
Under consideration for publication in Theory and Practice of Logic Programming 1

plasp 3: Towards Effective ASP Planning
Yannis Dimopoulos
University of Cyprus

Martin Gebser
University of Klagenfurt, Graz University of Technology, and University of Potsdam

Patrick Lühne Javier Romero
University of Potsdam

Torsten Schaub
INRIA Rennes and University of Potsdam

submitted [n/a]; revised [n/a]; accepted [n/a]

Abstract

We describe the new version of the PDDL-to-ASP translator plasp. First, it widens the range of
accepted PDDL features. Second, it contains novel planning encodings, some inspired by SAT
planning and others exploiting ASP features such as well-foundedness. All of them are designed
for handling multivalued fluents in order to capture both PDDL as well as SAS planning formats.
Third, enabled by multishot ASP solving, it offers advanced planning algorithms also borrowed
from SAT planning. As a result, plasp provides us with an ASP-based framework for studying
a variety of planning techniques in a uniform setting. Finally, we demonstrate in an empirical
analysis that these techniques have a significant impact on the performance of ASP planning.

Under consideration for publication in Theory and Practice of Logic Programming (TPLP)

1 Introduction

Reasoning about actions and change constitutes a major challenge to any formalism for
knowledge representation and reasoning. It therefore comes as no surprise that Automated
Planning (Dimopoulos et al. 1997) was among the first substantial applications of Answer
Set Programming (ASP; (Lifschitz 2002)). Meanwhile this has led to manifold action
languages (Gelfond and Lifschitz 1998), various applications in dynamic domains (Baral
and Gelfond 2000), but only few adaptions of Automated Planning techniques (Son et al.
2006). Although such approaches have provided us with diverse insights into how relevant
concepts are expressed in ASP, almost no attention has been paid to making reasoning
about actions and change effective. This is insofar surprising as a lot of work has been
dedicated to planning with techniques from the area of Satisfiability Testing (SAT; (Biere
et al. 2009)), a field often serving as a role model for ASP.

We address this shortcoming with the third series of the plasp system. From its inception,
the purpose of plasp was to provide an elaboration-tolerant platform to planning by using
ASP. Already its original design (Gebser et al. 2011a) foresaw to compile planning problems
formulated in the Planning Domain Definition Language (PDDL; (McDermott 1998)) into
ASP facts and to use ASP metaencodings for modeling alternative planning techniques.

ar
X

iv
:1

81
2.

04
49

1v
1

 [
cs

.L
O

]
 1

1
D

ec
 2

01
8

2 Y. Dimopoulos, M. Gebser, P. Lühne, J. Romero, and T. Schaub

PDDL

translator

Fast Downward
preprocessor

ASP

plan planner

PDDL
specification

ASP
facts

ASP
encoding

SAS
specification

Fig. 1. Solving PDDL inputs with plasp’s workflow (highlighted in blue)

These could then be solved with fixed horizons (and optimization) or in an incremental
fashion. The redesigned plasp 3 system processes planning problems specified in PDDL
according to the workflow visualized in Figure 1. At the beginning, a PDDL input may be
subject to optional preprocessing by the state-of-the-art planning system Fast Downward
(Helmert 2006) via the intermediate SAS format. The translator component of plasp 3
otherwise performs a normalization step to transform complex PDDL expressions into a
simplified core format, which results in a homogeneous factual representation capturing
both PDDL and SAS inputs (with multivalued fluents). Moreover, plasp 3 provides a
spectrum of ASP encodings ranging from adaptions of known SAT encodings (Rintanen
et al. 2006) to novel encodings taking advantage of ASP-specific concepts. Finally, the
planner component of plasp 3 offers sophisticated planning algorithms, also stemming
from SAT planning (Rintanen et al. 2006), by taking advantage of multishot ASP solving.
Given the common structure of various incremental ASP encodings, plasp’s planning
framework is also applicable to dynamic domains beyond PDDL, e.g., the planner could
be run on ASP encodings of finite model finding (Gebser et al. 2011b) instead of planning.

The outline of this paper is as follows. In Section 2, we introduce STRIPS-like planning
tasks and devise ASP encodings for sequential as well as a range of parallel representations
of plans. Section 3 is dedicated to the planner component of plasp 3, presenting the planning
algorithms, guess-and-check strategies, and the planning heuristic it supports. In Section 4,
we turn to the functionalities provided by plasp’s translator, including normalization for
dealing with advanced PDDL features and the handling of constructs comprised in the
intermediate SAS format. Section 5 reports about our experiments, empirically evaluating
the devised encodings and planning algorithms on PDDL inputs as well as ASP planning
benchmarks. Finally, Section 6 concludes the paper with a summary of the achieved
results and future work. This paper extends a previous conference version (Dimopoulos
et al. 2017), which did not include the guess-and-check strategies presented in Section 3,
the description of the translator component of plasp 3 given in Section 4, and experimental
results on the benchmark set by (Rintanen 2012) as well as ASP planning benchmarks.

2 ASP Encodings for Planning

We consider STRIPS-like (multivalued) planning tasks according to (Helmert 2006), given
by a 4-tuple 〈F ,s0,s?,O〉, in which

• F is a finite set of state variables, also called fluents, where each x ∈ F has an
associated finite domain xd of possible values for x,

• s0 is a state, i.e., a (total) function such that s0(x) ∈ xd for each x ∈ F ,

plasp 3: Towards Effective ASP Planning 3

• s? is a partial state (listing goal conditions), i.e., a function such that s?(x) ∈ xd for
each x ∈ s̃?, where s̃? denotes the set of all x ∈ F such that s?(x) is defined, and

• O is a finite set of operators, also called actions, where ac and ae in a= 〈ac,ae〉 are
partial states denoting the precondition and postcondition of a for each a ∈ O.

Given a state s and an action a ∈ O, the successor state o(a,s) obtained by applying
a= 〈ac,ae〉 in s is defined if ac(x) = s(x) for each x∈ ãc, and undefined otherwise. Provided
that s′= o(a,s) is defined, s′(x) = ae(x) for each x∈ ãe, and s′(x) = s(x) for each x∈F \ ãe.
That is, if the successor state o(a,s) is defined, it includes the postcondition of a and
keeps any other fluents unchanged from s. We extend the notion of a successor state
to sequences 〈a1, . . . ,an〉 of actions by letting o(〈a1, . . . ,an〉,s) = o(an,o(. . . ,o(a1,s) . . .)),
provided that o(ai,o(. . . ,o(a1,s) . . .)) is defined for all 1≤ i≤ n. Given this, a sequential
plan is a sequence 〈a1, . . . ,an〉 of actions such that s′ = o(〈a1, . . . ,an〉,s0) is defined and
s′(x) = s?(x) for each x ∈ s̃?, i.e., the goal conditions specified by s? have to hold in s′.

Several parallel representations of sequential plans have been investigated in the
literature (Dimopoulos et al. 1997; Rintanen et al. 2006; Wehrle and Rintanen 2007). We
call a set {a1, . . . ,ak} ⊆ O of actions confluent if aei (x) = aej(x) for all 1≤ i < j ≤ k and
each x ∈ ãei ∩ ãej . Given a state s and a confluent set A= {a1, . . . ,ak} of actions, A is

• ∀-step serializable in s if o(〈a′1, . . . ,a′k〉,s) is defined for any sequence 〈a′1, . . . ,a′k〉
such that {a′1, . . . ,a′k}=A;

• ∃-step serializable in s if ac(x) = s(x), for each a ∈ A and x ∈ ãc, and o(〈a′1, . . . ,
a′k〉,s) is defined for some sequence 〈a′1, . . . ,a′k〉 such that {a′1, . . . ,a′k}=A;
• relaxed ∃-step serializable in s if o(〈a′1, . . . ,a′k〉,s) is defined for some sequence 〈a′1,
. . . ,a′k〉 such that {a′1, . . . ,a′k}=A.

Note that any ∀-step serializable set A of actions is likewise ∃-step serializable, and similarly
any ∃-step serializable A is relaxed ∃-step serializable. In particular, the condition that
any sequence built from a ∀-step serializable A leads to a (defined) successor state implies
that the precondition of each action in A must already be established in s, which is
also required for ∃-step serializable sets, but not for relaxed ∃-step serializable sets. We
extend the three serialization concepts to plans by calling a sequence 〈A1, . . . ,Am〉 of
confluent sets of actions a ∀-step, ∃-step, or relaxed ∃-step plan if sm(x) = s?(x), for each
x ∈ s̃?, and each Ai is ∀-step, ∃-step, or relaxed ∃-step serializable, respectively, in si−1
for 1≤ i≤m, where si(x) = ae(x) for each a∈Ai and x∈ ãe, and si(x) = si−1(x) for each
x ∈ F \

⋃
a∈Ai

ãe. That is, parallel representations partition some sequential plan such
that each part Ai is ∀-step, ∃-step, or relaxed ∃-step serializable in the state obtained
by applying the actions preceding Ai. Also note that, in case of (relaxed) ∃-step plans,
the confluence requirement achieves tractability of deciding whether a set of actions is
(relaxed) ∃-step serializable, which becomes NP-hard otherwise (Rintanen et al. 2006).

Example 1
Consider a planning task 〈F ,s0,s?,O〉 with F = {x1,x2,x3,x4,x5} such that xd1 = xd2 =
xd3 = xd4 = xd5 = {0,1}, s0 = {x1 = 0,x2 = 0,x3 = 0,x4 = 0,x5 = 0}, s? = {x4 = 1,x5 = 1},
and O = {a1,a2,a3,a4}, where a1 = 〈{x1 = 0},{x1 = 1,x2 = 1}〉, a2 = 〈{x3 = 0},{x1 = 1,
x3 = 1}〉, a3 = 〈{x2 = 1,x3 = 1},{x4 = 1}〉, and a4 = 〈{x2 = 1,x3 = 1},{x5 = 1}〉. One
can check that 〈a1,a2,a3,a4〉 and 〈a1,a2,a4,a3〉 are the two sequential plans consisting of
four actions. The ∀-step plan with fewest sets of actions is given by 〈{a1},{a2},{a3,a4}〉.

4 Y. Dimopoulos, M. Gebser, P. Lühne, J. Romero, and T. Schaub

Listing 1. ASP fact representation of the planning task from Example 1
fluent (x1). fluent (x2). fluent (x3). fluent (x4). fluent (x5).
value(x1,0). value(x2,0). value(x3,0). value(x4,0). value(x5,0).
value(x1,1). value(x2,1). value(x3,1). value(x4,1). value(x5,1).

init(x1,0). init(x2,0). init(x3,0). init(x4,0). init(x5,0).
goal(x4,1). goal(x5,1).

action (a1). action (a2). action (a3). action (a4).
prec(a1,x1,0). prec(a2,x3,0). prec(a3,x2,1). prec(a4,x2,1).
post(a1,x1,1). post(a2,x1,1). prec(a3,x3,1). prec(a4,x3,1).
post(a1,x2,1). post(a2,x3,1). post(a3,x4,1). post(a4,x5,1).

