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Abstract

This paper continues the line of research aimed at investigating the relationship between logic
programs and first-order theories. We extend the definition of program completion to programs
with input and output in a subset of the input language of the ASP grounder gringo, study
the relationship between stable models and completion in this context, and describe preliminary
experiments with the use of two software tools, anthem and vampire, for verifying the correct-
ness of programs with input and output. Proofs of theorems are based on a lemma that relates
the semantics of programs studied in this paper to stable models of first-order formulas. This
paper is under consideration for acceptance in Theory and Practice of Logic Programming.

1 Introduction

This paper continues the line of research aimed at investigating the relationship between
logic programs and first-order theories, which goes back to Keith Clark’s classical paper
on program completion (Clark 1978). We are interested in extending that idea to input
languages of answer set programming (ASP) (Brewka et al. 2011) and in using it for the
verification of ASP programs.

These programs are different from logic programs studied by Clark in two ways. First,
their semantics is based on the concept of a stable model (Gelfond and Lifschitz 1988),
which is not equivalent to the completion semantics, unless some assumptions about the
program are made, such as tightness (Fages 1994; Erdem and Lifschitz 2003). Second,
ASP programs can include symbols for integers and arithmetic operations. Ways to ex-
tend completion to these constructs are proposed in two recent publications (Harrison et al. 2017;
Lifschitz et al. 2020).

It is essential for our purposes that, in ASP, we often deal with programs that accept
an input and employ auxiliary predicates. Consider, for instance, the program

{in_cover (1 . . n)},

← I 6= J ∧ in_cover (I) ∧ in_cover (J) ∧ s(X, I) ∧ s(X, J),

covered(X)← in_cover (I) ∧ s(X, I),

← s(X, I) ∧ not covered(X),

(1)

http://arxiv.org/abs/2008.02025v3
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which encodes exact covers1 of a finite family of finite sets. It accepts an input, represented
by a placeholder n and a predicate symbol s/2; n is the number of sets, and the formula
s(X, I) expresses that X belongs to the I-th set. The predicate symbol in_cover/1

represents the output, and covered/1 is auxiliary.
In this paper, we extend the definition of program completion to programs with in-

put and output in a subset of the input language of the ASP grounder gringo, state a
theorem describing the relationship between stable models and completion in this con-
text, and describe preliminary experiments with the use of two software tools, anthem

(Lifschitz et al. 2018; Lifschitz et al. 2019) and vampire (Kovács and Voronkov 2013),
for verifying the correctness of programs with input and output. A lemma that may
be of independent interest relates the semantics of simple gringo programs to stable
models of first-order formulas (Ferraris et al. 2011). It shows, in other words, that the
approach to the semantics of logic programs advocated by Lee et al. (2008) is applicable
to the subset of gringo studied here.

2 Review: Programs

The class of programs studied in this paper is the subset of the input language of gringo

(Gebser et al. 2015) discussed in earlier publications by Lifschitz et al. (2019; 2020).
We assume that three countably infinite sets of symbols are selected: numerals, symbolic

constants, and program variables. We assume a 1-to-1 correspondence between numerals
and integers; the numeral corresponding to an integer n is denoted by n.

Program terms are defined recursively:

• Numerals, symbolic constants, program variables, and the symbols inf and sup are
program terms;
• if t1, t2 are program terms and ◦ is one of the operation names

+ − × / \ . .

then (t1 ◦ t2) is a program term.

If t is a term, then −t is shorthand for 0− t.
A program term, or another syntactic expression, is ground if it does not contain

variables. A ground expression is precomputed if it does not contain operation names (in
other words, if it is a numeral, a symbolic constant, or one of the symbols inf or sup).

We assume that a total order on precomputed program terms is chosen such that

• inf is its least element and sup its greatest element,
• for any integers m and n, m < n iff m < n, and
• for any integer n and any symbolic constant c, n < c.

An atom is an expression of the form p(t), where p is a symbolic constant and t is a
tuple of program terms. A literal is an atom possibly preceded by one or two occurrences

1 An exact cover of a collection S of sets is a subcollection S′ of S such that each element of the union
of all sets in S belongs to exactly one set in S′.
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of not. A comparison is an expression of the form (t1 ≺ t2), where t1, t2 are program
terms and ≺ is one of the comparison symbols

= 6= < > ≤ ≥ (2)

A rule is an expression of the form

Head ← Body , (3)

where

• Body is a conjunction (possibly empty) of literals and comparisons and
• Head is either an atom (then, we say that (3) is a basic rule) or an atom in braces

(then, (3) is a choice rule), or empty (then, (3) is a constraint).

A program is a finite set of rules.
For example, (1) is a program in the sense of this definition, except that the expression
{in_cover (1 . . n)}, strictly speaking, should be written as {in_cover (1 . . n)} ←.

The semantics of programs uses a translation τ , which turns a program into a set of
propositional combinations of precomputed atoms (Lifschitz et al. 2019, Section 3). For
example, the result of applying τ to the program

{p(1 . . 3)},

q(X + 1)← p(X)
(4)

consists of the ground formulas

⊤ → (p(1) ∨ ¬p(1)) ∧ (p(2) ∨ ¬p(2)) ∧ (p(3) ∨ ¬p(3)),

p(n)→ q(n+ 1) for all integers n, and

p(r)→ ⊤ for all precomputed terms r other than numerals.

Using the translation τ , we define the semantics of programs as follows: A set of precom-
puted atoms is a stable model of a program Π if it is a stable model (answer set) of τΠ
in the sense of Ferraris (2005).

3 Review: Representing Programs by First-Order Theories

The translation τ∗ (Lifschitz et al. 2019) converts a program into a finite set of first-order
sentences with variables of two sorts. Besides program variables, which are meant to range
over precomputed program terms, these sentences contain integer variables, which are
meant to range over numerals. The second sort is a subsort of the first.

A predicate symbol is a pair p/n, where p is a symbolic constant and n is a nonnega-
tive integer. About a program or another syntactic expression, we say that a predicate
symbol p/n occurs in it if it contains an atom of the form p(t1, . . . , tn).

For any program Π, τ∗Π consists of formulas over the two-sorted signature σΠ including

• all precomputed terms as object constants; a precomputed constant is assigned the
sort integer iff it is a numeral;
• the symbols +, −, and × as binary function constants; their arguments and values

have the sort integer ;
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• all predicate symbols occurring in Π and the comparison symbols other than equal-
ity as predicate constants.

An atomic formula (p/n)(t1, . . . , tn) can be abbreviated as p(t1, . . . , tn). An atomic for-
mula ≺ (t1, t2), where ≺ is a comparison symbol, can be written as t1 ≺ t2. Formulas

are formed from atomic formulas using the propositional connectives

⊥ (“false”) ∧ ∨ →

and the quantifiers ∀ and ∃ as usual in first-order languages with equality. We use ⊤ as
shorthand for ⊥ → ⊥, ¬F as shorthand for F → ⊥, and F ↔ G as shorthand for
(F → G) ∧ (G→ F ).

Prior to defining τ∗, we define, for every program term t, a formula val t(Z), where Z is
a program variable that does not occur in t. That formula expresses, informally speaking,
that Z is one of the values of t. The definition is recursive:

• if t is a numeral, a symbolic constant, a program variable, inf , or sup, then val t(Z)

is Z = t;
• if t is (t1 ◦ t2), where ◦ is +, −, or ×, then val t(Z) is

∃IJ (Z = I ◦ J ∧ val t1(I) ∧ val t2(J))

where I, J are fresh integer variables;
• if t is (t1 / t2), then val t(Z) is

∃IJQR (I = J ×Q+R ∧ val t1(I) ∧ val t2(J)

∧ J 6= 0 ∧R ≥ 0 ∧R < Q ∧ Z = Q),

where I, J , Q, R are fresh integer variables;
• if t is (t1\t2), then val t(Z) is

∃IJQR (I = J ×Q+R ∧ val t1(I) ∧ val t2(J)

∧ J 6= 0 ∧R ≥ 0 ∧R < Q ∧ Z = R),

where I, J , Q, R are fresh integer variables;
• if t is (t1 . . t2), then val t(Z) is

∃IJK (val t1(I) ∧ val t2(J) ∧ I ≤ K ∧K ≤ J ∧ Z = K),

where I, J , K are fresh integer variables.

For example, val1..3(Z) is

∃IJK (I = 1 ∧ J = 3 ∧ I ≤ K ∧K ≤ J ∧ Z = K),

and val
X+1(Z) is

∃IJ (Z = I + J ∧ I = X ∧ J = 1).

