12|p22|. . .|pk2, . . ., p1m|p2m|. . .|pkm

In such a statement, property ∈ {conflicts,depends,recommends,provides} determines a kind
of package interdependency, ‘|’ and ‘,’ stand for disjunction and conjunction, respectively, and p ji for
1≤ i≤m,1≤ ji ≤ ki is an expression of the form ‘name [op n]’, in which op ∈ {=,!=,<,<=,>,>=}
denotes an (optional) arithmetic operation along with a positive integer n. Moreover, if ‘installed:
true’ is provided in descriptionl for 1 ≤ l ≤ n, it means that package namel in version versl
belongs to an existing installation, and we denote the set of all such pairs (namel,versl) by O .

For a property ∈ {install,remove,upgrade} in the description below the keyword
‘request:’, for uniformity, we assume the same syntax as with package property statements con-
sidered before.1 The requested properties describe goals that must be satisfied by a follow-up installa-

1The specification of CUDF [17] is more restrictive by not allowing for disjunction in package formulae associated with
property ∈ {conflicts,provides,install,remove,upgrade}. Moreover, note that CUDF additionally admits keep as

Martin Gebser, Roland Kaminski, Torsten Schaub 3

package: inst
version: 3
conflicts: conf < 3
package: inst
version: 2
depends: dep < 2
package: inst
version: 1
depends: dep

package: conf
version: 2
package: conf
version: 1
installed: true

package: feat
version: 1
provides: conf = 3

package: dep
version: 3
conflicts: dep
recommends: recomm
package: dep
version: 2
conflicts: dep < 2
package: dep
version: 1
installed: true

package: recomm
version: 1
conflicts: option

package: option
version: 1
depends: avail

package: avail
version: 1
installed: true

request:
install: inst
upgrade: conf > 1

Figure 2: CUDF document specifying the (non-empty) interdependencies Targets(inst,3,conflicts) =
[{(conf,1),(conf,2)}], Targets(inst,2,depends)= [{(dep,1)}], Targets(inst,1,depends)= [{(dep,n) |
n ∈ N}], Targets(feat,1,provides) = [{(conf,3)}], Targets(dep,3,conflicts) = [{(dep,n) | n ∈ N}],
Targets(dep,3,recommends) = [{(recomm,n) | n ∈ N}], Targets(dep,2,conflicts) = [{(dep,1)}],
Targets(recomm,1,conflicts) = [{(option,n) | n ∈ N}], and Targets(option,1,depends) =
[{(avail,n) | n ∈ N}]; (non-empty) request targets consist of Targets(install) = [{(inst,n) | n ∈ N}]
and Targets(upgrade) = [{(conf,n) | n ∈ N,n > 1}].

tion P , where certain versioned packages might have to be installed, removed, or upgraded, respectively.
In order to abstract from arithmetic expressions admitted in CUDF, for ‘name [op n]’, we define:

targets(name [op n]) =
{
{(name,n) | n ∈ N+ such that (n op n) holds} if op n is specified
{(name,n) | n ∈ N+} if op n is omitted

We extend the notion of targets to package formulae associated with some property ∈ {conflicts,
depends,recommends,provides,install,remove,upgrade} by defining the following multiset:2

Targets(property) = [targets(p1i)∪ targets(p2i)∪·· ·∪ targets(pki) | 1≤ i≤ m]

Moreover, let Targets(namel,versl,property) be Targets(property) for (namel,versl) ∈ U
and property ∈ {conflicts,depends,recommends,provides}, where either a unique package
formula is provided for property in descriptionl , or Targets(property) = /0 if property
is not specified in descriptionl . Likewise, we let Targets(property) = /0 for property ∈
{install,remove,upgrade} if no corresponding statement is provided in the description below
‘request:’, while the package formula defining property must be unique otherwise.

As an example, consider the CUDF document shown in Figure 2. The existing installation,
marked via ‘installed: true’, is O = {(conf,1),(dep,1),(avail,1)}. The universe, including
all versioned packages, is U = O ∪{(inst,3),(inst,2),(inst,1),(conf,2),(feat,1),(dep,3),
(dep,2),(recomm,1),(option,1)}. The CUDF document further specifies the (non-empty) multi-
sets of targets of package interdependencies and requests, respectively, provided in the caption of Fig-
ure 2; their particular meanings are described below in the context of ASP fact generation.

property in descriptionl for 1≤ l ≤ n, which we omitted here because it is straightforward to map keep to install.
2Multisets are needed to reflect optimization criteria dealing with (un)satisfied recommendations, below collected in RP

U .

4 aspcud: A Linux Package Configuration Tool Based on Answer Set Programming

2.2 Optimization Criteria

The preprocessor of aspcud takes optimization criteria evaluated in competitions by mancoosi [13] into
account. Given a universe U , an existing installation O , and a follow-up installation P , such criteria
rely on the minimization or maximization of the following sets:

NP
O = {name | (name,vers) ∈P,{(name,n) | n ∈ N}∩O = /0}

DP
O = {name | (name,vers) ∈ O,{(name,n) | n ∈ N}∩P = /0}

CP
O = {name | (name,vers) ∈ (P \O)∪ (O \P)}

UP
U = {name | (name,vers) ∈P,(name,max{n | (name,n) ∈U }) /∈P}

RP
U = {(name,vers, i) | (name,vers) ∈P,Ri∩Provide(P) = /0,

Targets(name,vers,recommends) = [R1, . . . ,Ri, . . . ,Rm]}

Here, NP
O is the collection of packages name such that some version vers belongs to P , while O

contains no pair (name,n); that is, package name is new in the follow-up installation P . Similarly,
DP

O and CP
O collect packages name that are deleted or changed, respectively, where change means that

some version vers of name is new or deleted in the transition from O to P . The sets UP
U and RP