Listing 2. Common part of sequential and parallel encodings for STRIPS-like planning
1 holds(X,V,0) :- init(X,V).

3 #program check(t).

5 :- query(t), goal(X,V), not holds(X,V,t).

7 #program step(t).

9 {holds(X,V,t) : value(X,V)} = 1 :- fluent (X).

11 { occurs (A,t)} :- action (A).

13 :- occurs (A,t), post(A,X,V), not holds(X,V,t).

15 :- holds(X,V,t), not holds(X,V,t -1), not occurs (A,t) : post(A,X,V).

Similarly, 〈{a1,a2},{a3,a4}〉 is the ∃-step plan with fewest sets of actions. Finally, the
relaxed ∃-step plan 〈{a1,a2,a3,a4}〉 consists of one set of actions only. �

In ASP, we represent a planning task like the one from Example 1 by facts as given
in Listing 1. The facts can then be combined with encodings such that stable models
correspond to sequential, ∀-step, ∃-step, or relaxed ∃-step plans. The rules as well as
integrity constraints in Listing 2 form the common core of respective incremental encodings
(Gebser et al. 2014) and are grouped into three parts: a subprogram base, including the rule
in Line 1, which is not preceded by any #program directive; a parameterized subprogram
check(t), containing the integrity constraint in Line 5, in which the parameter t serves
as placeholder for successive integers starting from 0; and a parameterized subprogram
step(t), comprising the rules and integrity constraints below the #program directive
in Line 7, whose parameter t stands for successive integers starting from 1. By first
instantiating the base subprogram along with check(t), where t is replaced by 0, and then
proceeding with integers from 1 for t in check(t) and step(t), an incremental encoding
can be gradually unrolled. We take advantage of this to capture plans of increasing length,
expressed by the latest integer used to replace t with.

plasp 3: Towards Effective ASP Planning 5

Listing 3. Extension of Listing 2 for encoding sequential plans
17 :- occurs (A,t), prec(A,X,V), not holds(X,V,t -1).

19 :- #count {A : occurs (A,t)} > 1.

In more detail, the rule in Line 1 of Listing 2 maps facts specifying s0 to atoms over
the predicate holds/3, in which the third argument 0 refers to the initial state. Starting
from 0 for the parameter t, the integrity constraint in Line 5 then tests whether the
conditions of s? are established, where the dedicated atom query(t) is set to true only for
the latest integer taken for t. This allows for increasing the plan length by successively
instantiating the subprograms check(t) and step(t) with further integers. The latter
subprogram includes the choice rule in Line 9 to generate a successor state such that each
fluent x ∈ F is mapped to some value in its domain xd. The other choice rule in Line 11
permits to unconditionally pick actions to apply, expressed by atoms over occurs/2, in
order to obtain a corresponding successor state. Given that both sequential and parallel
plans are such that the postcondition of an applied action holds in the successor state, the
integrity constraint in Line 13 asserts the respective postcondition(s), which guarantees
the confluence of any set of actions to be applied in parallel. On the other hand, fluents
unaffected by applied actions must remain unchanged, and the integrity constraint in
Line 15 thus requires changed fluents to be established by means of applied actions.1

The common encoding part described so far takes care of matching successor states to
postconditions of applied actions, while requirements regarding preconditions are subject
to the kind of plan under consideration and expressed by dedicated additions to the
step(t) subprogram. To begin with, the two integrity constraints added in Listing 3
address sequential plans by, in Line 17, asserting the precondition of an applied action to
hold in the state referred to by t-1 and, in Line 19, denying multiple actions to be applied
in parallel. Note that, if the plan length or the latest integer taken for t, respectively,
exceeds the minimum number of actions required to establish the conditions of s?, the
encoding of sequential plans given by Listings 2 and 3 permits idle states in which no
action is applied. While idle states cannot emerge when using the basic iclingo control
loop (Gebser et al. 2014) to compute shortest plans, they are essential for the planner
presented in Section 3 in order to increase the plan length in more flexible ways.

Turning to parallel representations, Listing 4 shows additions dedicated to ∀-step plans,
where the integrity constraint in Line 17 is the same as in Listing 3 before. This guarantees
the preconditions of applied actions to hold, while their confluence is already taken care of
by means of the integrity constraint in Line 13 of Listing 2. It thus remains to make sure
that applied actions do not interfere in any way that would disable a serialization, which

1The variables X and V occur outside the scope of conditional literals, composed by the ‘:’ connective,
and are thus global in Line 15, while A is local to ‘not occurs(A,t) : post(A,X,V)’. An according
instantiation of the integrity constraint in Line 15, taking the values x1 and 1 for X and V relative to the
facts in Listing 1, is ‘:- holds(x1,1,t), not holds(x1,1,t-1), not occurs(a1,t), not occurs(a2,t).’
Note that the actions a1 and a2, which have x1 = 1 in their postconditions, are taken as values for the
local variable A, where the resulting instances of the literal ‘not occurs(A,t)’ on the left-hand side of ‘:’
are connected conjunctively in a propositional rule with the constant t as placeholder for integers. For a
detailed account of the language of the ASP system clingo, we refer the reader to (Gebser et al. 2017a).

6 Y. Dimopoulos, M. Gebser, P. Lühne, J. Romero, and T. Schaub

Listing 4. Extension of Listing 2 for encoding ∀-step plans
17 :- occurs (A,t), prec(A,X,V), not holds(X,V,t -1).

19 :- occurs (A,t), prec(A,X,V), not post(A,X,_), not holds(X,V,t).

21 single (X,t) :- occurs (A,t), prec(A,X,V1), post(A,X,V2), V1 != V2.
22 :- single (X,t), #count {A : occurs (A,t), post(A,X,V)} > 1.

essentially means that the precondition of an applied action a must not be invalidated
by another action applied in parallel. For a fluent x ∈ ãc that is not changed by a itself,
i.e., x /∈ ãe or ae(x) = ac(x), the integrity constraint in Line 19, which applies in case of
x /∈ ãe, suppresses a parallel application of actions a′ such that x ∈ ã′e and a′e(x) 6= ac(x),
while the integrity constraint in Line 13 readily requires x to remain unchanged in case
ae(x) = ac(x). On the other hand, the situation becomes slightly more involved when
x ∈ ãe and ae(x) 6= ac(x), i.e., the application of a invalidates its own precondition. In
this case, no other action a′ such that x ∈ ã′e can be applied in parallel, either because
a′e(x) 6= ae(x) undermines confluence, or since a′e(x) = ae(x) disrespects the precondition
of a. To account for such situations and address all actions invalidating their precondition
regarding x at once, the rule in Line 21 derives an atom over single/2 to indicate that
at most (and effectively exactly) one action affecting x can be applied, as asserted by
the integrity constraint in Line 22. As a consequence, no action applied in parallel can
invalidate the precondition of another action, so that any serialization leads to the same
successor state as obtained in the parallel case.

Example 2
The two sequential plans from Example 1 correspond to two stable models, obtained
with the encoding of sequential plans given by Listings 2 and 3, both including the atoms
occurs(a1,1) and occurs(a2,2). In addition, one stable model contains occurs(a3,3) along
with occurs(a4,4), and the other occurs(a4,3) as well as occurs(a3,4), thus exchanging
the order of applying a3 and a4. Given that a3 and a4 are confluent, the independence of
their application order is expressed by a single stable model, obtained with the encoding
part for ∀-step plans in Listing 4 instead of the one in Listing 3, comprising occurs(a3,3)
as well as occurs(a4,3) in addition to occurs(a1,1) and occurs(a2,2). Note that, even
though the set {a1,a2} is confluent, it is not ∀-step serializable (in s0), and a parallel
application is suppressed in view of the atom single(x1,1), derived since a1 invalidates
its precondition regarding x1. Moreover, the requirement that the precondition of an
applied action must be established in the state before permits only 〈{a1},{a2},{a3,a4}〉
as ∀-step plan or its corresponding stable model, respectively, with three sets of actions.
�

Additions to Listing 2 addressing ∃-step plans are given in Listing 5. As before, the
integrity constraint in Line 17 is included to assert the precondition of an applied action to
hold in the state referred to by t-1. Unlike with ∀-step plans, however, an applied action
may invalidate the precondition of another action, in which case the other action must
come first in a serialization, and the aim is to make sure that there is some compatible
serialization. To this end, the rule in Lines 19–20 expresses that an action can be safely

plasp 3: Towards Effective ASP Planning 7

Listing 5. Extension of Listing 2 for encoding ∃-step plans
17 :- occurs (A,t), prec(A,X,V), not holds(X,V,t -1).

19 apply(A1,t) :- action (A1),
20 ready(A2,t) : post(A1,X,V1), prec(A2,X,V2), A1 != A2, V1 != V2.

22 ready(A,t) :- action (A), not occurs (A,t).
23 ready(A,t) :- apply(A,t).
24 :- action (A), not ready(A,t).

Listing 6. Replacement of Lines 19–24 in Listing 5 by an #edge directive
19 #edge ((A1,t),(A2,t)) : occurs (A1,t),
20 post(A1,X,V1), prec(A2,X,V2), A1 != A2, V1 != V2.

Listing 7. Extension of Listing 2 for encoding relaxed ∃-step plans
17 reach(X,V,t) :- holds(X,V,t -1).
18 reach(X,V,t) :- occurs (A,t), apply(A,t), post(A,X,V).

20 apply(A1,t) :- action (A1), reach(X,V,t) : prec(A1,X,V);
21 ready(A2,t) : post(A1,X,V1), prec(A2,X,V2), A1 != A2, V1 != V2.

23 ready(A,t) :- action (A), not occurs (A,t).
24 ready(A,t) :- apply(A,t).
25 :- action (A), not ready(A,t).

applied, as indicated by a respective instance of the head atom apply(A1,t), once all
other actions whose preconditions it invalidates are captured by corresponding instances
of ready(A2,t). The latter provide actions that are not applied or whose application
is safe, i.e., no yet pending action’s precondition gets invalidated, and are derived by
means of the rules in Lines 22 and 23. In fact, the least fixpoint obtained via the rules in
Lines 19–23 covers all actions if and only if the applied actions do not circularly invalidate
their preconditions, and the integrity constraint in Line 24 prohibits any such circularity,
which in turn means that there is a compatible serialization.

Excluding circular interference also lends itself to an alternative implementation by
means of the #edge directive (Gebser et al. 2016) of clingo, in which case built-in acyclicity
checking (Bomanson et al. 2016) is used. A respective replacement of Lines 19–24 is shown
in Listing 6, where the #edge directive in Lines 19–20 asserts edges from an applied action
to all other actions whose preconditions it invalidates, and acyclicity checking makes sure
that the graph induced by applied actions remains acyclic.

