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Abstract

Answer Set Programming, or ASP for short, has become a popular and sophisticated approach
to declarative problem solving. Its popularity is due to its attractive modeling-grounding-
solving workflow that provides an easy approach to problem solving, even for laypersons outside
computer science. However, in contrast to ASP’s ease of use, the high degree of sophistication
of the underlying technology makes it even hard for ASP experts to put ideas into practice
whenever this involves modifying ASP’s machinery.

For addressing this issue, this tutorial aims at enabling users to build their own ASP-based
systems. More precisely, we show how the ASP system clingo can be used for extending ASP and
for implementing customized special-purpose systems. To this end, we propose two alternatives.
We begin with a traditional AI technique and show how meta programming can be used for
extending ASP. This is a rather light approach that relies on clingo’s reification feature to use
ASP itself for expressing new functionalities. The second part of this tutorial uses traditional
programming (in Python) for manipulating clingo via its application programming interface.
This approach allows for changing and controlling the entire model-ground-solve workflow of ASP.
Central to this is clingo’s new Application class that allows us to draw on clingo’s infrastructure
by customizing processes similar to the one in clingo. For instance, we may apply manipulations
to programs’ abstract syntax trees, control various forms of multi-shot solving, and set up
theory propagators for foreign inferences. A cross-sectional structure, spanning meta as well
as application programming, is clingo’s intermediate format, aspif, that specifies the interface
among the underlying grounder and solver. We illustrate the aforementioned concepts and
techniques throughout this tutorial by means of examples and several non-trivial case-studies. In
particular, we show how clingo can be extended by difference constraints and how guess-and-check
programming can be implemented with both meta and application programming.

1 Introduction

Answer Set Programming (ASP; Baral 2003; Gebser et al. 2012; Gelfond and Kahl
2014; Lifschitz 2019) has become an established approach to declarative problem solving,
experiencing an increasing popularity in academia as well as industry, and sometimes
even beyond Artificial Intelligence and Computer Science. This is arguably due to its
pursuit of an integrated modeling-grounding-solving paradigm (Gebser and Schaub 2016;
Kaufmann et al. 2016) that enables laypersons to use ASP systems off-the-shelf. However,
the underlying technology is highly involved and thus much less accessible even for ASP
experts. This is also reflected by the fact that there are only two genuine ASP systems
nowadays, namely dlv (Leone et al. 2006; Alviano et al. 2017) and clingo (Gebser et al.
2019), while other computational approaches mostly rely on extensions to these systems or
translations into neighboring solving paradigms. This is not without reason and rather due
to the high technical sophistication of full-fledged ASP systems. Hence, it is all the more
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important to keep this technology open and extensible and so to enable the community
to participate in the continuous enhancement of ASP technology. If neglected, we risk
a technological gulf that is prone to cut off advances in ASP in the future. Moreover,
the extension and integration of ASP technology is indispensable in many real-world
applications. Examples include decision support systems for the space shuttle (Nogueira
et al. 2001), metabolic network completion (Frioux et al. 2019), and train scheduling (Abels
et al. 2021). Hence, empowering the community to master ASP technology also makes it
fit for addressing applications at industrial scale.

This empowerment was a guiding motive in the development of the core ASP systems
of the Potsdam Answer Set Solving Collection, or Potassco for short (Gebser et al. 2011;
Gebser et al. 2018), and has meanwhile led to numerous extensions, either being part
of Potassco at potassco.org or conducted by other scientists worldwide. To further
foster such advancements and transfer of ASP technology, we provide in this tutorial
an introduction to key techniques allowing advanced users to construct their own ASP
systems by building upon Potassco tools.
No matter whether the envisaged system aims at extending ASP or using it as an

implementation platform, the key issue is how to capture the added functionality.
To this end, we propose two alternatives.
We begin with a traditional AI technique and show in Section 3 how meta programming

can be used for extending ASP. This is clearly the lightest approach in which ASP
itself is used to express new functionalities. It draws upon clingo’s reification feature
for representing the result of grounding a logic program as a set of facts. The original
program is then given as data to a meta program that implements the new functionality.
In this way, we use clingo as a black box and implement all examples by consecutive
clingo calls. Meta programming is for example used in asprin (Brewka et al. 2015) and
plasp (Dimopoulos et al. 2018).
We then move to the other focus of our tutorial, namely, the use of traditional pro-

gramming for manipulating clingo via its application programming interface (API). This
can be seen as treating clingo as a gray box, whose modifications are guided through a
well-defined interface. Before that, all functionality had to be done by re-programming, a
white box approach that needed quite good programming skills. For application interface
programming, we have chosen Python as our example language, although other choices
exist (e.g. C, C++, Lua, and Rust). This approach allows us to make changes to the entire
model-ground-solve workflow of ASP. We detail capabilities and interfaces supporting
the implementation of novel ASP technology such as extending the modeling language
of clingo by means of grammar-based specifications, manipulating the abstract syntax
trees of (non-ground) logic programs, as well as multi-shot and theory solving. While
multi-shot solving provides us with fine-grained control of ASP reasoning processes, theory
solving allows for refining basic ASP solving by incorporating foreign types of constraints.
Central to this is clingo’s new application class that allows for deriving customized
applications from the one of clingo. This class constitutes the cornerstone of all recent
Potassco systems such as clingcon (Banbara et al. 2017), clingo[dl] (Janhunen et al.
2017), eclingo (Cabalar et al. 2020), and telingo (Cabalar et al. 2019). We discuss its role
in Section 4 and use it throughout the remaining sections.

Both meta and application interface programming allow for changing the functionality of
ASP systems. One difference manifests itself in their degree of elaboration-tolerance (Mc-
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Carthy 1998). While a meta encoding benefits from ASP’s elaboration-tolerance, this
feature is less pronounced in non-declarative programming languages. Here, however, an
API makes the difference since it greatly simplifies programming by abstracting from an
underlying implementation. Although an API is usually less accessible to ASP users than
a meta encoding, it is much easier to handle than any intervention into the programming
of the actual ASP system. This differentiation reflects the above distinction of treating an
ASP system as a black, gray, or white box, respectively. Also, the possibility of changing
an ASP system’s functionality brings about the new role of an ASP engineer, which is
situated between basic ASP users, using ASP systems as such, and ASP system builders.
Obviously, meta programming offers a light entry point for basic users, and its easy
accessibility makes it well suited for prototyping new functionalities. On the other hand,
API programming can be accomplished with much less programming skills than ASP
system building. Also, the usage of an ASP system’s API is the predominant use case
in industrial applications since it allows for a flexible integration into an existing IT
infrastructure. Last but not least, it is instructive to realize that the effectiveness of the
chosen alternative depends on the nature of the added functionality. Whenever it can be
mapped back onto ASP, meta reasoning might be quite efficient since it harnesses the
power of modern ASP systems. Any functionality exceeding ASP’s capabilities, however,
needs an extension to the system as such.

A cross-sectional structure, spanning meta as well as application interface programming,
is clingo’s intermediate format, aspif, that specifies the interface among the underlying
grounder and solver, namely, gringo and clasp. This is relevant whenever one deals with
ground logic programs, be it as reified rules, in machine-readable format, or via the
application interface. The whole input, including rules, customized language expressions,
as well as all types of directives, is expressed in their ground form in the aspif format. The
complete aspif specification is given in Appendix B. A system that relies on translating
ground logic programs in aspif format is lc2casp (Cabalar et al. 2016).
We illustrate the aforementioned techniques throughout this tutorial by means of

examples and several non-trivial case-studies. This includes the computation of classical,
supported, here-and-there, and diverse models with meta programming in Section 3, opti-
mization and incremental solving with multi-shot solving in Section 5, hybrid solving and
optimization with theory solving in Section 7, and finally guess-and-check programming
with both meta and application programming in Sections 3.4 and 8, respectively. The
source code of all examples is available online (Potassco Team 2021g; Potassco Team
2021h; Potassco Team 2021d; Potassco Team 2021e).

In what follows, we refrain from distinguishing features of gringo and clasp and simply
refer to them as features of clingo. We deal in this tutorial with clingo series 5, in particular,
clingo version 5.5; its installation instructions can be found on its webpage (Potassco
Team 2021b). A complete documentation of clingo’s API is also available online (Potassco
Team 2021c). We rely on a basic familiarity with ASP and its underlying concepts.
Comprehensive introductions can be found in several textbooks (Baral 2003; Gebser et al.
2012; Gelfond and Kahl 2014; Lifschitz 2019). Accordingly, we only sketch clingo’s input
language and refer for details to the Potassco User Guide (Gebser et al. 2015). Otherwise,
we presuppose some computer science training that permits a basic understanding of shell
and Python programming (for meta and application interface programming, respectively).
The core of this tutorial is based on material stemming from an earlier edition on
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hybrid answer set solving (Kaminski et al. 2017). The tutorial at hand provides itself the
basis of an advanced ASP course, offering complementary teaching material (Potassco
Team 2021a).

2 Answer set programming

A logic program consists of rules of the form
a1;...;am :- am+1 ,...,an,not an+1 ,...,not ao

where each ai is an atom of form p(t1,...,tk) and all ti are terms, composed of function
symbols and variables. For 0 ≤ m ≤ n ≤ o, atoms a1 to am are often called head atoms,
while am+1 to an and not an+1 to not ao are also referred to as positive and negative
body literals, respectively. An expression is said to be ground, if it contains no variables.
As usual, not denotes (default) negation. A rule is called a fact if m = n = o = 1, normal
if m = 1, and an integrity constraint if m = 0. Semantically, a logic program induces a
set of stable models, being distinguished models of the program determined by the stable
models semantics (Gelfond and Lifschitz 1990).
To ease the use of ASP in practice, several extensions have been developed. First of

all, rules with variables are viewed as shorthands for the set of their ground instances.
Further language constructs include conditional literals and cardinality constraints (Simons
et al. 2002). The former are of the form1 a:b1,...,bm, the latter can be written as2

s {d1;...;dn} t, where a and bi are possibly default-negated (regular) literals and each
dj is a conditional literal; s and t provide optional lower and upper bounds on the
number of satisfied literals in the cardinality constraint. We refer to b1,...,bm as a
condition. The practical value of both constructs becomes apparent when used with
variables. For instance, a conditional literal like a(X):b(X) in a rule’s body expands to
the conjunction of all instances of a(X) for which the corresponding instance of b(X)
holds. Similarly, 2 {a(X):b(X)} 4 is true whenever at least two and at most four instances
of a(X) (subject to b(X)) are true. More sophisticated examples are given in Section 3,
e.g. in Listing 4. Finally, objective functions minimizing the sum over the first argument
wi of a set of weighted tuples (wi, ti), whose membership is subject to condition ci,
are expressed as #minimize{w1@l1,t1:c1;. . .;wn@ln,tn:cn}. Lexicographically ordered
objective functions are (optionally) distinguished via levels indicated by li. An omitted
level defaults to 0.
As an example, consider the rule in Line 6 of Listing 28:

1 { move(D,P,T ): disk(D), peg(P) } 1 :- ngoal(T -1), T<=n.

This rule has a single head atom consisting of a cardinality constraint; it comprises all
instances of move(D,P,T), where T is constrained by the two body literals, and D and
P vary over all instantiations of predicates disk and peg, respectively. Given 3 pegs
and 4 disks as in Listing 29, this results in 12 instances of move(D,P,T) for each valid
replacement of T, among which exactly one must be chosen according to the above rule.

Full details on the input language of clingo along with various examples can be found in

1 In rule bodies, they are terminated by ‘;’ or ‘.’ (Gebser et al. 2015).
2 More elaborate forms of aggregates are obtained by explicitly using function (e.g. #count) and relation
symbols (e.g. <=) (Gebser et al. 2015).
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the Potassco User Guide (Gebser et al. 2015); its semantics is given by Gebser et al. (2015)
in terms of infinitary formulas.

3 Meta programming

Meta programming is a technique in which computer programs treat other programs as
data (Wikipedia contributors 2021). Although this includes traditional compilers and
interpreters, it has always played a prominent role in AI languages, such as Lisp or Prolog,
since their syntactic proximity of program and data offers an easy way of self-modification.
For instance in Prolog, meta programs allow for manipulating the execution of logic
programs and constitute an easy way to extend programs with debugging information.
Moreover, special-purpose predicates enable the conversion of data into new program
parts during run-time.

Similarly, meta programming can be used in ASP to change the semantics of language
constructs and/or implement new ones. Examples include reasoning about action and
change (Baral and Gelfond 2000; Son et al. 2006; Dimopoulos et al. 2018), debugging (Geb-
ser et al. 2008), preferences (Gelfond and Son 1997; Delgrande et al. 2003; Eiter et al. 2003)
and optimization (Gebser et al. 2011), as well as guess-and-check programming (Eiter and
Polleres 2006). The latter is of particular interest to us since we detail its implementation
below with meta programming as well as through application interfaces in Section 8.
A common difficulty of such approaches is the conversion of programs into data, or

in terms of ASP, the transformation of (non-ground) logic programs into sets of facts.
Either a dedicated parser is built or a user is expected to write a program in terms of a
prescribed fact format. Consequently, the resulting systems are mostly propositional and
only offer a limited set of language constructs. This is because they cannot draw upon
the infrastructure of an ASP system for parsing and grounding.

This issue is addressed in clingo, or more precisely its grounder gringo, by means of a
fact-based representation of the grounded logic program. This enables sophisticated meta
programming that may draw on the full-featured non-ground input language of clingo, a
highly effective grounding procedure, and ultimately a factual representation reflecting
all features of the input language. The remainder of this section provides an introduction
to meta programming with clingo. The extension of logic programs during run-time is
explained in the subsequent sections.

3.1 Reification format

The process of turning a (ground) logic program into a set of facts is also called reification.
Clingo’s fact format of reified programs follows its intermediate language aspif, detailed in
Appendix B.3 This is no coincidence since both languages must capture ground programs
in their full generality. In what follows, however, we concentrate on dealing with the
actual logic program part and disregard non-logical statements except for #show.

3 Reification was originally introduced in clingo 4. However, the corresponding format is different since
it is modeled after the intermediate format of smodels (Syrjänen 2001). For details, we refer to the
paper by Gebser et al. (2011).
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1 {a}.
2 b :- a.
3 c :- not a.

Listing 1. A simple logic program (ezy.lp)
clingo --output =reify ezy.lp

Listing 2. System call to reify the logic program in Listing 1
1 rule( choice (0) ,normal (0)).
2 atom_tuple (0). literal _tuple (0).
3 atom_tuple (0,1).

5 rule( disjunction (1) ,normal (1)).
6 atom_tuple (1). literal _tuple (1).
7 atom_tuple (1,2). literal _tuple (1, -1).

9 rule( disjunction (2) ,normal (2)).
10 atom_tuple (2). literal _tuple (2).
11 atom_tuple (2,3). literal _tuple (2,1).