U
investigate the follow-up installation P relative to the universe U . A package name belongs to UP

U
if, for each pair (name,vers) in P , there is some (name,n) in U such that vers < n; that is,
the latest version of name is missing in P . Finally, a triple (name,vers, i) in RP

U points to a dis-
junction ‘p1i|p2i|. . .|pki’ in the recommends statement associated with (name,vers) such that P
neither contains nor provides any element of targets(p1i)∪ targets(p2i)∪ ·· · ∪ targets(pki). In fact, by
Provide(P) =

⋃
(name,vers)∈P Provide(name,vers) and Provide(name,vers) = {(name,vers)}∪

(
⋃

P∈Targets(name,vers,provides) P), we refer to the union of P and the targets of its packages’ provides
statements. This allows us to abstract from “virtual packages” that may not be installable themselves, but
can be provided by other packages. Note that installable and virtual packages are not necessarily disjoint;
e.g., the CUDF document in Figure 2 specifies version 1 and 2 of conf as installable, while version 3
is provided by (feat,1). In the following, we indicate the objective of maximizing or minimizing the
cardinality of any of the sets OP

O/U defined above by writing +OP
O/U or −OP

O/U , respectively.

2.3 Generation of ASP Facts

We are now ready to specify the algorithm applied by aspcud’s preprocessor to compute the transitive
closure C of versioned packages that may belong to a follow-up installation P . The general idea is to
include versioned packages by need, that is, if they are among the targets of some install or upgrade
request, a depends statement, or may otherwise serve some user-specified objective. (E.g., +NP

O de-
scribes the objective of installing as many new packages as possible, so that all pairs (name,vers)
in U such that name does not occur in O would be added to C .) Given a universe U , an existing
installation O , and a set O ⊆ {+NP

O ,−NP
O ,+DP

O ,−DP
O ,+CP

O ,−CP
O ,+UP

U ,−UP
U ,+RP

U ,−RP
U } of

objectives, the transitive closure C is computed via Algorithm 1.
In Line 1 of Algorithm 1, “negative” requests given by remove and also upgrade are evaluated;

packages that must not be installed are collected in Out to exclude their addition to C in the sequel.
While exclusions due to remove statements are straightforward (any package fulfilling some remove

target must not be installed), the issue becomes more involved with upgrade. On the one hand, any
element of Targets(upgrade) resembles an install request because it must be served by some package
(directly or via a provided virtual package) in a follow-up installation P . On the other hand, there are

Martin Gebser, Roland Kaminski, Torsten Schaub 5

1 Out←{(name,vers) ∈U | D ∈ Targets(remove),D∩Provide(name,vers) 6= /0}
∪{(name,vers) ∈U |U ∈ Targets(upgrade),(name′,m) ∈U,

(name′,n) ∈ Provide(name,vers),(name′,n′) ∈ Provide(O),n < n′}
∪{(name,vers) ∈U |U ∈ Targets(upgrade),

1 < |{(name′,n) ∈ Provide(name,vers) | (name′,m) ∈U}|}
∪{(name,vers) ∈U |U ∈ Targets(upgrade),U ∩Provide(name,vers) = /0,
{name′ | (name′,m) ∈U}∩{name′ | (name′,n) ∈ Provide(name,vers)} 6= /0}

2 if {I ∈ Targets(install)∪Targets(upgrade) | I∩Provide(U \Out) = /0} 6= /0 then return /0

3 C ←{(name,vers)∈U \Out | I ∈ Targets(install)∪Targets(upgrade), I∩Provide(name,vers) 6= /0}
4 if +NP

O ∈O then C ← C ∪{(name,vers) ∈U \Out | {n | (name,n) ∈ O}= /0}
5 if −DP

O ∈O then C ← C ∪{(name,vers) ∈U \Out | {n | (name,n) ∈ O} 6= /0}
6 if +CP

O ∈O then C ← C ∪{(name,vers) ∈U \Out | (name,vers) /∈ O}
7 if −CP

O ∈O then C ← C ∪{(name,vers) ∈U \Out | (name,vers) ∈ O}
8 if +UP

U ∈O then C ← C ∪{(name,vers) ∈U \Out | vers< max{n | (name,n) ∈U }}
9 if +RP

U ∈O then C ← C ∪{(name,vers) ∈U \Out | Targets(name,vers,recommends) 6= /0}
10 repeat
11 Add←{(name,vers) ∈U \ (Out∪C) | (name′,vers′) ∈ C ,

D ∈ Targets(name′,vers′,depends),D∩Provide(name,vers) 6= /0}
12 if −RP

U ∈O then Add← Add∪{(name,vers) ∈U \ (Out∪C) | (name′,vers′) ∈ C ,
R ∈ Targets(name′,vers′,recommends),R∩Provide(name,vers) 6= /0}

13 if −UP
U ∈O then Add← Add∪{(name,max{n | (name,n) ∈U }) ∈U \ (Out∪C) |

(name,vers) ∈ C }
14 C ← C ∪Add
15 until Add = /0

16 return C

Algorithm 1: Compute transitive closure C wrt. universe U , existing installation O , and objectives O.

three additional requirements, which can make the installation of particular packages prohibitive. First,
the version number of packages subject to upgrade must in a follow-up installation P not be smaller
than in the existing installation O (if some version is provided by O). Second, exactly one version must
be available in P , so that packages providing several versions at once cannot belong to P . Third, the
install request implied by an upgrade target along with the unique version requirement prohibit the
installation of packages providing only non-matching versions. These three conditions are taken into
account to reflect upgrade requests in Out.3 (For the CUDF document in Figure 2, (conf,2) and
(feat,1) can fulfill the target of the upgrade request ‘conf > 1’, while (conf,1) is excluded in
view of its non-matching version.) Given the set Out of packages that must not belong to a follow-up
installation P , the test in Line 2 of Algorithm 1 identifies cases in which install or upgrade targets
remain unsatisfiable, regardless of further preprocessing, so that /0 can be immediately returned.