The encoding part for relaxed ∃-step plans in Listing 7 deviates from those given so
far by not necessitating the precondition of an applied action to hold in the state before.
Rather, the preconditions of actions applied in parallel may be established successively,
where confluence along with the condition that an action is applicable only after other

8 Y. Dimopoulos, M. Gebser, P. Lühne, J. Romero, and T. Schaub

actions whose preconditions it invalidates have been processed guarantee the existence
of a compatible serialization. In fact, the rules in Lines 20–24 are almost identical to
their counterparts in Listing 5, and the difference amounts to the additional prerequisite
‘reach(X,V,t) : prec(A1,X,V)’ in Line 20. Instances of reach(X,V,t) are derived by means
of the rules in Lines 17 and 18 to indicate fluent values from the state referred to by
t-1 along with postconditions of actions whose application has been determined to be
safe. The prerequisites of the rule in Lines 20–21 thus express that an action can be
safely applied once its precondition is established, possibly by means of other actions
preceding it in a compatible serialization, and if it does not invalidate any pending action’s
precondition.2 Similar to its counterpart in Listing 5, the integrity constraint in Line 25
then makes sure that actions are not applied unless their application is safe in the sense
of a relaxed ∃-step serializable set.

Example 3
The ∀-step plan 〈{a1},{a2},{a3,a4}〉 from Example 1 can be condensed into 〈{a1,a2},
{a3,a4}〉 when switching to ∃-step serializable sets. Corresponding stable models obtained
with the encodings given by Listing 2 along with Listing 5 or 6 include occurs(a1,1),
occurs(a2,1), occurs(a3,2), and occurs(a4,2). Regarding the #edge directive in Listing 6,
these atoms induce the graph ({(a1,1),(a2,1)},{〈(a2,1),(a1,1)〉}), which is clearly
acyclic. Its single edge tells us that a1 must precede a2 in a compatible serialization, while
the absence of a cycle means that the application of a1 does not invalidate the precondition
of a2. In terms of the encoding part in Listing 5, apply(a1,1) and ready(a1,1) are derived
first, which in turn allows for deriving apply(a2,1) and ready(a2,1). The requirement
that the precondition of an applied action must be established in the state before, which is
shared by Listings 5 and 6, however, necessitates at least two sets of actions for an ∃-step
plan or a corresponding stable model, respectively. Unlike that, the encoding of relaxed
∃-step plans given by Listings 2 and 7 yields a stable model containing occurs(a1,1),
occurs(a2,1), occurs(a3,1), and occurs(a4,1), corresponding to the relaxed ∃-step plan
〈{a1,a2,a3,a4}〉. The existence of a compatible serialization is witnessed by first deriving,
amongst other atoms, reach(x1,0,1) and reach(x3,0,1) in view of s0. These atoms
express that the preconditions of a1 and a2 are readily established, so that apply(a1,1)
along with reach(x2,1,1) and ready(a1,1) are derived next. The latter atom indicates
that a1 can be safely applied before a2, which then leads to apply(a2,1) along with
reach(x3,1,1). Together, reach(x2,1,1) and reach(x3,1,1) reflect that the precondition
of a3 as well as a4 can be established by means of a1 and a2 applied in parallel, so that
apply(a3,1) and apply(a4,1) are derived in turn. �

In order to formalize the soundness and completeness of the presented encodings, let
B stand for the rule in Line 1 of Listing 2, Q(i) for the integrity constraint in Line 5
with the parameter t replaced by some integer i, and S(i) for the rules and integrity
constraints below the #program directive in Line 7 with i taken for t. Moreover, we refer
to specific encoding parts extending S(i), where the parameter t is likewise replaced
by i, by Ss(i) for Listing 3, S∀(i) for Listing 4, S∃(i) for Listing 5, SE(i) for Line 17 of
Listing 5 along with Listing 6, and SR(i) for Listing 7. Given that SE(i) includes an

2The ‘;’ symbol in Line 20 separates the (conjunctively connected) conditional literals ‘reach(X,V,t) :
prec(A1,X,V)’ and ‘ready(A2,t) : post(A1,X,V1), prec(A2,X,V2), A1 != A2, V1 != V2’.

plasp 3: Towards Effective ASP Planning 9

#edge directive subject to acyclicity checking, we understand stable models in the sense
of (Bomanson et al. 2016), i.e., the graph induced by a (regular) stable model, which is
empty in case of no #edge directives, must be acyclic.

Theorem 1
Let I be the set of facts representing a planning task 〈F ,s0,s?,O〉, 〈a1, . . . ,an〉 be a
sequence of actions, and 〈A1, . . . ,Am〉 be a sequence of sets of actions. Then,

• 〈a1, . . . ,an〉 is a sequential plan iff

I ∪B∪Q(0)∪
⋃n
i=1(Q(i)∪S(i)∪Ss(i))∪{query(n).}

has a stable model M such that {〈a,i〉 | occurs(a,i) ∈M}= {〈ai, i〉 | 1≤ i≤ n};
• 〈A1, . . . ,Am〉 is a ∀-step (resp., ∃-step or relaxed ∃-step) plan iff

I ∪B∪Q(0)∪
⋃m
i=1(Q(i)∪S(i)∪Sp(i))∪{query(m).}

with Sp(i) = S∀(i) (resp., Sp(i) ∈ {S∃(i),SE(i)} or Sp(i) = SR(i)) has a stable
model M such that {〈a,i〉 | occurs(a,i) ∈M}= {〈a,i〉 | 1≤ i≤m,a ∈Ai}.

Proof
We distinguish sequential and parallel representations of plans.

• Let
P s(n) = I ∪B∪Q(0)∪

⋃n
i=1(Q(i)∪S(i)∪Ss(i))∪{query(n).}.

(⇒) If 〈a1, . . . ,an〉 is a sequential plan, for any stable model M of P s(n) such that
{〈a,i〉 | occurs(a,i) ∈M}= {〈ai, i〉 | 1≤ i≤ n}, the rule in B (Line 1 of Listing 2)
together with the choice rule in Line 9 of Listing 2, included in S(i), and the integrity
constraints in S(i) (Lines 13 and 15 of Listing 2) make sure that

{〈x,v, i〉 | holds(x,v,i)∈M}= {〈x,v, i〉 | x∈F ,0≤ i≤ n,o(〈a1, . . . ,ai〉,s0)(x) = v}.

Hence, P s(n) cannot have any stable model apart from

M = I ∪{occurs(ai,i) | 1≤ i≤ n}
∪{holds(x,v,i) | x ∈ F ,0≤ i≤ n,o(〈a1, . . . ,ai〉,s0)(x) = v}
∪{query(n)}

such that {〈a,i〉 | occurs(a,i) ∈M} = {〈ai, i〉 | 1 ≤ i ≤ n}. As one can check, M
satisfies all rules and integrity constraints in P s(n), so that M is indeed a stable
model of P s(n).
(⇐) If M is a stable model of P s(n) such that {〈a,i〉 | occurs(a,i) ∈M}= {〈ai, i〉 |
1≤ i≤ n}, the rule in B establishes that

{〈x,v〉 | holds(x,v,0) ∈M}= {〈x,v〉 | x ∈ F ,s0(x) = v}.

For any 1≤ i≤ n, assume that

{〈x,v〉 | holds(x,v,i−1) ∈M}= {〈x,v〉 | x ∈ F ,o(〈a1, . . . ,ai−1〉,s0)(x) = v}.

Then, the integrity constraint in Line 17 of Listing 3, included in Ss(i), guarantees
that o(ai,o(〈a1, . . . ,ai−1〉,s0)) is defined. Moreover, the choice rule in Line 9 of
Listing 2 and the integrity constraints in S(i) make sure that

{〈x,v〉 | holds(x,v,i) ∈M}= {〈x,v〉 | x ∈ F ,o(〈a1, . . . ,ai〉,s0)(x) = v}.

10 Y. Dimopoulos, M. Gebser, P. Lühne, J. Romero, and T. Schaub

Finally, given the fact query(n), the integrity constraint in Q(n) (Line 5 of Listing 2)
yields that o(〈a1, . . . ,an〉,s0)(x) = s?(x) for each x ∈ s̃?, so that 〈a1, . . . ,an〉 is a
sequential plan.

• Let
P p(m) = I ∪B∪Q(0)∪

⋃m
i=1(Q(i)∪S(i)∪Sp(i))∪{query(m).}

where p ∈ {∀,∃,E,R}.
(⇒) If 〈A1, . . . ,Am〉 is a ∀-step (resp., ∃-step or relaxed ∃-step) plan, for 1≤ i≤m, let
si be the state such that si(x) = ae(x) for each a∈Ai and x∈ ãe, and si(x) = si−1(x)
for each x ∈ F \

⋃
a∈Ai

ãe. Then, for any stable model M of P p(m) such that
{〈a,i〉 | occurs(a,i) ∈M} = {〈a,i〉 | 1 ≤ i ≤ m,a ∈ Ai}, the rule in B (Line 1 of
Listing 2) together with the choice rule in Line 9 of Listing 2, included in S(i), and
the integrity constraints in S(i) (Lines 13 and 15 of Listing 2) make sure that

{〈x,v, i〉 | holds(x,v,i) ∈M}= {〈x,v, i〉 | x ∈ F ,0≤ i≤m,si(x) = v}.