The other thing to do in preparation for defining τ∗ is to define the translation τB

that will be applied to expressions in the body of the rule:

• τB(p(t1, . . . , tk)) is

∃Z1 . . . Zk (val t1(Z1) ∧ · · · ∧ val tk(Zk) ∧ p(Z1, . . . , Zk));
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• τB(not p(t1, . . . , tk)) is

∃Z1 . . . Zk (val t1(Z1) ∧ · · · ∧ val tk(Zk) ∧ ¬p(Z1, . . . , Zk));

• τB(not not p(t1, . . . , tk)) is

∃Z1 . . . Zk (val t1(Z1) ∧ · · · ∧ val tk(Zk) ∧ ¬¬p(Z1, . . . , Zk));

• τB(t1 ≺ t2) is

∃Z1Z2 (val t1(Z1) ∧ val t2(Z2) ∧ Z1 ≺ Z2);

where each Zi is a fresh program variable.
Now, we define

τ∗(Head ← B1 ∧ · · · ∧Bn)

as the universal closure of the formula

τB(B1) ∧ · · · ∧ τB(Bn)→ H,

where H is

• ∀Z1 . . . Zk (val t1(Z1) ∧ · · · ∧ val tk(Zk)→ p(Z1, . . . , Zk))

if Head is p(t1, . . . , tk);
• ∀Z1 . . . Zk (val t1(Z1) ∧ · · · ∧ val tk(Zk)→ p(Z1, . . . , Zk) ∨ ¬p(Z1, . . . , Zk))

if Head is {p(t1, . . . , tk)};
• ⊥ if Head is empty;

where Z1, . . . , Zk are fresh program variables.
For any program Π, τ∗Π stands for the set of formulas τ∗R for all rules R of Π. For

example, the result of applying τ∗ to program (4) is the pair of sentences

⊤ → ∀Z (val1..3(Z)→ p(Z) ∨ ¬p(Z)),

∀X (∃Z (val
X+1(Z) ∧ p(Z))→ ∀Z (Z = X → p(Z))).

4 Main Lemma

The lemma stated in this section is used in the proofs of Theorems 1 and 2, which are
stated later in Section 6. It relates the stable models of a program Π to the stable models
of the first-order theory τ∗Π.

Recall that, for any first-order sentence F and any list p of predicate symbols (other
than equality), SMp[F ] stands for the second-order sentence

F ∧ ¬∃u((u < p) ∧ F ∗(u))

(Ferraris et al. 2011, Section 2.3). The definition of SMp in that paper is given for formu-
las with one sort of variables, but its extension to many-sorted formulas is straightforward,
and we will apply it here to the class of formulas defined in Section 3.

The models of SMp[F ] are called the p-stable models of F . For a set Γ of first-order
sentences, the p-stable models of Γ are the p-stable models of the conjunction of all
formulas in Γ.

For any program Π and any set I of precomputed atoms, I↑ stands for the interpreta-
tion of the signature σΠ such that
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• the universe of the first sort of I↑ is the set of all precomputed terms;
• the universe of the second sort of I↑ is the set of all numerals;
• I↑ interprets every precomputed term t as t;
• I↑ interprets m+ n as m+ n, and similarly for subtraction and multiplication;
• I↑ interprets every precomputed atom p(t1, . . . , tn) as true iff it belongs to I;
• I↑ interprets every atomic sentence t1 ≺ t2, where t1 and t2 are precomputed terms,

as true iff the relation ≺ holds for the pair (t1, t2).

Main Lemma. Let Π be a program and let p be the list of all predicate symbols occurring

in Π other than the comparison symbols. A set I of precomputed atoms is a stable model

of Π iff I↑ is a p-stable model of τ∗Π.

Proofs are relegated to Appendix A.

5 Programs with Input and Output

5.1 Syntax

A program with input and output, or an io-program, is a quadruple

(Π,PH , In,Out), (5)

where

• Π is a finite set of rules;
• PH is a finite set of symbolic constants, called the placeholders of (5);
• In is a finite set of predicate symbols that do not occur in the heads of rules of Π;

they are called the input symbols of (5);
• Out is a finite set of predicate symbols that is disjoint from In; they are called the

output symbols of (5).

The input and output symbols of an io-program are collectively called its public symbols ;
the predicate symbols occurring in the rules that are not public are called private. We
also distinguish between public and private atoms, depending on whether their predicate
symbols are public or private. Every set I of public atoms is the union of two disjoint
sets—the set Iin of atoms in I that begin with an input symbol and the set Iout of
atoms that begin with an output symbol.

As an example, consider the io-program Ω1 with rules (1), the placeholder n, the
input symbol s/2, and the output symbol in_cover/1. The only private symbol of Ω1 is
covered/1.

By σΩ, we denote the part of the signature σΠ (Section 3) obtained from it by removing
all private symbols. Formulas of that signature will be used in writing specifications.

Programs can be viewed as a special case of io-programs if we agree to identify a
program Π with the io-program (5) in which PH and In are empty and Out is the set of
all predicate symbols that occur in the rules of Π.

5.2 Semantics

A valuation for an io-program Ω is a function defined on the set of placeholders of Ω such
that its values are precomputed terms different from placeholders. An input for Ω is a



Verifying Tight Logic Programs with anthem and vampire 7

pair (v, i), where v is a valuation and i is a set of precomputed atoms that do not contain
placeholders, such that the predicate symbol of each atom in i is an input symbol of Ω.

For an io-program Ω and an input (v, i), we denote by Ω(v, i) the program consisting
of

• the rules obtained from the rules of Ω by replacing every occurrence of every place-
holder t by the term v(t) and
• the facts i.

About a set of precomputed atoms, we say that it is an io-model of an io-program Ω for
an input (v, i) if it is the set of all public atoms of some stable model of Ω(v, i).

For example, we can define an input (v1, i1) for Ω1 by the conditions

v1(n) = 3, i1 = {s(a, 1), s(b, 1), s(b, 2), s(c, 2), s(c, 3)}.

With this input, Ω1 encodes the exact covers of the collection {{a, b}, {b, c}, {c}}. The
program Ω1(v1, i1) consists of the rules

{in_cover (1 . . 3)},

← I 6= J ∧ in_cover (I) ∧ in_cover (J) ∧ s(X, I) ∧ s(X, J),

covered(X)← in_cover (I) ∧ s(X, I),

← s(X, I) ∧ not covered(X),

s(a, 1), . . . , s(c, 3).

It has one stable model,

{s(a, 1), . . . , s(c, 3), in_cover(1), in_cover (3), covered(a), covered(b), covered(c)},

so that the only io-model of Ω is {s(a, 1), . . . , s(c, 3), in_cover(1), in_cover (3)}.
It is clear that atoms in an io-model do not contain private symbols. Furthermore, if
I is an io-model of Ω for an input (v, i), then Iin = i. This is clear from the fact that
the only rules of Ω(v, i) containing input symbols in the head are the facts i.

IO-models of io-programs also have a characterization in terms of first-order formulas
similar to the characterization of stable models in the Main Lemma above (see Ap-
pendix A.2). The proof of this characterization is based on the aforementioned Main
Lemma and results from (Ferraris et al. 2009) and (Cabalar et al. 2020). This is later
used in the proofs of Theorems 1 and 2 below.

5.3 Specifications

In this paper, we are interested in io-programs written in response to formal specifications.
A specification, as we understand this term, includes a list PH of placeholders, a list In

of input symbols, and a list Out of output symbols that a future io-program Ω is required
to have. (The choice of private symbols of Ω is left to the discretion of the programmer.)
That part of the specification determines the set of valuations and inputs of Ω as well as
the signature σΩ. A specification also includes two lists of sentences in first-order logic
over that signature: a list A of assumptions and a list S of specs. The sentences in A do
not contain output symbols. They are intended to describe the class of inputs that the
author of the specification is interested in. The sentences in S are meant to describe the
io-models that the future io-program is required to have for these inputs.



8 Jorge Fandinno, Vladimir Lifschitz, Patrick Lühne, and Torsten Schaub

For example, a specification for the exact cover problem (see Footnote 1) may include
the assumptions

∃N (n = N ∧N ≥ 0),

∀XY (s(X,Y )→ ∃I (Y = I ∧ I ≥ 1 ∧ I ≤ n)),
(6)

where N and I are integer variables. They tell us that a “good” input describes the length
and composition of a list of sets of precomputed atoms. Its specs may look like this:

∀Y (in_cover(Y )→ ∃I (Y = I ∧ I ≥ 1 ∧ I ≤ n)),

∀X (∃Y s(X,Y )→ ∃Y (s(X,Y ) ∧ in_cover(Y ))),

∀Y Z (∃X (s(X,Y ) ∧ s(X,Z)) ∧ in_cover (Y ) ∧ in_cover (Z)→ Y = Z).