Provided that the test in Line 2 failed, packages not in Out that may serve some install or upgrade
target are used to initialize the transitive closure C in Line 3. In Line 4–9, C is further extended in view of
the objectives in O. As already mentioned, it might be desirable to install any version of a package name
not occurring in the existing installation O if +NP

O belongs to O, describing the objective of installing
as many new packages as possible; if so, C is extended accordingly in Line 4. Note that the objectives

3The CUDF specification [17] disallows disjunction in upgrade requests, and we here generalize upgrade targets to dis-
junction in an “arbitrary” way. However, in the case without disjunction, the packages included in Out due to an upgrade target
cannot belong to a follow-up installation P according to the semantics given in [17].

6 aspcud: A Linux Package Configuration Tool Based on Answer Set Programming

of the form +OP
O/U are useless in practice, as they favor follow-up installations P that are as different

from O , or as suboptimal regarding latest versions or recommends targets as possible. However, such
“anti-optimization” would in principle be allowed in the user track of competitions by mancoosi, and
thus Algorithm 1 includes cases to extend C accordingly. The reasonable cases in Line 5 and 7 apply if
package removals or changes, respectively, are to be minimized, so that it may help to add all (installed)
versions of packages name occurring in O to C . For instance, if −DP

O , aiming at the minimization of
package removals, belongs to O, (conf,2), (dep,3), (dep,2), (dep,1), and (avail,1) are added
to C in Line 5 for the CUDF document in Figure 2, given that (conf,1), (dep,1), and (avail,1) are
installed in O . Note that the installed pair (conf,1) is not added to C , as (conf,1) belongs to Out.

After its initialization wrt. requests (Line 3) and objectives (Line 4–9), the transitive closure C is
successively extended in the loop in Line 10–15 of Algorithm 1. To this end, packages (name,vers)
matching some dependency of elements already in C are collected in Line 11, provided that the instal-
lation of (name,vers) is not excluded by Out. Similarly, packages serving recommends statements of
elements in C are collected in Line 12, but only if the minimization of unsatisfied recommendations is
requested via the objective −RP

U . Finally, if packages ought to be installed in their latest versions, as it
can be specified via −UP

U , we also collect such latest versions in Line 13. The three cases justifying the
addition of packages to C are applied until saturation, and the obtained fixpoint is returned in Line 16.
Any package remaining in U \C belongs to Out, meaning that it must not be installed, or is irrelevant
regarding dependencies, requests, and objectives. Hence, packages outside C need not be reflected in
ASP facts (described below), so that both instance and residual problem size can be reduced. For the
CUDF document in Figure 2, assuming that the objective −DP

O is provided in O, C is initialized with

• (inst,3), (inst,2), and (inst,1) in view of the request ‘install: inst’,

• (conf,2) and (feat,1) in order to serve ‘upgrade: conf > 1’, and additionally

• (dep,3), (dep,2), (dep,1), and (avail,1) due to the objective −DP
O .

While tracking the dependencies of these packages does not contribute any further elements to C , if the
objective −RP

U is given in O, ‘recommends: recomm’ associated with (dep,3) justifies the addition
of (recomm,1) to C . The packages still outside C are (conf,1), which is excluded due to the provided
upgrade request, and (option,1), as it does not support any element of C and could thus be included
only if some of the objectives +NP

O and +CP
O would reward new packages or changes, respectively.

Given the transitive closure C of relevant packages, the final step of aspcud’s preprocessor is to
generate a representation of package interdependencies, requests, and objectives in terms of ASP facts.
Note that, in competitions by mancoosi, objectives are lexicographically ordered by significance; hence,
we below identify O with a sequence of objectives, written as (#1[OP

O/U]1, . . . ,#n[OP
O/U]n) in increasing

order of significance, where #i ∈ {+,−} and [OP
O/U]i ∈ {NP

O ,DP
O ,CP

O ,UP
U ,RP

U } for 1 ≤ i ≤ n. We
further associate some ASP constant cOP

O/U
with each OP

O/U (newpackage for OP
O = NP

O , remove

for OP
O = DP

O , change for OP
O = CP

O , uptodate for OP
U = UP

U , and recommend for OP
U = RP

U).
Moreover, for any set P of packages, we write idP to refer to some ASP constant associated with the set P,
where idP 6= idP′ if P 6= P′. Then, the facts obtained for a CUDF document (specifying a universe U and
an existing installation O), a sequence O of objectives, and C are collected in π as shown in Figure 3.

In Figure 3, the subset τ of π groups packages fulfilling targets of package interdependencies or
requests in sets P, and respective facts introduce constants idP referring to P. While facts over the predi-
cate depends in (1) simply link the targets of dependencies to packages that provide them, recommends
in (2) introduces a counter r along with each set P of packages fulfilling a recommendation Ri because
several elements of the multiset Targets(name,vers,recommends) = [R1, . . . ,Ri, . . . ,Rm] may share the

Martin Gebser, Roland Kaminski, Torsten Schaub 7

τ = {depends(name,vers,idP). | (name,vers) ∈ C ,D ∈ Targets(name,vers,depends),
P = {(name′,vers′) ∈ C | D∩Provide(name′,vers′) 6= /0}}

(1)