In the following, we consider the different kinds of plans.
∀-step: Assume that 〈A1, . . . ,Am〉 is a ∀-step plan. Given that an atom of the form

single(x,i) is derived by the rule in S∀(i) (Line 21 of Listing 4) iff there is some
a ∈Ai such that x ∈ ãc∩ ãe and ae(x) 6= ac(x) for 1≤ i≤m, the program P∀(m)
cannot have any stable model apart from

M = I ∪{occurs(a,i) | 1≤ i≤m,a ∈Ai}
∪{holds(x,v,i) | x ∈ F ,0≤ i≤m,si(x) = v}
∪{single(x,i) | 1≤ i≤m,a ∈Ai,x ∈ ãc∩ ãe,ae(x) 6= ac(x)}
∪{query(m)}

such that {〈a,i〉 | occurs(a,i)∈M}= {〈a,i〉 | 1≤ i≤m,a∈Ai}. As for 1≤ i≤m,
o(〈a1, . . . ,ak〉,si−1) is defined for any sequence 〈a1, . . . ,ak〉 such that {a1, . . . ,ak}=
Ai, we have that M satisfies the integrity constraints in S∀(i) (Lines 17, 19, and 22
of Listing 4), and one can check that further rules and integrity constraints in
P∀(m) are satisfied as well, so that M is indeed a stable model of P∀(m).
∃-step: Assume that 〈A1, . . . ,Am〉 is an ∃-step plan. Then, for any 1≤ i≤m, there

is some sequence 〈a1, . . . ,ak〉 such that {a1, . . . ,ak} = Ai and aej(x) = acj′(x) if
x ∈ ãcj′ ∩ ãej for 1≤ j < j′ ≤ k. That is, the edges of the graph

Gi = (O,{〈a,a′〉 | a ∈Ai,a′ ∈ O\{a},x ∈ ã′c∩ ãe,ae(x) 6= a′c(x)})

can connect some aj for 1≤ j ≤ k to elements of O\{aj , . . . ,ak} only, so that Gi
is acyclic. This implies that the graph induced by

M = I ∪{occurs(a,i) | 1≤ i≤m,a ∈Ai}
∪{holds(x,v,i) | x ∈ F ,0≤ i≤m,si(x) = v}
∪{query(m)}

in view of the #edge directive in Lines 19–20 of Listing 6, which is the disjoint
union of graphs Gi for 1≤ i≤m, is acyclic as well. Moreover, the program PE(m)
cannot have any stable model apart from M such that {〈a,i〉 | occurs(a,i)∈M}=
{〈a,i〉 | 1≤ i≤m,a∈Ai}, and one can check that M satisfies all rules and integrity
constraints in PE(m), so that M is indeed a stable model of PE(m). Regarding

plasp 3: Towards Effective ASP Planning 11

P∃(m), the acyclicity of Gi yields that apply(a,i) and ready(a,i) belong to the
least fixpoint of the rules in S∃(i) (Lines 19–23 of Listing 5) for each a ∈ O and
1≤ i≤m, and thus P∃(m) cannot have any stable model apart from

M ′ = M ∪{apply(a,i) | a ∈ O,1≤ i≤m}
∪{ready(a,i) | a ∈ O,1≤ i≤m}

such that {〈a,i〉 | occurs(a,i) ∈M ′} = {〈a,i〉 | 1 ≤ i ≤ m,a ∈ Ai}. As one can
check, M ′ satisfies all rules and integrity constraints in P∃(m), so that M ′ is
indeed a stable model of P∃(m).

relaxed ∃-step: Assume that 〈A1, . . . ,Am〉 is a relaxed ∃-step plan. Then, for any
1 ≤ i ≤m, there is some sequence 〈a1, . . . ,ak〉 such that {a1, . . . ,ak} = Ai and
o(aj ,o(〈a1, . . . ,aj−1〉,si−1)) is defined for 1≤ j ≤ k, which implies that aej(x) =
acj′(x) if x ∈ ãcj′ ∩ ãej for j < j′ ≤ k. Given this, the least fixpoint of the rules
in SR(i) (Lines 17–24 of Listing 7) contains reach(x,v,i) for each x ∈ F and
v ∈ {si−1(x),si(x)}, apply(a,i) for each a ∈O such that ac(x) ∈ {si−1(x),si(x)}
for all x ∈ ãc, as well as ready(a,i) for each a ∈ O, and thus PR(m) cannot have
any stable model apart from

M = I ∪{occurs(a,i) | 1≤ i≤m,a ∈Ai}
∪{holds(x,v,i) | x ∈ F ,0≤ i≤m,si(x) = v}
∪{reach(x,v,i) | x ∈ F ,1≤ i≤m,v ∈ {si−1(x),si(x)}}
∪{apply(a,i) | a ∈ O,1≤ i≤m,ac(x) ∈ {si−1(x),si(x)} for all x ∈ ãc}
∪{ready(a,i) | a ∈ O,1≤ i≤m}
∪{query(m)}

such that {〈a,i〉 | occurs(a,i)∈M}= {〈a,i〉 | 1≤ i≤m,a∈Ai}. As one can check,
M satisfies all rules and integrity constraints in PR(m), so that M is indeed a
stable model of PR(m).

(⇐) If M is a stable model of P p(m) such that {〈a,i〉 | occurs(a,i) ∈M}= {〈a,i〉 |
1≤ i≤m,a ∈Ai}, for any 1≤ i≤m, the choice rule in Line 9 of Listing 2 makes
sure that si such that si(x) = v iff holds(x,v,i) ∈M is a state. Moreover, the rule
in B together with the integrity constraints in S(i) yield that si(x) = ae(x) for each
a ∈Ai and x ∈ ãe, which implies that Ai is confluent, and si(x) = si−1(x) for each
x ∈ F \

⋃
a∈Ai

ãe. In view of the fact query(m), the integrity constraint in Q(m)
(Line 5 of Listing 2) further asserts that sm(x) = s?(x) for each x ∈ s̃?. It remains
to show that Ai = {a1, . . . ,ak} is ∀-step (resp., ∃-step or relaxed ∃-step) serializable
in si−1 for p= ∀ (resp., p ∈ {∃,E} or p=R).
p= ∀: Let 〈a1, . . . ,ak〉 be some sequence such that {a1, . . . ,ak} = Ai. Then, the

integrity constraint in Line 17 of Listing 4 guarantees that o(aj ,si−1) is defined
for 1≤ j ≤ k, and assume that o(〈a1, . . . ,aj−1〉,si−1) is defined as well. For any
x ∈ ãcj ∩

⋃
1≤j′<j ã

e
j′ , we have that o(〈a1, . . . ,aj−1〉,si−1)(x) = si(x). If x /∈ ãej , the

integrity constraint in Line 19 of Listing 4 yields that si(x) = acj(x) = si−1(x).
Otherwise, if x ∈ ãej , the integrity constraint in Line 22 of Listing 4 implies that
single(x,i) /∈M , which means that the prerequisites in the instance
single (x,i) :- occurs (aj,i), prec(aj,x,v1), post(aj,x,v2), v1 != v2.

of the rule in Line 21 of Listing 4 cannot hold and si(x) = aej(x) = acj(x) = si−1(x)

12 Y. Dimopoulos, M. Gebser, P. Lühne, J. Romero, and T. Schaub

must be the case. This shows that o(〈a1, . . . ,aj−1〉,si−1)(x) = acj(x), so that
o(〈a1, . . . ,aj〉,si−1) and, in particular, o(〈a1, . . . ,ak〉,si−1) is defined.

p ∈ {∃,E}: For any a∈Ai, the integrity constraint in Line 17 of Listing 5 guarantees
that o(a,si−1) is defined. Regarding PE(m), the #edge directive in Lines 19–20
of Listing 6 makes sure that the graph

Gi = (O,{〈a,a′〉 | a ∈Ai,a′ ∈ O\{a},x ∈ ã′c∩ ãe,ae(x) 6= a′c(x)})

is acyclic. Hence, there is some sequence 〈a1, . . . ,ak〉 such that {a1, . . . ,ak}=Ai
and no edge connects any element of {a1, . . . ,aj−1} to aj in Gi for 1 ≤ j ≤ k.
This yields that aej′(x) = acj(x) = si−1(x) if x ∈ ãcj ∩ ãej′ for 1 ≤ j′ < j, so that
o(〈a1, . . . ,aj〉,si−1) and, in particular, o(〈a1, . . . ,ak〉,si−1) is defined. Concerning
P∃(m), the integrity constraint in Line 24 of Listing 5 implies that ready(a,i)∈M
for each a ∈ O. The rules in Lines 22 and 23 of Listing 5 further yield that
apply(a,i)∈M for each a∈Ai. Given the rule in Lines 19–20 of Listing 5, for any
1≤ j ≤ k, there must be some aj ∈Ai such that {aj′ ∈Ai | j < j′ ≤ k,x ∈ ãcj′ ∩ ãej ,
aej(x) 6= acj′(x)}= ∅. In turn, we have that aej′(x) = acj(x) = si−1(x) if x ∈ ãcj ∩ ãej′

for 1≤ j′ < j, so that o(〈a1, . . . ,aj〉,si−1) and, in particular, o(〈a1, . . . ,ak〉,si−1)
is defined.

p=R: In view of the rule in Line 17 of Listing 7, we have that reach(x,v,i) ∈M
if si−1(x) = v. The integrity constraint in Line 25 of Listing 7 further implies
that ready(a,i) ∈M for each a ∈O, and the rules in Lines 23 and 24 of Listing 7
yield that apply(a,i) ∈M for each a ∈ Ai. Given the rules in Lines 18 and
20–21 of Listing 7, for any 1 ≤ j ≤ k, there must be some aj ∈ Ai such that
{aj′ ∈ Ai | j < j′ ≤ k,x ∈ ãcj′ ∩ ãej ,aej(x) 6= acj′(x)} = ∅ and acj(x) ∈ {si−1(x)}∪
{aej′(x) | 1 ≤ j′ < j,x ∈ ãej′} for all x ∈ ãcj . Hence, for each x ∈ ãcj , we have that
acj(x) = si−1(x) and x /∈

⋃
1≤j′<j ã

e
j′ or aej′(x) = acj(x) if x ∈ ãej′ for 1≤ j′ < j, so

that o(〈a1, . . . ,aj〉,si−1) and, in particular, o(〈a1, . . . ,ak〉,si−1) is defined. �

Let us note that, with each of the considered encodings, any plan corresponds to a unique
stable model, as the latter is fully determined by atoms over occurs/2, i.e., corresponding
(successor) states as well as auxiliary predicates functionally depend on the applied
actions. Regarding the encoding part for relaxed ∃-step plans in Listing 7, we mention
that acyclicity checking cannot (in an obvious way) be used instead of rules dealing with
the safe application of actions. To see this, consider 〈F ,s0,s?,O〉 with F = {x1,x2,x3} such
that xd1 = xd2 = xd3 = {0,1}, s0 = {x1 = 0,x2 = 0,x3 = 0}, s? = {x3 = 1}, and O = {a1,a2},
where a1 = 〈∅,{x1 = 1,x2 = 1}〉 and a2 = 〈{x1 = 1,x2 = 0},{x3 = 1}〉. There is no sequential
plan for this task since only a1 is applicable in s0, but its application invalidates the
precondition of a2. Concerning the (confluent) set {a1,a2}, the graph ({(a1,1),(a2,1)},
{〈(a1,1),(a2,1)〉}) is acyclic and actually includes the information that a2 should precede
a1 in any compatible serialization. However, if the prerequisite in Line 21 of Listing 7 were
dropped to “simplify” the encompassing rule, the application of a1 would be regarded as
safe, and then the precondition of a2 would seem established as well. That is, it would be
unsound to check the noncircularity of establishment and invalidation of preconditions in
separation, no matter the respective implementation techniques.