(7)

These formulas describe the concept of an exact cover.
To give a precise definition of the semantics of specifications, we need to generalize

the process of transforming a set I of precomputed atoms into the interpretation I↑

defined in Section 4. This generalization takes into account the fact that placeholders
may be “reinterpreted” by a valuation. For any set I of precomputed public atoms that
do not contain placeholders and any valuation v, we denote by Iv the interpretation of
the signature σΩ such that

• the universe of the first sort of Iv is the set of all precomputed terms;
• the universe of the second sort of Iv is the set of all numerals;
• Iv interprets every placeholder t as v(t) and every other precomputed term t as t;
• Iv interprets m+ n as m+ n, and similarly for subtraction and multiplication;
• Iv interprets every precomputed atom p(t1, . . . , tn) that does not contain place-

holders as true iff it belongs to I;
• Iv interprets every atomic sentence t1 ≺ t2, where t1 and t2 are precomputed terms

different from placeholders, as true iff the relation ≺ holds for the pair (t1, t2).

In the exact cover example, Iv interprets the placeholder n as v(n). This interpretation
satisfies the first of assumptions (6) iff v(n) is a nonnegative numeral.

We say that Ω implements the specification with assumptions A and specs S if, for
every valuation v and every set I of precomputed public atoms without placeholders
such that Iv satisfies A,

I is an io-model of Ω for the input (v, Iin) iff Iv satisfies S.

In the next section, we show that this condition can be sometimes established by
proving a sentence in a first-order theory. This is how anthem works.

6 Completion and Tightness

6.1 Completed Definitions

The definition of a predicate symbol p/n in an io-program Ω is the set of all rules of Ω
that have the forms

p(t1, . . . , tn)← Body (8)
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and

{p(t1, . . . , tn)} ← Body . (9)

If the definition of p/n in Ω consists of rules R1, . . . , Rk, then the formula representa-

tions F1, . . . , Fk of these rules are constructed as follows. Take fresh program variables
V1, . . . , Vn. If Ri is (8), then Fi is the formula

τB(Body) ∧ val t1(V1) ∧ · · · ∧ val tn(Vn)

(see Section 3 for the definitions of τB and val). If Ri is (9), then Fi is the formula

τB(Body) ∧ p(V1, . . . , Vn) ∧ val t1(V1) ∧ · · · ∧ val tn(Vn). (10)

We are ready to define “completed definitions” of predicate symbols. Completed defi-
nitions are generally second-order formulas—the private symbols of Ω are represented in
them by predicate variables.

Let Ω be an io-program with private symbols p1/n1, . . . , pl/nl. Choose pairwise distinct
predicate variables P1, . . . , Pl and take a predicate symbol p/n that occurs in Ω and is
different from its input symbols. The completed definition of p/n in Ω is obtained from
the formula

∀V1 . . . Vn

(

p(V1, . . . , Vn)↔
k
∨

i=1

∃Ui Fi

)

, (11)

where Ui is the list of all variables occurring in rule Ri after substituting P1, . . . , Pl for
p1/n1, . . . , pl/nl.

For example, the completed definition of in_cover/1 in Ω1 is

∀V (in_cover (V )

↔ ⊤∧ in_cover (V ) ∧ ∃IJK (I = 1 ∧ J = n ∧ I ≤ K ∧K ≤ J ∧ V = K)).
(12)

It can be equivalently rewritten as

∀V (in_cover (V )→ ∃IJK (I = 1 ∧ J = n ∧ I ≤ K ∧K ≤ J ∧ V = K)).

6.2 Completion

For a constraint ← Body , its formula representation is defined as the formula obtained
from the universal closure of ¬τB(Body) by substituting P1, . . . , Pl for p1/n1, . . . , pl/nl.
For example, the formula representation of the second constraint of Ω1 is obtained from
the formula

∀XI ¬τB(s(X, I) ∧ not covered(X))

by substituting a predicate variable Covered for the predicate constant covered . It can
be equivalently rewritten as

∀XI ¬(s(X, I) ∧ ¬Covered (X)). (13)

The completion COMP(Ω) of an io-program Ω is the sentence ∃P1 . . . Pl F , where
P1, . . . , Pl are the predicate variables corresponding to the private symbols of Ω, as de-
scribed above, and F is the conjunction of
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• the completed definitions of all predicate symbols occurring in Ω other than its
input symbols and
• the formula representations of all constraints in Ω.

Note that this sentence does not contain any of the private symbols of Ω. In other words,
it is a second-order sentence over the signature σΩ (Section 5.1).

For example, the predicate completion of Ω1 is

∃Covered (F1 ∧ F2 ∧ F3 ∧ F4),

where F1 is the completed definition (12) of in_cover , F2 is the completed definition of
covered , and F3, F4 are the formula representations of the two constraints.

Theorem 1. If I is an io-model of an io-program Ω for an input (v, i), then the inter-

pretation Iv satisfies COMP(Ω).

6.3 Tight Programs

The predicate dependency graph of an io-program Ω is the directed graph that

• has the predicate symbols occurring in rules of Ω as its vertices and
• has an edge from p/n to q/m if there is a rule R in Ω such that p/n occurs in the

head of R and q/m occurs in the body of R.

The edge from p/n to q/m in the predicate dependency graph is positive if there is a
rule R in Ω such that p/n occurs in the head of R and q/m occurs in an atom in the
body of R that is not preceded by not .

An io-program is tight if its predicate dependency graph has no cycles consisting of
positive edges.

Theorem 2. For any tight io-program Ω and any set I of precomputed public atoms

without placeholders, I is an io-model of Ω for an input (v, i) iff Iv satisfies COMP(Ω)

and Iin = i.

This theorem shows that, in application to tight io-programs, the semantics of specifi-
cations (Section 5.3) can be characterized in terms of completion: A tight io-program Ω

implements the specification with assumptions A and specs S iff, for every valuation v

and every set I of precomputed public atoms without placeholders, the interpretation Iv

satisfies the sentence

A→ (COMP(Ω)↔ S). (14)

(We identify a list of sentences with the conjunction of its members.)
An interpretation of the signature σΩ is standard if it can be represented in the form Iv

for some set I of precomputed public atoms without placeholders and some valuation v.
We can then say that a tight io-program Ω implements the specification with assump-
tions A and specs S iff sentence (14) is satisfied by all standard interpretations.

The automation of reasoning about formulas of form (14) is difficult because COMP(Ω)

has, generally, bound predicate variables. We will now discuss a special case when rea-
soning about such formulas can be reduced to first-order reasoning.
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6.4 Private Recursion

Recall that the completion of an io-program Ω is a sentence of the form ∃PF , where P

is a list P1, . . . , Pl of predicate variables (Section 6.2). That list has the same length l

as the list p of the private symbols p1/n1, . . . , pl/nl of Ω. Formula F is a conjunction
that includes, among its conjunctive terms, the completed definitions F1(P), . . . , Fl(P)

of p1/n1, . . . , pl/nl. Denote the conjunction of all other conjunctive terms of F by F ′(P).
Then, the completion of Ω can be written as

∃P (F1(P) ∧ · · · ∧ Fl(P) ∧ F ′(P)). (15)

About an io-program Ω, we say that it uses private recursion if

• its predicate dependency graph has a cycle such that every vertex in it is a private
symbol or
• it includes a choice rule with a private symbol in the head.

Theorem 3. If an io-program Ω does not use private recursion, then its completion is

equivalent to

∀P (F1(P) ∧ · · · ∧ Fl(P)→ F ′(P)). (16)

From this theorem, we can conclude that, if Ω does not use private recursion, sen-
tence (14) is equivalent to

(A→ (∃P (F1(P) ∧ · · · ∧ Fl(P) ∧ F ′(P))→ S))

∧ (A→ (S → ∀P (F1(P) ∧ · · · ∧ Fl(P)→ F ′(P))))

and consequently to

∀P (A ∧ F1(P) ∧ · · · ∧ Fl(P)→ (F ′(P)↔ S)). (17)

The procedure used by anthem for program verification is applicable to an io-program
if it is tight and does not use private recursion. The procedure is based on the following
idea. We choose a set of axioms—sentences over the signature Ω that are satisfied by all
standard interpretations. This set may include, for instance, the formulas ∀N (N+0 = N)

and 2× 2 = 4. It may include also the formula a 6= b, where a and b are distinct symbolic
constants, unless at least one of them is a placeholder. To establish that Ω implements
the given specification, anthem verifies that the axioms entail sentence (17). This can be
accomplished by first-order reasoning—by verifying that the axioms entail the sentence
obtained from (17) by replacing the bound predicate variables with distinct predicate
constants that do not occur in the axioms. The predicate constants used by anthem are
actually the private predicate symbols from the rules of Ω, so that the formula derived
by anthem from the axioms is

A ∧ F1(p) ∧ · · · ∧ Fl(p)→ (F ′(p)↔ S).

