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Abstract

Characterizing hybrid ASP solving in a generic way is dif-
ficult since one needs to abstract from specific theories. In-
spired by lazy SMT solving, this is usually addressed by treat-
ing theory atoms as opaque. Unlike this, we propose a slightly
more transparent approach that includes an abstract notion
of a term. Rather than imposing a syntax on terms, we keep
them abstract by stipulating only some basic properties. With
this, we further develop a semantic framework for hybrid ASP
solving and provide aggregate functions for theory variables
that adhere to different semantic principles, show that they
generalize existing aggregate semantics in ASP and how we
can rely on off-the-shelf hybrid solvers for implementation.

Introduction

Many real-world applications have a heterogeneous nature
that can only be captured by different types of constraints.
This is commonly addressed by hybrid solving technology,
most successfully in the area of Satisfiability modulo Theo-
ries (SMT; Nieuwenhuis, Oliveras, and Tinelli2006). Mean-
while, neighboring areas like Answer Set Programming
(ASP; [Lifschitz|2008) follow suit. In doing so, they usually
adopt the lazy approach to SMT that abstracts from specific
constraints by interpreting them as opaque atoms. This inte-
gration is however often done in system-oriented ways that
leave semantic aspects behind.

We first addressed this issue in (Cabalar et al. 2016)
by providing a uniform semantic framework that allows
us to capture the integration of ASP with foreign the-
ories. This blends the non-monotonic aspects of ASP
with other formalisms in a homogeneous representational
framework. Moreover, it retains the representational as-
pects of ASP such as expressing defaults and an easy for-
mulation of reachability, and transfers them to the inte-
grated theory. In (Cabalar et al. 2020), we extended this
to conditional aggregates, which already incurred a frac-
tion of the aforementioned opaqueness principle. To illus-
trate this, consider the following hybrid ASP rule, taken
from (Cabalar et al. 2020ﬂ

total(R) := sum{ taz(P) : lives(P,R) } « region(R)

"We put dots on top of braces, viz. “{ e }”, to indicate multi-
sets.

This rule gathers the total tax revenue of each region R by
summing up the tax liabilities of the region’s residents, P.

The need for subatomic structures emerges from the ob-
servation that the meaning of this rule should remain un-
changed, in case the computation of the revenue is expressed
using, for instance, a linear expression instead of the sum
aggregate. However, this slight syntactic difference leads to
a distinct constraint atom, whose semantics can be radically
different. Only by inspecting the subatomic structure of both
atoms, we can guarantee the expected behavior.

In this paper, we build an account of such abstract
subatomic structures, namely constraint terms, and lever-
age them to provide a uniform treatment of linear con-
straints, conditional expressions, aggregates and similar fu-
ture hybrid constructs. Furthermore, we investigate two dif-
ferent principles for conditional expressions: the vicious
circle principle (vc) and a new one we call definedness
(df). While vc has been investigated in traditional ASP
in (Gelfond and Zhang 2019), this new principle ensures
that the value of any conditional expression is always de-
fined. This is different from vc according to which con-
ditional expressions may be undefined due to cyclic de-
pendencies (Cabalar et al. 2018)). Interestingly, when com-
bined with aggregates, the df principle leads to a generaliza-
tion of another semantics known from ASP (Ferraris 2011)),
which provides the semantic underpinnings of aggregates
used in the ASP system clingo (Gebser et al. 2019). Hence,
for characterizing hybrid variants of clingo, this frame-
work is a prime candidate. Moreover, we are able to show
how, under certain circumstances, arithmetic aggregates (un-
der both principles) can be mapped into conditional lin-
ear constraints under vc. Combined with our previous re-
sults (Cabalar et al. 2016; |Cabalar et al. 2020), this allows
us to use off-the-shelf constraint ASP (CASP; Lierler2014)
solvers to implement such hybrid extensions.

Here-and-There with Conditional Constraints

The syntax of the logic HT¢ is based on a set of (constraint)
variables X’ and constants or domain values from some non-
empty set D. For convenience, we also distinguish a special
symbol u ¢ X U D that stands for undefined.

We introduce next what we call basic constraint terms,
atoms and formulas and then extend these three concepts
to incorporate conditional expressions. We define the set of
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elementary terms T¢ < X UD U {u}, that is, variables,
domain values and the symbol u. Each theory will be de-
fined over a given set of basic (constraint) terms, denoted
as T, that will include, at least, all elementary terms, i.e.,
T C T". The syntax of a basic term is left open, but can be
any expression of infinite length. A basic (constraint) atom
is an expression containing a (possibly infinitel) number of
basic terms. For each theory, we assume a particular set of
basic constraint atoms, denoted as C’. We do not impose
any limitation on their syntax, though, in most cases, that
syntax is defined by some grammar or regular pattern. For
instance, difference constraint atoms are expressions of the
form “z — y < d”, containing the elementary terms z, y, d
where z,y € X are variables and d € D a domain value.
Note that we are free to define the subexpression “x — y” as
a basic term or not, at our convenience. This does not affects
the definition of “z — y < d” as a basic atom. The impor-
tance of distinguishing terms is thus not syntactic, but meta-
logical: Distinguishing terms allows us to guarantee some
properties that may not be satisfied on unstructured atoms.
A basic formula o over C? is defined as

pu=1|cloAp|pVe|o—¢ wherece(C’

We define T as L — L and —p as ¢ — L for every for-
mula . We sometimes write ¢ < 1 instead of ¥ — ¢ to
follow logic programming conventions.

We now extend these notions to incorporate conditional
constructs. A conditional term is an expression of the form

(s]s":¢0)

where s and s’ are basic terms and ¢ is a basic formula.
The intuitive reading of a conditional term is “get the value
of s if ¢ holds, or the value of s’ if it does not”” Now, a
(constraint) term is either a basic term, a conditional term
or some (possibly infinite) expression involving basic and
conditional terms. As before, a (constraint) atom is an ex-
pression involving a (possibly infinite) number of constraint
terms. We denote the set of all constraint terms and atoms
by T and C, respectively.

A formula ¢ over C is defined as a basic formula above
but with ¢ € C being an arbitrary constraint atom rather than
a basic one. Given a constraint term, atom or formula o, we
denote the set of variables occurring in « by vars(a) C X.

For the semantics, we start by defining the extended do-
main as Dy, ¥ D U {u}. A valuation v over X, D is a func-
tion v : X — D,, where v(x) = u represents that variable x
is left undefined. Moreover, if X C X is a set of variables,
valuation v|x : X — D, stands for the projection of v on X.
A valuation v can be alternatively represented as the set
{(z,v(x)) | z € X,v(x) € D} by what no pair (z,u) is in
the set. This representation allows us to use standard set in-
clusion for comparison. We thus write v C v’ to mean that

{(z,v(x)) |z € X,v(z) € D}
CA{(z,v' () | x € X, (z) € D}
2An atom may have an infinite number of terms of infinite

length. This cannot be represented as a string, but is still a expres-
sion similar, for instance, to some formula in infinitary logics.

The set of all valuations over X', D is denoted by Vx p and
X, D dropped whenever clear from context.

We define the semantics of basic constraint atoms via de-
notations, which are functions [-] : C* — 2V, mapping
each basic constraint atom to a set of valuations. For in-
stance, each difference constraint like + — y < d can be
captured by a constraint atom “z — y < d” whose denota-
tion [ “x — y < d”] is given by the expected set:

{veVi]v() vy),deZ v(r) —v(y) <dt (1)

Satisfaction of constraint atoms involving conditional
terms is defined by a previous syntactic unfolding of their
conditional terms, using some interpretation to decide the
truth values of formulas in conditions. Formally, an inter-
pretation over X, D is a pair (h,t) of valuations over X', D
such that h C ¢. The interpretation is fotal if h = t. With
this, we define next two valuation functions for conditional
terms, one following the vicious cycle principle (vc) and an-
other ensuring the definedness of conditional terms (df).

Definition 1 Given an interpretation (h,t) and a condi-
tional term s = (s'|s": @), we define:

s' i (ht) Fe

vy (s) =9 8" if{Lt) FEe 2)
u otherwise
" if(h,t

df(h,t) (s) = { j// ggthezwie(p 3)

Note that the valuation functions rely on the satisfaction re-
lation = defined below.

To illustrate the different behavior of vc and df, take the
following simple example

x=1+« (1j0:2=1)>0 “)

stating that = must have value 1 when the conditional expres-
sion (1/0: z = 1) > 0 holds. We see below that this rule has
no stable model under vc-semantics while it has a unique
one with ¢(z) = 1 under df-semantics. We face here a com-
pletely analogous situation to the following standard (non-
hybrid) ASP rule with an aggregate:

holds (1) «+ count{l : holdsx(l)} >0 5)

where predicate atom holds,, (1) is playing the role of x = 1
in @). Rule (3) has the unique stable model {holds,(1)}
under [Ferraris’ semantics for aggregates, which does not
comply with ve, whereas it has no stable modell un-
der|Gelfond and Zhang's semantics, which satisfies vc.

Observation 1 Given some total interpretation (t,t) and
any conditional term s, we have v, 1 (s) = df (; 4 (s)-

Hence, for total interpretations, we may just write evals(s)
instead of vey 1) (s) and df (; 4y (s). In our running example,
if (t,t) is a total interpretation such that (t,¢) = (x = 1),
then eval;(1|0:z = 1) is 1. This means that to evaluate
whether (¢, t) satisfies @) wrt any of the two semantics, we

3 [Gelfond and Zhang[s semantics is defined exclusively for set
based aggregates, but lifting it to multi-sets is straightforward.



replace the conditional expression by the domain element 1
and, thus, evaluate whether (¢, t) satisfies the basic formula

=1+ 1>0 (6)

which obviously holds since we assumed (¢, t) = (z = 1).
For non-total interpretations, the valuation is slightly more
involved, so we will resume our example after introducing
the definition of the satisfaction relation.

We permit that different occurrences of conditional ex-
pressions are interpreted according to different valuation
functions (vc or df). This can be simply achieved by some
syntactic distinction like, for instance, enclosing the expres-
sion with (-) for vc and with [-] for df. This allows us assign-
ing different interpretations to different occurrences of the
same expression, e.g., in the formula

z=1++ 10z=1)>0V =[1|0:2=1]>0 (7)

In order to abstract from the particular syntax used, we
just assume that there exists some selection function s
that tells us, for each occurrence of a conditional term
s, which evaluation function must be used, that is, either
K(h,t)(8) = V€1 (8) OF K,ey () = df 4y (5)-

For a constraint atom c € C, we define rj, 4 (c) as the
basic constraint atom that results from replacing each condi-
tional term s in ¢ by the basic term rj, 4 (s).