13 output (a,2 ).

15 output (b,3 ). literal _tuple (3).
16 literal _tuple (3,3).

18 output (c,4 ). literal _tuple (4).
19 literal _tuple (4,2).

Listing 3. The result of the system call in Listing 2 (ezy.rlp)

A logic program consists of a set of rules, each of which is composed of a head and a
body. While heads are formed from atoms, bodies are made of literals.

The fact format is the result of serializing the syntax tree of the ground logic program
rule by rule. To this end, heads and bodies are identified via non-negative integers.
Also, positive and negative integers are used to represent positive or negative literals,
respectively. Hence, 0 is not a valid literal.

A rule is represented as a binary fact, using predicate rule/2, whose arguments reflect
the head and the body of the rule. Following the rule format of aspif, a head is either a
disjunction or a choice, which is indicated by the unary function symbols disjunction/1
and choice/1. Similarly, a body is either a collection of literals or a weight constraint,
indicated by functions normal/1 and sum/1, respectively. All four constituents are treated
as tuples, the two former consisting of atoms and the latter either of regular or weighted
literals, respectively.

Let us illustrate this with the example program ezy.lp in Listing 1. Its (reformatted)
reified program given in Listing 3 is obtained by the command in Listing 2. More precisely,
the first rule in program ezy.lp is represented by the facts in Lines 1 to 3 of Listing 3.
The fact ‘rule(choice(0),normal(0)).’ states that the first rule in Listing 1 has a
choice atom in the head (indicated by choice(0)) and a normal body (denoted by
normal(0)). The atoms associated with a head are grouped in tuples, which are identified
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by a non-negative integer. This is analogous to the treatment of literals in the body. In our
example, the choice in the head is linked via the identifier 0 to a tuple of atoms declared
by the fact ‘atom_tuple(0).’ in Line 2 of Listing 3. The members of such an atom tuple
are represented by all instances of predicate atom_tuple/2 and share the same tuple
identifier as their first argument. The atom tuple 0 has one member, as indicated by the
single instance atom_tuple(0,1) in Line 3, where 0 stands for the tuple and 1 is the
integer identifying atom a. To summarize, the choice atom concerns only one regular
atom and this atom is identified by 1 (thus connecting a and 1; see below).

Analogously, the (empty) body of the choice rule is represented by the tuple of literals
that is also identified by 0. This tuple happens to be empty, as reflected by the lack of
corresponding instances of literal_tuple/2. Note that this tuple-centered representation
treats atom and literal tuples independently and numbers them consecutively. Heads
and bodies of the same rule may thus be represented by atom and literal tuples having
distinct identifiers. Rules themselves have no identifier.

The second rule in Listing 1 is represented by the facts in Lines 9 to 11 of Listing 3. Unlike
above, its head is a single atom and is thus represented as a one-element disjunction
associated with atom tuple 2. This tuple has a single element, which is accounted for by
the fact atom_tuple(2,3). Hence, b is represented by 3. Similarly, its body, also marked
with 2, comprises a single literal captured by literal_tuple(2,1). As above, 1 stands
for the positive body literal a. The last rule in Listing 1 is represented analogously in
Lines 5 to 7, just that its negative body literal is mapped to a negative integer, namely,
not a is associated with -1.
The remaining facts in Lines 13 to 19 account for implicit output statements. This

mimics the default behavior of clingo, outputting all atoms unless a restrictive #show
statement is given. That is, unless any restrictions are formulated, all satisfied atoms
can potentially be output. This is done by means of the binary predicate output/2. For
instance, the output of atom c is linked via literal tuple 4 to integer 2 (cf. Lines 18
and 19). The indirection via the tuple representation is due to the fact that clingo’s
output statements may be conditioned by several literals (cf. Appendix B). Finally, it is
interesting to observe that no new literal tuple is generated for output(a,2). Rather the
one in Lines 10 and 11 is reused. This redundancy-free representation is a general feature
of clingo’s reification.
Remark 1
Although we do not detail this here, it is worth mentioning that the reified output format
of clingo accounts for the full spectrum of language constructs supported by clingo’s input
language (including its generic grammar-based theory language).
In addition, clingo offers the options --reify-sccs and --reify-steps to calculate

the strongly connected components of the ground logic program’s (positive) dependency
graph and to add step numbers to the reified output, in case multi-shot solving is used,
respectively.

3.2 Meta encoding

The facts obtained from reifying a logic program can now be used to instantiate meta
encodings. Such encodings allow us to reestablish the original or attribute a different
meaning to program constructs.
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1 conjunction (B) :- literal _tuple(B),
2 hold(L): literal _tuple(B, L), L >0;
3 not hold(L): literal _tuple(B, -L), L >0.

5 body( normal (B)) :- rule(_ ,normal (B)), conjunction (B).
6 body(sum(B,G )) :- rule(_,sum(B,G )),
7 #sum {
8 W,L: hold(L), weighted _ literal _tuple(B, L,W), L >0;
9 W,L: not hold(L), weighted _ literal _tuple(B, -L,W), L>0

10 } >= G.

12 hold(A): atom_tuple(H,A) :- rule( disjunction (H),B), body(B).
13 { hold(A): atom_tuple(H,A) } :- rule( choice (H),B), body(B).

15 #show.
16 #show T: output (T,B), conjunction (B).

Listing 4. A simple meta program interpreting reified logic programs (meta.lp)
clingo --output =reify ezy.lp | clingo - meta.lp 0

Listing 5. Two steps system call using reification

To illustrate this, let us start with the simple meta encoding in Listing 4, which supports
all above mentioned language constructs according to their original meaning. This encoding
is only a subset; the full encoding also accounts for optimization statements (Potassco
Team 2021g).

Before detailing how the encoding works, let us describe its usage. To compute the
stable models of the logic program ezy.lp in Listing 1 via meta programming, we proceed
in two steps.4 At first, program ezy.lp is reified as described above, and then the resulting
set of facts along with the meta encoding meta.lp are passed to clingo. The corresponding
system call is given in Listing 5. The possibility of modifying the semantics of language
constructs in meta.lp is paid by twice as much grounding effort. Interestingly, keeping
the semantics as done in Listing 4 results in roughly the same solver constraints, no
matter whether meta-programming is used or not. Hence, the overall overhead of meta
programming is often negligible.

Remark 2
We use pipes to avoid auxiliary files. An alternative to the command in Listing 5 is

clingo --output =reify ezy.lp > ezy.rlp
clingo ezy.rlp meta.lp 0

in which the auxiliary file ezy.rlp is used to capture the facts in Listing 3. Note how the
use of ‘-’ in the pipe captures the output of the command before ‘|’.

Let us now turn to the actual meta encoding. The logic program in Listing 1 uses
the unary predicate hold/1 to express that an atom is true. Such atoms are derived in
Lines 12 and 13, provided there is an original choice or disjunctive rule, whose body is

4 Adding option -Wno-atom-undefined to the second call suppresses warnings due to missing definitions.
The same effect is obtained by using #defined declarations for selected predicates.
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satisfied. Both rules use conditional literals to gather all hold atoms belonging to the
same atom tuple H, identifying the head of the original rule. In Line 12, this results in a
disjunction of atoms, while in Line 13 all such atoms form a set of choosable atoms. In
both cases, several, one, or no hold atoms may manifest themselves, depending on the
size of the atom tuple. The satisfaction of the body of the original rule, identified by B, is
indicated in both lines by the positive body literal body(B). The corresponding atoms
are derived by the two rules in Lines 5 to 10.

In Line 5, a normal body, composed of regular literals, is satisfied whenever all its literals
are found to be true. This is realized by the rule in Lines 1 to 3 by using again conditional
literals to gather all instances of hold atoms induced by a tuple of literals. Depending
on whether the integer representing a literal is positive or negative, the corresponding
hold atoms must be satisfied or must not be satisfied. Similarly, the rule in Lines 6 to 10
implements a weight constraint, just that the hold atoms are collected within a sum
constraint along with their associated weights. This information is extracted from instances
of the ternary predicate weighted_literal_tuple/3 just as with literal_tuple/2.
Note that conjunctions of literal tuples may stand not only for rule bodies but also

occur in other constructs like the conditional output statement in Line 16. Hence, it
makes sense to account for them separately in Lines 1 to 3.

3.3 Examples

The next subsections give meta encodings computing classical, supported, here-and-
there, and diverse models. Moreover, we show how guess-and-check programming can be
addressed with both meta and application programming in Sections 3.4 and 8, respectively.

3.3.1 Classical and supported models

Let us start with some simple modifications to our meta encoding in Listing 4 that change
the semantics of logic programs.
For illustration, we consider classical and supported models of logic programs. Take

the logic program consisting of the following three rules:
a :- not b. b :- c. c :- b.

It has one stable model, {a}, two supported models, {a} and {b, c}, and three classical
models, {a}, {b, c} and {a, b, c}.
This example already illustrates a general relationship between all three semantics: a

stable model is also a supported model, which in turn is also a classical model but not
vice versa. Intuitively, this difference is the result of how tight each semantics relates the
truth of an atom to its derivability (through rules and positive body literals). While no
such relation is imposed in the classical setting, supported models require that each of
their atoms is supported by a rule having the atom as head and a body satisfied by the
model at hand. Stable models reinforce this by stipulating that furthermore all positive
body literals of the supporting rule have themselves a supporting rule and that this ends
in facts (and thus yields a finite derivation). In our example, only a warrants this within
the only stable model, while b and c only satisfy the supportedness criterion in {b, c} but
lack a finite derivation. The detachment of truth from derivations (via rules) is exemplified
by a in the classical model {a, b, c}.
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1 #include "meta.lp".

3 atom( A ) :- atom_tuple(_,A).
4 atom (|L|) :- literal _tuple(_,L).
5 atom (|L|) :- weighted _ literal _tuple(_,L).

7 { hold(A) } :- atom(A).

Listing 6. Meta encoding computing classical models of logic programs (classic.lp)
1 conjunction (B) :- literal _tuple(B),
2 not not hold(L): literal _tuple(B, L), L >0;
3 not hold(L): literal _tuple(B, -L), L >0.

5 body( normal (B)) :- rule(_ ,normal (B)), conjunction (B).
6 body(sum(B,G )) :- rule(_,sum(B,G )),
7 #sum {
8 W,L: not not hold(L), weighted _ literal _tuple(B, L,W), L >0;
9 W,L: not hold(L), weighted _ literal _tuple(B, -L,W), L>0

10 } >= G.

12 hold(A): atom_tuple(H,A) :- rule( disjunction (H),B), body(B).
13 { hold(A): atom_tuple(H,A) } :- rule( choice (H),B), body(B).

15 #show.
16 #show T: output (T,B), conjunction (B).

Listing 7. Meta encoding computing supported models of logic programs (supported.lp)

For computing classical models in ASP, we have to lift the ban of derivability from
atoms. To this end, we extend in Listing 6 our previous meta encoding (via Line 1) with
the choice rule in Line 7; its subjects are gathered in Lines 3 to 5 (by extracting the atom
underlying a literal L by taking its absolute value |L|). This choice rule exempts atoms
of predicate hold/1 from having a derivation by allowing for their inclusion into a stable
model at will. Classical models of a logic program can then be computed as in Listing 5,
just by replacing meta.lp with classic.lp, given in Listing 6. Clearly, more direct meta
encodings can be devised, for instance, by turning rules into integrity constraints.

For computing supported models, we have to make sure that each included hold atom
is supported by some rule. The body of this rule must be satisfied, and its positive literals
must themselves have supporting rules, but they do not necessarily have to yield a finite
derivation. This can be accomplished by replacing the positive occurrences of hold literals
in Lines 2 and 8 in Listing 4 by their double negation. In fact, in ASP, each true positive
literal must have a non-cyclic derivation, while its double negated variant is freed from
this requirement. The resulting meta encoding is given in Listing 7; cf. Lines 2 and 8
in both encodings. As above, supported models are computed by replacing meta.lp by
supported.lp in the system call in Listing 5.

Remark 3
Note that the methods for computing classical and supported models may fall short in
practice since reification is subject to stable-model preserving simplifications that are
usually too strong for such weaker semantics. In simple cases, like ours, this can be
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counterbalanced by declaring atoms as being externally defined. For instance, adding
‘#external b.’ (cf. Section 5.1) to our example program spares b from simplification and
produces the above results; otherwise not all models are obtained.
Unfortunately, such techniques become infeasible with programs using integers or

function symbols since they may possess infinitely many models in general. For instance,
the program consisting of ‘q(f(a)).’ and ‘p(X) :- p(X).’ has a single stable but infinitely
many supported and classical models.
Also, note that grounding may introduce auxiliary atoms that can lead to duplicate

models. To counterbalance this, one could restrict the choice in Line 7 in Listing 6 to
output atoms.

3.3.2 Diverse models

Our next example application of meta programming is about computing several diverse
stable models of a logic program. General approaches to computing diverse stable models
can be found in the literature (Eiter et al. 2013; Romero et al. 2016).

To do so within ASP rather than by external scripting, we consider several reified stable
models within one. To this end, we turn the predicate hold into a binary predicate, whose
second argument identifies the respective stable model. These identifiers are generated in
Line 1 of Listing 8, where the parameter m limits the number of reified stable models. The
following Lines 3 to 19 constitute an extension of the original meta encoding obtained
by adding an additional argument to all non-structural predicates for identifying the
associated stable model. This is done throughout with variable M, sometimes bound
by model(M). Taking a logic program with n stable models and setting m to 2 makes
Lines 1 to 19 produce n2 stable models, each of which comprises two stable models of the
original program. To distinguish the comprised models, Line 19 outputs each atom with
its associated model identifier.

This initial part of Listing 8 acts as a generator of combinations of m stable models of
the original program. In this spirit, the remainder selects two types of model combinations
depending upon the setting of parameter option (and k in the first case). More precisely,
the selected m reified stable models are

• k-diverse, if option=1, that is, the Hamming distance between each pair of the m
stable models is greater or equal than k, and

• most-diverse, if option=2, that is, the m stable models maximize the sum of the
Hamming distances between each pair of stable models.

Moreover, the implementation considers only atoms declared to be shown (by using
predicate show/2 rather than hold/2 in Lines 21 to 27).

The selection of model collections having a pairwise Hamming distance greater or equal
than k is represented by the sum constraint in Lines 22 and 25. The condition is embedded
into an integrity constraint ruling out all pairs of models M and N that differ on less than
k shown atoms. Similarly, the optimization statement in Line 27 maximizes the difference
between two models; it attributes one point per difference. Given that such a statement
exists for each pair of models the overall sum of differences is maximized. Note that in
each case the value of parameter option is tested, so that at most one of them applies.
As an example, consider the logic program in Listing 9. The goal in this example is
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1 model (1..m).