Proof search is performed by the resolution theorem prover vampire. The task is di-
vided into two parts: deriving the specs S from the axioms, the assumptions A, and the
formulas F1(p), . . . , Fl(p), F

′ (“forward direction”) and deriving F ′ from the axioms, the
assumptions A, and the formulas F1(p), . . . , Fl(p), S (“backward direction”).
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input: n -> integer, s/2.

output: in_cover/1.

assume: n >= 0.

assume: forall Y (exists X s(X, Y) -> exists I (Y = I and I >= 1 and I <= n)).

spec: forall Y (in_cover(Y) -> exists I (Y = I and I >= 1 and I <= n)).

spec: forall X (exists Y s(X, Y) -> exists Y (s(X, Y) and in_cover(Y))).

spec: forall Y, Z (exists X (s(X, Y) and s(X, Z)) and in_cover(Y) and in_cover(Z)

-> Y = Z).

Fig. 1. A specification file to verify that a program encoding the exact cover problem
fulfills specification (7) under assumptions (6). First, n is declared a placeholder using
an input statement. The -> integer notation instructs anthem to represent n by an
integer variable internally. Next, the input and output predicates of Ω1 (s/2 and in/1,
respectively) are declared. The assume and spec statements encode assumptions (6) and
specs (7).

7 Verifying Tight Logic Programs with anthem

Let us return to the exact cover problem, which we encoded in rules (1) and represented
as io-program Ω1 earlier. We would like to show that this program implements spec-
ification (7) under the assumptions stated in (6). This verification can be automated
with anthem 1.0.2 To this effect, anthem reads a logic program and a specification,
checks that the program is tight and does not contain private recursion, generates the
program’s completion, and then performs automated proof searches trying to establish
that the program actually implements the given specification.

As the input program, we can simply pass rules (1) to anthem in the input language
of gringo. For the specification, anthem accepts files in a custom specification file

format. Specification files may contain multiple types of statements. input and output

statements specify input predicates and placeholders as opposed to output predicates.
Axioms, assumptions and specs are expressed by axiom, assume, and spec statements,
respectively. anthem’s specification file format has a simple syntax for such formulas.
This format is a concise form of the segment of the TPTP language (Sutcliffe 2017) that
is required for expressing specifications.

Similar to the input language of gringo, identifiers starting with a lowercase letter are
interpreted as predicate and object constants, while variables are denoted by identifiers
starting with an uppercase letter. An important distinction is that variables starting with
letters I, J, K, L, M, or N are implicitly assumed to be integer variables—as opposed to
program variables, which must start with U, V, W, X, Y, or Z. anthem shows an error
message if variables are used that start with letters not listed above. Terms may contain
integer arithmetics with a syntax close to gringo. In addition to that, the keywords not,
and, or, ->, <->, exists, and forall denote the common operators of first-order logic.

We can encode specification (7) and assumptions (6) in this format, as shown in Fig-
ure 1. If we give this specification to anthem along with the exact cover program encoded
in (1), anthem first generates the program’s completion and shows it to the user (see Fig-
ure 2). This is done as described in Section 6.2. Afterward, anthem verifies very quickly

2 https://github.com/potassco/anthem/releases

https://github.com/potassco/anthem/releases
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forall X (covered(X) <-> exists N (in_cover(N) and s(X, N)))

forall X (in_cover(X) <-> in_cover(X) and exists N (1 <= N and N <= n and X = N))

forall N1, N2, X not (N1 != N2 and in_cover(N1) and in_cover(N2)

and s(X, N1) and s(X, N2))

forall X, N not (s(X, N) and not covered(X))

Fig. 2. anthem generates the completion of the input program—here, Ω1, the exact
cover problem encoded by rules (1). The first two lines contain the completed defini-
tions of covered/1 and in_cover/1. They are followed by the two translated constraints.
Note that anthem applies basic equivalent transformations to simplify the completion
formulas. For example, the completed definition of in_cover shown here corresponds to
formula (12), but the integer variables I and J were eliminated by anthem. The last
line matches formula (13), the formula representation of the second constraint of Ω1.

that the program indeed implements the specification in Figure 1 using the theorem
prover vampire and informs the user accordingly.3

To accomplish this, anthem splits the equivalence verification task into two parts,
as mentioned at the end of Section 6.4. In either direction, anthem starts with a set
of presupposed formulas and performs one proof step for each formula to verify. For
each proof step, anthem devises a program in the TFF (“typed first-order formula”)
segment of the TPTP language. In this TPTP program, all presupposed formulas are
represented as TPTP axioms, and the formula to verify in this proof step is used as
the conjecture. anthem then passes this TPTP program to vampire. If a proof step is
successful within a predefined time limit, the formula is added to the list of presupposed
formulas and the next proof step is conducted. The fact that anthem uses the TPTP
format to communicate with vampire is completely hidden from the user.

In some cases, vampire is incapable of verifying the equivalence of a specification to a
program directly and within a reasonable time frame, for which there are two possible ex-
planations. First, the set of axioms known to vampire might not be sufficient to perform
the proof, and second, it might be necessary to further guide vampire’s proof search by
providing helper lemmas. To that end, anthem allows users to supply additional axioms
and helper lemmas with the axiom and lemma directives, respectively. anthem verifies
helper lemmas in the given order before the specs or the completion of the program. The
usage of axioms and helper lemmas can be seen in a second example, a specification for
programs that compute the floor of the square root of an integer n shown in Figure 3 and
the implementation in Figure 4. anthem and vampire verify the equivalence between
this specification and program only when supplying an axiom unknown to vampire and
a list of helper lemmas (shown in Figure 5).

While anthem 1.0 introduces the mode of operation described in the present paper,
earlier versions of anthem allowed users to try to prove that the stable models of a (not
necessarily tight) program satisfy a specification (Lifschitz et al. 2020). This functionality
is retained as a second mode of operation in anthem 1.0.

3 When running vampire 4.4 with the options --mode casc and --cores 8 on a computer with an Intel
Core i7-7700K CPU and 16 GB RAM, the equivalence proof completes within a total of 0.37 seconds.
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input: n -> integer.

assume: n >= 0.

output: q/1.

spec: exists N (forall X (q(X) <-> X = N) and N >= 0

and N * N <= n and (N + 1) * (N + 1) > n).

Fig. 3. A specification for programs calculating the floor of the square root of an inte-
ger n.

p(X) :- X = 0..n, X * X <= n.

q(X) :- p(X), not p(X + 1).

Fig. 4. A program meant to implement the specification in Figure 3.

8 Conclusions

This paper has four main contributions. First, we presented an extended definition of com-
pletion for programs with input and output in a subset of the input language of gringo.
Such programs are similar to lp-functions, defined by Gelfond and Przymusinska (1996),
except that we allow an input to include the values of placeholders. Also, they are closely
related to smodels program modules (Oikarinen and Janhunen 2009). Second, we stated
a result describing the relationship between stable models and completion in this con-
text. It uses the theory of stable models of infinitary formulas by (Truszczyński 2012) and
(Harrison et al. 2017). Third, we proposed a new theory of formal specifications for pro-
grams in the input language of gringo. Fourth, we presented preliminary experiments
with the new version of anthem, a software tool used in combination with a theorem
prover to verify that programs with input and output implement a specification. Only
few theorem provers support both the typed first-order form of TPTP and integer arith-
metics, and vampire was chosen because its performance outclassed other provers in
our early experiments. In later experiments, cvc4 emerged as a possible alternative with
similar performance to vampire, and we consider using cvc4 in the future. As another
direction of future work, we would like to extend the subset of the input language of
gringo supported by anthem, in particular, by simple forms of aggregates.
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Appendix A Proofs

A.1 Main Lemma

Let us now extend the correspondence between stable models defined in terms of the
SM operator and infinitary logic (Truszczyński 2012) to the above two-sorted case. We
also allow formulas to contain extensional predicate symbols, which are not considered
in (Truszczyński 2012).