Definition 2 Given a denotation [-], a selection func-
tion k, an interpretation (h,t) satisfies a formula o, written

(h,t) Ew o if

hot) Fw cif w € [Kw,(c) ] for w € {h,t}

hit) Ex e NP If(h,t) Ew pand (h,t) i ¥

hot) Fw @V if (b, t) = @ or (hyt) f=x ¢

hot) Fw = ¢ if (w,t) o @ or (w,t) [=x @

forw € {h,t}

We say that (h,t) is a k-model of ¢ when (h,t) =, . In
particular, vc- and df-models are those corresponding to
evaluating all conditional terms according to vc or df, re-
spectively. Furthermore, we may just write (h,t) = ¢ when
( is a basic formula or when (h, t) is total, because the val-
uation function becomes irrelevant in those cases. Note that
this satisfaction relation without subindex is the one used in
Definition [T] for the valuation function. In the rest of the pa-
per, we assume a fixed underlying denotation for constraint
atoms. If not explicitly stated otherwise, we also assume a
fixed underlying selection function.

It is worth noting that Definition [P differs
from (Cabalar et al. 2020) in Condition which in
our setting corresponds to:

. (h,t) Foe cif h € [vep(c)]

That is, satisfaction of an atom was only checked on the
here world h and the selection function was fixed to vc. In
fact, the satisfaction relation was not parameterized with &,
since the unique valuation function used was vc. The fol-
lowing resul states that our semantics parameterized with
the vc mapping actually corresponds to the semantics we in-
troduced in (Cabalar et al. 2020).

1
2. ¢
3. ¢
4.

)

*An extended version of the paper including all proofs can be
found here: https://arxiv.org/abs/2003.04176

Proposition 1 Let ¢ be a formula and (h,t) be some inter-
pretation. Then, (h,t) =y @ iff (h,t) is a model of ¢ ac-
cording to (Cabalar et al. 2020).

To illustrate satisfaction of formulas under wvc, take
again @) and suppose we have some (h, t) where h(x) = u
and ¢(x) = 1. Then, (¢,t) satisfies = 1 and, as we saw
above, this implies that (¢,¢) satisfies (). On the other
hand, we also can see that (h,t) does not satisfy = 1 and,
by definition, we get: (h,t) =y (1|0:2 = 1) > 0 iff both
(h,t) =u>0and (t,t) =1 > 0. In fact, in view of Propo-
sition[T] it is enough to check whether (h, t) satisfies u > 0.
That is, (h,t) = @ iff (h,t) satisfies the formula

z=1 « (u>0) ®)

which holds because (h,t) = (u > 0).

A theory is a set of formulas. An interpretation (h,t)
is a k-model of some theory T', written (h,t) =, T, when
(h,t) Ex p for every p € T. A formula ¢ is a tautology
(wrt some underlying denotation and selection function)
when (h,t) =, o for every interpretation (h,t). Note that,
this implies that a basic constraint atom ¢ € C is tautolo-
gous whenever [c] = V.

Definition 3 A (fotal) interpretation (t,t) is a k-equilibrium
model of a theory T, if (t,t) =, T and there isno h C t such
that (h,t) . T.

Valuation ¢ is also called a k-stable model of a set of for-
mulas I’ when (¢, t) is an k-equilibrium model of I". For the
case of vc-stable we get the next result.

Corollary 1 The vc-stable models of any theory coincide
with its stable models according to (Cabalar et al. 2020).

Following with our example above, it is easy to see that
the interpretation we had, (h, t) with ¢(z) = 1 and h(z) = u,
is not a vc-stable model of @) because (h,t) =, @). If we
consider, instead, the df-semantics, we will see that ¢ is in
fact a df-stable model of (4). This is because no h’ C ¢
forms a model (h',t). We will prove it for A’ = h where
h(z) = u and the proof for other interpretations is similar.
First, note that for the df-semantics, Condition [1| of Defini-
tion [2] always uses the evaluation in both worlds A and ¢. It
does not suffice with using h, as happened with vc (Propo-
sition [T)). Hence, to satisfy (h,t) =4 (1]0:2 = 1) > 0 we
need both (h,t) =0>0 and (¢,t) =1 > 0. As a result,
(h,ty =45 @) iff (h,t) satisfies the formula

z=1 + (0>0)A-~(1>0) )

which does not hold. Just note that the right hand side is
a tautology and that (h,t) does not satisfy x = 1 because
h(z) = u. Hence, t is a df -stable model of @). The follow-
ing result generalizes this double negation formalization.

Proposition 2 Let (h,t) be an interpretation and ¢ € C be
a constraint atom.

Then, (h,t) =w ciff (h,t) = K (c) A ——evaly(c).

The reason why we need to check both worlds for the
df -semantics is to keep the persistence property of HT as
stated in the following result.
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Proposition 3 (Persistence) Let (h,t) and (t,t) be two in-
terpretations, and  be a formula.
Then, (h,t) =« p implies (t,t) =, ©.

The need for the additional evaluation in ¢ comes from the
fact that, under df valuation, some constraint atoms ¢ may
satisfy h € [ df 5, (c) | butt & [ df (5, 4y(c) ], and so, if we
only used h, persistence would be violated. To illustrate this
feature, take the conditional constraint atom

(1]2:2=1) > 2 (10)

and, again, interpretation (h, t) with h(z) = uand t(z) = 1.
Then, we obtain

df(h,t)(1|2:x = 1) 2
evaly(112:2=1) = 1

because (h,t) = (x = 1) and (¢,t) = (x = 1). But then
t ¢ [evaliy(1|2:2=1) > 2]

The following proposition tells us that some other usual
properties of HT are still valid in this new extension.
Let us introduce some notation first. Given any HT for-
mula ¢, let p[a/a] denote the uniform replacement of atoms
a=(a1,...,ay) in by HT¢ formulas@ = (a1, ..., ).

Proposition 4 Let (h,t) and (t,t) be two interpretations,
and o be a formula. Then,

1 (ht) =r o — Liff ({4, 1) o @,
2. If pis an HT tautology then p[a /@] is an HT o tautology.

As an example of Property [2lin Proposition 4l we can con-
clude, for instance, that

(= (yl3:p) <4) = —=(z — (y[3:p) < 4)

is an HT tautology because we can replace a in the HT
tautology a — ——a by the HT¢ formula (z — (y|3: p) < 4).
In particular, the second statement guarantees that all equiv-
alent rewritings in HT are also applicable to HT¢.

Terms and assignments

As said before, the use of terms as subexpressions will be
convenient to derive structural properties of constraint atoms.
We will sometimes refer to a constraint atom using the nota-
tion c¢[s] meaning that the expression for ¢ contains some dis-
tinguished occurrence of subexpression s. We further write
c[s/s'] to represent the syntactic replacement in ¢ of subex-
pression s by s’. Then, we assume the following syntactic
properties:

1. if s € T is a term, then there are constraint atoms in C
of the form s =s and s =d for every domain ele-
mentd € D,

2.if s€ T is a term, c[s] € C is a constraint atom and
s’ € T, then c[s/s'] € C is also a constraint atom,

3. if 5,8’ € T are terms such that s’ is a subexpression of s
and c[s] € C is a constraint atom, then c[s/s'] € C.

Intuitively, Condition[T] states that we always define, at least,
equality constraint atoms that allow comparing a term s to
any domain element or to itself.

Atom s = s is not a tautology: it is satisfied iff s has some
value. For this reason, we will sometimes abbreviate s = s
as def (s) meaning that s is defined. Conditions[2and 3] state
that replacement of terms must lead to syntactically valid
expressions. Contrarily to first order logic, we only require
that terms can be replaced by some particular class of terms
rather than all possible terms. In particular, Condition 2] im-
plies that replacing any term by an elementary term must
lead to syntactically valid expressions. Condition[3is similar
but for every term that is also a subexpression. For instance,
ifr—yand x—y+zareterms and x —y+ 2 <4 is a
constraint atom, then we must allow for forming constraint
atoms x <4 and x —y <4 and u+ z < 4 among others.
Note that, since z — y + 2 is not a subexpression of x — y,
we do notrequire x — y + 2 + 2 < 4 to be a constraint atom.

These intuitions are further formalized by imposing the
following semantic properties for any denotation [ -], ba-
sic atom ¢ € C?, basic term s € 7, domain element d € D,
variable € X, and any pair of valuations v, v’ € V:

5. ifv(z) = v'(x) for all z € vars(c) then
v e [e]iffv’ €[e].

v € [c]andv C v imply v' € [c],

v € [c[s/u]] implies v € [ c[s]]

. Jda=d] =V,

Jre=d]l={veV|v(zx)=d}

10. [s=d]N[s=d]=0foranyd € D withd # d’

11. if v € [s = §'] for any term s’ € T, then there is some
d € Dsuchthatv € [s=d'Jandv € [¢ =d']

12. ifv e [s=d], thenv € [c[s]] iff v € [ ¢[s/d]],
13. ifv ¢ [s=s]andv € [¢[s]], thenv € [¢[s/u]].

Condition[3] asserts that the denotation of c is fixed by com-
binations of values for vars(c), while other variables may
vary freely, consequently becoming irrelevant. Condition [6]
makes constraint atoms behave monotonically. Condition [7]
is the counterpart of Condition[6]for terms. Intuitively, it says
that, if a constraint does not hold for some term, then it can-
not hold when that term is left undefined. For instance, if we
include a constraint atom = — (y|z:p) < 4, then we must
allow for forming the three constraint atoms x — y < 4 and
x— 2z < 4and x — u < 4, too, and any valuation for the
latter must also be a valuation for the former two. Condi-
tions describe the behavior of equality atoms. Condi-
tions [12] and [13| respectively tell us that, given some valua-
tion v, a term s can always be replaced by its defined value
v(s) = d or by w, if it has no value. Reflexivity and symme-
try of ‘=" can be derived from Conditions as stated
below.

© o N o

Proposition 5 Given terms s, s’ and s, the following con-
ditions hold:

1 ifve[s=s]andve[s =s"] thenv e [s=s"].
2. ifves=¢], thenve[s =s], and



3. [u=s]=[s=u]=[u=u] =0

5

Condition 3] implies that ‘=" is not reflexive. Also, when
v(z) = u, atom x = z is false, i.e., v ¢ [ = z]. The fol-
lowing interesting properties for def (s) can also be derived.

Observation 2 The following conditions hold:

[ def(s)] = Ugepl s = d] for every term s € T,
. [def(d)] =V for every domain element d € D,
. [def(z)] ={veV|v(x)#u}foreveryz € X,
. [def(w)] = 0.
These conditions together imply that constraint terms be-

have similar to first order terms. That is, we can define a
recursive function for valuation of terms and subterms:

AN W N~

Definition 4 (Term valuation) Given a valuation v € V),
an interpretation (h,t) and a term s €T, we define
U?h K T — Dxy as the following function:

v (S) def d ifve [[“(h,t}(s) =d] withd € D,
o "~ lu otherwise

where K, +(s) denotes the basic term that results from re-
placing each conditional term s' in s by kp, 4y (s).