3 conjunction (B,M) :- model(M), literal _tuple(B),
4 hold(L,M) : literal _tuple(B, L), L >0;
5 not hold(L,M) : literal _tuple(B, -L), L >0.

7 body( normal (B),M) :- rule(_ ,normal (B)), conjunction (B,M ).
8 body(sum(B,G),M) :- model(M), rule(_,sum(B,G )),
9 #sum {

10 W,L: hold(L,M), weighted _ literal _tuple(B, L,W), L >0;
11 W,L: not hold(L,M), weighted _ literal _tuple(B, -L,W), L>0
12 } >= G.

14 hold(A,M ): atom_tuple(H,A) :- rule( disjunction (H),B), body(B,M ).
15 { hold(A,M ): atom_tuple(H,A) } :- rule( choice (H),B), body(B,M ).

17 show(T,M) :- output (T,B), conjunction (B,M ).
18 #show.
19 #show (T,M ): show(T,M ).

21 :- model(M), model(N), M<N, option =1,
22 #sum {
23 1,T: show(T,M), not show(T,N );
24 1,T: not show(T,M), show(T,N)
25 } < k.

27 #maximize { 1 ,T,M,N : show(T,M), not show(T,N), model(N), option =2 }.

Listing 8. Meta encoding computing several (diverse) stable models (many.lp)

1 { x((1.. n,1 ..n)) } = c.

3 connect (C) :- x(C), C<=C’: x(C ’).
4 connect ((X’,Y ’)) :- connect (( X,Y )), x((X’,Y ’)), |X-X ’|+|Y-Y ’|=1.

6 :- x(C), not connect (C).

8 #show x/1.

Listing 9. Mark c cells of an n×n grid that must be connected to each other (cells.lp)

to mark c cells of an n×n grid such that the marked cells are connected to each other
(where c and n are parameters).

Let us begin by computing three different stable models with a pairwise Hamming
distance greater or equal than one:

UNIX > clingo --output = reify cells .lp -c n=3 -c c=3 | \
clingo - many.lp -c option =1 -c k=1 -c m=3

clingo version 5.5.0
Reading from - ...
Solving ...
Answer : 1
(x((2 ,3)) ,1) (x((3 ,2)) ,1) (x((3 ,3)) ,1) \
(x((1 ,3)) ,2) (x((2 ,3)) ,2) (x((3 ,3)) ,2) \
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(x((3 ,1)) ,3) (x((3 ,2)) ,3) (x((3 ,3)) ,3)
SATISFIABLE

The obtained three reified stable models can be visualized as follows (by letting (1,1) be
the lower left corner):

x x
x

x x x x
x
x

Next, consider the result obtained by imposing a Hamming distance of 6:
UNIX > clingo --output = reify cells .lp -c n=3 -c c=3 | \

clingo - many.lp -c option =1 -c m=3 -c k=6
clingo version 5.5.0
Reading from - ...
Solving ...
Answer : 1
(x((2 ,3)) ,1) (x((3 ,2)) ,1) (x((3 ,3)) ,1) \
(x((1 ,1)) ,2) (x((1 ,2)) ,2) (x((1 ,3)) ,2) \
(x((2 ,1)) ,3) (x((2 ,2)) ,3) (x((3 ,1)) ,3)
SATISFIABLE

Unlike above, the three solutions do not overlap and possess the imposed pairwise
Hamming distance:

x x
x

x
x
x

x
x x

Note that no three stable models are obtainable with a pairwise Hamming distance
exceeding 6.
A similar result is obtained by maximizing the sum of Hamming distances, as shown

next. We use --quiet=1,2,2 to suppress intermediate models:
UNIX > clingo --output = reify cells .lp -c n=3 -c c=3 | \

clingo - many.lp -c option =2 -c m=3 --quiet =1 ,2 ,2
clingo version 5.5.0
Reading from - ...
Solving ...
Answer : 5
(x((2 ,2)) ,1) (x((3 ,1)) ,1) (x((3 ,2)) ,1) \
(x((1 ,1)) ,2) (x((1 ,2)) ,2) (x((2 ,1)) ,2) \
(x((1 ,3)) ,3) (x((2 ,3)) ,3) (x((3 ,3)) ,3)
OPTIMUM FOUND

The obtained solution has the same quality as the previous one, namely, 18, three times
a Hamming distance of six. Note that this property is a particularity of our example:

x x
x

x
x x

x x x

3.3.3 Here-and-there models

The logical foundations of ASP rest upon the logic of Here-and-There (HT; Heyting
1930), or more specifically its non-monotonic extension called Equilibrium Logic (Pearce
1997). Informally, interpretations in HT consist of pairs of interpretations (H,T ) such
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1 atom( A ) :- atom_tuple(_,A).
2 atom (|L|) :- literal _tuple(_,L).
3 atom (|L|) :- weighted _ literal _tuple(_,L).

5 model(h). model(t).

7 { hold(A,h) } :- atom(A), option =1.
8 { hold(A,t) } :- atom(A).
9 :- hold(L,h), not hold(L,t ).

11 :- not hold(L,h), hold(L,t), option =3.

13 conjunction (B,M) :- model(M), literal _tuple(B),
14 hold(L,M ): literal _tuple(B, L), L >0;
15 not hold(L,t ): literal _tuple(B, -L), L >0.

17 body( normal (B),M) :- rule(_ ,normal (B)), conjunction (B,M ).
18 body(sum(B,G),M) :- model(M), rule(_,sum(B,G )),
19 #sum {
20 W,L: hold(L,M), weighted _ literal _tuple(B, L,W), L >0;
21 W,L: not hold(L,t), weighted _ literal _tuple(B, -L,W), L>0
22 } >= G.

24 hold(A,M ): atom_tuple(H,A) :- rule( disjunction (H),B), body(B,M ).
25 hold(A,M ); not hold(A,t) :- atom_tuple(H,A),
26 rule( choice (H),B), body(B,M ).

28 #show.
29 #show (T,M ): output (T,B), conjunction (B,M ).

Listing 10. A meta encoding for computing here-and-there models (ht.lp)

that H ⊆ T . The intuition of using two such sets is that atoms in H are the ones that
can be proved, atoms not in T are those for which no proof exists, and, finally, atoms
in T \H are assumed to hold but have not been proved. A total HT model (T, T ) is an
equilibrium model if there is no HT model (H,T ) with H ⊂ T . In such a case, T is also
called a stable model. A comprehensive account of HT is given by Pearce (1997).

The meta encoding for computing HT models of logic programs is given in Listing 10;
it builds upon several constructions already used in the previous meta encodings. The
first part in Lines 1 to 8 is similar to the computation of classical models in Listing 6
in generating all admissible HT interpretations. As above, we use terms, namely, h and
t, to distinguish the components in HT interpretations such as (H,T ). Line 7 generates
atoms in H, Line 8 the ones in T , and the integrity constraint in Line 9 makes sure that
H ⊆ T . The type of generated HT interpretations is once more determined by parameter
option. A generated pair of interpretations (H,T ) is

• an HT interpretation, if option=1,
• an HT interpretation with minimal H ⊆ T , if option=2 (or undefined), or
• an equilibrium model, if option=3.

The aforementioned description captures the first case. In both remaining cases, the free
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generation of atoms in H is dropped (cf. Line 7) and they must rather be derived via
program rules. In addition, option value 3 enforces T ⊆ H via the integrity constraint in
Line 11.

The satisfaction of rules and the derivation of hold atoms in Lines 13 to 26 is similar to
the computation of diverse models in Listing 8 with a few exceptions due to the different
semantic setting. First of all, a negative literal only holds in an HT interpretation (H,T )
if its atom does not belong to T . Accordingly, the tests for negative body literals in
Lines 15 and 21 only refer to hold atoms associated with t. Second, the choice of an
atom a amounts in HT to an instance of the law of the excluded middle a ∨ ¬a. This
classical treatment of an atom leaves only two possibilities in Line 25, either a is false,
and thus does not belong to T (and neither to H), or a is true in H or T .5 Note that
whenever option=1, this variant of our meta encoding merely checks the satisfaction of
rules in both components of an HT interpretation. Unlike this, hold atoms associated
with h must be derived via the meta encoding in all other cases.

For illustration, consider the logic programs or.lp containing the disjunction ‘a;b.’
and even.lp with rules ‘a :- not b. b :- not a.’. Both programs are equivalent in
the sense that they share the same stable models {a} and {b}. However, putting each
program together with rules ‘a :- b. b :- a.’ yields different stable models, indicating
that both programs are not interchangeable in an encompassing program; in formal terms,
they are not strongly equivalent (Lifschitz et al. 2001). Interestingly, the strong equivalence
of logic programs corresponds to their equivalence in HT (their mere equivalence can be
read off the same set of equilibrium models).
Let us verify this by means of our meta encoding in Listing 10.
Program or.lp has five HT models:

UNIX > clingo --output = reify or.lp | \
clingo - ht.lp 0 -c option =1

clingo version 5.5.0
Reading from - ...
Solving ...
Answer : 1
(b,t) (b,h)
Answer : 2
(b,t) (a,t) (b,h)
Answer : 3
(a,t) (a,h)
Answer : 4
(b,t) (a,t) (a,h)
Answer : 5
(b,t) (a,t) (b,h) (a,h)
SATISFIABLE

In contrast to ‘a;b.’, program even.lp has the additional HT model (∅, {a, b}), as
witnessed by the first of its six HT models:

UNIX > clingo --output = reify even.lp | \
clingo - ht.lp 0 -c option =1

clingo version 5.5.0
Reading from - ...
Solving ...
Answer : 1
(a,t) (b,t)

5 Strictly speaking, the rule in Lines 25 and 26 could be specialized by adding M=h, since the instance with
M=t is subsumed by the rule in Line 8, which is equivalent to ‘hold(A,t); not hold(A,t) :- atom(A).’.
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Answer : 2
(a,t) (a,h)
Answer : 3
(a,t) (b,t) (a,h)
Answer : 4
(b,t) (b,h)
Answer : 5
(a,t) (b,t) (b,h)
Answer : 6
(a,t) (b,t) (a,h) (b,h)
SATISFIABLE

Unlike above, both programs have the same equilibrium models, which establishes their
equivalence. This can be verified using option value 3 instead of 1 above.
Further examples of meta programming are available online (Potassco Team 2021g).

3.4 Guess-and-check programming

So far, we addressed problems at the first level of the polynomial hierarchy, sharing the
same complexity as normal logic programs in ASP (Dantsin et al. 2001). In fact, ASP
can also be used for expressing problems at the second level, when disjunctive heads or
non-monotonic aggregates are used.
An interesting class of such problems consists of two subproblems (Eiter and Polleres

2006): A guess-and-check logic program is a pair (P,Q) of normal logic programs whose
solution is a stable model of P that results in an unsatisfiable program once its atoms
are added as facts to Q. This combines a satisfiability problem with an unsatisfiability
problem, in the most interesting case, an NP with a coNP problem since this lifts the
joined problem to the second level of the polynomial hierarchy. An example of this is
preference handling, where the first problem defines feasible solutions, while the second
one ensures that there are no better solutions. Another example is (bounded) conformant
planning under incomplete information, where the first problem gives a plan in some
scenario, while the second one makes sure that it is not invalidated in any other scenario.
We are interested in finding a single ASP encoding using disjunctive heads that combines
both problems and yields solutions despite the unsatisfiability of the second subproblem.
For implementing such problems, Eiter and Gottlob (1995) invented the saturation

technique, using the elevated complexity of disjunctive logic programming. In stark
contrast to the ease of common ASP modeling, however, this technique is rather involved
and hardly usable by ASP laymen. This shortcoming was addressed by means of meta
programming by Eiter and Polleres (2006). The idea is to represent both components of a
guess-and-check program as facts and to combine them with a meta encoding to obtain
a single joint program after grounding. The meta encoding implements the saturation
technique and discharges users from this intricate modeling task. Now, the reification
functionalities of clingo allow us to simplify this even further by relieving users from the
specification of guess-and-check program in terms of facts.

In what follows, we showcase the computation of solutions to guess-and-check programs
by means of meta programming with clingo. To this end, let us start with a sketch of the
meta encoding implementing saturation and tie it up to guess-and-check programming
afterwards. We build on an encoding of saturation put forward by Gebser et al. (2011)
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1 { a (1..2) }.

Listing 11. Guess program (guess.lp)

:- not a(1).

Listing 12. Check program (check.lp)
{ a (1..2) }.

Listing 13. Import guess atoms (in.lp)

:- not bot.

Listing 14. Enforce bot atom (bot.lp)

bot :- output (a(X),B), a(X), fail( normal (B)).
bot :- output (a(X),B), not a(X), true( normal (B)).

Listing 15. Synchronize stable models (glue.lp)

and present in Listing 47 in Appendix A a revised version based on the aspif format.6
A detailed account of the saturation technique goes beyond the scope of this tutorial
(see the papers by Eiter and Gottlob (1995) and Eiter and Polleres (2006) for details).
From the perspective of plain ASP, a saturation-based meta encoding acts as an ordinary
one just that it yields the set of all atoms whenever a program is unsatisfiable. That is,
it generates one stable model for each original stable model, whenever the program is
satisfiable, and otherwise, it yields a unique stable model containing the set of all atoms
of the program. Also, unlike Listing 4, the encoding in Listing 47 takes a reified normal
logic program as input and results in a disjunctive logic program after grounding.
Now, for implementing guess-and-check programming, we exploit the property of

saturation-based meta encodings that the non-existence of stable models results in a set
containing all atoms. In such a case, the encoding in Listing 47 additionally produces
the special-purpose atom bot for indicating unsatisfiability; this atom never appears
in a genuine stable model. Hence, to make sure that an (augmented) check program is
unsatisfiable, we can simply add an integrity constraint that enforces bot to hold (cf.
Listing 14).
What remains to be done is to account for the import of the guessed atoms into the

check program and to align the stable models of the guess and the check program. For
simplicity, we address both tasks in a rather direct way and show below a more principled
alternative. For addressing the first task, we simply add a choice rule over the possible
guess atoms to the check program to allow for exchanging all possible interpretations.
For this to work, however, the guess atoms must not occur among the heads of the check
program. Otherwise, a guess atom may be false but become true in the check program.
For illustration, consider the simple guess and check programs in Listings 11 and 12 along
with the import of guess atoms into the check program in Listing 13.

The second task, synchronizing the respective stable models, is handled by saturation.
Remember that the check program uses a fresh set of guess atoms derived via the choice
rule in Listing 13. Hence, we have two different sets of atoms in both the guess and the
check programs, which have to be synchronized. In valid counter examples, the truth
values of both sets of atoms have to agree. We simply derive the bot in Listing 15 if
the atoms differ, which triggers saturation and discards invalid candidates for counter
examples.