As regards encoding techniques, common ASP-based approaches, e.g., (Lifschitz 2002),
define successor states, i.e., the predicate holds/3, in terms of actions given by atoms over

plasp 3: Towards Effective ASP Planning 13

A

2 2

4

9

16

13

8

4

2 2
3

0 2 4 6 8 10
plan length

B

so
lv

in
g

tim
e

1 3 5 7 9

Fig. 2. Exemplary solving times required by the planning algorithms A and B

occurs/2. Listing 2, however, includes a respective choice rule, which puts it inline with
SAT planning, where our intention is to avoid asymmetries between fluents and actions,
as either of them would in principle be sufficient to indicate plans (Kautz et al. 1996).
Concerning (relaxed) ∃-step plans, the encoding parts in Listings 5 and 7 make use of
the built-in well-foundedness requirement in ASP and do, unlike (Rintanen et al. 2006),
not unfold the order of actions applied in parallel. In contrast to the SAT approach to
relaxed ∃-step plans in (Wehrle and Rintanen 2007), we do not rely on a fixed (static)
order of actions, and to our knowledge, no encoding similar to the one in Listing 7 has
been proposed so far.

3 A Multishot ASP Planner

Planning encodings must be used with a strategy for fixing the plan length. For example,
the first approaches to planning in SAT and ASP follow a sequential algorithm starting
from 0 and successively incrementing the length by 1 until a plan is found.

For parallel planning in SAT, more flexible strategies were proposed in (Rintanen et al.
2006), based on the following ideas. First, minimal parallel plans do not coincide with
shortest sequential plans. Hence, it is unclear whether parallel plans should be minimal.
Second, solving times for different plan lengths follow a certain pattern, which can be
exploited. To illustrate this, consider the solving times of a typical instance in Figure 2.
For lengths 0 to 4, in gray, the instance is unsatisfiable, and time grows exponentially.
Then, the first satisfiable instances, in green, are still hard, but they become easier for
greater plan lengths. However, for even greater plan lengths, the solving time increases
again because the size becomes larger. Accordingly, (Rintanen et al. 2006) suggests not
to minimize parallel plan length, but rather make use of planning algorithms that avoid
costly unsatisfiable parts by moving early to easier satisfiable lengths.

The sequential algorithm (S) solves the instance in Figure 2 in 46 time units, viz.
2 + 2 + 4 + 9 + 16 + 13, by trying plan lengths 0 to 4 until it finds a plan at 5. The idea of
algorithm A (Rintanen et al. 2006) is to simultaneously consider n plan lengths. In our
example, fixing n to 5, A starts with lengths 0 to 4. After 2 time units, lengths 0 and 1 are
finished, and 5 and 6 are added. Another 2 units later, length 2 is finished, and 7 is started.

14 Y. Dimopoulos, M. Gebser, P. Lühne, J. Romero, and T. Schaub

Finally, after 4 more units per length from 3 to 7, length 7 yields a plan. The times spent
by A for each length are indicated in Figure 2, and summing them up amounts to 40 time
units in total. Algorithm B (Rintanen et al. 2006) distributes time nonuniformly over plan
lengths: if length n is run for t time units, then lengths n+ i are run for t∗γi units, where
i≥ 1 and γ lies between 0 and 1. In our example, we set γ to 0.8, and the amount t of time
spent on the initially shortest length 0 is thus multiplied by 0.8i for lengths i≥ 1. Note
that, in practice, only lengths whose assigned time is above some threshold are indeed
run, which restricts the plan lengths to consider simultaneously. While searching for a
plan, the shortest unfinished length n and its assigned time t successively increase, so that
t∗γi grows beyond the threshold of running for greater plan lengths n+ i. Regarding our
example with γ = 0.8, when length 3 has been run for 6 time units, previous lengths are
already finished, and the times for the following lengths are given by curve B in Figure 2.
At this point, length 8 is assigned 2 units (d6∗0.85e) and yields a plan, leading to a total
time of 38 units: 8 units for lengths 0 to 2, and 30 for the rest. (The 30 units correspond
to the area under the curve from length 3 on.) Note that both A and B find a plan before
finishing the hardest instances and, in practice, often save significant time over S.

We adopted algorithms A (yielding S when n is set to 1) and B, and implemented them
as planning strategies of plasp via multishot ASP solving. In general, they can be applied
to any incremental encoding complying with the threefold structure of base, step(t), and
check(t) subprograms. Assuming that the subprograms adhere to clingo’s modularity
condition (Gebser et al. 2014), they are assembled to ASP programs of the form

P (n) = base∪
⋃n
i=0 check(i)∪

⋃n
i=1 step(i)

where n gives the length of the unrolled encoding. The planner then looks for an integer n
such that P (n)∪{query(n).} is satisfiable, and algorithms S, A, and B provide different
strategies to approach such an integer.

The planner3 is implemented using clingo’s multishot solving capacities, where a clingo
object grounds and solves incrementally. This approach avoids extra grounding efforts
and allows for taking advantage of previously learned constraints. The planner simulates
the parallel processing of different plan lengths by interleaving sequential subtasks. To
this end, the clingo object is used to successively unroll an incremental encoding up to
integer(s) n. In order to solve a subtask for some m< n, the unrolled part P (n) is kept
intact, while query(m) is set to true instead of query(n). That is, the search component
of clingo has to establish conditions in check(m), even though the encoding is unrolled up
to n≥m. For this approach to work, we require that P (m)∪{query(m).} is satisfiable if
and only if P (n)∪{query(m).} is satisfiable for 0≤m≤ n. An easy way to guarantee this
property is to tolerate idle states in between m and n, as is the case with the encodings
given in Section 2.

While planning algorithms tackle the issue of finding a sufficient plan length, the choice
of an underlying planning encoding remains, i.e., whether to take S(i)∪Ss(i), S(i)∪S∀(i),
S(i)∪S∃(i), S(i)∪SE(i), or S(i)∪SR(i) according to the terminology used in Theorem 1
for the subprogram step(i) of P (n). On the one hand, the encoding S(i)∪SR(i) of relaxed
∃-step plans is guaranteed to become satisfiable first, where the minimal parallel plan

3https://github.com/potassco/planner

https://github.com/potassco/planner

plasp 3: Towards Effective ASP Planning 15

length may still coincide with the sequential encoding S(i)∪Ss(i) in the “worst” case of
an inherently sequential planning task. On the other hand, parallel encodings introduce
overhead for checking the existence of a compatible serialization. This particularly applies
to S∃(i), SE(i), and SR(i), aiming at (relaxed) ∃-step plans, as the conditions they
encode refer to pairs of actions whose preconditions and postconditions interfere. Such
quadratic behavior is problematic for planning tasks involving a large number of actions,
and our experiments in Section 5 indeed incorporate domains where instances yield
several thousand actions. As a consequence, it is sometimes desirable to keep the efforts of
checking whether a set of actions is serializable low. Moreover, investigations of common
benchmark domains for planning systems (Rintanen et al. 2006; Rintanen 2012) showed
that circular interference is in many cases impossible, so that some serialization will exist
for any (confluent) set of actions. This observation along with the aforementioned efficiency
considerations regarding the (ground) representation of serialization conditions motivate
us to augment the planner with guess-and-check facilities, detailed in the following.

The general idea of the guess-and-check approach (Eiter and Polleres 2006) is to encode
a problem by a pair 〈G,C〉 of programs, where a stable model M of G constitutes a
solution if C ∪M is unsatisfiable. In the context of ASP planning, the role of G is to
generate stable models providing sequences of sets of actions, and C checks whether some
serialization yields a sequential plan. For making “educated” guesses, the program G we
propose combines facts representing a planning task with the incremental encoding in
Listing 2 and the integrity constraint in Line 17, shared by Listings 3–5, for asserting the
preconditions of applied actions. As a consequence, a stable model M of G is such that
all preconditions and postconditions hold for a set of actions to be applied in parallel,
which also makes sure that the set is confluent, while (the absence of) circular interference
remains to be checked. The latter can be accomplished by taking the atoms over occurs/2
from M as facts together with a program C comprising the fact representation of a
planning task, the rules in Lines 19–23 of Listing 5, and an encoding part as follows:
#program step(t).

cycle(t) :- action (A), not ready(A,t).

#program check(t).

:- query(t), not cycle(T) : T = 1..t.

Note that instances of the rule in the step(t) subprogram yield cycle(t) if applied actions
are pending, i.e., the respective instances of ready(A,t) remain underivable, as each
such action invalidates another pending action’s precondition. In fact, an atom cycle(i)
means that the set of actions a such that ready(a,i) does not hold is not (relaxed) ∃-step
serializable in any state. Given this, the integrity constraint in check(t) requires that some
set of actions is not ∃-step serializable in view of a circular invalidation of preconditions.
Lettingm= max{i | occurs(a,i)∈M}, a stable model of C∪{occurs(a,i). | occurs(a,i)∈
M} ∪ {query(m).} thus tells us that the sequence of sets of actions from M is not
(relaxed) ∃-step serializable, while the absence of stable models indicates the existence of
a compatible serialization.

In case the program C together with facts for some sequence 〈A1, . . . ,Am〉 of actions
from a stable model M of G is satisfiable, the corresponding stable model M ′ is such that

16 Y. Dimopoulos, M. Gebser, P. Lühne, J. Romero, and T. Schaub

A′i = {a ∈Ai | ready(a,i) /∈M ′} is nonempty for at least one 1≤ i≤m. Given that each
nonempty A′i is not (relaxed) ∃-step serializable, a guess-and-check control loop could
augment G with constraints suppressing a parallel application of the actions in A′i to
eliminate M , but not any ∃-step plan, and search for another stable model instead. In fact,
we have tried several options to utilize the information from a stable (counter-)model M ′,
i.e., extending G with constraints that deny a parallel application of A′i and supersets
thereof at the ith or all positions of a sequence of actions, respectively, in order to generate
alternative sequences. However, we found that the domains used for our experiments in
Section 5 belong to two rather extreme categories: either the sequence of actions generated
first directly yields a compatible serialization, given that the available actions cannot
interfere, or a vast number of sequences that are not ∃-step serializable is successively
generated, so that denying the parallel application of particular sets of actions turns out
to be ineffective. Hence, switching from the program G given above to one of the parallel
encodings provided in Section 2, in case the sequence of sets of actions generated first is not
∃-step serializable, constitutes a better option to implement the guess-and-check approach.
In Section 5, we particularly investigate the strategy to switch to the encoding of ∀-step
plans in Listing 4, as it avoids the aforementioned issue of referring to pairs of actions to
express serialization conditions. Technically, the switch from G to the encoding of ∀-step
plans is accomplished by including Lines 19–22 of Listing 4 in a separate subprogram
instead of step(t), which is then instantiated for the same integers starting from 1 as used
for step(t) in case the first sequence of sets of actions obtained with G happens to be not
∃-step serializable. While the guess-and-check strategies discussed here aim at an efficient
problem representation by skipping serialization conditions unless they are needed, we
note that other applications, e.g., in conformant or temporal planning (Cimatti et al.
2008; Fisher 2008), may also harness the approach to perform more sophisticated checks.