∪ {recommends(name,vers,idP,r). | (name,vers) ∈ C ,{+RP
U ,−RP

U }∩O 6= /0,
Targets(name,vers,recommends) = [R1, . . . ,Ri, . . . ,Rm],
P = {(name′,vers′) ∈ C | Ri∩Provide(name′,vers′) 6= /0},
r = |{1≤ j ≤ m | {(name′,vers′) ∈ C | R j ∩Provide(name′,vers′) 6= /0}= P}|}

(2)

∪ {conflict(name,vers,idP). | (name,vers) ∈ C ,C =
⋃

T∈Targets(name,vers,conflicts) T,
/0⊂ P = {(name′,vers′) ∈ C \{(name,vers)} |C∩Provide(name′,vers′) 6= /0}}

(3)

∪ {conflict(name,vers,idP). | (name,vers) ∈ C ,
U ∈ Targets(upgrade),U ∩Provide(name,vers) 6= /0,
/0⊂ P = {(name′,vers′) ∈ C |U ∩Provide(name′,vers′) 6= /0,

U ∩Provide(name′,vers′) 6=U ∩Provide(name,vers)}}

(4)

∪ {request(idP). | I ∈ Targets(install)∪Targets(upgrade),
P = {(name,vers) ∈ C | I∩Provide(name,vers) 6= /0}}

(5)

π = τ

∪ {satisfies(name,vers,idP). | (name,vers) ∈ P,(depends(name′,vers′,idP).) ∈ τ} (6)
∪ {satisfies(name,vers,idP). | (name,vers) ∈ P,

(recommends(name′,vers′,idP,r).) ∈ τ}
(7)

∪ {satisfies(name,vers,idP). | (name,vers) ∈ P,(conflict(name′,vers′,idP).) ∈ τ}(8)
∪ {satisfies(name,vers,idP). | (name,vers) ∈ P,(request(idP).) ∈ τ} (9)
∪ {unit(name,vers). | (name,vers) ∈ C } (10)
∪ {installed(name,vers). | (name,vers) ∈ O} (11)
∪ {newestversion(name,max{n | (name,n) ∈U }). | (name,vers) ∈ C } (12)
∪ {criterion(c[OP

O/U
]i
,#ii). |O = (#1[OP

O/U]1, . . . ,#n[OP
O/U]n),1≤ i≤ n} (13)

Figure 3: ASP facts for a CUDF document, a sequence O of objectives, and a set C ⊆U of packages.

same providers P. Also note that (2) contributes facts to τ (and π) only if #RP
U for # ∈ {+,−} is among

the objectives in O. The packages P considered by conflict in (3) are obtained by joining all T ∈
Targets(name,vers,conflicts) in C before collecting their providers in P. Note that (name,vers)
can by definition (cf. [17]) not be in conflict with itself, even if it fulfills some T ∈ Targets(name,
vers,conflicts); this situation arises with (dep,3) in Figure 2, where ‘conflicts: dep’ spec-
ifies a universal conflict with any version of dep (and packages including dep in their provides

statements). Additional conflicts may be induced by upgrade requests in view of their unique ver-
sion requirement, and thus packages providing different elements of some U ∈ Targets(upgrade) are
marked as conflicting via (4); for instance, the upgrade request ‘conf > 1’ in Figure 2 is reflected
by facts ‘conflict(conf,2,id{(feat,1)}).’ and ‘conflict(feat,1,id{(conf,2)}).’, obtained be-
cause (feat,1) provides (conf,3) (as a virtual package). Finally, facts over the predicate request

in (5) group packages P fulfilling install or upgrade requests to express that some element of P
must be included in a follow-up installation P . Note that all packages referred to in facts of τ , via
(name,vers) in arguments or belonging to P associated with some constant idP, are elements of the
transitive closure C ; that is, the package interdependencies and requests specified by τ are limited to C .

The full ASP instance π extracted from a CUDF document is obtained by joining τ with further facts.
The first group of them, given in (6)–(9) in Figure 3, links packages (name,vers) ∈ P to idP via the

8 aspcud: A Linux Package Configuration Tool Based on Answer Set Programming

unit(inst,3).
conflict(inst,3,id{(conf,2)}).
unit(inst,2).
depends(inst,2,id{(dep,1)}).
unit(inst,1).
depends(inst,1,id{(dep,3),(dep,2),(dep,1)}).
newestversion(inst,3).

unit(conf,2).
conflict(conf,2,id{(feat,1)}).
newestversion(conf,2).
installed(conf,1).

unit(feat,1).
conflict(feat,1,id{(conf,2)}).
newestversion(feat,1).

unit(dep,3).
conflict(dep,3,id{(dep,2),(dep,1)}).
unit(dep,2).
conflict(dep,2,id{(dep,1)}).
unit(dep,1).
newestversion(dep,3).
installed(dep,1).

unit(avail,1).
newestversion(avail,1).
installed(avail,1).

request(id{(inst,3),(inst,2),(inst,1)}).
request(id{(conf,2),(feat,1)}).

satisfies(conf,2,id{(conf,2)}).
satisfies(dep,1,id{(dep,1)}).
satisfies(dep,3,id{(dep,3),(dep,2),(dep,1)}).
satisfies(dep,2,id{(dep,3),(dep,2),(dep,1)}).
satisfies(dep,1,id{(dep,3),(dep,2),(dep,1)}).
satisfies(feat,1,id{(feat,1)}).
satisfies(dep,2,id{(dep,2),(dep,1)}).
satisfies(dep,1,id{(dep,2),(dep,1)}).
satisfies(inst,3,id{(inst,3),(inst,2),(inst,1)}).
satisfies(inst,2,id{(inst,3),(inst,2),(inst,1)}).
satisfies(inst,1,id{(inst,3),(inst,2),(inst,1)}).
satisfies(conf,2,id{(conf,2),(feat,1)}).
satisfies(feat,1,id{(conf,2),(feat,1)}).

criterion(change,-1).
criterion(remove,-2).