We use the following notation. By Z, we denote the set of all numerals, and by T , we
denote the set of all precomputed terms. For an interpretation I and a list p of predicate
symbols, by Ip, we denote the set of precomputed atoms p(t1, . . . , tk) satisfied by I where
p ∈ p.

Let p,q be a partition of the predicate symbols in the signature. Then, the grounding

of a sentence F with respect to an interpretation I and a set of intensional predicate

symbols p (and extensional predicate symbols q) is defined as follows:

• gr
p

I
(⊥) = ⊥;

• for p ∈ p, grp
I
(p(t1, . . . , tk)) = p((tI1)

∗, . . . , (tI
k
)∗);

• for p ∈ q, grp
I
(p(t1, . . . , tk)) = ⊤ if p((tI1)

∗, . . . , (tI
k
)∗) ∈ Iq

and gr
p

I
(p(t1, . . . , tk)) = ⊥ otherwise;

• gr
p

I
(t1 = t2) = ⊤ if tI1 = tI2 and ⊥ otherwise;

• gr
p
I
(F ⊗G) = gr

p
I
(F )⊗ gr

p
I
(G) if ⊗ is ∧, ∨, or →;

• gr
p
I
(∃X F (X)) = {grp

I
(F (u)) | u ∈ T }∨ if X is a program variable;

• gr
p
I
(∀X F (X)) = {grp

I
(F (u)) | u ∈ T }∧ if X is a program variable;

• gr
p
I
(∃X F (X)) = {grp

I
(F (u)) | u ∈ Z}∨ if X is an integer variable;

• gr
p
I
(∀X F (X)) = {grp

I
(F (u)) | u ∈ Z}∧ if X is an integer variable.

For a theory Γ, we define gr
p

I
(Γ) = {grp

I
(F ) | F ∈ Γ}.

Definition 1. Let Γ be a theory and p be a list of predicate symbols. Then, an inter-

pretation I is called an INF-p-stable model of Γ if Ip is a stable model of grp
I
(Γ) in the

sense of Definition 1 in (Truszczyński 2012).

Any term, formula, or theory over the two-sorted signature σΠ can be seen as one-
sorted if we do not assign sorts to variables. On the other hand, some one-sorted terms
and formulas cannot be viewed as terms or formulas over σΠ; for instance, the one-sorted
term X + Y , where X and Y are program variables, is not a term over σΠ. We will refer
to terms, formulas, and theories over σΠ as two-sorted. One-sorted interpretations are
defined as usual in first-order logic, with integer and program variables ranging over the
same domain. One-sorted p-stable models and one-sorted INF-p-stable models are de-
fined as p-stable models and INF-p-stable models (see Section 4), respectively, but using
one-sorted interpretations rather than two-sorted ones. We also say that two theories are
one-sorted-equivalent if both theories have exactly the same one-sorted models. The fol-
lowing is a special case of Theorem 5 in (Truszczyński 2012) restricted to our one-sorted
language.

Proposition 1. Let Γ be a finite theory and p be the list of all predicate symbols in some

signature σΠ. Then, the one-sorted p-stable models of Γ and its one-sorted INF-p-stable

models coincide.
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In the following, we extend this result to two-sorted stable models with extensional
predicate symbols (see Proposition 2 below). This requires the following notation and
auxiliary results. The expression is_int(t), where t is a one-sorted term, stands for the
one-sorted formula t+ 1 6= t+ 2. Given a two-sorted sentence F , we write F us to de-
note the one-sorted sentence resulting from restricting all quantifiers that bind integer
variables in F to is_int(t). Formally, formula F us is recursively defined as follows:

• F us = F for any atomic formula F ;
• (F ⊗G)

us
= F us ⊗Gus with ⊗ ∈ {∧,∨,→};

• (∀X F (X))
us

= ∀X F (X)
us;

• (∃X F (X))
us

= ∃X F (X)
us;

• (∀N F (N))
us

= ∀N (is_int(N)→ F (N)
us
);

• (∃N F (N))us = ∃N (is_int(N) ∧ F (N)us);

where X and N are program variables and integer variables, respectively. We also de-
fine Γus = {F us | F ∈ Γ}.

Intuitively, the one-sorted models of Γus are in a one-to-one correspondence with the
two-sorted models of Γ. This one-to-one correspondence is formalized as follows. The
generalized value of a ground term is its value if it exists and a fixed (arbitrarily chosen)
symbolic constant u otherwise. Given a two-sorted interpretation I, by Ius, we denote
the one-sorted interpretation such that

• the universe of Ius is the set of all precomputed terms;
• Ius interprets each ground term as its generalized value;
• Ius interprets every predicate symbol in the same way as I.

Lemma 1. Let F be a two-sorted sentence and I be a two-sorted interpretation. Then,

I |= F iff Ius |= F us.

Proof. By structural induction. In case that F is an atomic formula of the form p(t1, . . . , tn),
it follows that Ius |= F us iff (s∗1, . . . , s

∗
n) ∈ pI , where each si is the generalized value of ti,

iff ((tI1)
∗, . . . , (tIn)

∗) ∈ pI iff I |= F . Note that, since F is a two-sorted sentence, the
generalized value of ti coincides with its value.

The only remaining relevant cases are quantifiers over integer variables. We show here
the case of a universal quantifier. Let N be an integer variable. Then,

Ius |= (∀N G(N))
us

iff Ius |= ∀N (is_int(N)→ G(N)
us
)

iff Ius |= is_int(u)→ G(u)
us for all u ∈ T

iff Ius |= G(u)
us for all u ∈ Z

iff I |= G(u) for all u ∈ Z (induction hypothesis)

iff I |= ∀N G(N).

The case for the existential quantifier is analogous.

We extend this result also to the stable models of a first-order formula. The following
auxiliary result is useful for that purpose.

Lemma 2 (Lemma 5 in Ferraris et al. 2011). The formula (u ≤ p) ∧ (F ∗(u) → F ) is

satisfied by all one-sorted interpretations and for any one-sorted formula F .
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Lemma 3. Let F be a two-sorted sentence, I be a two-sorted interpretation, and p be a

list of predicate symbols. Then, I |= SMp[F ] iff Ius |= SMp[F
us].

Proof. From Lemma 1, we get that I |= SM[F ] iff Ius |= (SM[F ])
us. We show below

that formula (u ≤ p) ∧ (F ∗(u))
us is equivalent to (u ≤ p) ∧ (F us(u))∗. This immediately

implies that (SM[F ])
us and SM[F us] are also equivalent. The proof follows by structural

induction, and the only relevant cases are, again, quantifiers over integer variables. We
show the case of a universal quantifier here. Let N be an integer variable and assume
(u ≤ p). Then,

((∀N G(N,u))us)∗

= (∀N (is_int(N)→ G(N,u)us))∗

= ∀N (is_int(N)→ G(N,u)
us
)∗

= ∀N ((is_int(N)→ G(N)
us
) ∧ (is_int(N)∗ → (G(N,u)

us
)∗))

= ∀N ((is_int(N)→ G(N)
us
) ∧ (is_int(N)→ (G(N,u)

us
)∗))

⇔ ∀N (is_int(N)→ (G(N)
us
∧ (G(N,u)

us
)∗))

⇔ ∀N (is_int(N)→ (G(N,u)us)∗) (Lemma 2)

⇔ ∀N (is_int(N)→ (G(N,u)∗)us) (induction hypothesis)

= (∀N G(N,u)∗)
us
.

This correspondence can also be established in terms of groundings as follows. The
expression Γ ≡s Γ′, where Γ and Γ′ are two infinitary propositional theories, stands for
strong equivalence in the sense of (Harrison et al. 2017, Section 3.1).

Lemma 4. Let Γ be a finite two-sorted theory, I be a two-sorted interpretation, and p

be a list of predicate symbols. Then, grp
I
(Γ) ≡s gr

p

Ius
(Γus).

Proof. We show gr
p
I
(F ) ≡s gr

p
Ius

(F us) for a formula F , which implies grp
I
(Γ) ≡s gr

p
Ius

(Γus).
We proceed by structural induction. The only relevant cases are quantifiers over integer
variables. We show the case of a universal quantifier here. Let N be an integer variable
and G′(u) stand for gr

p

Ius
(Gus(u)). Then,

gr
p
I
(∀N G(N)) = {grp

I
(G(u)) | u ∈ Z}∧

≡s {G
′(u) | u ∈ Z}∧ (induction hypothesis)

≡s ({⊤ → G′(u) | u ∈ Z} ∪ {⊥ → G′(u) | u ∈ T \ Z})∧

= gr
p

Ius
(∀N (is_int(N)→ Gus(N)))

= gr
p

Ius
((∀N G(N))

us
).