6 The original meta encoding (Gebser et al. 2011) relies on the smodels format used for reification in
clingo 4 (cf. Footnote 3).
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The body literals of the rules in Listing 15 already hint at the design decision to only
reify the check program, while leaving the guess program intact. At last, let us put all
this together for our example guess and check program, where program metaD.lp is given
in Listing 47:

UNIX > clingo --output = reify --reify -sccs check .lp in.lp | \
clingo - metaD .lp bot.lp glue.lp guess .lp 0

clingo version 5.5.0
Reading from - ...
Solving ...
Answer : 1
a(2)
SATISFIABLE

Combining program guess.lp and check.lp from Listings 11 and 12 in a guess-and-check
program eliminates all stable models of guess.lp that contain a(1). Note that joining
both in a regular program eliminates models excluding a(1).

The first call to clingo merely reifies program check.lp, so that it gets interpreted by
the meta encoding metaD.lp in the second call. Unlike this, program guess.lp remains
untouched. Hence, the problem handed to the second call of clingo combines both the
guess and the check program, whereby the latter is encoded via saturation in order to
succeed upon unsatisfiability. And finally, program glue.lp is in charge of aligning the
guessed stable models to the checker by saturating the non-aligned ones. Clearly, our
illustrative example is very simple and could also be solved directly. In what follows, we
present some more substantial use-cases.

Remark 4
It is instructive to observe the effect of programs bot.lp and glue.lp on the formation
of the joint solving result:

• Without both bot.lp and glue.lp, we get all combinations of stable models of
the guess program with stable models of the check program (choice rules included),
if the check program is satisfiable, and with the unique saturated set of atoms
containing bot, otherwise.

• Without bot.lp but with glue.lp, we get all combinations of stable models of the
guess program with stable models of the check program (conjoined with all facts
stemming from guess atoms), if this program is satisfiable, and with the unique
saturated set of atoms containing bot, otherwise.

• With both bot.lp and glue.lp, we get all stable models of the previous item that
contain bot. That is, we get all combinations of stable models of the guess program
with the unique saturated set of atoms containing bot whenever the check program
(conjoined with all facts stemming from guess atoms) is unsatisfiable, and no stable
models, otherwise.

A more generic approach can be obtained by capturing the guessed atoms by a
dedicated predicate, say guess/1. This also eases the restriction of the relayed atoms to
a distinguished subset.

In our example, the guess program in Listing 11 is then augmented with the specification
of the actual guess in Listing 16. Accordingly, the guessed atoms become enveloped in
predicate guess/1 in the check program from Listing 12, viz. ‘:- not guess(a(1)).’.
Similarly, the import of guessed atoms is modified in the program in Listing 17. This
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guess(a(X)) :- a(X).

Listing 16. Export guess atoms (out.lp)

{ guess(X) } :- output (guess(X),_).

Listing 17. Import guess atoms (in.lp)

bot :- output (guess(X),B), guess(X), fail( normal (B)).
bot :- output (guess(X),B), not guess(X), true( normal (B)).

Listing 18. Generic synchronization of stable models (superglue.lp)

version of program in.lp replaces the specific choice rule ‘{ a(1..2) }.’ in Listing 13
by a generic rule. The instantiation of the first rule is obtained from the symbol table of
the guess program, as shown below. With this approach, both the guess as well as the
check programs come in pairs, the former accompanied by the specification of guessed
atoms in out.lp in Listing 16, and the latter with choices delineating all possible sets
of guessed atoms in in.lp in Listing 17. While the first fixes all guessable atoms, the
second one is generic. And finally, also the synchronization of stable models can now be
expressed in a generic way via the rules in Listing 18. Note that except for Listing 16, all
auxiliary programs are problem independent.
Putting everything together, we can solve the example in Listings 11 to 12:

UNIX > clingo --output = reify \
guess .lp out.lp <(echo "# show guess /1.") | \

grep " output ( guess (.*))" | \
clingo --output = reify --reify -sccs \

- check .lp in.lp | \
clingo - metaD .lp bot.lp superglue .lp guess .lp out.lp 0

clingo version 5.5.0
Reading from - ...
Solving ...
Answer : 1
a(2)
SATISFIABLE

The purpose of the first two lines in the system call above is to extract all guessable
atoms from the symbol table of the guess program. (In passing, this illustrates a pragmatic
way of exploiting the symbol table of reified programs.) In our example, this results in the
facts output(guess(a(1)),5). and output(guess(a(2)),6). These atoms are then
used to instantiate the rules in Listing 17 and 18. Otherwise, the two remaining calls
work just as described above, and obviously yield the same result.

In fact, the effort of encapsulating the guessed atoms along with the resulting generality
pays off, as we demonstrate in the following two use-cases. More examples of guess-and-
check programming are available online (Potassco Team 2021g).

Preferences. In this example, we use the above setup to compute subset maximal stable
models of logic programs. The idea is to guess a candidate stable model and to check
whether any of its proper supersets is a stable model of the program, too. If this fails, the
candidate is subset maximal.

To illustrate this, reconsider program guess.lp in Listing 11 along with the specification
of guessable atoms in Listing 16. The check program consists once more of program
guess.lp yet extended with the rules in Listing 19.

The atom better is derived whenever the stable model generated by the check program
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1 better :- a(Y), not guess(a(Y)), a(X): guess(a(X)).
2 :- not better .

Listing 19. Identifying subset maximal stable models (superset.lp)
1 #const n=3.
2 n { o(1.. n,1 ..n) } n.
3 :- not win.
4 win :- I=1.. n, o(I,J ): J=1..n.
5 win :- J=1.. n, o(I,J ): I=1..n.
6 win :- o(I,I ): I=1..n.
7 win :- o(I,n +1-I): I=1..n.

9 #show o/2.

Listing 20. Player O (playero.lp)

1#const n=3.
2n { x(1.. n,1 ..n) } n.
3:- not win.
4win :- I=1.. n, x(I,J ): J=1..n.
5win :- J=1.. n, x(I,J ): I=1..n.
6win :- x(I,I ): I=1..n.
7win :- x(I,n +1-I): I=1..n.

9:- guess(o(I,J )), x(I,J ).

Listing 21. Player X (playerx.lp)

1 guess(o(I,J )) :- o(I,J ).

Listing 22. Exporting guess atoms (out.lp)

is a proper superset of the guessed stable model. This candidate model is not subset
maximal if some strictly larger model is obtainable, as checked in Line 2 of Listing 19.
What makes this example different from the one above (and below) is that the guess

and the check programs are based on the same logic program and thus deal with the
same set of stable models. A guessed stable model is optimal, if no better model can be
obtained by the checker. This nicely reflects the checker’s role of generating potential
counterexamples.

Proceeding in the same manner as above, we compute the only subset maximal model
of program guess.lp as follows:

UNIX > clingo --output = reify guess .lp out.lp \
<(echo "# show guess /1.") | \

grep " output ( guess (.*))" | \
clingo --output = reify --reify -sccs \

- guess .lp superset .lp in.lp | \
clingo - metaD .lp bot.lp superglue .lp guess .lp out.lp 0

clingo version 5.5.0
Reading from - ...
Solving ...
Answer : 1
a(1) a(2)
SATISFIABLE

Tic-tac-toe. In this example, we consider a simplified 3× 3 Tic-tac-toe puzzle. Player O
has to place their three tokens in a winning configuration such that afterwards Player X
cannot place theirs in a winning position. Hence, the game is not played in turns and just
guaranteed winning configurations of Player O are determined.

This example involves two similar yet different programs. Unlike above, a guess involves
only a subset of the atoms of the generated stable models.
The encodings of Player O and X are given in Listings 20 and 21. The former acts

as a guess program and the latter as a checker program; only the positions of Player O
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are passed to Player X, as fixed in Listing 22. In this way, the positions occupied by O
become blocked for Player X in Line 9 of Listing 21.
Relying on the above setup, we can then compute the two undefeatable diagonal

configurations in Tic-tac-toe:
UNIX > clingo --output = reify playero .lp out.lp \

<(echo "# show guess /1.") | \
grep " output ( guess (.*))" | \
clingo --output = reify --reify -sccs \

- playerx .lp in.lp | \
clingo - metaD .lp bot.lp superglue .lp playero .lp out.lp 0

clingo version 5.5.0
Reading from - ...
Solving ...
Answer : 1
o(1 ,1) o(2 ,2) o(3 ,3)
Answer : 2
o(1 ,3) o(2 ,2) o(3 ,1)
SATISFIABLE

4 About clingo applications

We have seen in the last section how the functionality of ASP systems can be changed by
using meta programming. In particular, the reification of logic programs allows us to control
ASP by means of ASP. The remainder of this tutorial parallels this by showcasing several
ways of how ASP can be managed with other programming languages. As mentioned in
the introduction, we have chosen Python as our example language, although other choices
are possible.
This section focuses on the overall setup. The following ones delve into particular

functionalities and case studies.
Clingo offers three ways of combining ASP with other programming languages, either

via an embedded script, module import, or its application class. Although all three options
allow us to change the behavior of clingo by overwriting its main function, they aim at
rather different use cases. We discuss the three choices below and show how they treat the
common example in Listing 23. The idea is to outsource the computation of divisors to

1 num (3).
2 num (6).
3 div( N,@divisors (N)) :- num(N).

Listing 23. Example with external function (example.lp)

Python via an external function call. Such calls look like function terms but are preceded
by @ (Gebser et al. 2015). In our example, the term @divisors(N) in Line 3 assumes
the definition of a corresponding method in Python that takes the instantiation of N as
argument; its results are added as a term pool (Gebser et al. 2015) so that one or several
values can be accommodated. In our example, the head of the third rule thus results in
the atoms div(3,(1;3)) and div(6,(1;2;3;6)).
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4.1 Embedded Python code

The simplest way to extend an ASP encoding with a Python method is to add it as an
embedded script.

In our example, this can be done by supplying clingo with the embedded Python script
in Listing 24. It shows that foreign language scripts are enclosed in #script and #end.

1 #script ( python )

3 from clingo . symbol import Number

5 def divisors (a):
6 a = a. number
7 for i in range (1, a+1):
8 if a % i == 0:
9 yield Number (i)

11 #end.

Listing 24. Embedded Python code (embedded.lp)

and supplied with an argument indicating the used language. The code in this block is
arbitrary and executed before grounding. Functions defined in it, such as the divisors
function, can be called from ASP by prepending an @ symbol. Finally, such scripts are
meant to be part of the input of clingo just as the encoding in Listing 23, as shown below:

UNIX > clingo example .lp embedded .lp
clingo version 5.5.0
Reading from example .lp ...
Solving ...
Answer : 1
num (3) num (6) div (3 ,1) div (3 ,3) div (6 ,1) div (6 ,2) div (6 ,3) div (6 ,6)
SATISFIABLE

Such external term evaluation (during grounding) is an intended use case for embedded
scripts. The clingo object invoked on the command line is in charge of loading, grounding,
and solving, unless these tasks are taken from it (Gebser et al. 2019). Hence, the usage
of embedded scripts is generally most suitable for small extensions to logic programs,
anything on the term level during grounding. Often they are used to perform calculations
that are difficult or inconvenient to express in ASP.

4.2 The clingo Python module

The second alternative is to write a Python script using clingo’s Python module. The
module provides high level functions to interact with the grounder and solver including
input and output processing as well as fine-grained control over the grounding and solving
process. This provides a convenient way to use clingo as part of a larger project. The
surrounding application is in charge of the control flow and ASP is used to perform specific
computations. Even for simple computations, this avoids error prone string processing
like transforming data into ASP facts or parsing the solver’s output.
Listing 25 implements the previous example by using the Python module. The main

difference is that we have to construct a Control object and take care of the control flow
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1 from clingo . symbol import Number
2 from clingo . control import Control

4 class ExampleApp :
5 @staticmethod
6 def divisors (a):
7 a = a. number
8 for i in range (1, a+1):
9 if a % i == 0:
10 yield Number (i)

12 def run(self ):
13 ctl = Control ()
14 ctl.load(" example .lp")
15 ctl. ground ([("base", [])], context =self)
16 ctl.solve(on_model=print)

18 if __name__ == "__main__":
19 ExampleApp (). run ()

Listing 25. Example with external function (module.py)

ourselves. Such a Control object encapsulates an instance of clingo. First, the program is
added to the Control object using its load function. Then, the base part is grounded.7
To be able to call the divisors function, we pass the self argument as context to the
ground function. Finally, note that we use Python’s print function as on_model callback.
An on_model callback is a function passed to solve that is called for each model. It
allows for inspecting (and printing) the current model. This construction is necessary
because, unlike with the clingo system, there is no output foreseen when using the clingo
module in Python. This is nicely reflected by the plain output produced by Python’s
print function when solving our example with Listing 25:

UNIX > python module .py
num (3) num (6) div (3 ,1) div (3 ,3) div (6 ,1) div (6 ,2) div (6 ,3) div (6 ,6)

This is different from the ASP-specific output produced by clingo in the previous section.
While there ASP is extended with Python, here it is the other way around. This renders
the use of ASP completely opaque.

4.3 Implementing a system based on clingo

Finally, we present a third way that aims at building custom systems based on clingo. This
is similar to embedded Python code but gives more control to customize the system. For
example, parts of the text output can be modified, additional options can be registered,
or the way input files are treated can be changed completely.

Unlike the previous example, we now derive our ExampleApp class from clingo’s appli-
cation class. The resulting class can then be used with the clingo_main function, which
starts a process similar to the one in clingo but possibly with some overwritten functions.

7 Without any declarations, rules belong to a logic program referred to as base (cf. Section 5.1).
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First, the program name and version are defined. These values are then used in the status,
help, and version output of clingo. Furthermore, each application class must implement a
main function, which is called right after option parsing and is in charge of the grounding
and solving process. The function receives a Control object and a list of paths to the
files passed on the command line. The subsequent code processes the files just as clingo
would. Similar to the previous example, we pass in Listing 26 the ExampleApp object to
the ground function to be able to call its divisors method during grounding.

1 import sys
2 from clingo . symbol import Number
3 from clingo . application import Application, clingo _main

5 class ExampleApp ( Application ):
6 program _name = " example "
7 version = "1.0"

9 @staticmethod
10 def divisors (a):
11 a = a. number
12 for i in range (1, a+1):
13 if a % i == 0:
14 yield Number (i)

16 def main(self, ctl, files ):
17 for path in files: ctl.load(path)
18 if not files:
19 ctl.load("-")
20 ctl. ground ([("base", [])], context =self)
21 ctl.solve ()

23 if __name__ == "__main__":
24 clingo _main( ExampleApp (), sys.argv [1:])

Listing 26. Example application (app.py)

Note that we do not need to use a print function to output models. Rather the one
of clingo is used in a seamless way. Again, this is reflected by the output of solving our
example with Listing 26:

UNIX > python app.py example .lp
example version 1.0
Reading from example .lp
Solving ...
Answer : 1
num (3) num (6) div (3 ,1) div (3 ,3) div (6 ,1) div (6 ,2) div (6 ,3) div (6 ,6)
SATISFIABLE

Furthermore, this output already hints at the benefits of using clingo’s Application.
While control is exercised from Python, as in the last section, it allows us to draw on
clingo’s infrastructure, similar to using embedded scripting.