Figure 4: ASP facts π obtained for the CUDF document in Figure 2 along with O = (−CP
O ,−DP

O).

predicate satisfies, where idP was introduced in τ . The second group of facts in (10)–(12) describes
the transitive closure C , the existing installation O , and latest versions of packages in C via the predicates
unit, installed, and newestversion. Moreover, facts over the predicate criterion in (13) repre-
sent objectives #i[OP

O/U]i occurring in O by an associated constant c[OP
O/U]i

and the polarity #i ∈ {+,−}
along with the position i in O. E.g., the facts obtained for the CUDF document in Figure 2 and the
sequence O = (−CP

O ,−DP
O) of objectives are shown in Figure 4. Note that, in view of unspecified ob-

jectives regarding recommendations, the respective interdependency of package (dep,3) is not reflected
in the facts. However, when −RP

U would be added to O, ‘recommends(dep,3,id{(recomm,1)},1).’
along with further facts describing (recomm,1) (then also included in C) would be obtained in π .

3 Grounding and Solving

The facts π generated by the preprocessor serve as problem-specific input to the ASP components of
aspcud, viz., the grounder gringo [7] and the solver clasp [8], while general knowledge about package
configuration problems is provided via encodings. For one, the encoding configuration.lp in
Figure 5 specifies admissible follow-up installations P; for another, optimization.lp in Figure 6
encodes optimization criteria (violations) and corresponding penalties. The encodings are written in the
first-order input language of gringo, which instantiates the contained variables wrt. π to produce a propo-
sitional representation suitable for clasp. For space reasons, we confine the presentation to the encodings
that appeared to be most successful in our preliminary, systematic experiments and are thus used by de-

Martin Gebser, Roland Kaminski, Torsten Schaub 9

fault in aspcud. However, major strengths of ASP are its first-order input language and the availability
of grounders to instantiate them; this enables rapid prototyping of alternative problem formulations, and
we indeed tested several encoding variants before deciding for the ones provided next.

3.1 Hard Constraints

Hard requirements for follow-up installations P are encoded in configuration.lp. Here, the rules
in Line 3–10 are used to abstract from versions if a property applies to all (installable) versions of a
package. Note that variables are universally quantified, where P stands for the name a package, X for
a version of P, and D is an identifier, idP, for a set P of packages. In view of this, the auxiliary predi-
cate pconflict defined in Line 3 projects out versions X from facts over conflict in π . The rule in
Line 4 then lifts a conflict between some version of P (and packages fulfilling D) to the package name P,
provided that all (installable) versions X conflict with D; in fact, the condition ‘conflict(P,X,D) :
unit(P,X)’, evaluated wrt. values for P and D given through pconflict(P,D), refers to the conjunc-
tion of conflict(P,X,D) over all instances of X such that unit(P,X) holds. From the facts π in Fig-
ure 4, conflict(conf,id{(feat,1)}) and conflict(feat,id{(conf,2)}) are derived via instances of
the rules in Line 3 and 4, as conflict(conf,2,id{(feat,1)}) and conflict(feat,1,id{(conf,2)})
are provided by facts for the only (installable) versions 2 and 1 of conf and feat, respectively. The
same approach to lift properties to package names P is applied to dependencies and satisfaction relation-
ships (i.e., membership in a set P referred to by some idP, given via facts over the predicate satisfies).

While the rules described so far derive deterministic properties from facts, the “choice” rule in
Line 14 of configuration.lp allows for guessing a follow-up installation P . It describes that,
for any instance of (P,X) specified by the predicate unit, one may freely choose whether to include
in(P,X) in an answer set; and a follow-up installation P is given by the instances of in(P,X) be-
longing to an answer set. Hence, the rule in Line 14 opens up the candidate space for P , which is
however limited to the transitive closure C (determined via Algorithm 1) because facts over unit do
not include packages outside C . The rule in Line 15 again abstracts from the version X of a package P
in P by projecting out X from in(P,X). Once guessed, it remains to check whether a follow-up
installation P is admissible. To this end, the rules in Line 17–24 collect the identifiers idP of target
sets P of package interdependencies, divided by forbidden and requested target sets in view of con-
flicts and dependencies, respectively, of packages in P , and satisfied target sets are determined in
turn. The actual checks are implemented via the “constraints” in Line 26–28, which deny follow-up
installations P such that the target set of a request (due to some install or upgrade statement in
the original CUDF document) or a requested package dependency is not satisfied; furthermore,
a target set forbidden in view of some conflict must not be satisfied. For instance, the require-
ment expressed by ‘request(id{(inst,3),(inst,2),(inst,1)}).’ in Figure 4 along with the constraint in
Line 26 deny follow-up installations P that do not include any of the packages (inst,3), (inst,2),
and (inst,1) because satisfied(id{(inst,3),(inst,2),(inst,1)}) can be derived only if in(inst,n)
holds for some n∈ {1,2,3}. If so, an instance of the rule in Line 23 as well as the rules in Line 15 and 24
apply, where the latter relies on satisfies(inst,id{(inst,3),(inst,2),(inst,1)}), which abstracts from
versions of inst. Note that such abstractions and the rules in Line 18, 21, and 24 exploiting them are in
principle redundant, since analogous rules considering versions in Line 17, 20, and 23 achieve the same
effect, once a version X of P is determined via in(P,X). However, our preliminary empirical com-
parisons between several encoding variants suggested configuration.lp in Figure 5 as the most
“efficient” encoding. Finally, an admissible follow-up installation P can be read off from instances of
in(P,X) belonging to an answer set, and so we confine its displayed part accordingly in Line 32.