For a constraint atom ¢ € C, we denote by vf;, ,, (c) the con-
straint atom obtained by replacing each occurrence of term s
in ¢ by vfj, ,y(s) € Dy. Note that vfj, ,,(c) for constraint
atom c¢ becomes a syntactic transformation. For example,
take as c the following constraint atom:

(110:2=1)—y > 0

which is a slight elaboration of the atom in the body of ().
Suppose that we define s = (1|0: x = 1) as a term (remem-
ber z, y, 1 and 2 are also elementary terms). Assume also
that « applied to s in this case selects df and take the inter-
pretation (h,t) where h(z) = u, ¢(x) = 1 as in previous
examples, adding now h(y) = t(y) = 1. Then, using df, the
conditional term is replaced by 0 in & and by 1 in ¢. There-
fore vfj, ;v (s) = 0 and v7; , (s) = 1. Given that the value of

y is fixed to 1, we get the basic atoms vfj, () =0—-1>0
and vfj, v (c) =1-1=0.

Proposition 6 Given a valuation v, an interpretation (h,t),
a selection function k, and an atom c, the following two con-
ditions are equivalent:

L ve[rpyc)]
2. ve o n(0)]
In other words, we can safely use the term valuation vfh n
to replace every term for its value in the valuation v wrt the
interpreation (h, t). Note that, in practice, we chose v to be

either h or t. When s is a basic term or (h,t) is total, the
value returned by V) (s) does not depend on «, h or ¢. For

this reason, we just write v(s) in those cases.

Finally, we can establish some relation between the vc-
and df-semantics based on how they evaluate constraint
terms.

Proposition 7 Any term s and interpretation (h,t) satisfy

that hiy; (s) # uimplies Wity (s) = h?£7t>(s) = t(s).

In other words, if the vc-semantics assigns some value to
term s in h, this value is also preserved in ¢t. Moreover, when
this is the case the vc- and df-semantics coincide. On the
other hand, this preservation property is not satisfied by the
df -semantics, as we discussed in the example with the con-
ditional atom in (10).

As mentioned in the introduction, the main motivation
to introduce constraint terms is to permit a uniform treat-
ment of different constructs. This is especially relevant for
assignments (Cabalar et al. 2016). Intuitively, an assighment
of the form x := s is a directional construct meaning that
variable z takes the value of term s.

Definition 5 (Assignment) Given a variable x € X and
a term s € T an assignment is an expression of the
form x := s and stands for the formula

r =35 <+ def(s) (11

Recall that, in (Cabalar et al. 2016)), assignments were con-
structs where s could only be a linear expression. The in-
troduction of terms allows us to generalize the use of as-
signments to arbitrary terms which, as we can see in fol-
lowing sections, includes both linear expressions and aggre-
gates. The following result provides further intuition relating
assignments with grounding in ASP.

Theorem 1 Consider a formula of the form
Ti=8 +— 12)

where x € X is a variable, s € T a constraint term and ¢ a
(sub)formula. Let T collect the set of formulas:

r=d ¢+ pAs=d (13)

for every element d € D in the domain. Then, T' and (12)
have the same k-models.

In other words, an assignment on the consequent of an impli-
cation stands for (the possibly infinite grounding of) the first
order formulaVY (z =Y < ¢ A s =Y). Of course, the ad-
vantage of assignments consists in the possibility of delegat-
ing their evaluation to specialized constraint solvers. For this,
such solvers only need to be able to deal with equality con-
straints. This also implies that grounding is not necessary.
Note that, if D is infinite, then sois I'.

Aggregates as constraint atoms

Aggregates are expressions that represent a function that
groups together a collection of expressions and produces a
single value as output. For instance, the expression

sum{ taz(P) : lives(P,R) } (14)

shown in the introduction sums the tax revenue of all
persons P that live in some region R. In this section,
we restrict ourselves to ground atoms, that is, atoms that
may contain constraint variables but no logical variables
like P and R. We assume that aggregate atoms with log-
ical variables are a shorthand for their (possibly infinite)



ground instantiation. For instance, (I4) is a shorthand for

the infinite expression of the form sum{ay, as, ...} where
each ay, ag, . .. is a sequence containing a conditional term
of the form tax(p) : lives(p,r) for each pair of domain
elements p and 7. Intuitively, the variable lives(p,r) is
true when the person p lives in the region r and the vari-
able tazx(p) is assigned the tax revenue of person p. If p is
not a person, tax(p) is undefined, that is, its assigned value
is u. As a simpler example, we have the following expres-
sion

sum{lzp, 1:q,2:7’}22 (15)

which holds if either r holds (regardless of the other vari-
ables) or both p and ¢ hold, otherwise. More generally, we
allow applying aggregates not only to numerical constants,
but also to expressions involving constraint variables. For in-
stance,

sum{x:p,y+z:q}22 (16)
holds whenever any of the following conditions hold:
e x > 2 and only p holds,
e y + z > 2 and only ¢ holds, or
e x4+ y+ 2z > 2 and both p and ¢ hold.

We also allow aggregate operations that rely on the order of
the elements in the collection. For instance, the aggregate

O<“En”, “un”, “lugaI”, “de” , “la”, “Mancha”> = (17)

expresses that x is the string resulting from concatenating
all strings occurring between the brackets. That is, it is only
satisfied when the value assigned to x is the string “En un
lugar de la Mancha”.

Formally, an aggregate term is an expression of the form

op(s1,82,...) (18)

where op is an operation symbol and each s; € T is a term.
We say that a term is aggregate-free if it contains no aggre-
gate terms and, in the following, we assume that each s;
in (I8) is aggregate-free. A basic aggregate term is an ex-
pression of the form of (I8) where each s; is a basic term.
We reserve the notation { ...} for aggregates whose opera-
tion is multi-set based, like sum, and use (... ) in general.

An infinite sequence 6 of domain elements (dy,ds,...)
can be defined as a mapping 6 : (NT — D) so that §(z) = d;
forall « > 0. Notice that # may contain repeated occurrences
of the same domain value. We sometimes denote a finite pre-
fix§ = (df,...,d,_;) of length n > 0 and use the concate-
nation 6’ - 6 to yield an infinite sequence defined as expected
< 67"'7 %717d05d17"'>'

Given each aggregate term like (I8), we assume there ex-
ists an associated fixed operation dp : (N* — D) — D, as-
signing a domain value d € D (or u) to any infinite sequence
of domain values. As an example, in the case of the sum
aggregate we get sum(dy,dz,...) = ;5 d; as expected.
Depending on the domain and the operator, we may some-
times obtain u as a result. For instance, if D are the natural
numbers and we sum an infinite sequence of 1’s, the result of

sum(1,1,1,...) is not a natural number and the sum would
be undefined u. We say that some 0,, € D is a neutral
element for op if for all infinite sequence 6 and any finite
prefix 6’ we have op (6’ - 0,y - 0) = dp (0’ - §). Without loss
of generality, we restrict ourselves to operations op that have
a neutral element. Otherwise, we can always build an equiv-
alent function with neutral element by adding a new element
to the domain.

Definition 6 (Evaluation of a basic aggregate term) We
define the evaluation v(A) of a basic aggregate term A
like (I8)) with respect to a valuation v as

v(A) def {OAP(QA) ifv(s;) Zuforalli>1

u otherwise

19)

where 04 : NT — D is a function mapping each positive in-
teger i € N to the value v(s;).

An aggregate atom (or aggregate for short) is an expres-
sion of the form A < sy where A is an aggregate term, <
is a relation symbol and sg is a basic term. We associate the
symbol < with some relation < C D x D among elements
of the domain. The denotation of a basic aggregate atom is
then defined as

[A=<so] & {veV]|v(d) Xuv(so)}

In particular, note that < can be the equality symbol. The se-
mantics of conditional aggregates follows directly from the
evaluation of conditions introduced in the previous section.

The following result shows how the evaluation of terms
introduced in Definition ] applies to the particular case of
aggregate terms.

Proposition 8 (Evaluation of an aggregate term) We de-
fine the evaluation of an aggregate term A possibly contain-
ing conditional terms, with respect to some valuationv € V,
some interpretation (h,t) and a selection function k, as

Ip(O% .oy) VG0 (si) #uforalli>1
u otherwise

”?h,t) (A) < {

where 92_<h_t> : Nt — D is a function mapping each posi-
tive integer i € N 1o the value G (s5).

Corollary 2 Given an aggregate term A (possibly with
conditional terms), a valuation v € V, some interpreta-
tion (h,t) and a selection function k, we have:

(h,t) = A < so iff v, ,,(A) < V3, (s0) for v € {h,t}.

Using neutral elements, we can consider finite aggregates
as abbreviations for infinite ones. That is, a finite constraint
term of the form

0p{81,82, -+, 8n) (20)
is an abbreviation for the infinite term
0p(s1,52,---,5n,00p,00p,...) 20

Treating finite aggregates as an abbreviation allows us to
deal with a unique construct for any number of elements and,
thus, ensure that aggregate terms with different number of el-
ements are treated in an uniform way.



We also adopt some further conventions for multi-set
based aggregates that reflect the syntax of ASP solvers. In
particular, a multi-set aggregate term is an expression of the
form

Op{Tl, To, ... } (22)

where each 7; is either a basic term or an expression of the
form s; : ; with s} a basic term and ¢; a basic formula.
Such an expression is understood as an abbreviation for an
aggregate term of the form of (I8) where each s; is as fol-
lows:

1. s; = (7:|00p: def (1;)) if 7; is a basic term, and
2. s; = (8}|00p: def (s}) A ;) otherwise.

This allows us to capture the behavior of modern ASP
solvers. For instance, the solver clingo removes elements
that are undefined from the sum aggregate and a return value

can still be obtained. Now, the semantics of and (16) can
be formalized by defining the following function

sim(0) < {0(i)|i€NTandf(i) € Z} (23)

where 0 : NT — D is a family of domain elements. For <,
we take the usual meaning. Obviously, the neutral element
of sum is Ogym = 0. Note that combining this definition
with (I9), we get that the sum of an aggregate term is un-
defined if any of its elements is undefined, otherwise, we get
the sum of all integers in the sequence.

Let us illustrate the behavior of aggregates in our setting
taking (I3) as an example. Note that, following our conven-
tion, (13)) is a short hand for the atomd

sum( (1]0:p), (1]0:¢q), (2|0:7), 0, 0,...) >2  (24)

We see that if p, g, hold in some interpretation, then the
left hand side of the inequality evaluates to Y {1,1,2} =4
and, the inequality is satisfied. On the other hand, if only p, ¢
hold, we get > {1, 1} = 2 and the inequality is not satisfied.
As another example, while evaluating the aggregate term

sum{2, 5, “hello world”, 7} (25)

the string “hello world” is ignored and the result is just 14.

Beyond arithmetic aggregates, we may also have expres-
sions like (I7), which deal with strings. We define 0, as the
empty string and 6(6) as the string 6(1)_6(2)... .. resulting
of concatenating all strings in 6.