The case for the existential quantifier is analogous.

Next, we combine these results to establish a correspondence between the stable models
of a first-order theory and the stable models of its infinitary grounding.

Lemma 5. Let Γ be a finite two-sorted theory, I be a two-sorted interpretation, and p be

the list of all predicate symbols in the signature. Then, the p-stable and the INF-p-stable

models of Γ coincide.
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Proof. We have

I is a p-stable model of Γ

iff Ius is a p-stable model of Γus (Lemma 3)

iff Ius is an INF-p-stable model of Γus (Proposition 1)

iff (Ius)p is a stable model of grp
Ius

(Γus)

iff (Ius)p is a stable model of grp
I
(Γ) (Lemma 4)

iff Ip is a stable model of grp
I
(Γ)

iff I is an INF-p-stable model of Γ.

For the next-to-last equivalence, just note that (Ius)p = Ip.

Proposition 2. For any finite two-sorted theory Γ and list of predicate symbols p, its

p-stable models and its INF-p-stable models coincide.

Proof. Let q be the list of all extensional predicate symbols in Γ, that is, all predicate
symbols in the signature that do not belong to p, and let Choice(q) be the set containing
a choice sentence ∀U (p(U) ∨ ¬p(U)) for every predicate p ∈ q and where U is a list of
distinct program variables. Let Γ′ be the theory obtained by replacing each occurrence
of p(t) in Γ with p ∈ q by ¬¬p(t). Let Γ1 = Γ ∪ Choice(q) and Γ′

1 = Γ′ ∪ Choice(q).
Given the choice sentences in Γ1 and Γ′

1 for the predicate symbols in q, the pq-stable
models of Γ1 and Γ′

1 coincide. Then,

I is a p-stable model of Γ

iff I is a pq-stable model of Γ1 (Theorem 2 in Ferraris et al. 2011)

iff I is a pq-stable model of Γ′
1

iff I is an INF-pq-stable model of Γ′
1 (Lemma 5)

iff I is an INF-p-stable model of Γ. (see below)

It remains to be shown that the INF-pq-stable models of Γ′
1 coincide with the INF-p-stable

models of Γ. For this, note that

[grpq
I

(Γ′
1)]

I
pq

= [grpq
I

(Γ′ ∪ Choice(q))]I
pq

= [grpq

I
(Γ′)]I

pq

∪ [grpq

I
(Choice(q))]I

pq

≡ [grp
I
(Γ′)]I

pq

∪ [grpq
I

(Choice(q))]I
pq

= [grp
I
(Γ′)]I

p

∪ [grpq
I

(Choice(q))]I
q

≡ [grp
I
(Γ′)]I

p

∪ Iq.

The first two equalities hold by definition. The third step holds because all predicate
symbols in q occur in Γ′ under the scope of negation. Note that, for q ∈ q, it follows that

[grpq

I
(¬q(t))]I

pq

= [¬q((tI)∗)]I
pq

= Ipq(¬q((tI )∗))

≡ ¬I(q((tI)∗))

= [¬I(q((tI )∗))]I
pq

= [¬grp
I
(q(t))]I

pq

= [grp
I
(¬q(t))]I

pq

,
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where

I(q((tI)∗)) =

{

⊤ if q((tI)∗) ∈ Iq;

⊥ otherwise

Ipq(¬q((tI )∗)) =

{

⊥ ≡ ¬I(q((tI )∗)) if q((tI)∗) ∈ Iq;

¬⊥ = ¬I(q((tI )∗)) otherwise.

The fourth case is because no predicate in q occurs in gr
p
I
(Γ′). Recall that extensional

predicate symbols are removed by grounding. Similarly, Choice(q) only contains predicate
symbols from q.

We now prove the following equivalence:

[grpq
I

(Γ′
1)]

I
pq

≡ [grp
I
(Γ)]I

p

∪ Iq (A1)

For this, note that

gr
p
I
(Γ′) ≡ gr

p
I
(Γ)

holds because gr
p
I
(Γ′) is the result of replacing each occurrence of p(t) in gr

p
I
(Γ) by

¬¬p(t) with p ∈ q. As a result, grp
I
(Γ′) is the outcome of replacing each occurrence of X

in gr
p
I
(Γ) (with X ∈ {⊤,⊥}) by ¬¬X . Consequently, equivalence (A1) is proven, and we

get that any interpretation J satisfies that Jpq |= [grpq
I

(Γ′
1)]

I
pq

iff Jp |= [grp
I
(Γ)]I

p

and
Jq |= Iq. Note that Jq |= Iq iff Jq ⊇ Iq. Then,

I is an INF-pq-stable model of Γ′
1

iff Ipq is a stable model of grpq
I

(Γ′
1)

iff Ipq is a model of [grpq

I
(Γ′

1)]
I
pq

and there is no model J ⊂ Ipq of [grpq

I
(Γ′

1)]
I
pq

iff Ip is a model of [grp
I
(Γ)]I

p

and there is no model J ⊂ Ipq of [grp
I
(Γ)]I

p

∪ Iq

iff Ip is a model of [grp
I
(Γ)]I

p

and there is no model J ′ ⊂ Ip of [grp
I
(Γ)]I

p

iff Ip is a stable model of [grp
I
(Γ)]

iff I is an INF-p-stable model of Γ.

The following adaptation of Proposition 3 from (Lifschitz et al. 2019) to our notation
is useful to prove the Main Lemma.

Proposition 3. Any rule R and interpretation I satisfy gr
p
I
(τ∗R) ≡s τR.

Proof. By identifying the precomputed terms in τ∗Πprop with their names in I, we get
gr

p
I
(τ∗Π) = τ∗Πprop, where τ∗Πprop is defined as in (Lifschitz et al. 2019, Section 5).

Proof of the Main Lemma. Let Π be a program, let p be the list of all predicate symbols
occurring in Π other than the comparison symbols, and let I be a set of precomputed
atoms. By the choice of p, we get that all predicate symbols in Π and none of the relations
belong to p and, therefore, I = (I↑)p. Then, from Proposition 2, it follows that I↑ is
a p-stable model of τ∗Π iff I↑ is an INF-p-stable model of τ∗Π iff I is a ⊆-minimal
model of [grp

I↑(τ
∗Π)]I iff I is a stable model of [grp

I↑(τ
∗Π)] iff I is a stable model of τΠ

(Proposition 3) iff I is a stable model of Π (by definition).
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A.2 Main Lemma for IO-Programs

We need the following terminology to extend the Main Lemma to io-programs. The
models of formula ∃H (SMp[F ])hH are called the p-stable models with private symbols h

of F , where H is a tuple of predicate variables of the same length as h and Fh
H is the

result of replacing all occurrences of constants from h by the corresponding variables
from H. For a set Γ of first-order sentences, the p-stable models with private symbols h

of Γ are the p-stable models with private symbols h of the conjunction of all formulas in Γ

(Cabalar et al. 2020). We usually omit parentheses and write just ∃H SMp[F ]hH instead
of ∃H (SMp[F ])hH.

Main Lemma for IO-Programs. Let Ω = (Π,PH , In,Out) be an io-program, let

p be the list of all predicate symbols occurring in Π other than the comparison and input

symbols, and let h be the list of all its private symbols. A set I of precomputed public

atoms is an io-model of Ω for an input (v, i) iff Iv is a p-stable model with private

symbols h of τ∗Π and Iin = i.

The following is a reformulation of the Splitting Theorem in (Ferraris et al. 2009)
adapted to our notation, and it will be useful in proving the above result. We adopt
the following terminology. An occurrence of a predicate symbol in a formula is called
negated if it belongs to a subformula of the form F → ⊥ and nonnegated otherwise. An
occurrence of a predicate symbol in a formula is called positive if the number of implica-
tions containing that occurrence in the antecedent is even. It is called strictly positive if
that number is 0. A rule of a first-order formula F is a strictly positive occurrence of an
implication in F . The dependency graph of a formula is a directed graph that

• has all intensional predicate symbols as vertices and
• has an edge from p to q if, for some rule G → H of F , formula G has a positive

nonnegated occurrence of q and H has a strictly positive occurrence of p.

Proposition 4. Let F and G be one-sorted first-order sentences and let p and q be two

disjoint tuples of distinct predicate symbols such that

• each strongly connected component of the of the dependency graph of F ∧ G is a

subset either of p or q,

• all occurrences in F of symbols from q are negated, and

• all occurrences in G of symbols from p are negated.