Our planner is further equipped with a planning-specific heuristic, inspired by (Rintanen
2012) and devised in (Gebser et al. 2013) within a framework for domain-specific heuristics
in ASP. The general idea is to extend the search heuristic of clingo by associating each
atom with a level (0 by default) and a sign, which can be undefined (by default), true, or
false. During solving, these values get modified by the activation of #heuristic directives,
and the search heuristic of clingo then selects an atom at the highest level and sets it to
true or false according to its associated sign, switching to the default sign heuristic if that
sign is undefined. The domain-specific heuristic for planning, which aims at propagating
fluent values backwards in time, starting from those in the goal of a planning task, is
specified in terms of #heuristic directives as follows:

#program step(t).

#heuristic holds(X,V,t -1) : holds(X,V,t). [2147483647 - t, true]
#heuristic holds(X,V,t -1) : not holds(X,V,t). [2147483647 - t,false]

The first directive expresses that, whenever an instance of the atom holds(X,V,t) is
made true by clingo, holds(X,V,t-1) should be set to true at the level 2147483647-t,
where 2147483647 happens to be the maximum integer supported by clingo. Similarly, the
second directive is activated when an instance of holds(X,V,t) becomes false, in which
case holds(X,V,t-1) should be made false as well. Both directives associate atoms over
holds/3 representing earlier states, i.e., the integer taken for t is smaller, with higher

plasp 3: Towards Effective ASP Planning 17

levels, which intends to bias the search of clingo towards establishing goal conditions as
early as possible. As the experiments in Section 5 show, the use of a planning heuristic
often helps to improve plan search.

4 Translating PDDL to ASP

Like its predecessors, the third series of plasp4 furnishes a translator from PDDL specifi-
cations to ASP facts. These facts are then combined with ASP encodings, such as those
provided in Section 2, and solved by an off-the-shelf ASP system, for example, by using
the planner presented in Section 3. However, the translator integrated in plasp 3 also goes
beyond the STRIPS fragment by supporting a range of advanced features from PDDL 3.1
(IPC 2014). Such advanced features include conditional effects and logical connectives as
well as quantifiers in preconditions, postconditions, and goals.5

To begin with, plasp parses a PDDL specification into an abstract syntax tree, which
is then subject to a normalization step in order to reduce the range of expressions
handled in the actual translation to ASP facts. For instance, implications φ→ ψ are
mapped to disjunctions ¬φ∨ψ, and universal quantification ∀x1 . . .xn : φ is turned into
¬∃x1 . . .xn : ¬φ. The latter allows for eliminating universal quantifiers, as also done by
Fast Downward (Helmert 2006). As a result, input expressions are brought into a simplified
format akin to negation normal form, except that existential quantifiers may deliberately
be subject to negation.

Similar to the introduction of Tseitin variables in transforming a formula into con-
junctive normal form (Tseitin 1968), plasp further associates disjunctions and existential
quantifiers occurring in its simplified format with derived predicates, available from PDDL
2.2 on (Edelkamp and Hoffmann 2004). Derived predicates are similar to defined fluents
used in action languages ALd (Gelfond and Inclezan 2013) or C+ (Giunchiglia et al.
2004) and, unlike fluents, they are not subject to inertia, but rules for deriving them are
evaluated under well-founded semantics (Van Gelder et al. 1991) in each state. The pre-
requisites of respective rule instances reflect the elements of a disjunction or substitutions
for existentially quantified variables, respectively. As any dependency between derived
predicates introduced by plasp matches an occurrence of one expression in another, such
dependencies are inherently noncircular and yield a total well-founded model in each
state. The achievement of representing disjunctions and existential quantifiers by derived
predicates is that preconditions and goals (and likewise postconditions) can be uniformly
regarded as partial states over fluents as well as derived predicates, while dedicated
treatment of more complex expressions were needed otherwise.

In the final step of its translation, plasp outputs a normalized PDDL specification in
terms of ASP facts. This includes facts specifying fluents as well as derived predicates
along with their possible values, namely, true and false. Moreover, actions are described
by facts providing their preconditions and postconditions, where a postcondition may in
turn be subject to a condition in order to encompass conditional effects. Similar facts are
used to express the preconditions of rules for concluding the truth of derived predicates,

4https://github.com/potassco/plasp
5PDDL 3.1 further allows for numeric fluents, action costs, durative actions, preferences, and trajectory

constraints, which are not yet supported by the current version of plasp.

https://github.com/potassco/plasp

18 Y. Dimopoulos, M. Gebser, P. Lühne, J. Romero, and T. Schaub

where an argument specifies whether the elements of a precondition contribute to a
conjunction or disjunction, respectively. Notably, the falsity of a derived predicate is not
addressed explicitly by rules, but rather follows “automatically” whenever all rules for
the predicate are inapplicable. Facts giving the values of fluents in state s0 as well as the
goal conditions in s? then complete the factual representation of a planning task. The
detailed reference documentation of the fact format obtained by translation with plasp
can be found online.6

As an alternative to the direct translation of PDDL specifications, plasp supports the
intermediate SAS format (Helmert 2006), obtained by preprocessing a PDDL input with
the planning system Fast Downward (thus following the lower branch in the workflow
displayed in Figure 1). On the one hand, the SAS format constitutes a modest extension
to propositional STRIPS, so that its translation to ASP facts is rather straightforward and
does not involve any sophisticated normalization step. In fact, grounding and simplification
of PDDL specifications are delegated to Fast Downward in this workflow, which takes
care of reducing complex expressions to the core constructs comprised in SAS. On the
other hand, SAS brings about some particularities that are worth mentioning and are
thus addressed below.

Most notably, the SAS format features (proper) multivalued fluents, and Fast Downward
includes means to infer such fluents from PDDL inputs. For instance, given a blocks
world instance with n blocks and Boolean fluents such as on(1,0),on(1,2), . . . ,on(1,n) in
a PDDL specification (where 1, . . . ,n stand for blocks and 0 for the table), Fast Downward
may introduce a single multivalued fluent on(1) with the domain on(1)d = {0,2, . . . ,n}
for block 1, as well as a corresponding fluent for each other block. The introduction of
multivalued fluents may thus reduce the overall number of fluents and lead to a much more
compact propositional representation than obtained when grounding a PDDL specification
in a naive fashion. Beyond that, a multivalued fluent makes a functional dependency more
explicit than a group of Boolean fluents among which exactly one happens to be true in
each state. To see this, note that the choice rule in Line 9 of Listing 2 readily expresses
that each state maps a multivalued fluent to some value in its domain, while matching
(successor) states to applied actions were required to figure out that several Booleans
cannot hold together or be all false in a state, respectively.

In addition to multivalued fluents, the preprocessing by Fast Downward may infer
mutex groups, providing fluent values such that at most one of them can hold in a state.
Reconsidering a blocks world instance with n blocks, the values on(1) =n, . . . ,on(n−1) =n

exclude each other, and a respective mutex group makes explicit that at most one block
can be located on the block denoted by n, no matter the actions leading to a particular
state. The mutex groups inferred by Fast Downward are reported in the SAS format and
provide redundant/implied information that can nevertheless help to improve plan search,
as corresponding integrity constraints on (successor) states are easy to express in ASP
and readily included in the online versions4 of the encodings given in Section 2.

Finally, the SAS format features axiom rules as a counterpart for rules addressing
derived predicates in PDDL. Unlike the latter, however, axiom rules are grouped into
layers specifying an evaluation order, rather than relying on well-founded semantics and

6https://github.com/potassco/plasp/blob/master/doc/output-format.md

https://github.com/potassco/plasp/blob/master/doc/output-format.md

plasp 3: Towards Effective ASP Planning 19

stratification (Apt et al. 1987) for guaranteeing a unique outcome of the rules. In view of
this difference, the current fact format6 of plasp distinguishes between derived predicates
according to PDDL and axiom rules specified in SAS, while PDDL and SAS inputs lead
to a homogeneous factual representation otherwise. Given that the encodings in Section 2
focus on (multivalued) STRIPS, so that derived predicates and axiom rules are beyond
scope, we rely on the common fact format obtained with plasp to compare ASP-based
planning with or without preprocessing by Fast Downward in Section 5. However, we
envisage to overcome the representation gap between derived predicates and axiom rules
by furnishing a common fact format for both in future versions of plasp, and generalizing
(parallel) ASP encodings beyond the STRIPS fragment is a subject to future work as well.
Notably, a prototypical approach to encode axiom rules in ASP has been developed in
(Miura and Fukunaga 2017) and suggests functionalities for automatic axiom extraction.

Apart from translating PDDL or SAS inputs to ASP facts (by using the translate
command of plasp), plasp offers additional functionalities activated by respective com-
mands. These include normalize in order to inspect a normalized PDDL specification
produced by plasp in PDDL syntax instead of ASP facts. Moreover, check-syntax and
beautify allow for verifying whether a given PDDL specification is supported by plasp or
pretty-printing it with a uniform indentation to improve readability. Further commands
will be added to future versions of plasp for automated support of PDDL requirements
analysis and plan verification, among others.

Last but not least, we note that plasp is implemented in C++, pursuing a modular
design geared for both efficiency and extensibility. In particular, plasp builds on top of
a dedicated pddl library, which provides the parsing and normalization functionalities
used in its translation. Given that such functionalities are independent of the ASP target
formalism, the pddl library might be useful for third-party planner developers as well.

5 Experiments

To empirically contrast the different encodings and planning algorithms presented in
Sections 2 and 3, we ran plasp on PDDL specifications7 from the International Planning
Competition. For comparison, we also include two variants of the state-of-the-art SAT
planning system Madagascar (Rintanen 2014), where M stands for the standard version
and Mp for the use of a specific planning heuristic. The experiments were performed
sequentially on a Linux machine equipped with Intel Core i7-2600 processor at 3.8 GHz
and 16 GB RAM, limiting time and memory per run to 900 seconds and 8 GB, while
charging 900 seconds per aborted run in the tables below.