Aggregates as conditional linear constraints

One important difference between the understanding of
aggregates used in this paper and the one studied
in (Cabalar et al. 2020) is that the latter directly considers ag-
gregates as abbreviations for conditional linear constraints.
This viewpoint is interesting because it allows the use of
off-the-shelf CASP solvers to compute aggregates with con-
straint variables. On the downside, this approach has two
drawbacks. First, it is quite different from the usual defi-
nition of aggregates in the ASP literature, which makes it

SWe dropped the tautologies def (1) and def (2).

difficult to relate to existing approaches in standard (non-
constraint) ASP. Second, it is more restrictive as it only per-
mits a particular class of aggregates, namely those using the
operation functions sum, count, max and min.

The definition we provide in the previous section solves
these two issues, but leaves us with the question whether we
can use off-the-shelf CASP solver to compute aggregates.
In this section, we show that it is possible to translate sum
aggregates into conditional linear constraints. Thus, affirma-
tively answering the above question for the vc-semantics.
In the next section, we extend this result to an interesting
class of theories under the df-semantics. Aggregates with
operations count, max and min can be mapped to sum
ones (Alviano, Faber, and Gebser 2015)).

We start by reviewing the definition of conditional lin-
ear constraints from (Cabalar et al. 2020), but incorporat-
ing our notion of term. A product term is either an in-
teger d € Z, a variable x € X’ or an expression of the
form d-x where d € Z is a domain element and x € X
is a variable. A finite basic linear term is either a prod-
uct term or an expression of the form s; + ... + s, where
each s; is a product term. A linear term is an expression
of s1 4+ s2 + ... where each s; is either a finite basic lin-
ear term or a conditional term of the form (s}|s}: ¢;) with s}
and s/ finite basic linear terms and ¢; a basic formula. A lin-
ear constraint is a comparison of the forms o < 5, a < f3,
a = or a # (8 for linear terms « and S. As usual, we
write o« > 8 and « > B to stand for 8 < « and 8 < a, re-

spectively.
We adopt some usual abbreviations. We directly re-
place the ‘4’ symbol by (binary) ‘—’ for negative

constants and, when clear from the context, omit the
> symbol and parentheses. We do not remove paren-
theses around conditional expressions. As an exam-
ple, the expression —x 4+ (3y|2y:p) — 2z stands for
(=1) -2z + (3-y[2-y:¢) + (—2) - 2. Other abbreviations
must be handled with care. In particular, we neither remove
products of form 0-z nor replace them by 0 (this is because =
may be undefined, making the product undefined).

In the rest of the paper, we assume that all integers are
part of the domain, that is, Z C D. Given a valuation v, the
semantics of basic linear constraints is defined inductively.

o(d-z) = d-v(zx) ifv(z) € Z
u otherwise
d ifvi>1, v(s;) €Z
v(sg+s2+...) & and )5, v(si) =d €D
u otherwise

The denotation of a basic linear constraint o < 3 is given by
[o<B] = {v]v(@),v(B) € Z,v(e) < v(B)}

with < a relation symbol among <, <, = and #. In
particular, given a linear constraint of the form o <d
withaw=dy - 21 + -+ dy - Ty, we have v € [a < d] iff
v(z;) #uforalll <i<nandd > .., di v(z;).
The semantics of conditional linear constraints is imme-
diately obtained by applying the corresponding evaluation



functions. The following results show how the valuation
function v’("h # applies to (conditional) linear terms; and how

to use this for evaluating (conditional) linear constraints.

Proposition 9 (Linear term evaluation) Ler v € V be a
valuation, (h,t) be an interpretation and o« = $1 + 82 + . ..
be a linear term (possibly containing conditional terms).
Then,

d ifVvi>1, v’{”"h_’t)(si) =W/
and ;1 05, 1y(si) =d €D

u otherwise

U?h,t} () =

Corollary 3 Given an interpretation (h,t) and a linear
constraint o < 3 (possibly containing conditional terms),
we get: (h,t) |=p =B iff vf,,(a) <0F ,(B) for
bothv € {h,t}.

The following result shows some interesting equivalences.

Proposition 10 Given an interpretation {(h,t) and linear
terms o and B the following equivalences hold:

L (ht)y=xa=0if(ht)Era<BAa> 0,

2. (ht) Fra<Biff(ht) Fra<BAa#p

3. (h,t) Foe a < Biff (h,t) Foc a < BA=(a = B),

4. (h,t) FEpe a £ Biff (h,t) Fye a < BV a> L.

We see that with the ve-semantics, we can define all arith-
metic relations in terms of <, while we need < and # for
the df-semantics. To see that the third equivalence does
not hold for the df-semantics, take the interpretation (h,t)
with h(z) = uand t(z) = 1 and the atom

OLz=1) < 1 (26)

Then, with « being the linear term on the left hand side of
20, we get that (h,t) =45 (@ < 1) A=(a > 1) holds de-
spite of (h,t) F~qr (o < 1). Similarly, for the last equiva-
lence take the same interpretation (h, t) and the constraint

O[1:z=1) # (1/0:z =1) (27)

Then, with « and [ being the linear terms
on the left and right hand side of @Z), re-
spectively, we  get  (h,t) Faqr (@ # )  despite
of (h,t) Foas (o < B)V (a> B).

Let us now show how sum aggregates can be translated
into conditional linear constraints. First, we introduce a
new constraint atom in¢(s) whose intuitive meaning is that
term s is an integer and whose denotation is given as follows:

[int(s)] = | J{[s=d]|deZ}

Definition 7 (Aggregate to linear term) Given an aggre-
gate term A of the form @2) with op = sum, we associate
the linear term w(A) < 7(11) + m(m2) + ... where 7t(7;) is

defined as follows:
1. w(1;) ¥ (7:]0: int(7;)) if 7; is a finite basic linear term,
2. w(7) ¥ (54]0:int(s;) A ;) if 7 is of the form s; : ;.

For a theory T', we define w(I") as the result of recursively
replacing each aggregate term A by w(A) inT.

Furthermore, for a selection function x, we define the se-
lection function 7 (k) given as follows:

1. w(k)(s) = k(s) for every occurrence of conditional
term s not occurring in any aggregate term A,

2. w(k)(n(s)) = k(s) for every occurrence of conditional
term s occurring in some aggregate term A.

Theorem 2 For any theory T, the k-(stable) models of T’
and 7 (k)-(stable) models of w(T") coincide.

This means that we can use the techniques developed
in (Cabalar et al. 2020) to compute the stable models of the-
ories with aggregate under the vc-semantics.

For instance, (16)) becomes the linear constraint

(x|0:4nt(x) Ap) + (2 + y[0:int(z +y) A q) > 2

which holds under the same conditions as (I6) does. As
a further example, the aggregate term is translated as
the linear constraint 7(2)+7(5)+m(“hello world”)+7 (7).
For any integer n, we get that w(n) = (n|0:int(n)) is
simply equivalent to n because int(n) is a tautology. On
the other hand, m(“hello world”) is equivalent to 0 be-
cause int(“hello world”) is a contradiction. Hence, we get
7(2) + 7(5) + w(“hello world”) + 7(7) =2+ 5+ 7 = 14.

Logic programs
We focus now on a restricted syntax corresponding to logic
programs and show that, for stratified occurrences of condi-
tional terms, we can safely exchange vc and df -semantics.
A literal is either a constraint atom ¢ € C or the negation —c¢
of one. A rule is a formula of the form H < B where
is a either an assignment or a disjunction of literals and B is
a conjunction of literals called the rule’s head and body, re-
spectively. A theory consisting exclusively of rules is called
a (logic) program. Further, we adopt the following conven-
tions. For any rule r of form H + B we let H(r) and B(r)
stand for the set of all literals occurring in H and B, re-
spectively. If H is an assignment x := s, we assume that B
contains additionally def (s). We denote the set of positive
and negative literals in H(r) by H™(r) & H(r)NC and
H=(r) ¥ H(r)\ H*(r). We also define vars®(c) & {z}
if ¢ is an assignment z := s and vars®(c) ¥ vars(c) if c is
a constraint atom. Intuitively, vars®(c) designates all vari-
ables assigned by atom c: Only the assigned variable is de-
fined by an assignment and all variables in a constraint atom.

Definition 8 (Conditional term stratification) A program

11 is said to be stratified on (an occurrence of) a conditional

term s = (s'|s”: ), if there is a level mapping ¢ : X — N

satisfying the following conditions for every rule r € 11:

1. U(z) > L(y) for all variables x € vars®(H*(r)) and
y € vars(H~(r) U B(r)),

2. 4(x) = L(y) for all variables x,y € vars®(H™(r))

plus the following condition for the rule r where s occurs

1. () > L(y) forall x € vars®(H*(r)) and y € var(p).

A program 11 is stratified if it is stratified on all occurrences
of conditional terms not occurring in the scope of negation.



Given selection functions #, " and a distinguished occur-
rence of some conditional term s, we denote by k[s < k']
the selection functionobtained from « by replacing the result
assigned to s by the one that ' assigns to it.

Theorem 3 Let 11 be a program stratified on some occur-
rence of a conditional term s and k and K’ be two selection
functions. Let k" = k[s <= K']. Then, the k-stable models
and the k"' -stable models of 11 coincide.

Theorem 4 For a stratified program, its k- and k'-stable
models coincide for any pair of selection functions k and '.

This means that, for stratified programs, we can use the
translation from (Cabalar et al. 2020) to rely on off-the-shelf
CASP solvers to compute not only the vc-stable models
but also the df -stable models. Furthermore, as our concept
of stratification and the translation pertain to distinguished
occurrences of conditional terms, it is possible to partially
translate non-stratified programs for stratified occurrences.
The proof of Theorem[3relies on the notions of supported
models and splitting sets that we lift from standard ASP to
programs with conditional constraints atoms, as stated be-
low. For clarity, we abuse notation and let H~(r) and B(r)
stand for formulas \/ H~(r) and A B(r), respectively.

Definition 9 (Supported models) A variable x € X is sup-
ported wrt a program 11 and a valuation v, if there is a
rule r € 11 and a constraint atom ¢ € H™(r) satisfying
the following conditions:

1. x € vars®(c),

2. v,  forevery d € HT(r) such that x ¢ vars®(c),
3. v, B(r)and vt H™(1).

A model v of a program 11 is supported if every variable that
is not undefined is supported wrt. 11 and v.

Proposition 11 Any stable model of a program is sup-
ported.

Definition 10 (Splitting) A set of variables U C X is a
splitting set of a program 11, if for any rule r in 11 one of
the following conditions holds:

1. vars(r) C U,

2. wars®(HT(r))NU =0

We define a splitting of I as a pair (By (I1), Ty (I1)) satisfy-
ing By(II) N Ty (1) = 0, By (IT) U Ty (1) = 1, all rules
in By (I1) satisfy[ll and all rules in Ty (11) satisfy 2]

Given a program I1, a splitting set U of II and a valuation v,
we denote by Fy (11, v) the program obtained by replacing
each variable x € U in Ty (II) by v(x). We denote by
U < X\ U the complement of U.

Proposition 12 Given program 11 with splitting set U C X,

a valuation v is a stable model of IL iff v|,; is a stable model
of By (Il) and v| g is a stable model of Ey (11, v|).