Then, SMpq[F ∧G] is equivalent to SMp[F ] ∧ SMq[G].

This result can be straightforwardly lifted to the two-sorted language as follows.

Proposition 5. Let F and G be two-sorted first-order sentences and let p and q be two

disjoint tuples of distinct predicate symbols such that

• each strongly connected component of the dependency graph of F ∧ G is a subset

either of p or q,

• all occurrences in F of symbols from q are negated, and

• all occurrences in G of symbols from p are negated.

Then, SMpq[F ∧G] is equivalent to SMp[F ] ∧ SMq[G].
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Proof. Let I be any interpretation. Then,

I |= SMpq[F ∧G]

iff Ius |= SMpq[(F ∧G)
us
] (Lemma 3)

iff Ius |= SMpq[F
us ∧Gus]

iff Ius |= SMp[F
us] ∧ SMq[G

us] (Proposition 4)

iff I |= SMp[F ] ∧ SMq[G]. (Lemma 3)

Note that the dependency graphs of F ∧G and F us ∧Gus are the same.

Lemma 6. Let Ω = (Π,PH , In,Out) be an io-program and let p be the list of all pred-

icate symbols occurring in Π other than the comparison and input symbols. A set I of

precomputed public atoms is a stable model of Ω(v, i) iff Iv is a model of SMp[τ
∗Π] and

Iin = i.

Proof. Recall that, from the Main Lemma stated in Section 4, we get that I is a sta-
ble model of Ω(v, i) iff I↑ is a pq-stable model of τ∗(Ω(v, i)) iff I↑ is a model of
SMpq[τ

∗(Ω(v, i))], where q is the list of all input symbols. Let us denote by Ω(v) the set
of rules obtained from the rules of Ω by substituting the precomputed terms v(c) for all
occurrences of all placeholders c. Then, τ∗(Ω(v, i)) = τ∗(Ω(v)∪ i) = τ∗(Ω(v))∪ τ∗(i) ≡s

τ∗(Ω(v)) ∪ i. Furthermore, since there are no occurrences of predicate symbols in q in
the heads of the rules of Ω(v) nor of any predicate symbol in p in the head of the rules
in i, we get that each strongly connected component is a subset either of p or q. From
Proposition 5, this implies that

I↑ is a model of SMpq[τ
∗(Ω(v, i))]

iff I↑ is a model of SMp[τ
∗(Ω(v))] and I↑ is a model of SMq[i]

iff Iv is a model of SMp[τ
∗Π] and Iin = i.

For the second equivalence, note that Iv is identical to J ↑, except that it interprets
each placeholder c as v(c) and that Ω(v) is the result of replacing each placeholder c

by v(c).

Proof of the Main Lemma for IO-Programs. From left to right. Assume that I is an io-
model of Ω for input (v, i). Let us show that Iv is a p-stable model with private symbols h
of τ∗Π and Iin = i. By definition, the assumption implies that there is some stable
model J of Ω(v, i) such that I is the set of all public atoms of J . From Lemma 6, this
implies that J v is a model of SMp[τ

∗Π] and J in = i and, thus, that Iv is a model of
∃H SMp[(τ

∗Π)]hH and Iin = i. For this last step, recall that I and J agree on all public
predicates. By definition, this means that Iv is a p-stable model with private symbols h
of τ∗Π and Iin = i.

From right to left. Assume that Iv is a p-stable model with private symbols h of τ∗Π.
Let us show that I is an io-model of Ω for an input (v, i). By definition, the assumption
implies that Iv is a model of ∃H SMp[(τ

∗Π)]hH. This implies that there is some model J
of SMp[(τ

∗Π)] such that Iv and J agree on the interpretation of all public predicates.
Let J be the set of precomputed atoms satisfied by J . Then, there are no occurrences
of placeholders in J and, thus, we get that J v = J ↑ = J and, thus, also that J v is a
stable model of SMp[(τ

∗Π)]. Recall that we also have Iin = i and, since I and J contain
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the same public atoms, we get that J in = i. From Lemma 6, these two facts together
imply that J is a stable model of Ω(v, i) and, therefore, that I is an io-model of Ω for
an input (v, i).

A.3 Theorem 1

In order to prove Theorem 1, we need the notions of Clark normal form, completion, and
tight theories (Ferraris et al. 2011, Section 6). We adapt these notions to a two-sorted
language here. A theory—one-sorted or two-sorted—is in Clark normal form relative to
a list p of intensional predicates if it contains exactly one sentence of the form

∀V1 . . . Vn (G→ p(V1, . . . , Vn)) (A2)

for each intensional predicate symbol p/n in p, where G is a formula and V1, . . . , Vn are
distinct program variables. The completion of a theory Γ in Clark normal form, denoted
by COMPp[Γ], is obtained by replacing each implication→ by an equivalence↔ in all sen-
tences of form (A2). The following is a special case of Theorem 10 in (Ferraris et al. 2011)
adapted to our notation.

Proposition 6. For any one-sorted sentence F in Clark normal form and list of predi-

cates p, the implication

SMp[F ]→ COMPp[F ]

is satisfied by all one-sorted interpretations.

Then, we can easily extend this result to two-sorted interpretations as follows.

Proposition 7. For any two-sorted sentence F in Clark normal form, list of predicates p,

and two-sorted interpretation I, if I satisfies SMp[F ], then it also satisfies COMPp[F ].

Proof. Let I be any two-sorted interpretation. From Lemma 1, we get that I |= COMPp[F ]

iff Ius |= (COMPp[F ])
us. Furthermore, we can see that (COMPp[F ])

us
= COMPp[F

us],
and thus, we get

I |= COMPp[F ] iff Ius |= COMPp[F
us].

Similarly, from Lemma 3, we get

I |= SMp[Γ] iff Ius |= SMp[Γ
us].

Finally, from Proposition 6, we get

Ius |= SMp[Γ
us] implies Ius |= COMPp[Γ

us].

Consequently, the result holds.

Let us introduce the Clark form of a program without input and output. The Clark

definition of p/n in Π is a formula of the form

∀V1 . . . Vn

(

k
∨

i=1

∃Ui Fi → p(V1, . . . , Vn)

)

, (A3)

where each Fi is the formula representation of rule Ri and rules R1, . . . , Rk constitute the
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definition of p/n in Π. By Cdef (Π), we denote the theory containing the Clark definitions
of all predicate symbols. We also define Clark (Π) def= Cdef (Π) ∪ΠC , where ΠC is the set
containing the formula representation of all constraints in Π.

About first-order formulas F and G, it is said that F is strongly equivalent to G

if, for any formula H , any occurrence of F in H , and any list p of distinct predicate
symbols, SMp[H ] is equivalent to SMp[H

′], where H ′ is obtained from H by replacing
the occurrence of F by G. About finite first-order theories Γ and Γ′, we say that Γ is
strongly equivalent to Γ′ when the conjunction of all sentences in Γ is strongly equivalent
to the conjunction of all sentences in Γ′. First-order theory Γ is strongly equivalent to Γ′

iff Γ is equivalent to Γ′ in quantified equilibrium logic (Ferraris et al. 2011, Theorem 8).
Therefore, Γ is strongly equivalent to Γ′ if Γ is equivalent to Γ′ in intuitionistic logic.

Lemma 7. Let Π be a program without constraints. Then, τ∗Π is strongly equivalent to

Cdef (Π).

Proof. By definition, τ∗Π contains a formula of the form

∀V1 . . . VnUi (Fi → p(V1, . . . , Vn)) (A4)

for each rule Ri in Π. Note that (A4) is strongly equivalent to

∀V1 . . . Vn (∃Ui Fi → p(V1, . . . , Vn)).

Furthermore, since Π is finite, it follows that τ∗Π is finite too and, therefore, we get that
τ∗Π is strongly equivalent to Γ, where Γ is the theory containing a formula of the form

k
∧

i=1

∀V1 . . . Vn (∃Ui Fi → p(V1, . . . , Vn)) (A5)

for each predicate symbol p/n. Finally, since (A3) and (A5) are strongly equivalent, we
get that τ∗Π and Cdef (Π) are also strongly equivalent.

Lemma 8. For any program Π, τ∗Π is strongly equivalent to Clark (Π).

Proof. Let Π1,Π2 be a partition of Π such that Π2 contains all constraints and Π1 all
the remaining rules. Then, τ∗Π = τ∗(Π1 ∪ Π2) = τ∗Π1 ∪ τ∗Π2 = τ∗Π1 ∪ ΠC . Now, the
result follows directly from Lemma 7.