10 aspcud: A Linux Package Configuration Tool Based on Answer Set Programming

1 % analyze package interdependencies

3 pconflict(P,D) :- conflict(P,X,D).
4 conflict(P,D) :- pconflict(P, D), conflict(P,X,D) : unit(P,X).

6 pdepends(P,D) :- depends(P,X,D).
7 depends(P,D) :- pdepends(P, D), depends(P,X,D) : unit(P,X).

9 psatisfies(P,D) :- satisfies(P,X,D).
10 satisfies(P,D) :- psatisfies(P, D), satisfies(P,X,D) : unit(P,X).

12 % generate follow-up installation

14 { in(P,X) } :- unit(P,X).
15 in(P) :- in(P,X).

17 forbidden(D) :- in(P,X), conflict(P,X,D).
18 forbidden(D) :- in(P), conflict(P, D).

20 requested(D) :- in(P,X), depends(P,X,D).
21 requested(D) :- in(P), depends(P, D).

23 satisfied(D) :- in(P,X), satisfies(P,X,D).
24 satisfied(D) :- in(P), satisfies(P, D).

26 :- request(D), not satisfied(D).
27 :- requested(D), not satisfied(D).
28 :- forbidden(D), satisfied(D).

30 % project output

32 #hide. #show in/2.

Figure 5: ASP encoding of follow-up installations P wrt. facts π (configuration.lp).

3.2 Soft Constraints

The encoding optimization.lp in Figure 6 builds on top of facts π and configuration.lp to
identify optimization criteria violations and to assign corresponding penalties. While the rule in Line 1
merely projects out versions X of packages P installed in O , the rules in Line 5–12 recognize changes,
additions, and removals of packages P in the transition from O to P . Note that any such violated

maintenance condition is considered only if associated objectives are specified via facts over the predi-
cate criterion in π; for the facts in Figure 4, the rules in Line 5–8 and 11–12 of Figure 6 are applicable,
given that the sequence O=(−CP

O ,−DP
O) of objectives is expressed via ‘criterion(change,-1).’

and ‘criterion(remove,-2).’ Objectives regarding latest versions of packages in P and recom-
mendations are addressed by the rules in Line 13–14 and 15–16, respectively. Note that the latter uses
a different format, r(P,X,D), to indicate an unserved recommendation D of a package P in version X,
where D is an identifier of the form idP for a target set P; in addition, the multiplicity of recommenda-
tion targets served by P is given in R. (Since violations of the other optimization criteria, identified in
Line 5–14, are counted once per package name P, their corresponding instances of violated(C,P,1)

Martin Gebser, Roland Kaminski, Torsten Schaub 11

1 installed(P) :- installed(P,X).

3 % identify optimization criteria violations

5 violated(change, P, 1) :- criterion(change, L),
6 installed(P,X), not in(P,X).
7 violated(change, P, 1) :- criterion(change, L),
8 not installed(P,X), in(P,X).
9 violated(newpackage, P, 1) :- criterion(newpackage,L),

10 not installed(P), in(P).
11 violated(remove, P, 1) :- criterion(remove, L),
12 installed(P), not in(P).
13 violated(uptodate, P, 1) :- criterion(uptodate, L),
14 newestversion(P,X), not in(P,X), in(P).
15 violated(recommend,r(P,X,D),R) :- criterion(recommend, L),
16 recommends(P,X,D,R), in(P,X), not satisfied(D).

18 % post optimization criteria

20 #minimize[violated(C,P,W) = W @ -L : criterion(C,L) : L < 0].
21 #maximize[violated(C,P,W) = W @ L : criterion(C,L) : L > 0].

Figure 6: ASP encoding of optimization criteria wrt. follow-up installations P (optimization.lp).

use 1 as default weight.) The #minimize and #maximize statements in Line 20 and 21 associate
penalties (or rewards) with violations of objectives of the form #i[OP

O/U]i in a sequence O, reflected
in π by including ‘criterion(c[OP

O/U]i
,#ii).’ (where c[OP

O/U]i
∈ {newpackage,remove,change,

uptodate,recommend} and #i ∈ {+,−}). Instances of violated(c[OP
O/U]i

,P,W) in an answer set,
derived via the rules in Line 5–16, are then penalized (or rewarded) with priority i and weight W. Note
that summation-based minimization applies (in Line 20) if #i =− or maximization (in Line 21) if #i =+,
while a later position i in O indicates greater significance than preceding ones. For instance, the sequence
represented by ‘criterion(change,-1).’ and ‘criterion(remove,-2).’ gives preference to
the minimization of DP

O and then considers the cardinality of CP
O for breaking ties. As already men-

tioned, maximization objectives of the form +OP
O/U (aiming at many differences between O and P ,

outdated packages in P , or recommendations ignored by P , respectively) seem of little practical use.
Since they would still be allowed in the user track of competitions by mancoosi, the #maximize state-
ment in Line 21 of Figure 6 is included to handle them.

The instantiation of configuration.lp and optimization.lp wrt. facts π , produced by
gringo, is passed on to the ASP solver clasp, which searches for (optimal) answer sets of propositional
logic programs. In the context of Linux package configuration, the major challenge lies in the opti-
mization of objectives, given that available distributions are large and plenty installations are admissible
(even when the transitive closure C is used to limit the scope of a follow-up installation P). In view
of this, we recently extended clasp by dedicated search strategies and heuristics for effective multi-
criteria optimization [5]; by default, aspcud configures them by supplying the command line options
--opt-hierarch=1 and --opt-heuristic=1 to clasp. (Default clasp options can be overrid-
den via aspcud switch ‘-c’.) In a nutshell, these options instruct clasp to optimize multiple objec-
tives successively in the order of significance by progressively improving objective values of answer
sets until the problem of finding a better answer set turns out to be unsatisfiable, in which case op-

12 aspcud: A Linux Package Configuration Tool Based on Answer Set Programming

timization proceeds with the next (less significant) criterion. Further search parameters of clasp are,
by default, set by supplying the command line options --sat-prepro, --heuristic=vsids,
--solution-recording, --restarts=128, and --local-restarts. We determined the
clasp setting utilized by aspcud via systematic experiments (see [5, 6] for an empirical comparison be-
tween clasp settings), and the successful participations of aspcud in recent trial-runs of the competition
by mancoosi [13] were largely owed to the search capacities of aspcud’s solving component.