A generalization of Ferraris’ semantics

In this section, we show that, when restricted
to df-semantics, our approach amounts to a conserva-
tive extension of the reduct-based semantics introduced

by [Ferraris| (2011). Under that approach, a classical inter-
pretation is a stable model of a formula if it is a subset
minimal classical model of the reduct wrt that interpretation.
The reduct of a formula wrt an interpretation is obtained by
replacing all maximum subformulas not classically satisfied
by the interpretation by L. We now adapt those notions to
HTc.

Given a denotation [ - |, a valuation ¢ classically satisfies a
formula ¢, written ¢ |=,; ¢, if the following conditions hold:

Lot heg L

ta cift € [evali(c)]
tEapANYiftEg andt = ¢
tEaeVUiftEqg port = ¢
tEap—oYift g portEq ¢

We say that a valuation v is a classical model of theory I'
when v |=,;  for all formulas ¢ € T'.

wok »D

Observation 3 For any interpretation (t,t), formula © and
selection function K, we have (t,t) =, @ iff t F=a ¢

Definition 11 (Reduct) The reduct of a formula ¢ wrt an
interpretation t, written ©', is defined as the expression:

o L ift e o for any formula o,

o c[st sk ...] if tEuc[s1,80,...] for any constraint
atom c € C where s1, Sa, . . . are all conditional terms in c
and st = (s|s': p?) for each s; = (s|s': p).

i —

o YL@ @Lift Ea 1 ® g with® € {A,V,—}

The reduct of a theory I is defined as T'* = {' | p € T'}.
A valuation v is called a F'-stable model of I' iff it is a C-
minimal model of T'.

An aggregate atom of the form of

op( (51|00p 101), (52|00p 1p2),...) < S0 (28)

can be seen as a generalization of aggregate atoms as de-
fined in (Ferraris 2011)) in three ways. First, it permits apply-
ing the operation op to both finite or infinite collections of
elements. Second, it allows operations op that may or may
not depend on the order of the elements in the collection.
And third, and more important for our purposes, it allows
each s; to be any expression involving constraint variables
rather than just numbers. The following result shows that
the application of our reduct to an aggregate of the form
of (28) produces a straightforward generalization of [Ferraris
reduct.

Proposition 13 Given an aggregate A of the form @28) and
a valuation t, it follows that

i {J_ ift}Ec
0p{(51|00p: %), (52|00p:h),...) < so otherwise
Let us now enunciate the main result of this section.

Theorem 5 A valuation is a df -stable model of a theory T’
iff it is an F'-stable model of T'.



Discussion

HT¢ is a logic for capturing non-monotonic constraint the-
ories that permits assigning default values to constraint vari-
ables. Since ASP is a special case of this logic, it provides
a uniform framework for integrating ASP and CP on the
same semantic footing. We elaborate on this logic by incor-
porating constraint terms. A notion that allows us to treat
linear constraints, conditional expressions and aggregates in
a uniform way. In particular, this allows us to introduce as-
signments for aggregate expressions. We also present a new
semantics for conditional expressions in which their result
is always defined (df) and show that, when combined with
an appropriate definition of aggregates, it leads to a gener-
alization of the semantics by [Ferraris (2011). Recall that
this semantics is the foundation for aggregates in the sys-
tem clingo.

Interestingly, for programs stratified on aggregates, we
can translate aggregates using the df principle into condi-
tional constraints under the vicious circle principle. Then,
we can leverage our previous results and translate these
constructs into the language of CASP solvers. As a re-
minder, the fragment covered by the ASP Core 2 seman-
tics (Calimeri et al. 2012)) only allows for stratified aggre-
gates.

Ongoing work is directed towards an implementation of a
hybrid variant of clingo based on the framework developed
here. For solving programs with non-stratified aggregates,
we are looking into extending the notions of unfounded-
sets (Van Gelder, Ross, and Schlipf 1991) and loop formu-
las (Lin and Zhao 2004) to programs with constraint vari-
ables.
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Proofs of results

Proof of Proposition[Il Let =/ be the satisfaction rela-
tion resulting from replacing Condition [l with Condition[Tf.
In the following proof, we focus on Condition[IF as the in-
duction base. The other cases are identical to |=,.. The full
proof is obtained via structural induction.

o (h,t) Eye ciff (h,t) =), cforc e C:

(ht) e € (29)
iff h € [eval, 4y(c)] and t € [evalypy(c)]  (30)
iff h € [ eval g, 4y(c) ] 31)
i (h, ) e (32)

Equivalence between (29) and (30) holds by definition of
the satisfaction relation. Equivalence between (30) and
(BI) holds by definition of the evaluation function and
conditions [6] and [7] on denotations. More specifically,
h € [eval, s (c)] implies t € [ eval .y (c)] since for
any conditional term s = (s|s”: ) in ¢, either

1. (hyty E ¢, then by persistence since ¢
is condition-free (¢, t) ¢ and therefore
Ve 1y (8']8" 1) = ve gy (s']s" ) = &,

2. (t,t) and therefore

s
vty (88" @) = ve gy (s']s": @) = 57,
3. or veg (85" p) = u
For (a) and (b) evaluation of s is identical. For (c),
we have c[s/u] when evaluating in (h,t) and either
c[s/s'] or c[s/s"] when evaluating in (¢, t). In both cases,
h € [c[s/eval, 4 (s)] ] implies h € [c[s/eval 4 (s)]]
due to Condition [7] on denotations. Thus, we have
h € [evalgy,y(c)] implies b € [ evaly 4 (c) ], and ul-
timately ¢ € [ eval(; 4 (c) ] due to Condition [6lon denota-
tions.
Implication between (3I)) and (32) holds by definition of
the satisfaction relation.

O
Proof of Proposition2 We have

(h,t) Ex ¢ (33)
iff h € [[K(h@ (C)]] andt € [[Ii(t_ﬁ (C)ﬂ (34)

iff h € [[K(h@ (C) ]] andt € [[Ii(h_ﬁ (C) ﬂ
and (t,t) = evali(c) (35)
iff (h,t) |= Kney(c) and (R, t) = ~—evali(c) (36)
iff (h,t) = K, (c) A ——evali(c) 37)

Equivalence between (33) and (34) holds by definition
of the satisfaction relation. Equivalence between (34) and
(33) holds since h € [r,4(c)] implies t € [rp 4 (c)]
by Condition [6] on denotations, x s (c) = evals(c) and
t € [eval(c)] iff (¢t,t) = eval,(c) by definition of
the evaluation function for total models and satisfaction
relation. Note that ry, 4y (c) and evaly(c) are condition-free
constraint atoms and as such we can use |=. Equivalence
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between (33) and (B6) holds by definition of the satisfaction
relation, and since implication from (33) to (36) holds as
(t,t) E evali(c) implies (h,t) = —evali(c) by contra-
position of Proposition Ml and also (t,t) [~ —evals(c)
by definition of the satisfaction relation for implication,
which in turn implies (h,t) = ——evali(c), and implication
from (B6) to B3) holds as (h,t) = ——evali(c) implies
(t,t) = —evaly(c) and ultimately (¢, t) = evali(c) again by
definition of the satisfaction relation for implication. Finally,
equivalence between (36) and (37) hold by definition of the
satisfaction relation for conjunction. 0

Proof of Proposition3] In the following, we focus on Con-
dition [T of the satisfaction relation, as the proposition was
proven in (Cabalar et al. 2016)) for HT,. without conditional
terms and the satisfaction is identical but for Condition [
The full proof is obtained via structural induction with the
remaining cases.

Assume (h,t) =, ¢ (38)
=he[rpp(c)]andt € [ryp(c)] (39)

=t € [runl)] (40)

= (t,t) =x c 1
Implications between (38) and (39) and between (Q) and
(@1) hold by definition of the satisfaction relation. 0

Proof of Proposition dIl We proof (h,t) &, ¢ — L
implies (¢, t) £, ¢ for any formula .
Assume (h,t) E. p — L
=(t,t) Ex @ — L due to Proposition ]
=(t,t) Fw por (t,t) FEx L
=(t, t) @
We proof (t,t) £ ¢ implies (h,t) =, ¢ — L forc € C.
Assume (¢, t) Fw @
=(h,t) £« ¢ due to contraposition of Proposition 4]
(h,t) Few por (h,t) E. Land (t,t) e, por(t,t) =, L
(hit) Er = L

4y

O

Lemma 1 Let  be any formula and (h,t) be an interpreta-
tion. Let (H,T) be the HT interpretation build as follows

T={ceC|te[run(c)]}
H={ceC|he[rmny(c)]andt € [Ky(c)]}

Then, (h,1) b= o iff (H,T) = .

Proof of Lemma [Il Then, (H,T) is a valid HT inter-
pretation due to H C T, as every element in H fulfills
t € [K,4(c)]} and is therefore also in 7. T' might have
more elements as it drops the condition h € [ 1 (c) ].



We proof property 2] in Proposition E by prooving
(h,t) Ex piff (H,T) | ¢ for any interpretation (h,t)
and formula ¢, and thus tautologies are preserved between
HT and HT. Since satisfaction relations are identical ex-
cept for Condition [I} we focus on ¢ = ¢ for ¢ € C as the
induction base. The other cases follow by induction since
they are identical between HT and HT¢.

We proof (h,t) =, ciff (H,T) = cforc e C:

(h,t) F=x c (42)
iff h € [[Ii(h_ﬁ (c)]andt € [[Ii(t@ (] (43)
iff ce H (44)
iff (H,T) Ec (45)

Equivalence between (@2) and (43)) holds by definition of
the satisfaction relation. Equivalence between (3) and @4)
holds by definition of H. Equivalence between (@4) and
(@3) holds by definition of the satisfaction relation. 0

Proof of Proposition 2] Let p[a) be a HT tautology
and let p[a/c] be the result of uniformly replacing the
atoms @ = (ai,...,a,) in @ by a tuple of constraint
atoms ¢ = (¢, ..., cp). Take any interpretation (h,t) and
let (H,T') be an HT-interpretation build as in Lemmal[ll Let
(H',T') be an interpretation build as follows:

T ={ai|c; €T}
H’z{ai|ci€H}
Then, (H',T') = ¢[a]
iff (H,T) = p[a/¢] (Signature independence)
iff (h,t) E pla/c] (Lemmal[).
Then, since @[a] is a tautology, we get that (h,t) = ¢[a/c]
for every (h,t) and, thus, ¢[a@/¢] is a tautology. Finally, note
that if ¢[a] be a HT tautology, so is p[a/[] where ¢[a/ 5] is
the result of uniformly replacing the atoms @ = (aq, ..., ay)

in ¢ by a tuple of formulas 3 = (31, ..., 3,) and, thus, the
result holds for any HTformula so is p[a/al. O

Proof of Proposition[3 If s = s’ and s’ = s’ and s = 5"
are constraint atoms and they satisfy v € [s=5"]
and ve[s =s"], then there is d€ D such that
ve[s=d] and ve[s =d] and v e [s”" =d] and,
thus, v € [ s = s” ] because (s = s”)[s"/d] = (s = d).