The utility of this class becomes apparent in the rest of the tutorial, where it is used
throughout as the basic building block of all clingo based systems.
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5 Multi-shot ASP solving

Multi-shot solving allows for solving continuously changing logic programs in an operative
way. This can be controlled via APIs implementing reactive procedures that loop on
grounding and solving while reacting, for instance, to outside changes or previous solving
results. Such reactions may entail the addition or retraction of rules that clingo’s operative
approach can accommodate while leaving unaffected program parts intact within the
solver. This avoids re-grounding and solving benefits from heuristic scores and constraints
learned over time.
We begin with an informal overview of the central features and language constructs

of clingo’s multi-shot solving capabilities. We illustrate them in Sections 5.2 and 5.3 by
showcasing two exemplary reasoning modes, namely branch-and-bound-based optimization
and incremental ASP solving. A comprehensive introduction to multi-shot solving with
clingo is given by Gebser et al. (2019).

5.1 A gentle introduction

Clingo allows us to structure (non-ground) rules into subprograms. To this end, a program
can be partitioned into several subprograms by means of the directive #program; it comes
with a name and an optional list of parameters. Once given in the input, the directive
gathers all rules up to the next such directive (or the end of file) within a subprogram
identified by the supplied name and parameter list. As an example, we specify two
subprograms base and acid(k) in file chemistry.lp in Listing 27. Note that base is a

1 a(1).
2 #program acid(k).
3 b(k).
4 c(X,k) :- a(X).
5 #program base.
6 a(2).

Listing 27. Subprograms base and acid(k) (chemistry.lp)

special subprogram (with an empty parameter list). In addition to the rules in its scope,
it gathers all rules not preceded by any #program directive. Hence, in the above example,
the base subprogram includes the facts a(1) and a(2), although, only the latter is in the
actual scope of the directive in Line 5. Without further control instructions (see below),
clingo grounds and solves the base subprogram only, essentially, yielding the standard
behavior of ASP systems. The processing of other subprograms such as acid(k) is subject
to external governance.

We first have a look at customizing grounding and solving by creating a Control object,
as put forward in Section 4.2. For illustration, let us consider two Python code snippets:8

1 from clingo . control import Control
2 ctl = Control ()
3 ctl.load(" chemistry .lp")

8 The ground routine takes a list of pairs as argument. Each such pair consists of a subprogram name
(e.g. base or acid) and a list of actual parameters (e.g. [] or [Number(42)]).
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4 ctl. ground ([("base", [])])
5 ctl.solve(on_model=print)

While the above control program matches the default behavior of clingo, the one below
ignores all rules in the base program but rather contains a ground instruction for acid(k)
in Line 5, where the parameter k is to be instantiated with the term 42.
1 from clingo . symbol import Number
2 from clingo . control import Control
3 ctl = Control ()
4 ctl.load(" chemistry .lp")
5 ctl. ground ([("acid",[ Number (42)])])
6 ctl.solve(on_model=print)

The treatment of parameter k is similar to that of a constant, defined with #const (Geb-
ser et al. 2015), yet restricted to the rules in the scope of the respective subprogram.
Accordingly, the schematic fact b(k) is turned into b(42). No ground rule is obtained
from ‘c(X,k) :- a(X)’ due to lacking instances of a(X). Hence, the solve call in Line 6
yields a stable model consisting of b(42) only. Note that ground instructions apply to
the subprograms given as arguments, while solve triggers reasoning with respect to all
accumulated ground rules.

For more elaborate reasoning processes, it is indispensable to activate and/or deactivate
ground rules on demand. For instance, former initial or goal state conditions may need to
be relaxed or completely replaced when modifying a planning problem, e.g., by extending
the plan length. To expire transient rules, clingo provides the #external directive. This
directive goes back to lparse (Syrjänen 2001), where it was used to exempt (input) atoms
from simplifications during grounding. Its functionality is generalized in clingo to provide
a flexible handling of yet undefined atoms in the course of grounding and solving.
For continuously assembling ground rules evolving at different stages of a reasoning

process, #external directives declare atoms that may still be defined by rules added later
on. In terms of module theory (Oikarinen and Janhunen 2006) such atoms correspond to
inputs, which (unlike undefined output atoms) must not be simplified. For declaring such
input atoms, clingo offers schematic #external directives that are instantiated along
with the rules of their respective subprograms.

For instance, the directive in the second line below
8 #program acid(k).
9 #external d(X,k ): c(X,k ).

10 e(X,k) :- d(X,k ).

is treated similar to the rule ‘d(X,k) :- c(X,k)’ during grounding, just that only the head
atoms of the resulting ground instances are collected as inputs. Hence, adding the above
lines to program chemistry.lp and grounding both subprograms base and acid(42)
yields the external atoms d(1,42) and d(2,42). Thus, we furthermore obtain the ground
rules ‘e(1,42) :- d(1,42)’ and ‘e(2,42) :- d(2,42)’.

Once grounded, the truth value of external atoms can be changed via clingo’s API (until
the atoms become defined by corresponding rules or are released). By default, the initial
truth value of external atoms is set to false. Then, for example, with clingo’s Python API,
the call ctl.assign_external(d(2,42),True)9 can be used to set the truth value of the

9 For constructing atoms, symbolic terms, or function terms, respectively, the clingo API function



How to build your own ASP-based system ?! 27

external atom d(2,42) to true. This can be used to activate and deactivate rules in logic
programs. For instance, the rule ‘e(1,42) :- d(1,42)’ is ineffective because d(1,42)
is false by default. Hence, a subsequent solve call yields the stable model consisting of
atoms a(1), a(2), c(1,42), c(2,42), d(2,42), and e(2,42). One further interesting use
case is to release external atoms. The call ctl.release_external(d(1,42)) removes
the external atom and the rule ‘e(1,42) :- d(1,42)’ from the Control object.

Remark 5
Module theory (Oikarinen and Janhunen 2006) is used to characterize the composition
of ground subprograms during multi-shot solving. For this, each ground subprogram is
associated with a module. Accordingly, the restrictions of module composition apply:
First, no two subprograms may define the same atom. Second, loops cannot spread across
subprograms. We refer to the paper by Gebser et al. (2019) for details.

The first condition can be enforced by equipping rule heads with parameters, as done
above. Often a natural choice for this is an argument identifying a step, as t in Listing 31.

5.2 Branch-and-bound-based optimization

In this section and the following one, we illustrate clingo’s multi-shot solving machinery
by applying it to a Towers of Hanoi puzzle (Potassco Team 2021h). Our example consists
of three pegs and four disks of different size; it is shown in Figure 1. The goal is to move
all disks from the left peg to the right one. Only the topmost disk of a peg can be moved
at a time. Furthermore, a disk cannot be moved to a peg already containing a disk of

1
2
3
4

a b

1
2
3
4

c

Fig. 1. Towers of Hanoi: initial and goal situation

smaller size. Although there is an efficient algorithm to solve our simple puzzle, we do not
exploit it here and merely specify conditions for sequences of moves being solutions. The
Towers of Hanoi puzzle constitutes a typical planning problem, aiming at finding a plan,
that is, a sequence of actions, that leads from an initial state to a state satisfying a goal.

To illustrate how multi-shot solving can be used for realizing branch-and-bound-based
optimization, we consider the problem of finding the shortest plan solving our puzzle
within a given horizon. To this end, we adapt the Towers of Hanoi encoding by Gebser
et al. (2019) in Listing 28. Here, the length of the horizon is given by parameter n.
The problem instance in Listing 29 together with Line 1 in Listing 28 gives the initial
configuration of disks in Figure 1. Similarly, the goal is checked in Lines 3–4 of Listing 28
(by drawing on the problem instance in Listing 29). Because the overall objective is to

Function has to be used. Similarly, numeric terms are constructed using function Number. Hence, the
expression d(2,42) actually stands for Function("d", [Number(2),Number(42)]).
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1 on(D,P,0) :- init_on(D,P ).

3 ngoal(T) :- goal_on(D,P), T=0.. n, not on(D,P,T ).
4 :- ngoal(n).

6 1 { move(D,P,T ): disk(D), peg(P) } 1 :- ngoal(T -1), T<=n.

8 move(D,T) :- move(D,P,T ).
9 on(D,P,T) :- move(D,P,T ).

10 on(D,P,T) :- on(D,P,T -1), not move(D,T), T<=n.
11 blocked (D-1 ,P,T) :- on(D,P,T -1).
12 blocked (D-1 ,P,T) :- blocked (D,P,T), disk(D).

14 :- move(D,P,T), blocked (D-1 ,P,T ).
15 :- move(D,T), on(D,P,T -1), blocked (D,P,T ).
16 :- disk(D), not 1 { on(D,P,T) } 1, T=1..n.

18 #show move /3.

20 _ minimize (1,T) :- ngoal(T).

Listing 28. Bounded towers of hanoi encoding (tohB.lp)
1 peg(a;b;c).
2 disk (1..4).
3 init_on (1..4 ,a).
4 goal_on (1..4 ,c).

Listing 29. Towers of hanoi instance (tohI.lp)

solve the problem in the minimum number of steps within a given bound, the goal is
tested at each time step in Line 3. Once it is established, we do not permit any further
moves and the goal persists in the following steps. This allows us to read off whether the
goal was reached at the planning horizon (in Line 4). The state transition function along
with state constraints are described in Lines 6–16. Since the encoding of the Towers of
Hanoi problem is fairly standard, we focus in the sequel on implementing branch-and-
bound-based minimization. In view of this, note that Line 6 ensures that moves are only
permitted if the goal is not yet achieved in the previous state. Thus, the subsequent states
do not change anymore, which allows us to express the optimization function in Line 20
as minimizing the number of steps in which the goal is not reached.

The idea of branch-and-bound-based optimization is to compute an optimal solution by
producing a series of increasingly better solutions until no better solution is found. The
solution obtained last is then an optimal one. Listing 30 implements the corresponding
optimization algorithm via clingo’s Application class from Section 4. It starts by over-
riding clingo’s main function in Line 20 and begins with reading the input either from
files provided on the command line or from standard input in Lines 21 and 24.

The basic building block of our algorithm consists of a weight constraint embedded in
the following subprogram.
1 #program bound(b).
2 :- #sum { V,I: _ minimize (V,I) } >= b.
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1 import sys
2 from clingo . symbol import Number, SymbolType
3 from clingo . application import Application, clingo _main

5 class OptExampleApp ( Application ):
6 program _name = "opt - example "
7 version = "1.0"

9 def __init__(self ):
10 self._bound = None

12 def _on_model(self, model ):
13 self._bound = 0
14 for atom in model. symbols (atoms=True ):
15 if (atom.match("_ minimize ", 2)
16 and atom. arguments [0]. type
17 is SymbolType . Number ):
18 self._bound += atom. arguments [0]. number

20 def main(self, ctl, files ):
21 if not files:
22 files = ["-"]
23 for f in files:
24 ctl.load(f)
25 ctl.add("bound", ["b"],
26 ":- #sum { V,I: _ minimize (V,I) } >= b.")

28 ctl. ground ([("base", [])])
29 while ctl.solve(on_model=self._on_model ). satisfiable :
30 print("Found new bound: {}". format (self._bound ))
31 ctl. ground ([("bound", [ Number (self._bound )])])

33 if self._bound is not None:
34 print(" Optimum found")

36 clingo _main( OptExampleApp (), sys.argv [1:])

Listing 30. Branch-and-bound optimization (opt.py)

This program ensures that the next stable model yields a better bound than the one of
the solution at hand. More precisely, it expects a bound b as parameter and adds the
integrity constraint in Line 2 to enforce a better solution. A new instance of this program
is added for each consecutive stable model. The addition of the (non-ground) constraint
in Line 2 as part of program bound(b) is accomplished in Lines 25 and 26.
The actual minimization algorithm starts by grounding the base program in Line 28

before it enters the loop in Lines 29–31. This loop implements the branch-and-bound-based
search for the minimum by searching for stable models while updating the bound until the
problem is unsatisfiable. Note that we pass a callback to the solve function in Line 29.
With it, the _on_model function in Lines 12–18 is called for every model found. If there
is a stable model, Lines 14–18 iterate over the atoms of the stable model while summing
up the current bound by extracting the weight of atoms over predicates _minimize/2.
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We check that the first argument of the atom is an integer and ignore atoms where this is
not the case; just like the #sum aggregate in Line 26. When a model was found, the body
of the loop in Lines 29–31 is processed. First, the algorithm prints the bound in Line 30.
Then, it adds an integrity constraint in Line 31 making sure that the next stable model is
strictly better than the current one. Finally, if the program becomes unsatisfiable, the
branch-and-bound loop in Lines 29–31 ends and Lines 33–34 print that the previously
found stable model (if any) is the optimal solution.

When running the augmented logic program in Listings 28, 29, and 30 with a horizon
of 17, the solver finds plans of length 17, 16, and 15 and shows that no plan of length 14
exists. This is reflected by clingo’s output indicating four solver calls and three stable
models:

UNIX > python opt.py tohB.lp tohI.lp -c n=17
opt - example version 1.0
Reading from tohB.lp ...
Solving ...
Answer : 1
move (4,b ,1) move (3,c ,2) move (4,a ,3) move (4,c ,4) move (2,b ,5) \
move (4,a ,6) move (3,b ,7) move (4,c ,8) move (4,b ,9) move (1,c ,10) \
move (4,c ,11) move (3,a ,12) move (4,a ,13) move (2,c ,14) move (4,b ,15)
move (3,c ,16) move (4,c ,17)
Found new bound : 17
Solving ...
Answer : 1
move (4,b ,1) move (3,c ,2) move (4,c ,3) move (2,b ,4) move (4,a ,5) \
move (3,b ,6) move (4,c ,7) move (4,b ,8) move (1,c ,9) move (4,c ,10) \
move (3,a ,11) move (4,a ,12) move (2,c ,13) move (4,b ,14) move (3,c ,15)
move (4,c ,16)
Found new bound : 16
Solving ...
Answer : 1
move (4,b ,1) move (3,c ,2) move (4,c ,3) move (2,b ,4) move (4,a ,5) \
move (3,b ,6) move (4,b ,7) move (1,c ,8) move (4,c ,9) move (3,a ,10) \
move (4,a ,11) move (2,c ,12) move (4,b ,13) move (3,c ,14) move (4,c ,15)
Found new bound : 15
Solving ...
Optimum found
UNSATISFIABLE

Note that at the end the solver deals with the ground program obtained from Listings 28
and 29 grounded with parameter n=17 along with the three integrity constraints obtained
from subprograms bound(17), bound(16), and bound(15).