4 Experiments

The workflow of aspcud includes the steps of preprocessing, grounding, and solving (as well as con-
verting an answer set representing a follow-up installation back to CUDF). Since clasp settings were
already evaluated in [5, 6], the experiments presented here concentrate on the impact of preprocessing
on residual problem size and its effect on solving efficiency. To be more precise, we compare problem
size and search statistics wrt. ASP facts limited to the transitive closure C determined via Algorithm 1
against facts describing the whole universe U of packages (except for those that must not be installed in
view of remove and upgrade requests).

Our experiments consider four benchmark classes, in the following referred to by easy, difficult,
impossible, and debian-dudf, from the 2010 MISC competition by mancoosi [13]. Furthermore, we
apply the sequences (−CP

O ,−DP
O) and (−NP

O ,−RP
U ,−UP

U ,−DP
O) of objectives (in increasing order of

significance) used in the tracks called paranoid and trendy. (Arbitrary sequences of objectives can be
provided as arguments to aspcud, as required in the user track.) Note that, although the instances are the
same in paranoid and trendy mode, optimization wrt. the latter is usually more difficult in view of more
criteria. We ran the experiments under MISC conditions, imposing a time limit of 300 seconds, on an
Intel Xeon E5520 machine, equipped with 2.27GHz processors and 48GB main memory, under Linux.

Table 1 summarizes experimental results, separately for paranoid and trendy objectives, where the
first two columns provide the considered benchmark class along with the number n of its instances. The
entries in the other columns contrast statistics obtained with transitive closure computation (before ‘/’)
against the ones obtained without it (after ‘/’). Average problem sizes in terms of number of variables
and constraints, as reported by clasp, are provided in the third and fourth column. The fifth column gives
average solving times, with timeouts (in parentheses) taken as 300 seconds. The numbers of choices,
conflicts, and answer sets (including intermediate ones) reported by clasp are shown in the last three
columns, here averaging over the instances finished within the time limit in both preprocessing modes.

With transitive closure computation enabled, we observe a reduction of both variables and constraints
by about one order of magnitude (a bit less on the debian-dudf class). This can be explained by the fact
that typical installations include only a fraction of the available packages. Furthermore, the reductions in
size are greater wrt. paranoid objectives because they disregard recommendations, which are considered
in trendy mode. The solving times also reduce by one order of magnitude for paranoid, yet less for the
more difficult problems solved in trendy mode; however, eight more instances are solved in time with
transitive closure computation enabled. Interestingly, the numbers of conflicts and answer sets (taken
only over instances that did not time out) are comparable. This indicates that clasp’s optimization ap-
proach is able to focus on relevant problem parts, even without a priori limitation to the transitive closure.
Nonetheless, the numbers of choices are much greater (again an order of magnitude) for whole package
universes, providing a clear indication of the benefits of limiting the scope of follow-up installations. In
fact, even when unnecessary variables and constraints do not render a problem more difficult, the solving
time suffers from additional efforts spent on assigning the variables and testing the constraints.

Martin Gebser, Roland Kaminski, Torsten Schaub 13

paranoid n variables constraints time (t/o) choices conflicts answer sets

easy 20 6K/ 69K 6K/ 91K 1(0)/ 9(0) 35K/ 1,932K 22/ 27 66/192
difficult 22 11K/158K 10K/180K 2(0)/ 25(0) 42K/ 717K 5K/ 4K 67/87
impossible 14 36K/404K 64K/654K 6(0)/ 98(0) 90K/ 992K 7K/ 5K 58/81
debian-dudf 18 40K/189K 82K/359K 6(0)/ 40(0) 232K/ 953K 2K/ 1K 220/116

trendy n variables constraints time (t/o) choices conflicts answer sets

easy 20 9K/ 80K 11K/121K 1(0)/ 14(0) 117K/ 3,690K 1K/ 2K 203/341
difficult 22 21K/175K 26K/232K 155(11)/196(12) 279K/ 3,057K 26K/28K 270/400
impossible 14 70K/438K 136K/782K 163(6)/259(12) 462K/ 2,949K 12K/12K 289/253
debian-dudf 18 51K/207K 111K/432K 20(0)/106(1) 946K/10,910K 35K/51K 678/874

Table 1: Experiments assessing the impact of preprocessing via Algorithm 1 on aspcud’s performance.