Similarly, if s = s’ and s’ = s are constraint atoms and
we have v € [s =¢"], then there is d € D such that
ve[s=d] and v e [s' =d] and, thus, v € [s' = s]
because (s' = s)[s/d] = (s’ = d).

Suppose, for the sake of contradiction, that v € [u = s].
Then, from (1)), there is d € D such that v € [u=d]
and v € [ s’ = d]. Furthermore, since vars(u = d) ,
from (3), we can assume with out loss of generality that
v(z) = u. From (@) this implies that v € [z = d] holds
because (x = d)[x/u] = (u =d). This is a contradiction
with @). 0
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Proof of Proposition[6] We have

v € [Kngy(c)] (46)
iff v € [c[r(ne (51)][F(ne(s2)] -] 47)
iff v € [c[vfl, 4 (s)][v]h, 1 (s2)] - -] (48)
iff v € [vjj, p(c)] (49)

where s; are all occurrences of terms in c. Equivalence
between (46) and @7) holds by definition of the evalua-
tion function applied to a constraint atom. Equivalence be-
tween and holds by definition of evaluation func-
tion, vy, 4y and conditions[7] [[2] and [[3] on denotations. For
any term s; in c, either v € [K(p4)(s;) = d] for some

d € D, then vfj, ,(s1) = d, and therefore v € [c] iff

v € [c[kpny(si)/d]], or v & [Kns(si) = d] for all
d € D, implying v & [ K.+ (5:) = K(np (i) ], and there-
fore v € [c] iff v € [e[r(n,4(si)/u]]. Finally, equivalence
between (48)) and holds by definition of application of
U tO constraint atoms.

O

Proof of Proposition [7 If hi, t>(5) #
h € [vcpy(s) = d] for some d € D by defini-
tion of U?ﬁﬁ' For any conditional term s’ occuring in

u then

s, we have either veq, 1 (s) = u # df 4, ,(s") or
veny(s’) = df g, y(s") by definition of the evalua-
tion functions. Then h € [uwcep,(s) = d] implies

h € [ df ,4y(s) = d] as in the former case u is replaced
by some term and the implication holds by Condition
on denotations, or the evaluation is identical. Furthermore,
h € [vepy(s) = d] implies t € [evaly(s) = d] by
Condition [E] on denotations and since evlauation func-
tions coincide for total models. As a result, we have
Wi n(s) = h?£7t> (s) = t(s) by definition of valuations
applied to terms. g

Proof of Theorem[ By definition, (I2) is the formula
v — (def () = (op(s1,82,...) =)

which is HT-equivalent to

def(T)Np = T=2 (50)
Let (h,t) be a model of (530) and assume that
(h,t) Ew p AT =d (51)

Then, for all v € {h,t}, we get that one of the following
conditions hold:

L. (v,t) Ew def (1),
2. (v,t) Fw @, or
3. () ErT =1



Note that 31) implies (h,t) =, def(7) and (h,t) E. ¢
which is a contradiction with conditions [I] and 2 re-
spectively. Furthermore, condition [B] implies that
{h,t} C [t ==a]. Then, since {h,t} C[r=d], we
get {h,t} C [« = d] and, thus, that {(h,t) =, = d. This
implies that (h, t) is a model of all rules of the form of (13)
and, thus of I".

The other way around. Let (h,t) be a model of T' and
assume

(h,t) Ew def(T) A p (52)

Since (h, t) is a model of ", we get that, for every d € D and
every v € {h,t}, one of the following conditions hold:

6. (v,t) w7 =4,

7. (v, t) FEw @, or

8. (v,t)y Frx=d

It is easy to see that (6) is a contradiction with the assump-
tion (32). Furthermore, (h,t) |=, def(7) implies that there
is some d € D such that v € [T = d] with v € {h,t}. This
is a contradiction with condition |6 Consequently, we get
that v € [ = d] with v € {v,t}. This plus v € [7 = d]
imply v € [T = z] and, thus, that (h,t) is a model of (30)
and (12). O

Proof of Proposition[8] Assume Uty (A) # u for aggre-
gate term A = op(sy, Sa, . .. ). Then we have

Vi (A) =d (53)
=v(K(p,1)(A)) (54)
=v(0p(K(nt)(51), K(ney(s2),---))  (55)
=op(h) (56)
=0p(075,.1)) (57)

where d € D, 0 : N+ — D with
0(i) = w(s;) = v(kmy(si)) for i > 1, and
0%y + Nt — D with 07 (i) = vl 1 (si) for
i+ > 1. Equivalence between (33) and holds by

definition of vfj, (A), and since Vit (A) = d # u,
v € [k (A) = d] and by definition of denotation for
equality, v(k 4y (A)) = d # u. Equivalence between (34)
and (33) holds by definition of application of the evaluation
function to terms. Equivalence between (33) and (38)
holds by definition of valuations applied to condition-free
aggregate terms, since op(r(p g (S1), F(ne(52),...))
is  condition-free. = And finally, equivalence be-
tween (36) and (37) holds since 6 = 0%, as
V3,0 (8i) = V(K1) (s:)) # u by definition of v, 4 (si),
and the fact that no v(#p 4 (s;)) may be undefined because
then v(op (K (n,1) (51), F(n,ey(52),...)) = u by definition of
application of valuations to aggregate terms, which cannot
be the case as v(op(k(n+)(51), k(e (52),--.)) = d # .
Assume vf, (A) = u, then by definition there
exists no d € D such that v € [rppn(A) = d],

which implies (ki (A)) = u as it is un-
equal to all domain elements. As shown above
V(K (A) = v(op(kny(s1), ke (s2),...)), and
v(0p(K(n,t) (51); K(ne (S2),...)) = u iff there exists a

Uty (s;) = u for ¢ > 1 by definition of application of
valuations to aggregate terms.
|

Proof of Proposition[d Assume vfj, ,, (@) # u for linear

term o« = $1 + So + .... Then we have
O 1y (@) =d (58)
=v(K(n,1(a)) (59)
=v(K(p,ty(51) + Kenay(s2) +..0) (60)
=> W (s0) (61)
i>1

where d € D, and s; are conditional linear terms oc-
curing in a. Equivalence between (38) and (39) holds by
definition of vfj, (), and since vfj (o) = d # u,
v € [k () = d] and by definition of denotation for
equality, v(k(p 1) () = d # u. Equivalence between (59)
and (60) holds by definition of application of the evalua-
tion function to linear terms. Equivalence between (60) and
(61) holds by definition of valuations applied to condition-
free linear terms, since k4 (51) + K (s2) + ...
is condition-free. Furthermore, k(4 (si) # u since
V(K h,t)(51) + Kney(s2) +...) # u by definition of val-
uations applied to condition-free linear terms. Therefore,
V(e (8i)) = v, 4 (i) since vfj, (i) = d’, for which
holds v € [ 1) (si) = d'] by definition of vfj, , (s:).
Assume v(j, (o) = u, then by definition there exists
no d € D such that v € [ () = d], which implies
V(K (n,+)(@)) = wasitis unequal to all domain elements. As
shown above v (ki 1) (@) = V(K (pe) (51)FR(ne (52)+. .. ),
and v(kp1 (1) + Kepe (s2) +...) = uif there exists a
v(k(n,1)(5:)) & Z by definition of application of valuations

to condition-free linear terms.
[l

Proof of Proposition(10i1] We have
(ht) Exa=8 (62)
iff h?h,t) (a) = h?h,t) (ﬁ) and t?t,t) (O‘) = t?t,t) (B) (63)
{1, (@) < % () and B, (@) > A (8)
and t?t,t) (a) < t?t,t) (8) and t?t,t) (a) > t?t,t) (B) (64)
§ff (h,t) = o < Band (ht) = > B (65)
iff (h,t) Exa < BAa>p (66)
Equivalence between (62) and (63) holds by Corollary Bl

Equivalence between (63) and (64) holds since d = d’
iff d < d andd > d ford,d € Z, and s € Z for



s € Ahf, (@) 1], (), BT, o (B), 17, ,(B)} Dbecause
otherwise (h,t) . a = B, (ht) Fx a < 8 and
(h,t) Ex « > [ by definition of denotation for linear
constraints. Equivalence between (64) and (63) holds by
Corollary Bl Finally, equivalence between (63) and (66)

holds by definition of the satisfaction relation for conjunc-

tion. 0
Proof of Proposition[10{2] We have

(h,t) Exa< (67)

iff 1ff, 4y (@) < h, 4 (B) and 7, 4 (@) <17, 4 (B) (63)

iff 1l 4y (@) < K, 4 (B) and Ay, 4 () # R, 4 (B)

and t?t,t) (a) < t?t,t) (8) and t?t,t)( a) # t(t t) (B) (69)
if (h,t) = o < Band (hyt) Ex a £ 3 (70)
iff (h,t) Era<BAa#p (71)

Equivalence between (€7) and (68) holds by Corollary [3l
Equivalence between (68) and (69) holds since d < d’
iff d < d andd # d ford,d € Z, and s € Z for
s € Ahf, (@), 1], (), B, o (B), 17, (B)} Dbecause
otherwise (h,t) [, a < B, (h,t) ¥ o < [ and
(h,t) s a # B by definition of denotation for linear
constraints. Equivalence between (69) and (Z0) holds by
Corollary Bl Finally, equivalence between (Z0) and (ZI)
holds by definition of the satisfaction relation for conjunc-

tion. ]
Proof of Proposition[10i3] We have
(h t> ':vc a< [3 (72)
iff hip, t>( ) < h(h,t) (8) and not h(h N ) Wiy (B)
and t7;’y (@) < 1774y (B) and not £y () > 77y (B)
(74)
iff (h,t) Eype a < fand (h,t) Fye o > Band (¢, 1) Fype a >
(75)
iff (B, t) oo @ < Band (hyt) Fpea > B — L (76)
iff (h,t) Eve a < BA—(a > 8) (77)

Equivalence between (72) and (Z3) holds by Corollary [3l
Equivalence between (Z3) and (Z4) holds since d < d’
iff d < d and not d > d' for d,d € Z,and s € Z
for s € {h{} ,y(a), ti7 s (), hig o (B), t7F,, (B)} because
otherwise (h t) Fve o < B and (h,t) Fye o > B by
definition of denotation for linear constraints. Equivalence
between (74) and ([Z3) holds by definition of the satisfaction
relation, Corollary [3] and Proposition [7I More specifically,
(t,t) Feve o = f implies that £}y t>( a) > ty7,,(B) does not

(t:t)
hold, which in turn implies that Ay (o) > hiy \ (8) does

not hold, because as mentioned before h{} >( ) # uand
Rty (8) # u thus it follows that hi .\ (o) = 177 () and
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hve e >(B) Finally, equivalences between (Z3)

(o (B) =
and and m and (77) hold by definition of the satisfac-
tion relation for implication and conjunction, respectively. [