Last but not least, note that the functionality implemented above is equivalent to using
clingo’s inbuilt optimization mode by replacing Line 20 in Listing 28 with
20 #minimize { 1,T: ngoal(T) }.

5.3 Incremental ASP solving

Incremental ASP solving offers a step-oriented approach to ASP that avoids redundancies
by gradually processing the extensions to a problem rather than repeatedly re-processing
the entire growing problem. To this end, a program is partitioned into a base part,
describing static knowledge independent of the step parameter t, a cumulative part,
capturing knowledge accumulating with increasing t, and a volatile part specific for each
value of t. In clingo, all three parts are captured by #program declarations along with
#external atoms for handling volatile rules, namely, subprograms named base, step,
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1 #program base.
2 on(D,P,0) :- init_on(D,P ).

4 #program check(t).
5 :- goal_on(D,P), not on(D,P,t), query(t).

7 #program step(t).
8 1 { move(D,P,t ): disk(D), peg(P) } 1.

10 move(D,t) :- move(D,P,t ).
11 on(D,P,t) :- move(D,P,t ).
12 on(D,P,t) :- on(D,P,t -1), not move(D,t ).
13 blocked (D-1 ,P,t) :- on(D,P,t -1).
14 blocked (D-1 ,P,t) :- blocked (D,P,t), disk(D).

16 :- move(D,P,t), blocked (D-1 ,P,t ).
17 :- move(D,t), on(D,P,t -1), blocked (D,P,t ).
18 :- disk(D), not 1 { on(D,P,t) } 1.

20 #show move /3.

Listing 31. Towers of hanoi incremental encoding (tohE.lp)

and check along with external atoms of form query(t). Note that these names have no
general, predefined meaning; their composition is usually defined in an associated script.
We illustrate this by adapting the Towers of Hanoi encoding from Listing 28 to an

incremental version in Listing 31. To this end, we arrange the original encoding in program
parts base, check(t), and step(t), use t instead of T as time parameter, and simplify
testing the goal. Checking the goal is easier here because the incremental approach
guarantees a shortest plan and, hence, does not require additional minimization.

At first, we observe that the problem instance in Listing 29 as well as Line 2 in Listing 31
constitute static knowledge and thus belong to the base program. More interestingly,
the query is expressed in Line 5 of Listing 31. Its volatility is realized by making it
subject to the truth assignment to the external atom query(t). For convenience, this
atom is predefined in Line 38 in Listing 32 as part of the check program. Hence, for
illustration, subprogram check consists of a user- and a pre-defined part. Finally, the
transition function along with state constraints are described in the subprogram step in
Lines 7–18.

The idea is now to control the successive grounding and solving of the program parts in
Listings 29 and 31 by the Python script in Listing 32.10 To this end, we use five variables
to govern the loop in Lines 44–60.11 Variables imin and imax prescribe a minimum and
maximum number of iterations, respectively; istop gives a termination criterion, e.g.,
"SAT" or "UNSAT". The value of step is used to instantiate the parametrized subprograms
and ret gives the solving result. While the initial values of step and ret are set in Line 43,
the first three variables are user-defined. We show how such user-defined variables are

10 For brevity, we have stripped class IncConfig in Line 9 from the parsing methods parse_int and
parse_stop. The full source code is available online (Potassco Team 2021h).

11 This follows the original implementation of incremental ASP solving in iclingo (Gebser et al. 2008)
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1 import sys
2 from clingo . symbol import Function, Number
3 from clingo . application import Application, clingo _main

5 class IncConfig :
6 def __init__(self ):
7 self. imin, self. imax, self. istop = 1, None, " SAT "

9 [...]

11 class IncExampleApp ( Application ):
12 program _name = "inc - example "
13 version = " 1.0 "

15 def __init__(self ):
16 self._conf = IncConfig ()

18 def register _ options ( self, options ):
19 group = "Inc - Example Options "
20 options .add(
21 group, " imin ",
22 f" Minimum number of steps [{ self ._ conf . imin }]",
23 parse _int(self._ conf, " imin ", min_val =0),
24 argument ="<n>")
25 options .add(
26 group, " imax ",
27 f" Maximum number of steps [{ self ._ conf . imax }]",
28 parse _int(self._ conf, " imax ", min_val =0, optional =True),
29 argument ="<n>")
30 options .add(
31 group, " istop ",
32 f" Stop criterion [{ self ._ conf . istop }]",
33 parse _stop(self._ conf, " istop "))

35 def main( self, ctl, files ):
36 if not files : files = ["-"]
37 for f in files : ctl.load(f)
38 ctl.add(" check ", ["t"], " #external query (t).")

40 conf = self._conf
41 imin, imax, istop = conf. imin, conf. imax, conf. istop

43 step, ret = 0, None
44 while (( imax is None or step < imax) and
45 (step == 0 or step < imin or (
46 ( istop == " SAT " and not ret. satisfiable ) or
47 ( istop == " UNSAT " and not ret. unsatisfiable ) or
48 ( istop == " UNKNOWN " and not ret. unknown )))):
49 parts = []
50 parts . append ((" check ", [ Number (step )]))
51 if step > 0:
52 query = Function (" query ", [ Number (step - 1)])
53 ctl. release _ external ( query )
54 parts . append ((" step ", [ Number (step )]))
55 else :
56 parts . append ((" base ", []))
57 ctl. ground ( parts )
58 query = Function (" query ", [ Number (step )])
59 ctl. assign _ external ( query, True)
60 ret, step = ctl. solve (), step + 1

62 clingo _main( IncExampleApp (), sys.argv [1:])

Listing 32. Python script implementing incremental ASP solving in clingo (inc.py)
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integrated into clingo’s option handling below, but first describe the actual implementation
of incremental ASP solving.
The subprograms grounded in each iteration are accumulated in the list parts (cf.

Line 49). Each of its entries is a pair consisting of a subprogram name along with its list
of actual parameters. In the very first iteration, the subprograms base and check(0) are
grounded. Note that this involves the declaration of the external atom query(0) and the
assignment of its default value false. The latter is changed in Line 59 to true in order to
activate the actual query. The solve call in Line 60 then amounts to checking whether
the goal situation is already satisfied in the initial state. As well, the value of step is
incremented to 1.

As long as the termination condition remains unfulfilled, each following iteration takes
the respective value of variable step to replace the parameter in subprograms step and
check during grounding. In addition, the current external atom query(t) is set to true,
while the previous one is permanently set to false. This disables the corresponding instance
of the integrity constraint in Line 5 of Listing 31 before it is replaced in the next iteration.
In this way, the query condition only applies to the current horizon.
In our example, the solver is called 16 times before a plan of length 15 is found:

UNIX > python inc.py tohE.lp tohI.lp
inc - example version 1.0
Reading from tohE.lp ...
Solving ...
[...]
Solving ...
Answer : 1
move (4,b ,1) move (3,c ,2) move (4,c ,3) move (2,b ,4) \
move (4,a ,5) move (3,b ,6) move (4,b ,7) move (1,c ,8) \
move (4,c ,9) move (3,a ,10) move (4,a ,11) move (2,c ,12) \
move (4,b ,13) move (3,c ,14) move (4,c ,15)
SATISFIABLE

Models : 1+
Calls : 16

Last but not least, let us explain how option processing can be added by sketching how
the three variables imin, imax, and istop can be set from the command line. For this
purpose, clingo’s API offers the two methods register_options and validate_options.
In our simple example, we only use the former since the latter is meant to handle situations
with conflicting options.12 In fact, register_options receives an ApplicationOptions
object as parameter to register additional options. For example, option --imin is added
in Lines 20–24 by calling ApplicationOptions.add. Its first parameter is the name of an
option group, used as the section heading when printing the application’s help when called
with --help. In our example, all options are grouped in the “Inc-Example Options”
section. More concretely, we get the following help output (omitting descriptions for
clingo’s options):

UNIX > python inc.py --help
[...]
Inc - Example Options :

--imin=<n> : Minimum number of steps [1]
--imax=<n> : Maximum number of steps [None]

12 We also omit describing the underlying option parsers; cf. Footnote 10.
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--istop =<arg > : Stop criterion [SAT]

[...]

The second parameter is the name of the option on the command line. Here, we pass
"imin" to add option --imin. This is followed by the option description and the
(omitted) option parser. Registration and parsing of options happens once before the
IncExampleApp.main method is called. Hence, at that time the attributes of the applica-
tions IncExampleApp._conf object either have their default values or were overwritten
by options passed on the command line. The last keyword parameter configures the
placeholder, which is printed in the help output. Since we are adding a numeric option, it
is good practice to call it <n>. By default it is called <arg>.

6 Theory-enhanced ASP solving

This section provides fundamental concepts for extending clingo with foreign types of
constraints, also referred to as theories. To begin with, it is important to bear in mind
that ASP is a modeling-grounding-solving paradigm, in contrast to, for instance, the
solving-centered approach of SAT Modulo Theories (SMT; Nieuwenhuis et al. 2006). Hence
extensions of ASP are rarely limited to single components but rather spread throughout
the whole workflow. This begins with the addition of new language constructs to the input
language, requiring in turn enhancements to the grounder as well as syntactic means for
passing the ground constructs to a downstream system. In case the latter is an ASP solver,
it must be enabled to handle the specific input and incorporate corresponding solving
capacities. Finally, each such extension is rather specific and thus requires different means
at all ends.

We begin by showing how clingo’s input language can be customized with theory-specific
constructs. We then outline clingo’s algorithmic approach to ASP solving with theory
propagation to put the description of clingo’s theory reasoning interface on firm grounds.

6.1 Input language

We begin by introducing the theory-related features of clingo’s input language. They are
situated in the underlying grounder gringo and can thus also be used independently of
clingo. We start with a detailed description of the generic means for defining theories
and complement this in Appendix B with an overview of the corresponding intermediate
language aspif.

The generic approach to theory specification rests upon two languages: the one defining
theory languages and the theory language itself. Both borrow elements from the under-
lying ASP language, foremost an aggregate-like syntax for formulating variable length
expressions. To illustrate this, consider Listing 33, where a logic program is extended
by constructs for handling difference and linear constraints. While the former are bi-
nary constraints of the form x1 − x2 ≤ k, the latter have a variable size and are of the
form a1x1 + · · · + anxn ◦ k, where xi are integer variables, ai and k are integers, and
◦ ∈ {≤,≥, <,>,=} for 1 ≤ i ≤ n. Note that solving difference constraints is polynomial,
while solving linear equations (over integers) is NP-complete. The theory language for
expressing both types of constraints is defined in Lines 1–15 and preceded by the directive
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1 #theory lc {
2 constant { - : 0, unary };
3 diff_term { - : 0, binary, left };
4 linear _term { + : 2, unary; - : 2, unary;
5 * : 1, binary, left;
6 + : 0, binary, left;
7 - : 0, binary, left };
8 domain _term { .. : 1, binary, left };
9 show_term { / : 1, binary, left };

11 &dom /0 : domain _term, {=}, linear _term, any;
12 &sum /0 : linear _term, {<=,=,>=,<,>,!=}, linear _term, any;
13 &diff /0 : diff_term, {<=}, constant, any;
14 &show /0 : show_term, directive
15 }.

17 #const n=2. #const m =1000.

19 task (1..n).
20 duration (T,200*T) :- task(T).

22 &dom { 1..m } = start(T) :- task(T).
23 &dom { 1..m } = end(T) :- task(T).
24 &diff { end(T)-start(T) } <= D :- duration (T,D ).
25 &sum { end(T): task(T); -start(T): task(T) } <= m.

27 &show { start /1; end /1 }.

Listing 33. Logic program enhanced with difference and linear constraints (lc.lp)

#theory. The elements of the resulting theory language are preceded by & and used as
regular atoms in the logic program in Lines 17–27.
To be more precise, a theory definition has the form

#theory T {D1;. . .;Dn}.

where T is the theory name and each Di is a definition for a theory term or a theory
atom for 1 ≤ i ≤ n. The language induced by a theory definition is the set of all theory
atoms constructible from its theory atom definitions.
A theory atom definition has the form

&p/k : t,o or &p/k : t,{�1,. . .,�m},t′,o

where p is a predicate symbol and k its arity, t and t′ are names of theory term definitions,
each �i is a theory operator for m ≥ 1, and o ∈ {head, body, any, directive} determines
where theory atoms may occur in a rule. Examples of theory atom definitions are given
in Lines 11–14 of Listing 33. The language of a theory atom definition as given above
contains all theory atoms of the form

&a {C1:L1;. . .;Cn:Ln} or &a {C1:L1;. . .;Cn:Ln} � c

where a is an atom over predicate p of arity k, each Ci is a tuple of theory terms in
the language for t, c is a theory term in the language for t′, � is a theory operator
among {�1, . . . , �m}, and each Li is a regular condition (i.e., a tuple of regular literals) for
1 ≤ i ≤ n. Whether the last part ‘ � c’ is included depends on the form of a theory atom
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definition. Further, observe that theory atoms with occurrence type any can be used both
in the head and body of a rule; with occurrence types head and body, their usage can be
restricted to rule heads and bodies only. Occurrence type directive is similar to type
head but additionally requires that the rule body must be completely evaluated during
grounding. Five occurrences of theory atoms can be found in Lines 22–27 of Listing 33.

Remark 6
Having conditions, such as Li above, is useful to address variable length constraints
as in Listing 33. However, atoms like task(T) are given as facts and therefore are
not subject to solving. In general, however, conditions may involve atoms that are not
decided during grounding. If this is the case, they have to be handled with care since
there is no predefined behavior. For instance, a rule a :- &sum{ x : a } >= 0 may
be unsatisfiable under certain semantic principles (Gelfond and Zhang 2019). Formal
foundations and implementation techniques of conditional theory atoms were developed
by Cabalar et al. (2020a) and Cabalar et al. (2020b).