Regarding plasp, we indicate the encoding of a particular kind of plan by a superscript
to the planning algorithm (denoted by its letter), where s stands for sequential, ∀ for
∀-step, ∃ for ∃-step, E for ∃-step by means of acyclicity checking, and R for relaxed ∃-step
plans; e.g., B∀ refers to algorithm B applied to the encoding of ∀-step plans given by
Listings 2 and 4. The parameters of A and B are set to n= 16 or γ = 0.9, respectively, as
suggested in (Rintanen et al. 2006). With all three planning algorithms, i.e., S, A, and B,
we fix the increment amount for increasing the plan length to five states rather than

7https://github.com/potassco/pddl-instances

https://github.com/potassco/pddl-instances

20 Y. Dimopoulos, M. Gebser, P. Lühne, J. Romero, and T. Schaub

Table 1. Solved instances without preprocessing by Fast Downward

Table 2. Average runtimes without preprocessing by Fast Downward

allowing for a single additional state only, as this accelerated increase led to generally
better performance. For example, algorithm A with n = 16 initially runs the lengths
0,5,10, . . . ,75 simultaneously. Each of the resulting algorithm/encoding combinations can
optionally be augmented with the planning heuristic described in Section 3, which is
denoted by an additional subscript p, like in B∀p . Moreover, the superscript G stands
for the guess-and-check strategy that switches from the program G in Section 3 to the
encoding of ∀-step plans in case a sequence of sets of actions obtained with G turns out
to be not ∃-step serializable, and we below investigate the setting BGp that emerged as
the overall most successful combination of techniques for our benchmarks.

Tables 1 and 2 show the numbers of solved instances and average runtimes, for individual
domains of PDDL specifications and in total, for the two aforementioned Madagascar
variants and plasp settings that do not use preprocessing by Fast Downward. However,
for comparison we also include the two plasp configurations indicated in blue, which
are based on preprocessing by Fast Downward and obtain their ASP facts from SAS
format. First, comparing different planning algorithms, we observe that the sequential
approach of S∀ falls significantly behind the other strategies that consider several plan
lengths simultaneously. Unlike that, the gap between A∀ and B∀, where the latter serves
as our baseline for varying the planning algorithm, encoding, or heuristic, amounts to
two more solved instances only, showing that both algorithms likewise help to overcome
costly unsatisfiable parts of the plan search. Regarding different encodings, aiming at
sequential plans with Bs works well in the inherently sequential blocks (2000) domain
as well as in the elevator (2000) domain, although parallel representations manage to
reduce plan length here. In the depots (2002) and driverlog (2002) domains, however,
the performance of Bs does not match parallel representations, so that it ends up last
among the encodings run with planning algorithm B. The next better plasp setting, B∀,
improves in the latter domains by referring to ∀-step plans, while it also exhibits particular
difficulties in the elevator (2000) domain and does thus not solve more instances in total
than Bs. The encodings of (relaxed) ∃-step plans, utilized by B∃, BE , and BR, have

plasp 3: Towards Effective ASP Planning 21

Table 3. Solved instances with preprocessing by Fast Downward

Table 4. Average runtimes with preprocessing by Fast Downward

noticeable advantages and work especially well in the gripper (1998) domain, where they
prove to be more effective than the encodings of sequential and ∀-step plans. While the
different implementation techniques of B∃ and BE yield some performance variance, yet
without a clear trend in favor of either encoding, the extra efforts for enabling relaxed
∃-step plans with BR do not pay off and are particularly counterproductive in the blocks
(2000) domain, given that parallel encodings do not lead to reduced plan length here.
The planning heuristic applied by B∀p as well as BGp constitutes an orthogonal approach
to boost plan search, which turns out to be advantageous in all but the gripper (1998)
domain in which the encodings of (relaxed) ∃-step plans remain more successful. However,
as the two plasp settings in blue that are included for comparison show, the preprocessing
by Fast Downward is the by far most effective way to improve plan search, and these two
settings also come close to Madagascar, whose lead in terms of time is explained by its
streamlined yet planning-specific implementation of grounding.

In the same manner as above, Tables 3 and 4 report numbers of solved instances and
average runtimes for plasp settings that make use of preprocessing by Fast Downward,
where the B∀p and BGp configurations given in black take PDDL inputs directly and
serve for comparison. Note that the tables refer to different instances than before, as
the instances to include with or without preprocessing by Fast Downward were selected
independently such that none of the plasp settings considered in (Dimopoulos et al. 2017)
solves an instance in less than 5 seconds, while some of these configurations finds a
plan within the given resource limits.8 The first apparent observation is that the two

8The requirement that some of the plasp settings available in (Dimopoulos et al. 2017) had to finish
an instance along with high computational efforts in view of frequent timeouts are responsible for the

22 Y. Dimopoulos, M. Gebser, P. Lühne, J. Romero, and T. Schaub

comparison configurations indicated in black are outperformed by plasp settings based
on preprocessing by Fast Downward and translation from SAS format, given that the
introduced multivalued fluents make ground instantiations much more compact than with
Boolean fluents in ASP facts obtained directly from the original PDDL specifications.
The Bs configuration that aims at sequential plans is last among the plasp settings using
preprocessing by Fast Downward, as it suffers from greater plan lengths than needed with
parallel encodings in the gripper (1998), logistics (1998), depots (2002), and driverlog
(2002) domains. The next setting, BR, solves 18 instances more by referring to relaxed
∃-step plans, while it also has particular difficulties in the mystery (1998) and freecell
(2000) domains, where the large number of actions goes along with an expensive ground
representation of serialization conditions. Although the same bottleneck applies to the
B∃ and BE configurations, utilizing different encodings of ∃-step plans, they manage to
remain ahead of the sequential algorithm of S∀, which is outperformed by the other two
planning algorithms, applied by A∀ and B∀, in the gripper (1998) domain. In fact, the gap
between A∀ and B∀ is again small, and the additional incorporation of a planning heuristic
in B∀p and BGp lets these two settings solve all instances under consideration. Similarly,
the heuristic of Mp brings about a time advantage in comparison to the plain version M
of Madagascar, and the time difference between Mp and the B∀p and BGp configurations of
plasp evolves primarily from grounding.

For a broad comparison of the Madagascar version with planning heuristic, Mp, and the
best-performing plasp setting, BGp , integrating preprocessing by Fast Downward, planning
algorithm B along with our guess-and-check strategy to delay serialization conditions, and
a planning heuristic, we ran both planners on the full collection of STRIPS planning tasks
used in (Rintanen 2012). The corresponding numbers of solved instances and average
runtimes are shown in Table 5. In 15 out of the 37 domains, Mp and BGp solve the
same number of instances, Mp is ahead in 15 domains, and BGp has an advantage in 7
domains. While the performance of both planning systems generally tends to be close,
the observed differences stem from specific implementations of grounding and heuristics,
as well as the use of an encoding of ∃-step plans by Mp, where BGp switches to ∀-step
plans instead if a plan that is not ∃-step serializable is found. In fact, in the elevator
(2011) domain, we checked that the gap of 18 solved instances between Mp and BGp is due
to the (implementation of) planning heuristic, as Mp is also able to solve 16 instances
more than the Madagascar variant M without such a heuristic. Vice versa, BGp is ahead
of Mp by 32 solved instances in the blocks (2000) domain, where the planning heuristic
is likely to be responsible again, given that this domain is inherently sequential so that
plan length remains unaffected by encoding differences. Unlike that, the advantages of
Mp in the parking (2011) and tidybot (2011) domains, amounting to 19 or 14 instances
solved more than with BGp , cannot be explained by the planning heuristic alone, but
are rather related to encodings, i.e., the ∃-step plans obtained with Mp lead to reduced
plan lengths in comparison to the ∀-step plans of BGp . Let us stress again that efficiency
considerations regarding the ground representation of interfering pairs of actions lead us
to the guess-and-check strategy switching to ∀-step rather than ∃-step plans. The same
bottleneck has also been noted in (Rintanen 2012), and Madagascar features a streamlined

limited numbers of domains considered in Tables 1–4. Unlike that, Table 5 below focuses on the novel
guess-and-check strategy pursued by the BG

p configuration and covers substantially more domains.

plasp 3: Towards Effective ASP Planning 23

Table 5. Solved instances and average runtimes on the benchmark set by (Rintanen 2012)

planning-specific implementation of grounding to tame the complexity of instantiating
an encoding of ∃-step plans. While plasp cannot compete with Madagascar regarding
low-level efficiency, its high-level approach brings the advantage that first-order ASP
encodings and general grounding facilities make it easier to prototype and experiment
with different planning algorithms and encodings. Such flexibility has, e.g., been exploited
in (Miura and Fukunaga 2017) to implement axiom-enhanced planning, and in (Thielscher
2009) to solve single-player games specified in the Game Description Language (GDL;
(Love et al. 2008)) by means of ASP planning.

In addition to the above experiments on PDDL domains, we evaluated the planning
algorithms S, A, and B on ASP planning benchmarks, including the hanoi-tower, labyrinth,
no-mystery, ricochet-robots, sokoban, and visit-all domains from recent ASP competition
editions (Alviano et al. 2013; Calimeri et al. 2016; Gebser et al. 2017b). While the

24 Y. Dimopoulos, M. Gebser, P. Lühne, J. Romero, and T. Schaub

Table 6. Solved instances on ASP planning benchmarks

Table 7. Average runtimes on ASP planning benchmarks

original competition benchmarks utilize non-incremental ASP encodings along with a
given maximum plan length, we furnished incremental versions of these encodings and let
the planner, as presented in Section 3, look for a sufficient plan length. We varied the
parameters n of A and γ of B by using 1, 2, 4, 8, and 16 for n as well as 0.5, 0.75, 0.875,
0.9, and 0.9375 for γ, which are the same values as taken in (Rintanen et al. 2006). The
resulting algorithm variants are denoted by subscripts, viz. An for n ∈ {1,2,4,8,16} and
Bγ for γ ∈ {0.5,0.75,0.875,0.9,0.9375}, where A1 represents the sequential algorithm S.
The experiments on ASP planning benchmarks were performed sequentially on a Linux
machine equipped with Intel Core i7-6700 processor at 3.4 GHz and 32 GB RAM, as
before limiting time and memory per run to 900 seconds and 8 GB, while taking aborted
runs as 900 seconds within average runtimes.

The results are summarized in Tables 6 and 7, showing the numbers of solved instances
and average runtimes. The overall best-performing configuration is B0.75, but others like
B0.875, A4, and B0.5 come very close, and no setting strictly dominates over all domains.
However, it is apparent that the sequential approach of A1 or S, respectively, leads
to significantly fewer solved instances than the other algorithms that consider several
plan lengths simultaneously, which particularly applies to the labyrinth, sokoban, and
visit-all domains. Comparing the length of plans found between the best-performing
configuration, B0.75, and A1 yields that the former include about 35 states on average,
while A1 leads to slightly more than 20 states only. That is, moving on to greater plan
lengths before finishing costly unsatisfiable parts of the plan search is helpful on ASP
planning benchmarks as well, especially in order to solve instances requiring a substantial
number of states to become satisfiable. Although we do not show the detailed results
here, let us note that successively incrementing the plan length by five states at once,
rather than adding a single state only, likewise leads to better performance on inputs
obtained by translation from PDDL and direct ASP encodings of planning problems.
Given that similar solving strategies turn out to be advantageous in both cases, developing
metaencoding approaches that are applicable to incremental ASP encodings, in order to

plasp 3: Towards Effective ASP Planning 25

condense stable models in the same fashion as parallel representations do for sequential
plans, may be a promising way to further speed up multishot ASP solving in the future.