Proof of Proposition[10i4] We have

(h,t) Fuve o # B (78)
iff hiy (@) # hiy 4 (B) and £y (o) # 74 (B)  (79)
iff 1y (@) < h(h,t) (B) or hif 1y () > hi 1 (B),

and t7; t>( a) < it (B) or t?f,t)( ) > t?f,t) (8) (80)

Iff Py, gy (@) < hiy 4 (B) and ¢y (@) < t774 (B)

or hij 4y (o) > R 4 (8) and Et) () > >ty (B) (81)
iff (h,t) Epe @ < Bor (h,t) Eype > (82)
iff (h,t) Eve < BfVa>p (83)

Equivalence between (Z8) and (Z9) holds by Corollary B
Equivalence between ([79) and (8Q) holds since d # d’
iff d < d ord > d ford,d € Z, and s € Z for
s e g (@) ti5y (@), Rl (3). i (3)) because
otherwise (h, > bévc a < B, (ht) Fvw a < 8 and
(h,t) Fve @ # B by definition of denotation for linear
constraints. Equivalence between (80) and (81) holds by
Proposition [/l More specifically, because as mentioned
before hip () # u and h?’ﬁ,w( ) # u, it follows that

hip o (@) = 37 (a) and hip .\ (B) = t77,, (). Therefore,
if Ay y(@) < hif ,(8) and tff, () < 7, (8) hold,

Wi () > hig . (8) and 77, (a) > hif, () are false
and vice-versa. Equivalence between (8I) and (82) holds
by Corollary Bl Finally, equivalence between (82) and
(83) holds by definition of the satisfaction relation for

disjunction. 0
Proof of Theorem We proof the theorem
by showing that for any interpretation (h,t),
we have (h,t) |, sum{m,72,...} < s iff

(h,t) Erp) m(sum{ri,72,...}) < s. We do this by
proving that elements of the respective sums are iden-
tical and therefore the resulting values. By definition
of evaluation function and denotation for condition-free
aggregates, h € [rpy(sum{r,m,...} < s)] iff
sum(f) < h(s), where § : Nt — D maps i € Nt to
h(k(n,+(73)) for an interpretation (h,t). Similarly, by
definition of =, evaluation function and denotation for
condition-free aggregates and valuations applied to linear

terms, h € [ (k) , o (w(sum{ry, 72,... }) < 5)) ] iff
h € [m(K) g4 (m(11) + 7(72), ... < 8)]
iff
P (8) gy 0y (T (71)) + AT (K) (), 4y (7 (72)) + -+ - < (s)
for an interpretation (h,t). First of all, note that no
h(”(h,t)(ﬂ')) = uor h(”(”)(h,w(ﬂ(ﬂ) u, be-
cause then (h,t) i

)
sum{m,T2,...} < s or



(h,t) Fr(ey T(sum{T1,To,... }) < s, respectively, by defi-
nition of evaluation for aggregate terms and linear terms and
denotation for aggregates and linear constraints. As relation
and s are identical, we only have to show

sum(6) = h(w (k) g, 4 (m(11)) + h(7(K) 4y (7 (72)) + - .-

By definition of sum, we have

sum(0) =Y { h(k (7)) | i € NTand h(k .y (1) € Z}.

For the translation, we have

h(m(K) 4y (T (71)) + I (K) g, 4y (T(72)) + - .
:Z{ h(w(ﬁ)(h,t) (W(Tl))) | 1 E NJF and h(li(hﬁ (Tz)) S Z}

because each m(7;) is conditioned either by int(r;), if
7; is a finite basic linear term, or int(s;) if 7; is of the
form s; : ¢, and therefore h(k, 4 (7:)) ¢ Z implies
h(m(K) j, 4y (m(7:))) = 0 and we can safely remove those
elements from the sum. As such, we only have to show
h(knay (7)) = h(7(K) g, 4 ((7))) Tor bk 4y (T2)) € Z.
For finite basic linear terms, this follows immediately

as h(kge (1)) = h(mi) = h(w(K) (7 @ int(r)))
since h(r;) € Z. For conditional terms s; : ¢, we
have h(kene((s:]0:0 A def(s;)))) € 7 if either

(h,t) [~ @, then h(k 4 ((s:]0: 0 A def(s;)))) = 0 and
h(m (%) gy ((56]0: 0 A int(s:)))) = 0, or (b 1) = ¢
then Ak ((sil0:0 A def(s;)))) h(s;) and
h(m(K) 4y ((sil0: 0 A int(si)))) = h(s;), because
h(si) € Z and k and 7(k) is identical for (s;|0: p A def (s;))
and (s;]0: ¢ A int(s;)) by definition of 7.

As such, we have

(h,t) =« sum{ﬁ,Tg,...} <s
iff h € [[fi(h,w(sum:{ﬁ,ﬁ, = } <s)]

andt € [[Ii(t)t)(Sum{TlaT%---} =<s)]

P =<s)]

=9
H=<s)

iff h € [ (k) 4 (r(sum{ry, T2, ...

and ¢ € [7(K) 4 (r(sum{r,72,. ..

K (B, t) ) 7 (sum{m, 2, . ..

O

Lemma 2 Let (t,t) be an equilibrium model of some logic
program 11 without assignment rules, x € X be some
variable which is defined in t and (h,t) be some interpre-
tation with h(x) = u and h(y) = t(y) for every vari-
able y € X \ {z}. Then, there is a rule r € Il and a con-
straint atom ¢ € H™T(r) satisfying the following conditions:

1. x € var(c),
2. (t,t) W~x  forevery ¢ € HY(r) such that x ¢ var(c’),
3. (h,t) =x B(r) and (t,t) =, H (1)
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Proof of Lemma[2] We show that (h,t) =, II whenever
one of the conditions[I}3]is not fulfilled for z, thus a contra-
diction follows with (¢, t) being an equilibrium model, and
a rule r fulfilling all conditions has to exist.

Assume there exists no ¢ with z € vars(c) forc € Ht(r)
and r € I, then (¢,t) =, H(r) implies (h,t) =, H(r)
for every rule r € II. This is obvious in case that
x ¢ wars(H(r)) as it has no impact on satisfaction
due to Condition [3] on denotations. If z € wvars(—c)
for some -¢ € H~(r), {t,t) E. ¢ — L im-
plies (h,t) . ¢ — 1 since (t,t) [~ ¢ implies
(h,t) Fx ¢ by contraposition of Proposition Bl Fur-
thermore, since (t,¢) is a model of II, it follows that
(t,t) Ex B(r) — H(r) and, thus, either (t,t) =, H(r)
or (t,t) &, B(r). As we have seen above, the former im-
plies that (h,t) =, H(r). From Proposition[3] the latter
implies (h,t) . B(r). Hence (h,t) =, B(r) — H(r).
This implies that (h,t) =, II which contradicts the fact
that (¢,t) is an equilibrium model of II and therefore a
rule has to exists with x in the positive head.

Since we proved Lemma we only need to consider
rules r with = € vars(H ™ (r)).

Assume there exists a ¢ € H*1(r) with z & vars(c)
such that (t,t) =, ¢ for all rules r € II with
x € vars(H"(r)), then we know (¢,t) . H(r) and
(h,t) E. H(r), due to definition of satisfaction relation
for disjunction and Condition [3] for the denotation. Thus
rule r is fulfilled regardless of the body due to defini-
tion of satisfaction relation for implication. It follows that
(h,t) £ II which again contradicts (¢, t) being an equi-
librium model and therefore there is at least a rule with
in the positive head where no other positive head atom not
containing z is satisfied.

We only have to consider rules » € II with
x € vars(H"(r)) and there exists no ¢’ € H™(r) with
x & vars(c’) and (t,t) =, ¢ as shown above. Assume
(h,t) ¥ B(r), then rule r is satisfied regardless of the
head. Similarly, assume (¢,t) =, H~(r). This implies
(h,t) =x H™(r), as there exists a literal -¢' € H~(r)
for which holds (¢, t) |=,, ¢ — L by definition of disjunc-
tion, in turn implying (h, t) =, ¢’ — L since (¢, t) (=, ¢
implies (h,t) £, ¢ by contraposition of Proposition 3
Therefore, (h,t) =, H(r) and rule r is satisfied regard-
less of the body. In both cases, (h,t) =, r and in turn
(h,t) =4 I1, our final contradiction to (¢, t) being an equi-
librium model.

O

Proposition 14 Every stable model of a logic program with-
out assignment rules is also supported.

Proof of Proposition 14 Proposition [I4] follows directly
from Lemma 2] as conditions [Tl and 2] in the definition of
supported are identical to conditions [Il and 2] in Lemma 2]
and Condition B implies (¢,t) =, B(r) by Proposition Bl
as well as (¢,t) =, H~(r). Thus, every stable model ¢ is



supported. g

Proof of Proposition[I1] First note that, from Theorem [1]
we can construct a logic program IT’ without assignment
rules such that IT =, II' for every selection function x by
replacing rules of the form x := s <— ¢ in II with rules of
the form x = d < @ A s = d in II'. Then, Proposition
implies that there is a rule in IT' satisfying conditions of
Definition [0 If such a rule also belongs to II, the re-
sult follows immediately. Otherwise, such a rule is of the
form x = d < ¢ A s = d and corresponds to a rule of the
form z := s < ¢ in II. Conditions [I] and 2] are immedi-
ately satisfied. For condition [Il we have v =, ¢ As =d
which implies v =, B(r) because B(r) = ¢ A def(s) and
v E, (s = d) implies v |=,; def (s). O
For splitting, we need the following notation. Given an in-
terpretation (h,t), by (h,t)|, we deonte the interpretation
<h|Ua t|U> .

Observation 4 Let U C X be some set of atoms and let
II = II; UIly be some without assignment rules such that
var(Ily) C U and var(lly) C U. Then, any interpretation
(h,t) is an (equilibrium) model of 11 iff both (h,t)|; is an
(equilibrium) model of 11y and (h,t){g is an (equilibrium)
model of T1,.

Observation 5 Let ¢ be some theory, k be some selection
Sunction, (h,t) be some total interpretation and x € X be
some variable such that h(x) = t(z). Let ¢’ be the result of
replacing some occurrence of x by t(x). Then, (h,t) =y ¢
iff (h,t) .

Lemma 3 Let II be a without assignment rules with split-
ting set U C X. Let (h,t) be a model of By (Il) such that

(t,t) is a model of Ty (). Let b/ be a valuation such that
I, = hly; and W'l = tig. Then, (h',t) is a model of TL

Proof of Lemma [ Since every r € By(Il) satisfies

vars(r) € U and b/, = h|;;, we immediately get that (b, t)

satisfies all rules in By (II).