A theory term definition has the form
t {D1;. . .;Dn}

where t is a name for the defined terms and each Di is a theory operator definition for
1 ≤ i ≤ n. A corresponding definition specifies the language of all theory terms that
can be constructed via its operators. Examples of theory term definitions are given in
Lines 2–9 of Listing 33. Each resulting theory term is one of the following:
• a constant term: c

• a variable term: v

• a binary theory term: t1 � t2
• a unary theory term: � t1

• a function theory term: f(t1, . . . , tk)
• a tuple theory term: (t1, . . . , tl, )
• a set theory term: {t1, . . . , tl}
• a list theory term: [t1, . . . , tl]

where each ti is a theory term, � is a theory operator defined by some Di, c and f are
symbolic constants, v is a first-order variable, k ≥ 1, and l ≥ 0. (The trailing comma
in tuple theory terms is optional if l 6= 1.) Parentheses can be used to specify operator
precedence.
A theory operator definition has the form
� : p,unary or � : p,binary ,a

where � is a unary or binary theory operator with precedence p ≥ 0 (determining implicit
parentheses). Binary theory operators are additionally characterized by an associativity
a ∈ {right, left}. As an example, consider Lines 4–5 of Listing 33, where the left
associative binary operators + and * are defined with precedence 2 and 1, respectively.
Hence, parentheses in terms like ‘(X+(2*Y))+Z’ can be omitted. In total, Lines 2–9 of
Listing 33 include nine theory operator definitions. Specific theory operators can be
assembled (written consecutively without spaces) from the symbols ‘!’, ‘<’, ‘=’, ‘>’, ‘+’,
‘-’, ‘*’, ‘/’, ‘\’, ‘?’, ‘&’, ‘|’, ‘.’, ‘:’, ‘;’, ‘~’, and ‘^’. For instance, in Line 8 of Listing 33,
the operator ‘..’ is defined as the concatenation of two periods. The tokens ‘.’, ‘:’, ‘;’,
and ‘:-’ must be combined with other symbols due to their dedicated usage. Instead, one
may write ‘..’, ‘::’, ‘;;’, ‘::-’, etc.
While theory terms are formed similar to regular ones, theory atoms rely upon an

aggregate-like construction for forming variable-length theory expressions. In this way,
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1 task (1).
2 task (2).
3 duration (1 ,200 ).
4 duration (2 ,400 ).

6 &dom { 1..1000 } = start (1).
7 &dom { 1..1000 } = start (2).
8 &dom { 1..1000 } = end (1).
9 &dom { 1..1000 } = end (2).

11 &diff { end (1)- start (1) } <= 200.
12 &diff { end (2)- start (2) } <= 400.

14 &sum { end (1); end (2); -start (1); -start (2) } <= 1000.

16 &show { start /1; end /1 }.

Listing 34. Human-readable result of grounding Listing 33 via ‘gringo --text lc.lp’

standard grounding techniques can be used for gathering theory terms. The treatment
of theory terms still differs from their regular counterparts in that the grounder skips
simplifications like, e.g., arithmetic evaluation. This can be seen on the different results
in Listing 34 of grounding terms formed with the regular and theory-specific variants
of operator ‘..’. Observe that the fact task(1..n) in Line 19 of Listing 33 results
in n ground facts, viz. task(1) and task(2) because of n=2. Unlike this, the theory
expression 1..m stays structurally intact and is only transformed into 1..1000 in view of
m=1000. That is, the grounder does not evaluate the theory term 1..1000 and leaves its
interpretation to a downstream theory solver. A similar situation is encountered when
comparing the treatment of the regular term ‘200*T’ in Line 20 of Listing 33 to the theory
term ‘end(T)-start(T)’ in Line 24. While each instance of ‘200*T’ is evaluated during
grounding, instances of the theory term ‘end(T)-start(T)’ are left intact in Lines 11
and 12 of Listing 34. In fact, if ‘200*T’ had been a theory term as well, it would have
resulted in the unevaluated instances ‘200*1’ and ‘200*2’.

6.2 Semantic principles

Given the hands-on nature of this work, we only give an informal idea of the semantic
principles underlying theory solving in ASP.

A logic program induces a set of stable models. To extend this concept to logic programs
with theory expressions, we follow the approach of lazy theory solving (Barrett et al.
2009). We abstract from the specific semantics of a theory by considering the theory
atoms representing the underlying theory constraints. The idea is that a regular stable
model of a program over regular and theory atoms is only valid with respect to a theory,
if the constraints induced by the truth assignment to the theory atoms are satisfiable in
the theory.
In the example above, this amounts to finding a numeric assignment to all theory

variables satisfying all difference and linear constraints associated with theory atoms. The
ground program in Listing 34 has a single stable model consisting of all regular and theory
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atoms in Lines 1–16. Here, we easily find assignments satisfying the induced constraints,
e.g., start(1) 7→ 1, end(1) 7→ 2, start(2) 7→ 2, and end(2) 7→ 3.

In fact, there are alternative semantic options for capturing theory atoms, as discussed
by Gebser et al. (2016). First of all, we may distinguish whether imposed constraints
are only determined outside or additionally inside a logic program. This leads to the
distinction between defined and external theory atoms (analogous to rule heads and
input atoms defined by #external directives). While external theory atoms must only be
satisfied by the respective theory, defined ones must additionally be derivable through
rules in the program. A second distinction concerns the interplay of ASP with theories.
More precisely, it is about the logical correspondence between theory atoms and theory
constraints. This leads us to the distinction between strict and non-strict theory atoms.
The strict correspondence requires a constraint to be satisfied iff the associated theory
atom is true. A weaker since only implicative condition is imposed in the non-strict
case. Here, a constraint must hold only if the associated theory atom is true. In other
words, only non-strict theory atoms assigned true impose requirements, while constraints
associated with falsified non-strict theory atoms are free to hold or not. However, by
contraposition, a violated constraint leads to a false non-strict theory atom.

6.3 Algorithmic aspects

The algorithmic approach to ASP solving modulo theories of clingo, or more precisely that
of its underlying ASP solver clasp, follows the lazy approach to solving in Satisfiability
Modulo Theories (SMT; Barrett et al. 2009). We give below an abstract overview that
serves as light algorithmic underpinning for the description of clingo’s implementation
given in the next section.

A ground program P induces completion and loop nogoods, called ∆P or ΛP , respectively,
that can be used for computing stable models of P (Gebser et al. 2012). Nogoods represent
invalid partial assignments and can be thought of as negative Boolean constraints. We
represent (partial) assignments as consistent sets of literals. An assignment is total if it
contains either the positive or negative literal of each atom. We say that a nogood is
violated by an assignment if the former is contained in the latter; a nogood is unit if
all but one of its literals are in the assignment. Each total assignment not violating any
nogood in ∆P ∪ ΛP yields a regular stable model of P , and such an assignment is called
a solution (for ∆P ∪ ΛP ). To accommodate theories, we identify a theory T with a set
∆T of theory nogoods, and extend the concept of a solution in the straightforward way.

The nogoods in ∆P ∪ ΛP ∪∆T provide the logical foundation for the Conflict-Driven
Constraint Learning (CDCL) procedure (Marques-Silva et al. 2009; Gebser et al. 2012)
outlined in Figure 2. While the completion nogoods in ∆P are usually made explicit and
subject to unit propagation,13 the loop nogoods in ΛP as well as theory nogoods in ∆T

are typically handled by dedicated propagators and particular members are selectively
recorded. While a dedicated propagator for loop nogoods is built-in in systems like clingo,
those for theories are provided via the interface Propagator in Figure 3. To utilize
custom propagators, the algorithm in Figure 2 includes an initialization step in Line (I).

13 Unit propagation extends an assignment with literals complementary to the ones missing in unit
nogoods.
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(I) initialize // register theory propagators and initialize watches
loop

propagate completion, loop, and recorded nogoods // deterministically assign literals
if no conflict then

if all variables assigned then
(C) if some δ ∈ ∆T is violated then record δ // theory propagators check ∆T

else return variable assignment // theory-based stable model found
else

(P) propagate theories // theory propagators may record theory nogoods from ∆T

if no nogood recorded then decide // non-deterministically assign some literal
else

if top-level conflict then return unsatisfiable
else

analyze // resolve conflict and record a conflict constraint
(U) backjump // undo assignments until conflict constraint is unit

Fig. 2. Basic algorithm for Conflict-Driven Constraint Learning (CDCL) modulo theories

In addition to the “registration” of a propagator for a theory as an extension of the basic
CDCL procedure, common tasks performed in this step include setting up internal data
structures and so-called watches for (a subset of) the theory atoms, so that the propagator
is invoked (only) when some watched literal gets assigned.
As usual, the main CDCL loop starts with unit propagation on completion and

loop nogoods, the latter handled by the respective built-in propagator, as well as any
nogoods already recorded. If this results in a non-total assignment without conflict, theory
propagators for which some of their watched literals have been assigned are invoked
in Line (P). A propagator for a theory T can then inspect the current assignment,
update its data structures accordingly, and most importantly, perform theory propagation
determining theory nogoods δ ∈ ∆T to record. Usually, any such nogood δ is unit or
conflicting in order to trigger unit propagation or conflict resolution, although this is not
a necessary condition. The interplay of unit and theory propagation continues until a
conflict or a total assignment arises, or no (further) watched literals of theory propagators
get assigned by unit propagation. In the latter case, some non-deterministic decision is
made to extend the partial assignment at hand and then to proceed with unit and theory
propagation.

If no conflict arises and an assignment is total, in Line (C), theory propagators are called,
one by one, for a final check. The idea is that, e.g., a “lazy” propagator for a theory T
that does not exhaustively test violations of its theory nogoods by partial assignments
can make sure that the assignment is indeed a solution for ∆T , or record some violated
nogood(s) from ∆T otherwise. Even in case theory propagation on partial assignments
is exhaustive and a final check is not needed to detect conflicts, the information that
search led to a total assignment can be useful in practice, e.g., to store values for integer
variables like start(1), start(2), end(1), and end(2) in Listing 34 that witness the
existence of a solution for T .
Finally, in case of a conflict, i.e., some completion or recorded nogood is violated by

the current assignment, provided that some non-deterministic decision is involved in
the conflict, a new conflict constraint is recorded and utilized to guide backjumping
in Line (U), as usual with CDCL. In a similar fashion as the assignment of watched
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clingo

SymbolicAtom
+ symbol
+ literal

TheoryAtom
+ name
+ elements
+ guard
+ literal

PropagateInit
+ num threads
+ symbolic atoms
+ theory atoms
+ add watch(lit)
+ solver literal(lit)

�interface�
Propagator

+ init(init)
+ propagate(control, changes)
+ undo(thread id, assignment, changes)
+ check(control)

PropagateControl
+ thread id
+ assignment
+ add nogood(nogood, tag, lock)
+ propagate()

Assignment
+ decision level
+ has conflict
+ value(lit)
+ level(lit)
+ ...

Fig. 3. Class diagram of clingo’s (theory) propagator interface

literals serves as trigger for theory propagation, theory propagators are informed when
they become unassigned upon backjumping. This allows the propagators to undo earlier
operations, e.g., internal data structures can be reset to return to a state taken prior to
the assignment of watches.
In summary, the basic CDCL procedure is extended in four places to account for

custom propagators: initialization, propagation of (partial) assignments, final check of
total assignments, and undo steps upon backjumping.

6.4 Propagator interface

We now turn to the implementation of theory propagation in clingo and detail the structure
of its interface depicted in Figure 3. The interface Propagator has to be implemented by
each custom propagator. After registering such a propagator with clingo, its functions are
called during initialization and search as indicated in Figure 2. Function init is called
once before solving (Line (I) in Figure 2) to allow for initializing data structures used
during theory propagation. It is invoked with a PropagateInit object providing access
to symbolic (SymbolicAtom) as well as theory (TheoryAtom) atoms. Both kinds of atoms
are associated with program literals, which are in turn associated with solver literals.
Program as well as solver literals are identified by non-zero integers, where positive and
negative numbers represent positive or negative literals, respectively. In order to get
notified about assignment changes, a propagator can set up watches on solver literals
during initialization.
During search, function propagate is called with a PropagateControl object and

a (non-empty) list of watched literals that got assigned in the recent round of unit
propagation (Line (P) in Figure 2). The PropagateControl object can be used to inspect
the current assignment, record nogoods, and trigger unit propagation. Furthermore, to



How to build your own ASP-based system ?! 41

support multi-threaded solving, its thread_id property identifies the currently active
thread, each of which can be viewed as an independent instance of the CDCL algorithm
in Figure 2.14 Function undo is the counterpart of propagate and called whenever the
solver retracts assignments to watched literals (Line (U) in Figure 2). In addition to the
list of watched literals that have been retracted (in chronological order), it receives the
identifier and the assignment of the active thread. Finally, function check is similar to
propagate, yet invoked without a list of changes. Instead, it is (only) called on total
assignments (Line (C) in Figure 2), independently of watches. Overriding the empty
default implementations of propagator methods is optional.

7 Extending ASP with difference constraints

In this section, we develop a case-study featuring the extension of ASP with difference
constraints15 by augmenting clingo with a corresponding propagator. To this end, we
extend the language of Section 2 with difference constraint atoms of form

&diff { u-v } <= d

where u and v are (regular) terms and d is an integer constant. Such atoms may either
occur in the head or the body of a rule. Hence, stable models may now also include theory
atoms of form ‘&diff { u-v } <= d’. More precisely, for a stable model X, let CX be the
set of difference constraints u−v ≤ d associated with theory atoms ‘&diff { u-v } <= d’
in X and VX be the set of all (integer) variables occurring in the difference constraints in
CX . In our case, a stable model X is then dc-stable, if there is a mapping from VX to the
integers, first, satisfying all constraints in CX , and second, falsifying all constraints not
in CX that are associated with a strict difference constraint atom (Janhunen et al. 2017).
Next, let us discuss the semantic principles guiding our implementation. Recall from

Section 6.2 that theory atoms may have different semantic properties, either defined
or external depending upon their occurrence, or either strict or non-strict depending
upon their logical relation to the represented constraint. For difference constraints, the
combinations of strict and external as well as non-strict and defined appear to be the
most intuitive combinations (Janhunen et al. 2017).
To illustrate this, consider the following example:

1 &diff { 0-x } <= -2.
2 a :- &diff { 0-x } <= -1.

This program states that x is greater or equal 2 and that a is derived if x is greater
or equal than 1. An intuitive result is to assign x a value greater or equal than 2 and
to derive a. However, in case atom ‘&diff { 0-x } <= -1’ is non-strict, we also obtain
answer sets without a. This is because the falsity of ‘&diff { 0-x } <= -1’ does not
imply that 0−x ≤ −1 is false as well. This is enforced by interpreting the relation between
‘&diff { 0-x } <= -1’ and 0− x ≤ −1 as strict, and then a is obtained. Intuitively, the
combination of external and strict can be seen as interpreting theory atoms relative to
an external oracle, according to which all possibilities have to be considered as the logic
program is oblivious to the meaning of the theory atom.

14 Depending on the configuration of clasp, threads can communicate with each other. For example, some
of the recorded nogoods can be shared. This is transparent from the perspective of theory propagators.

15 In SMT, the underlying formal system is also referred to as quantifier free integer difference logic.
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10 THEORY = """
11 #theory dl{
12 diff_term {
13 - : 3, unary;
14 ** : 2, binary, right;
15 * : 1, binary, left;
16 / : 1, binary, left;
17 \\ : 1, binary, left;
18 + : 0, binary, left;
19 - : 0, binary, left
20 };
21 &diff /1 : diff_term, {<=}, diff_term, any
22 }.
23 """

Listing 35. Theory language dl for difference constraints (dl.py, Lines 10–23)

For a complement to the above example, consider the following one:
1 &diff { 0-x } <= -2.
2 &diff { 0-x } <= -1 :- a.