5 Discussion

We presented the workflow of the ASP-based Linux package configuration tool aspcud. In particular, we
detailed the preprocessing applied to convert CUDF input to ASP facts suitable for the ASP components
of aspcud. Related approaches rely on conversions from CUDF to Integer Linear Programming [14],
Maximum Satisfiability [9], or Pseudo-Boolean Optimization [1]. Although all conversions, including
ours, closely follow the specification of CUDF [17] and differ primarily in their target formats, there still
are some differences that deserve attention. Unlike other package configuration tools, aspcud compiles
CUDF input into ASP facts, while constraints as well as optimization criteria on follow-up installations
are provided separately via general problem encodings. In fact, aspcud is equipped with several encoding
variants (selectable via switch ‘-e’), although we here only detailed the most promising variants accord-
ing to our empirical investigations. For another, the preprocessors of package configuration tools trace
indirections in view of arithmetic expressions (over versions), package formulae, and virtual packages
admitted in CUDF back to the (installable) packages underneath. In our ASP fact format (cf. Figure 3),
we however associate target sets P of package interdependencies with identifiers idP in order to avoid un-
folding steps upon fact generation. To our knowledge, the preprocessors of other package configuration
tools perform such unfolding, and it is an interesting (unresolved) question whether structural entities
of the form idP are rather beneficial or a handicap for search. Regarding modeling in ASP (cf. Figure 5
and 6), the consequent usage of identifiers idP helped to keep the encodings concise and thus easy to
maintain and modify. Despite of the different input formats used in ASP and the solving components of
other package configuration tools, the principal approach of aspcud’s preprocessor to limit the scope of
follow-up installations is independent of back-end solvers; however, an additional “constraint formula-
tor” would be required for back-ends lacking general-purpose grounders. Concerning subjects to future
investigation, we speculate that further improvements of problem encodings or the exploration of char-
acteristic structures in Linux distributions (if any) might boost the performance of package configuration
tools, in addition to ongoing enhancements of their search engines.

Acknowledgments. This work was partly funded by DFG grant SCHA 550/8-2. We are grateful to
Daniel Le Berre for useful discussions on the topic, to the mancoosi project team for organizing MISC,
and to the anonymous referees for helpful comments.

14 aspcud: A Linux Package Configuration Tool Based on Answer Set Programming

References
[1] J. Argelich, D. Le Berre, I. Lynce, J. Marques-Silva & P. Rapicault (2010): Solving Linux Upgradeability

Problems Using Boolean Optimization. In Lynce & Treinen [12], pp. 11–22, doi:10.4204/EPTCS.29.2.
[2] aspcud. http://www.cs.uni-potsdam.de/wv/aspcud.
[3] C. Baral (2003): Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge Uni-

versity Press, doi:10.1017/CBO9780511543357.
[4] A. Biere, M. Heule, H. van Maaren & T. Walsh, editors (2009): Handbook of Satisfiability. IOS Press.
[5] M. Gebser, R. Kaminski, B. Kaufmann & T. Schaub (2011): Multi-Criteria Optimization in Answer Set

Programming. In J. Gallagher & M. Gelfond, editors: Technical Communications of the Twenty-seventh In-
ternational Conference on Logic Programming (ICLP’11), Leibniz International Proceedings in Informatics,
pp. 1–10, doi:10.4230/LIPIcs.ICLP.2011.1.

[6] M. Gebser, R. Kaminski, B. Kaufmann & T. Schaub (2011): Multi-Criteria Optimization in ASP and its
Application to Linux Package Configuration. In Le Berre & Van Gelder [10]. To appear.

[7] M. Gebser, R. Kaminski, A. König & T. Schaub (2011): Advances in Gringo Series 3. In J. Delgrande &
W. Faber, editors: Proceedings of the Eleventh International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’11), Springer, pp. 345–351, doi:10.1007/978-3-642-20895-9 39.

[8] M. Gebser, B. Kaufmann, A. Neumann & T. Schaub (2007): Conflict-Driven Answer Set Solving. In
M. Veloso, editor: Proceedings of the Twentieth International Joint Conference on Artificial Intelligence
(IJCAI’07), AAAI Press/The MIT Press, pp. 386–392.

[9] M. Janota, I. Lynce, J. Marques-Silva & V. Manquinho (2011): PackUp: Tools for Package Upgradability
Solving. In Le Berre & Van Gelder [10]. To appear.

[10] D. Le Berre & A. Van Gelder, editors (2011): Proceedings of the Second Workshop on Pragmatics of SAT
(PoS’11). To appear.

[11] V. Lifschitz, F. van Harmelen & B. Porter, editors (2008): Handbook of Knowledge Representation. Elsevier
Science.

[12] I. Lynce & R. Treinen, editors (2010): Proceedings of the First International Workshop on Logics for Com-
ponent Configuration (LoCoCo’10). Electronic Proceedings in Theoretical Computer Science (EPTCS) 29,
doi:10.4204/EPTCS.29.

[13] mancoosi — managing software complexity. http://www.mancoosi.org.
[14] C. Michel & M. Rueher (2010): Handling Software Upgradeability Problems with MILP Solvers. In Lynce

& Treinen [12], pp. 1–10, doi:10.4204/EPTCS.29.1.
[15] potassco. http://potassco.sourceforge.net.
[16] T. Syrjänen (2000): Including Diagnostic Information in Configuration Models. In J. Lloyd, V. Dahl, U. Fur-

bach, M. Kerber, K. Lau, C. Palamidessi, L. Pereira, Y. Sagiv & P. Stuckey, editors: Proceedings of the
First International Conference on Computational Logic (CL’00), Springer, pp. 837–851, doi:10.1007/3-540-
44957-4 56.

[17] R. Treinen & S. Zacchiroli (2009): Common Upgradability Description Format (CUDF) 2.0. Technical
Report 003, [13].

http://dx.doi.org/10.4204/EPTCS.29.2
http://dx.doi.org/10.1017/CBO9780511543357
http://dx.doi.org/10.4230/LIPIcs.ICLP.2011.1
http://dx.doi.org/10.1007/978-3-642-20895-9_39
http://dx.doi.org/10.4204/EPTCS.29
http://dx.doi.org/10.4204/EPTCS.29.1
http://dx.doi.org/10.1007/3-540-44957-4_56
http://dx.doi.org/10.1007/3-540-44957-4_56

	Introduction
	Preprocessing
	Common Upgradability Description Format (CUDF)
	Optimization Criteria
	Generation of ASP Facts

	Grounding and Solving
	Hard Constraints
	Soft Constraints

	Experiments
	Discussion