Pick now any rule r € Ty. Given that (¢,¢) is a

model of Ty (IT), we get that either (¢,t) ., Ht(r) or

(t,ty = H—(r) or (t,t) £, B(r) hold. We reason by

cases:

e since vars(H*(r)) CU and Wz =tfz, we get that
(t,t) Ex HT(r) implies (b’ t) . H(r).

e Since H(r) is a negative formula, we get that
(t,t) |Ew H™ (r) implies (', t) =, H~(r) because

e From Proposition Bl we get that (¢,t) &, B(r) implies
(W', t) ¥ B(r)

In all three cases we get that (h', t) =, r and, therefore, we

get that (h/, t) satisfies all rules in Ty (1) and, consequently,
in IL. 0

Lemmad Let II be a without assignment rules with
splitting set U C X, (t,t) be a total interpretation. Let
r € Ty(II) be a rule, x € U be some variable, and let v’ be
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the result of of replacing some occurrence of x by t(x). Then,
(t,t) is an equilibrium model of IL iff (t,t) is an equilibrium
model of (IT\ {r}) U {r'}.

Proof of Lemma @ Let I' = (II \ {r}) U {r'}. From
Observation 3] we get that (¢, ¢) is a model of IT iff (¢,¢) is
amodel of IT".

Assume that (¢,¢) is an equilibrium model of IT (resp. II').
Then, to show that (¢,t) is an equilibrium model of IT'
(resp. IT) we need to prove that no interpretation (h, t) with
h C t is a model of IT" (resp. IT).

Let (h,t) be any such interpretation and suppose, for the
sake of contradiction, that it is a model of IT' (resp. II).
Then (h, t) is also a model of II \ {r} and, from Lemmal[3]
we get that there is a model (h’,¢) of II (resp. IT') such
that hl, = h/,. Since (¢,t) is an equilibrium model
of II (resp. IT'), it follows that A’ = ¢ and, thus, we get
that h|;, = t|;,. Since = € U, this implies h(x) = t(z) and,
from Observation B3l we get that (h,t) | r iff (h,t) =1’
Hence, (h, t) is a model of IT (resp. IT') which is a contradic-
tion with the assumption that (¢,¢) is an equilibrium model
of II (resp. IT'). Consequently, (h,t) cannot be model of IT’
(resp. II). As a result, (¢,t) is an equilibrium model of IT
(resp. IT"). O

Proposition 15 Let II be a without assignment rules with
splitting set U C X. Then, any total interpretation (t,t) is
an equilibrium model of TL iff (t,t) is an equilibrium model
of Bu(I) U Ey (11, £).

Proof of Proposition Follows directly by induction
using Lemma[4 O

Proof of Theorem[I2] Assume first that (¢, t) is an equilib-
rium model of II. From Proposition it follows that that
(t,t) is an equilibrium model of By (IT) U Ey; (11, ). Further-
more, by construction, we can see that var(By (1)) C U
and var(Ey(I1,t)) C U. Then, from Observation [l it
follows that that (¢, )|, is an equilibrium model of By (IT)
and (, t)[7 is an equilibrium model of Ey (I, t). The other
way around is symetric. g

Theorem 6 Let I1 be some program without assignment
rules which is stratified on some occurrence of a conditional
term s and k and k' be two evaluation mappings that agree
on all occurrences of conditional terms but s. Then, the k-
stable models and the k'-stable models of 11 coincide.

Proof of Theorem[6] Let U be
{z € X| Mx) < A(y) for some y € vars(p) }

Let 7 € II be any rule. If there is z € (H™(r) N U), then
we get that A(y) < A(x) for every variable y € vars(r) and,
therefore, vars(r) C U. Consequently, U is a splitting set
of II



From Theorem [12] this implies that any total interpreta-
tion (t,t) is an equilibrium model of IT iff (t,¢)|, is an
equilibrium model of By (II) and (¢, )7 is an equilibrium
model of Ey (11, t|,;).

Let r € 1II (resp. 7 € II') be rule in which the
conditional expression 7 occurs. Then, A\(z) > A(y) for
all variables x € vars(H*(r)) and y € vars(yp). This im-
plies that H*(r) N U = { and, thus, that r € Ty (I)
(resp.r € Ty (IT")). Hence, we immediately get that the equi-
librium models of By (IT) and By (IT') coincide.

Let v’ = Ey(r,t|;) and 7’ be the result of applying this
transformation to 7. Then, since vars(p) C U, we get that
every variable in ¢ has been replaced by its value in 7’.
This implies #;, 47" and &', 47" coincide and, as a result,
the equilibrium models of Ey(ILt|,) and Ey(Il',t[;)
also coincide. Consequently, IT and I’ have the same
equilibrium models. g

Proof of Theorem [3 First note that, from Theorem [
we can construct a logic program IT' without assignment
rules such that IT =,, II' for every selection function x by
replacing rules of the form x := s <— ¢ in II with rules of
the form x =d + ¢ As=d in IT'. Tt is easy to see that,
if IT is stratified in some occurrence, then so it is IT'. Hence,
the result follows directly from Theorem[6] 0

Proof of Theorem[d] First note that, if a program is tight,
then it is stratified on all occurrences not in the scope of
negation. Then, let x and «’ be two selection function-
sagreeing on all occurrences in the scope of negation. From
Theorem B} we immediately get that the x and x’-stable
models coincide. Furthermore, from Proposition 4 and
Observation [T we have (h,t) =, -y iff (¢,t) =, o iff
(t,t) Ew —¢ for any selection function x”. Then the result
follows. 0

Proof of Proposition Note that the otherwise case is
just an abbreviation for

op((s1|00p: 903)7 (52]00p: ‘Pé)v ) =80
and its easy to see that this is the result of applying the reduct
to (??) when this is satisfied by ¢.

Lemma 5 For any interpretation (h,t) and condition-free
formula o, we have (h,t) FEar ¢ iff h Ea ¢

Proof of Lemma[8] We proof Lemma[3] via induction over
the structure of the formula.
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Induction base For condition-free constraint atom c, we
get

(h,t) 'de c (84)
ifthe [df () ]andt € [df pn()] (85
iff h € [ evalp(c)] and t € [ evals(c)] (86)
iffh =g cand t o c 87)
iff h f=¢ ¢! (88)

Equivalence between (84) and (83) holds by definition
of the satisfaction relation. Equivalence between (83) and
(86) holds by definition of the evaluation function. since
df (011 (c) = evalyr(c) = c for any condition-free con-
straint ¢ and valuations v, v’,v”. Equivalence between (86)
and (87) holds by definition of the classical satisfaction rela-
tion. Equivalence between (87) and (88)) holds by definition
of the reduct since ¢! = c for any condition-free constraint
atom c such that ¢t =, ¢, which in turn has to hold since
otherwise A is no classical model of ct.

Induction step For formula ¢; A @2, we get

(h,t) FEap 01 A @2 (89)
iff <h, t> ':df ®1 and <h,t> ':df »2 (90)
iff b f=c; 08 and h f=¢ ) o1)
iff h = (01 A ) (92)

Equivalence between and holds by definition of
the satisfaction relation. Equivalence between (90) and (91))
holds by induction hypothesis. Equivalence between (@1
and (92) holds by definitions of the classical satisfaction re-
lation and reduct.

Induction step For formula ¢; V @2, we get

(hit) Ear o1V @2 (93)
iff <h7t> ):df @1 or <h7 t> ):df P2 (94)
iff b f=cr ) or B e 05 (95)
iff i f=ar (01 V p2)' (96)

Equivalence between (93) and holds by definition of
the satisfaction relation. Equivalence between (94) and ([©3))
holds by induction hypothesis. Equivalence between (@3]
and (Q6) holds by definitions of the classical satisfaction re-
lation and reduct.

Induction step For formula 7 — @9, we get

(h,t) FEar p1 = @2 97)
iff (h,t) Fap w1 01 (h,t) Fap 02, and (t,1) = @1 — 02

(93)
iff h fEa <p’i orh =u <p§, and t =0 1 — 2 (99)
iff h e (01 — 02)° (100)

Equivalence between (@7) and (@8)) holds by definition of the
satisfaction relation and Proposition[3l Equivalence between



(©8) and [@9) holds by induction hypothesis and Lemma 3
Equivalence between (99) and (I00) holds by definitions of
the classical satisfaction relation and reduct. ]

Lemma 6 For any interpretation (h,t) and formula @, we
have (h,t) |=ar ¢ iff h e ¢

Proof of Lemmal6] We proof Lemmal6] via induction over
the structure of the formula. Lemma [3 constitutes the induc-
tion base of this proof.

Induction step For ¢ = (01 ® po) and ® € {A,V, =},
we refer to the respective induction steps in the proof of
Lemma [3] since they hold regardless of whether (; and o
are condition-free.

Induction step For conditional constraint atom ¢, we get

<h7t> ':df c
iff b € [ df g, (cl(s1]52: 1), (s2] 52 02), -]
and <t, t> ':df Cc

iff 1o € [eldf (1) ((s1]81:01)), df gy ((52]55:02)), ... 1]
(103)

(101)
(102)

and <t, t> ':df Cc
iff h € [ c[evaln((s1]sy:¢})), evaln((s2]sh: €5)), .. .11

(104)
andt = ¢
iff h € [ evaly(c[(s1]8):¢1), (s2]8h:¢2),...])]  (105)
andt = ¢
i 7 g ¢ and £ =y ¢ (106)
iff h e (107)

where (s;|s;: ;) are all conditional terms occuring in c.
Equivalence between (I01) and (I02) holds by definition
of the satisfaction relation. Equivalence between (102) and
(I03) holds by definition of the evaluation function. The
equivalence between (I03) and (104) holds, first, by induc-
tion hypothesis since

cldf ey ((s1]51:01)), df () ((s2l82: 02)), -] =

clevaly((s1]sh: 1)), evaly((s2lsh: @4)), -]

in case that (h,t) Far i iff h o ! for 1 < i < n, and
second, since (t,t) =4 ciff ¢ |=¢ c. Equivalence between
(104 and (I03) holds by definition of the evaluation
function. Equivalence between (103) and (I06) holds by
definition of the classical satisfaction relation. Equivalence
between (I06) and (I07) holds by definitions of reduct
and classical satisfaction relation since if h =g ¢! implies
t =¢ ¢ no interpretation satisfies L.
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Proof of Theorem B Theorem [3 follows directly from
Lemmal@l If valuation ¢ is a df -stable model of ¢, we know
that (¢,t) F=af ¢ and, by Lemmal6 ¢ }=.; ¢'. Furthermore,
there cannot exist a valuation h C ¢ such that h = ot
since that would imply (h,t) =45 ¢ again by Lemma [6]
which cannot hold since valuation ¢ is a df-stable model
of ¢. Thus, valuation ¢ is a subset minimal model of ¢!
making it a F' stable model of ¢. Similarly, if valuation
t is a F'stable model of ¢, we know that ¢t gpt and
(t,t) Ed4r ¢ by Lemma [0l Again, there cannot exist an
h C t such that (h,t) =45 ¢, because it implies h = "
by Lemma (6 which cannot hold since ¢ is a F'stable model
of ¢. In conclusion, (t,t) =45 ¢ and there exists no h C ¢
such that (h,t) | ¢, therefore, valuation ¢ is a df -stable
model of . 0
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