Proof of Theorem 1. From the Main Lemma for IO-Programs, it follows that I is an
io-model of Ω for an input (v, i) iff Iv is a p-stable model with private symbols h of τ∗Π
and Iin = i. Furthermore,

Iv is a p-stable model with private symbols h of τ∗Π

iff Iv is a model of ∃H SMp[τ
∗Π]hH

iff Iv is a model of ∃H SMp[Clark (Π)]
h
H (Lemma 8)

implies that Iv is a model of ∃HCOMPp[Clark (Π)]
h
H (Proposition 7)

iff Iv is a model of ∃HCOMPp[τ
∗Π]hH

iff Iv is a model of COMP[Ω].
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A.4 Theorem 2

To prove Theorem 2, we need the following terminology. An occurrence of a predicate
symbol in a formula is called negated if it belongs to a subformula of the form F → ⊥

and nonnegated otherwise. An occurrence of a predicate symbol in a formula is called
positive if the number of implications containing that occurrence in the antecedent is
even. The dependency graph of a theory in Clark normal form is a directed graph that

• has all intensional predicate symbols as vertices and
• has an edge from p to q if q has a positive nonnegated occurrence in G for some

sentence of form (A2).

A theory is tight if its predicate dependency graph is acyclic. The following is a reformu-
lation of Theorem 11 in (Ferraris et al. 2011) adapted to our notation.

Proposition 8. For any finite, tight, one-sorted theory Γ in Clark normal form, SMp[Γ]

is equivalent to COMPp[Γ].

The following lifts this result to the case of two sorts.

Proposition 9. For any finite, tight, two-sorted theory Γ in Clark normal form, SMp[Γ]

is equivalent to COMPp[Γ].

Proof. Let I be any two-sorted interpretation. From Lemma 1, we get that I |= COMPp[Γ]

iff Ius |= (COMPp[Γ])
us. Furthermore, it is easy to see that (COMPp[Γ])

us
= COMPp[Γ

us],
and thus, we get

I |= COMPp[Γ] iff Ius |= COMPp[Γ
us].

Similarly, from Lemma 3, we get

I |= SMp[Γ] iff Ius |= SMp[Γ
us].

Finally, from Proposition 8, we get

Ius |= COMPp[Γ
us] iff Ius |= SMp[Γ

us].

Consequently, the result holds.

Proof of Theorem 2. From the Main Lemma for IO-Programs, it follows that I is an
io-model of Ω for an input (v, i) iff Iv is a p-stable model with private symbols h of τ∗Π
and Iin = i. Furthermore,

Iv is a p-stable model with private symbols h of τ∗Π

iff Iv is a model of ∃H SMp[τ
∗Π]hH

iff Iv is a model of ∃H SMp[Clark (Π)] (Lemma 7)

iff Iv is a model of ∃HCOMPp[Clark (Π)]
h
H (Proposition 9)

iff Iv is a model of ∃HCOMPp[τ
∗Π]hH

iff Iv is a model of COMP[Ω].

Recall that Ω is tight, and this implies that Clark (τ∗Π) is also tight. Note that Clark (τ∗Π)
contains a formula of form (A3) for every predicate symbol p/n and that the antecedent
of this formula is a disjunction of the formula representations of the bodies of all rules
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defining p/n. Therefore, the dependency graph of Clark (τ∗Π) is identical to the depen-
dency graph of Ω with the exception of the addition of nonpositive edges corresponding
to choice rules.

A.5 Theorem 3

A predicate expression is a lambda expression of the form

λX1 . . . Xn F (X1, . . . , Xn), (A6)

where F (X1, . . . , Xn) is a formula and X1, . . . , Xn are object variables. This formula may
have free variables other than X1, . . . , Xn, called the parameters of (A6). If E is (A6) and
t1, . . . , tn are terms, then E(t1, . . . , tn) stands for the formula F (t1, . . . , tn). If G(P ) is a
formula containing a predicate constant or variable P and E is a predicate expression of
the same arity as P , then G(E) stands for the result of replacing each atom P (t1, . . . , tn)

in G(P ) by E(t1, . . . , tn). For any predicate expression E, the formulas

∀P G(P )→ A(E) and G(E)→ ∃P A(P )

are theorems of second-order logic.

Lemma 9. Let P = P1, . . . , Pl be a list of predicate variables and let Pi = P1, . . . , Pi be

a prefix of P. Let F1(P1), . . . , Fl(Pl) be formulas such that Pi contains all free predicate

variables occurring in Fi. Let F and G, respectively, be the following two formulas:

∃P (F1(P1) ∧ · · · ∧ Fl(Pl) ∧ F ′(P)), (A7)

∀P (F1(P1) ∧ · · · ∧ Fl(Pl)→ F ′(P)). (A8)

Then, F ≡ G.

Proof. If l = 0, then P is the empty tuple, and thus, both (A7) and (A8) stand just for
the formula F ′(P), so the result holds. Otherwise, we proceed by induction. Note that
(A7) and (A8) are, respectively, equivalent to

∃P1 (F1(P1) ∧ ∃P
′
l (F2(P1,P

′
2) ∧ · · · ∧ Fl(P1,P

′
l) ∧ F ′(P1,P

′
l))), (A9)

∀P1 (F1(P1)→ ∀P
′
l (F2(P1,P

′
2) ∧ · · · ∧ Fl(P1,P

′
l)→ F ′(P1,P

′
l))). (A10)

where P′
i = P2, . . . , Pi. That is, Pi = P1,P

′
i. Then, by induction hypothesis, we get that

the following two formulas are equivalent:

∃P′
l (F2(P1,P

′
2) ∧ · · · ∧ Fl(P1,P

′
l) ∧ F ′(P1,P

′
l)),

∀P′
l (F2(P1,P

′
2) ∧ · · · ∧ Fl(P1,P

′
l)→ F ′(P1,P

′
l)).

Therefore, (A10) is equivalent to

∀P1 (F1(P1)→ ∃P
′
l (F2(P1,P

′
2) ∧ · · · ∧ Fl(P1,P

′
l) ∧ F ′(P1,P

′
l))). (A11)

Hence, it only remains to be shown that (A9) and (A11) are equivalent. Let E be the pred-
icate expression λX1 . . . Xn G(X1, . . . , Xn) such that H(E) = F1(P1), with H(Q) being
the following formula:

∀V1 . . . Vn (P1(V1, . . . , Vn)↔ Q(V1, . . . , Vn)).
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Then,

(A9)⇔ ∃P1 (F1(P1) ∧ ∃P2 (F2(E,P′
2) ∧ · · · ∧ Fl(E,P′

l) ∧ F ′(E,P′
l)))

⇔ ∃P1 F1(P1) ∧ ∃P2 (F2(E,P′
2) ∧ · · · ∧ Fl(E,P′

l) ∧ F ′(E,P′
l))

⇔ ⊤∧ ∃P2 (F2(E,P′
2) ∧ · · · ∧ Fl(E,P′

l) ∧ F ′(E,P′
l))

⇔ ∃P2 (F2(E,P′
2) ∧ · · · ∧ Fl(E,P′

l) ∧ F ′(E,P′
l))

⇔ ∀P1 (F1(P1)→ ∃P2 (F2(E,P′
2) ∧ · · · ∧ Fl(E,P′

l) ∧ F ′(E,P′
l)))

⇔ (A11),

and the result holds. For the second-to-last equivalence, note that F1(P1) is satisfiable
and that P1 does not occur on the right-hand side of the implication.

Proof of Theorem 3. Recall that io-program Ω uses private recursion if

• its predicate dependency graph has a cycle such that every vertex in it is a private
symbol or
• it includes a choice rule with a private symbol in the head.

This implies that, for a program that does not use private recursion, there is a private
predicate symbol that does not depend on any other private predicate symbol. Let us
assume without loss of generality that this is the predicate symbol p1/n1. Then, there
is a predicate symbol that does not depend on any other private predicate symbol other
than p1/n1, which we assume to be the predicate symbol p2/n2, and so on. Therefore, we
have an order on the private symbols p1/n1, . . . , pl/nl such that each predicate symbol
pi/ni only depends on other predicate symbols that precede them in this order. Then,
the completed definition Fi(Pi) of any private predicate symbol pi/ni can be written as

∀V1 . . . Vni
(Pi(V1, . . . , Vni

)↔ Gi(Pi−1)),

where Pi−1 = P1, . . . , Pi−1 contains all free predicate variables in Gi and where we
assume that G1(P0) is a first-order formula. Then, (15) and (16) can be, respectively,
rewritten as (A7) and (A8). The result follows then directly from Lemma 9.
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