6 Conclusion

We presented the key features of the new plasp 3 system, providing a translator from
PDDL specifications to ASP facts along with a multishot ASP planner based on clingo.
While the ASP metaencodings in Section 2 focus on STRIPS-like planning tasks, plasp’s
translator component also supports a range of advanced features from PDDL 3.1 as well
as the intermediate SAS format. Moreover, its planner can be applied to any incremental
ASP encoding and thus to dynamic domains at large. As the experiments in Section 5
show, the resulting general-purpose approach comes close in performance to the state-of-
the-art SAT planning system Madagascar, where differences are mainly due to the specific
implementations of grounding and heuristics. In particular, general grounding techniques
can constitute a bottleneck on PDDL domains involving a large number of actions or
fluents, while dedicated preprocessing as provided by Fast Downward helps to make the
propositional representation of planning tasks more compact. The major benefit of the
high-level approach of plasp is that first-order ASP encodings and general grounding
means facilitate prototyping and experimenting with different planning algorithms and
encodings. As future work, we intend to generalize our ASP encodings of parallel plans
beyond the STRIPS fragment of PDDL, in order to support the advanced PDDL and SAS
features mentioned in Section 4, e.g., conditional effects and derived predicates or axiom
rules, respectively. Whether parallel representations of plans can be further adopted to
express the stable models of arbitrary incremental ASP encodings more compactly is also
an interesting open question that may be addressed in the future.

Acknowledgments. This work was partially funded by DFG grant SCHA 550/9. The
second author was supported by KWF project 28472, cms electronics GmbH, FunderMax
GmbH, Hirsch Armbänder GmbH, incubed IT GmbH, Infineon Technologies Austria AG,
Isovolta AG, Kostwein Holding GmbH, and Privatstiftung Kärntner Sparkasse. We are
grateful to the anonymous reviewers for their helpful comments.

References

Alviano, M., Calimeri, F., Charwat, G., Dao-Tran, M., Dodaro, C., Ianni, G., Kren-
nwallner, T., Kronegger, M., Oetsch, J., Pfandler, A., Pührer, J., Redl, C., Ricca,
F., Schneider, P., Schwengerer, M., Spendier, L., Wallner, J., and Xiao, G. 2013. The
fourth answer set programming competition: Preliminary report. In Proceedings of the Twelfth
International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’13),
P. Cabalar and T. Son, Eds. Lecture Notes in Artificial Intelligence, vol. 8148. Springer-Verlag,
42–53.

Apt, K., Blair, H., and Walker, A. 1987. Towards a theory of declarative knowledge. In
Foundations of Deductive Databases and Logic Programming, J. Minker, Ed. Morgan Kaufmann
Publishers, 89–148.

Baral, C. and Gelfond, M. 2000. Reasoning agents in dynamic domains. In Logic-Based
Artificial Intelligence, J. Minker, Ed. Kluwer Academic Publishers, 257–279.

Biere, A., Heule, M., van Maaren, H., and Walsh, T., Eds. 2009. Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press.

26 Y. Dimopoulos, M. Gebser, P. Lühne, J. Romero, and T. Schaub

Bomanson, J., Gebser, M., Janhunen, T., Kaufmann, B., and Schaub, T. 2016. Answer
set programming modulo acyclicity. Fundamenta Informaticae 147, 1, 63–91.

Calimeri, F., Gebser, M., Maratea, M., and Ricca, F. 2016. Design and results of the fifth
answer set programming competition. Artificial Intelligence 231, 151–181.

Cimatti, A., Pistore, M., and Traverso, P. 2008. Automated planning. See Lifschitz et al.
(2008), 841–867.

Dimopoulos, Y., Gebser, M., Lühne, P., Romero, J., and Schaub, T. 2017. plasp 3: Towards
effective ASP planning. In Proceedings of the Fourteenth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’17), M. Balduccini and T. Janhunen,
Eds. Lecture Notes in Artificial Intelligence, vol. 10377. Springer-Verlag, 286–300.

Dimopoulos, Y., Nebel, B., and Köhler, J. 1997. Encoding planning problems in nonmono-
tonic logic programs. In Proceedings of the Fourth European Conference on Planning (ECP’97),
S. Steel and R. Alami, Eds. Lecture Notes in Artificial Intelligence, vol. 1348. Springer-Verlag,
169–181.

Edelkamp, S. and Hoffmann, J. 2004. PDDL2.2: The language for the classical part of the
4th international planning competition. Tech. Rep. 195, Institute of Informatics, University of
Freiburg.

Eiter, T. and Polleres, A. 2006. Towards automated integration of guess and check programs
in answer set programming: A meta-interpreter and applications. Theory and Practice of Logic
Programming 6, 1-2, 23–60.

Fisher, M. 2008. Temporal representation and reasoning. See Lifschitz et al. (2008), 513–550.
Gebser, M., Kaminski, R., Kaufmann, B., Lindauer, M., Ostrowski, M., Romero, J.,

Schaub, T., and Thiele, S. 2017a. Potassco user guide, second ed. University of Potsdam.
Available at https://github.com/potassco/guide/releases/tag/v2.1.0.

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., and Wanko, P. 2016.
Theory solving made easy with clingo 5. In Technical Communications of the Thirty-second
International Conference on Logic Programming (ICLP’16), M. Carro, A. King, N. Saeedloei,
and M. De Vos, Eds. Open Access Series in Informatics, vol. 52. Dagstuhl Publishing, 2:1–2:15.

Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. 2014. Clingo = ASP + control:
Preliminary report. In Technical Communications of the Thirtieth International Conference on
Logic Programming (ICLP’14), M. Leuschel and T. Schrijvers, Eds. Theory and Practice of Logic
Programming 14, 4-5, online supplement. Available at https://arxiv.org/abs/1405.3694v1.

Gebser, M., Kaminski, R., Knecht, M., and Schaub, T. 2011a. plasp: A prototype for
PDDL-based planning in ASP. In Proceedings of the Eleventh International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR’11), J. Delgrande and W. Faber,
Eds. Lecture Notes in Artificial Intelligence, vol. 6645. Springer-Verlag, 358–363.

Gebser, M., Kaufmann, B., Otero, R., Romero, J., Schaub, T., and Wanko, P. 2013.
Domain-specific heuristics in answer set programming. In Proceedings of the Twenty-Seventh
National Conference on Artificial Intelligence (AAAI’13), M. desJardins and M. Littman, Eds.
AAAI Press, 350–356.

Gebser, M., Maratea, M., and Ricca, F. 2017b. The sixth answer set programming
competition. Journal of Artificial Intelligence Research 60, 41–95.

Gebser, M., Sabuncu, O., and Schaub, T. 2011b. An incremental answer set programming
based system for finite model computation. AI Communications 24, 2, 195–212.

Gelfond, M. and Inclezan, D. 2013. Some properties of system descriptions of ALd. Journal
of Applied Non-Classical Logics 23, 1-2, 259–285.

Gelfond, M. and Lifschitz, V. 1998. Action languages. Electronic Transactions on Artificial
Intelligence 3, 6, 193–210.

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., and Turner, H. 2004. Nonmonotonic
causal theories. Artificial Intelligence 153, 1-2, 49–104.

https://github.com/potassco/guide/releases/tag/v2.1.0
https://arxiv.org/abs/1405.3694v1

plasp 3: Towards Effective ASP Planning 27

Helmert, M. 2006. The fast downward planning system. Journal of Artificial Intelligence
Research 26, 191–246.

IPC. 2014. Homepage of the eighth international planning competition. https://helios.hud.
ac.uk/scommv/IPC-14/.

Kautz, H., McAllester, D., and Selman, B. 1996. Encoding plans in propositional logic. In
Proceedings of the Fifth International Conference on Principles of Knowledge Representation
and Reasoning (KR’96), L. Aiello, J. Doyle, and S. Shapiro, Eds. Morgan Kaufmann Publishers,
374–384.

Lifschitz, V. 2002. Answer set programming and plan generation. Artificial Intelligence 138, 1-2,
39–54.

Lifschitz, V., van Harmelen, F., and Porter, B., Eds. 2008. Handbook of Knowledge
Representation. Elsevier Science.

Love, N., Hinrichs, T., Haley, D., Schkufza, E., and Genesereth, M. 2008. General game
playing: Game description language specification. Tech. Rep. LG-2006-01, Stanford University.

McDermott, D. 1998. PDDL — the planning domain definition language. Tech. Rep. CVC
TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control.

Miura, S. and Fukunaga, A. 2017. Automatic extraction of axioms for planning. In Proceed-
ings of the Twenty-seventh International Conference on Automated Planning and Scheduling
(ICAPS’17), L. Barbulescu, J. Frank, Mausam, and S. Smith, Eds. AAAI Press, 218–227.

Rintanen, J. 2012. Planning as satisfiability: Heuristics. Artificial Intelligence 193, 45–86.
Rintanen, J. 2014. Madagascar: Scalable planning with SAT. In Proceedings of the Eighth

International Planning Competition (IPC’14), M. Vallati, L. Chrpa, and T. McCluskey, Eds.
University of Huddersfield, 66–70.

Rintanen, J., Heljanko, K., and Niemelä, I. 2006. Planning as satisfiability: Parallel plans
and algorithms for plan search. Artificial Intelligence 170, 12-13, 1031–1080.

Son, T., Baral, C., Nam, T., and McIlraith, S. 2006. Domain-dependent knowledge in
answer set planning. ACM Transactions on Computational Logic 7, 4, 613–657.

Thielscher, M. 2009. Answer set programming for single-player games in general game playing.
In Proceedings of the Twenty-fifth International Conference on Logic Programming (ICLP’09),
P. Hill and D. Warren, Eds. Lecture Notes in Computer Science, vol. 5649. Springer-Verlag,
327–341.

Tseitin, G. 1968. On the complexity of derivation in the propositional calculus. Zapiski
Nauchnykh Seminarov LOMI 8, 234–259.

Van Gelder, A., Ross, K., and Schlipf, J. 1991. The well-founded semantics for general
logic programs. Journal of the ACM 38, 3, 620–650.

Wehrle, M. and Rintanen, J. 2007. Planning as satisfiability with relaxed ∃-step plans. In
Proceedings of the Twentieth Australian Joint Conference on Artificial Intelligence (AI’07),
M. Orgun and J. Thornton, Eds. Lecture Notes in Computer Science, vol. 4830. Springer-Verlag,
244–253.

https://helios.hud.ac.uk/scommv/IPC-14/
https://helios.hud.ac.uk/scommv/IPC-14/

	1 Introduction
	2 ASP Encodings for Planning
	3 A Multishot ASP Planner
	4 Translating PDDL to ASP
	5 Experiments
	6 Conclusion
	References