Again, the program states that x is greater equal 2 but now atom a derives that x is
greater or equal than 1. As we do not have a definition of a, we expect answer sets not
containing a and assignments where x is greater or equal 2. However, once we interpret
the atom ‘&diff { 0-x } <= -1’ as strict, the program becomes unsatisfiable. In this
case the falsity of ‘&diff { 0-x } <= -1’ implies that 0 − x ≤ −1 is false as well. A
non-strict interpretation avoids this and yields the expected result. The combination of
non-strict and defined lets the logic program decide which theory atoms hold. Specifically,
the absence of an atom in an answer set does not imply that the constraint is false but
rather that it is not enforced. As a result, we handle occurrences of difference constraint
atoms in the head as defined and non-strict, and atom occurrences in the body as external
and strict.16

Let us now turn to the actual extension of clingo. The overall implementation is divided
in two, on the one hand, the actual application class DLApp addressing grounding and
solving in Listing 37, and on the other hand, six classes dealing with various aspects
of difference constraints. The complete source code is available online (Potassco Team
2021d).

In what follows, we concentrate on the HeadBodyTransformer class in Listing 36,
illustrating the manipulation of a logic program’s abstract syntax tree (AST), as well as
the DLPropagator class in Listing 38, showcasing a propagator adding foreign inferences
to ASP. To support this, we also describe the interface of the Graph class but refrain from
presenting its implementation. For expressing difference constraints, we define the theory
language dl in Listing 35, a subset of the theory language lc presented in Listing 33
above. Note that to accommodate the additional argument indicating the location of the
difference constraint atom, we have replaced &diff/0 by &diff/1.

To achieve the above distinction between head and body occurrences of theory atoms

16 Note that this amounts to treating occurrences of the same constraint atom in different ways. This is
not unusual since the same constraint may be represented by syntactically different constraint atoms.
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79 class HeadBodyTransformer (ast. Transformer ):
80 def visit_ Literal (self, lit, in_lit=False ):
81 return lit. update (** self.visit_ children (lit, True ))

83 def visit_ TheoryAtom (self, atom, in_lit=False ):
84 term = atom.term
85 if term.name == "diff" and not term. arguments :
86 loc = "body" if in_lit else "head"
87 atom = atom. update (term=ast. Function (
88 term. location, term.name,
89 [ast. Function (term. location, loc, [], False )],
90 False ))
91 return atom

Listing 36. HeadBodyTransformer class for tagging occurrence of theory atoms (dl.py,
Lines 79–91)

without changing the input language, we use clingo’s functionalities to modify the AST of
non-ground programs for tagging theory atoms with their respective occurrence. Although
pragmatic, the annotation of theory atoms has turned out to be very useful in several
implementations. Moreover, it serves us as a first example of how non-ground programs
can be modified through clingo’s API.

Remark 7
The user still writes difference constraints over &diff/0. The AST modification occurs
on the non-ground level during parsing. Once grounded, it is checked whether all theory
atoms are valid with regards to a theory language. At this point, difference constraints
are constructed over &diff/1, which is opaque to the user.

As mentioned, this is accomplished by the HeadBodyTransformer class in Listing 36. This
class nicely illustrates how the visitor design pattern is used by clingo to manipulate the
AST of (non-ground) logic programs. The transformer uses the property that theory atoms
in rule heads or bodies are never or always children of literal nodes, respectively. Assuming
that the root node of the AST is visited with in_lit=False, function visit_Literal in
Lines 80–81 visits its children with in_lit=False. Hence, function visit_TheoryAtom
in Lines 83–91 is visited with the parameter in_lit indicating a head or body occurrence
and returns the theory atom with the location (either head or body) as an argument. For
instance, treating the example above using this class results in the following program:
1 &diff(head) { 0-x } <= -2.
2 a :- &diff (body) { 0-x } <= -1.

Listing 37 shows the application that addresses grounding and solving. Lines 16–25
implement a customized main function. The difference to clingo’s regular one is that a
propagator for difference constraints is registered, the string variable THEORY containing
the above theory language is added as a program, and the input programs are rewritten
adding locations to the difference constraint atoms; grounding and solving then follow
as usual. Note that the solve function in Line 25 takes a model callback as argument.
Whenever a dc-stable model X is found, this callback adds symbols to the answer set
representing a mapping satisfying the corresponding difference constraints CX . The model
X (excluding theory atoms) is printed as part of clingo’s default output. The callback
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1 import sys
2 from clingo . application import Application, clingo _main
3 from clingo .ast import ProgramBuilder, parse_files
4 from dl import DLPropagator, HeadBodyTransformer, THEORY

6 class DLApp( Application ):
7 program _name = "clingo -dl"
8 version = "1.0"

10 def __init__(self ):
11 self._ propagator = DLPropagator ()

13 def on_model(self, model ):
14 self._ propagator .on_model(model)

16 def main(self, ctl, files ):
17 ctl. register _ propagator (self._ propagator )
18 ctl.add("base", [], THEORY )

20 with ProgramBuilder (ctl) as bld:
21 hbt = HeadBodyTransformer ()
22 parse_files( files, lambda stm: bld.add(hbt.visit(stm )))

24 ctl. ground ([("base", [])])
25 ctl.solve(on_model=self.on_model)

27 sys.exit(int( clingo _main(DLApp (), sys.argv [1:])))

Listing 37. Application class DLApp with main loop for difference constraints (dl-app.py)

function on_model in Line 13 calls in turn the on_model function of the propagator
(Line 13 in Listing 38) that adds symbols of the form dl(x, v) to the model, where x is
the name of an integer variable and v the assigned value in X.

Our example propagator for difference constraints in Listing 38 implements the algorithm
presented by Cotton and Maler (2006). The idea is that deciding whether a set of difference
constraints is satisfiable can be mapped to a graph problem. Given a set of difference
constraints, let (V,E) be the weighted directed graph such that V is the set of variables
occurring in the constraints and E the set of weighted edges (u, v, d) for each constraint
u− v ≤ d. The set of difference constraints is satisfiable if the corresponding graph does
not contain a negative cycle (i.e. a cycle whose sum of edge labels is negative). The class

dl

Graph

+ add edge(level, edge)
+ backtrack(level)
+ get assignment()

Fig. 4. Class diagram for the Graph class
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192 class DLPropagator ( Propagator ):
193 def __init__(self ):
194 self._l2e = {} # { literal : [( node, node, weight )]}
195 self._e2l = {} # {( node, node, weight ): [ literal ]}
196 self._ states = [] # [Graph]

198 def _state(self, thread _id):
199 while len(self._ states ) <= thread _id:
200 self._ states . append (Graph ())
201 return self._ states [ thread _id]

203 def _lit(self, control, edge ):
204 for lit in self._e2l[edge ]:
205 if control . assignment .is_true(lit ):
206 return lit
207 assert False

209 def _add_edge(self, init, lit, u, v, w):
210 edge = (u, v, w)
211 self._l2e. setdefault (lit, []). append (edge)
212 self._e2l. setdefault (edge, []). append (lit)
213 init.add_watch(lit)

215 def init(self, init ):
216 for atom in init. theory _atoms:
217 term = atom.term
218 if term.name == "diff" and len(term. arguments ) == 1:
219 u = _eval(atom. elements [0]. terms [0]. arguments [0])
220 v = _eval(atom. elements [0]. terms [0]. arguments [1])
221 w = _eval(atom.guard [1]). number
222 lit = init. solver _ literal (atom. literal )
223 self._add_edge(init, lit, u, v, w)
224 if term. arguments [0]. name == "body":
225 self._add_edge(init, -lit, v, u, -w - 1)

227 def propagate (self, control, changes ):
228 state = self._state( control . thread _id)
229 level = control . assignment . decision _level
230 for lit in changes :
231 for edge in self._l2e[lit ]:
232 cycle = state.add_edge( level, edge)
233 if cycle is not None:
234 c = [self._lit( control, e) for e in cycle]
235 control .add_ nogood (c) and control . propagate ()
236 return

238 def undo(self, thread _id, assign, changes ):
239 self._state( thread _id). backtrack ( assign . decision _level)

241 def on_model(self, model ):
242 assignment = self._state(model. thread _id). get_ assignment ()
243 model. extend ([ Function ("dl", [var, Number (value )])
244 for var, value in assignment ])

Listing 38. DLPropagator class for difference constraints (dl.py, Lines 192–244)
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is in charge of cycle detection; its interface is given in Figure 4. We refrain from giving its
code and rather concentrate on describing its interface:

• Function add_edge adds an edge of form (u,v,d) to the graph. If adding an edge
to the graph leads to a negative cycle, the function returns the cycle in form of a list
of edges; otherwise, it returns None. Furthermore, each edge added to the graph is
associated with a decision level17. This additional information is used to backtrack
to a previous state of the graph, whenever the solver has to backtrack to recover
from a conflict.

• Function backtrack takes a decision level as argument. It removes all edges added
on that level from the graph. For this to work, decision levels have to be backtracked
in chronological order. Note that the CDCL algorithm in Figure 2 calling our
propagator also backtracks decision levels in chronological order.

• The Graph class internally maintains an assignment of integers to nodes. This
assignment can be turned into an assignment to the variables such that the dif-
ference constraints corresponding to the edges of the graph are satisfied. Function
get_assignment returns this assignment in form of a list of pairs of variables and
integers.

The difference logic propagator implements the Propagator interface (except for
check) in Figure 3 in Lines 215–239; it features aspects like incremental propagation
and backtracking, while supporting solving with multiple threads, and multi-shot solving.
Whenever the set of edges associated with the current partial assignment of a solver induces
a negative cycle and, hence, the corresponding difference constraints are unsatisfiable, it
adds a nogood forbidding the negative cycle. To this end, it maintains data structures for
detecting whether there is a conflict upon the addition of new edges. More precisely, the
propagator has three data members:

1. The self._l2e dictionary in Line 194 maps solver literals for difference constraint
theory atoms to their corresponding edges,18

2. the self._e2l dictionary in Line 195 maps edges back to solver literals,19 and
3. the self._states list in Line 196 stores for each solver thread its current graph

with the edges assigned so far.

Function init in Lines 215–225 sets up watches as well as the dictionaries self._l2e
and self._e2l. To this end, it traverses the theory atoms over diff/1 in Lines 216–225.
Note that the loop simply ignores other theory atoms treated by other propagators. In
Lines 219–221, we extract the edge from the theory atom.20 Each such atom is associated
with a solver literal, obtained in Line 222. The mappings between solver literals and
corresponding edges are then stored in the self._l2e and self._e2l dictionaries in

17 The ASP solver’s assignment comprises the decision level; it is incremented for each decision made and
decremented for each decision undone while backjumping; initially, the decision level is zero.

18 A solver literal might be associated with multiple edges.
19 In one solving step, the clingo API guarantees that a (grounded) theory atom is associated with exactly

one solver literal. Theory atoms grounded in later solving steps can be associated with fresh solver
literals though.

20 For brevity, we omit the definition of the _eval function, converting a theory term into a symbol.
Furthermore, we assume that the user supplies valid theory atoms. A mature propagator checks validity
and provides error messages.
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Lines 211 and 212.21 In Line 213 of the loop, a watch is added for each solver literal at
hand, so that the solver calls propagate whenever the edge has to be added to the graph.
Up to here, we accommodated the non-strict semantics as we only consider the constraint
occurring in the program and not its negation. If the difference constraint atom occurs in
the body, we impose the strict semantics, meaning that, in case that the assigned literal
is false, we make sure that the negation of the difference constraint holds. We check if the
atom occurs in the body in Line 224, and if this is the case, we add an edge representing
the negation of the difference constraint associated with the negated literal and watch
the negated literal as well.

Function propagate, given in Lines 227–236, accesses control.thread_id in Line 228
to obtain the graph associated with the active thread. The loops in Lines 230–236 then
iterate over the list of changes and associated edges. In Line 232 each such edge is
added to the graph. If adding the edge produces a negative cycle, a nogood is added in
Line 235. Because an edge can be associated with multiple solver literals, we use function
_lit retrieving the first solver literal associated with an edge that is true, to construct
the nogood forbidding the cycle. Given that the solver has to resolve the conflict and
backjump, the call to add_nogood always yields false, so that propagation is stopped
without processing the remaining changes any further.22

Given that each edge added to the graph in Line 232 is associated with the current
decision level, the implementation of function undo is quite simple. It calls function
backtrack on the solver’s graph to remove all edges added on the current decision level.

Remark 8
Here, we used a simplified Python version of the difference constraints propagator as a
showcase. In practice, performance might fall short compared to solutions implemented in
C or C++. The clingo package also offers the clingo.theory module to load propagators
implemented in other languages via the C Foreign Function Interface for Python (CFFI
2021), thus combining convenient scripting with performance. The propagators of the
extended ASP systems clingo[dl] and clingcon can be loaded using this interface and can
be used as a basis to implement customized ASP systems.

7.1 Solving flow shop problems

To see our propagator in action, we consider the flow shop problem, dealing with a set
of tasks T that have to be consecutively executed on m machines. Each task has to be
processed on each machine from 1 to m. Different parts of one task are completed on
each machine resulting in the completion of the task after execution on all machines is
finished. Before a task can be processed on machine i, it has to be finished on machine
i− 1. The duration of different tasks on the same machine may vary. A task can only be
executed on one machine at a time and a machine must not be occupied by more than

21 Python’s setdefault function is used to update the mappings. Depending on whether the given key
already appears in the dictionary, the function either retrieves the associated value or inserts and
returns the second argument.

22 The optional arguments tag and lock of add_nogood can be used to control the scope and lifetime
of recorded nogoods. Furthermore, if a propagator adds nogoods that are not necessarily violated,
function control.propagate can be invoked to trigger unit propagation.
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task duration on machine

a
b
c

Fig. 5. Flow shop instance with three tasks and two machines

1 machine (1). machine (2).
2 task(a). duration (a,1,3 ). duration (a,2,4 ).
3 task(b). duration (b,1,1 ). duration (b,2,6 ).
4 task(c). duration (c,1,5 ). duration (c,2,5 ).

Listing 39. Flow shop instance from Figure 5 (fsI.lp)
1 1 { cycle(T,U ): task(U), U!=T } 1 :- task(T).
2 1 { cycle(T,U ): task(T), U!=T } 1 :- task(U).
3 reach(M) :- M = #min { T: task(T) }.
4 reach(U) :- reach(T), cycle(T,U ).
5 :- task(T), not reach(T).

7 1 { start(T): task(T) } 1.
8 permutation (T,U) :- cycle(T,U), not start(U).

10 seq (( T,M),(T,M +1) ,D) :- task(T), duration (T,M,D), machine (M+1).
11 seq (( T1,M),(T2,M),D) :- permutation (T1,T2), duration ( T1,M,D ).

13 &diff { T1 -T2 } <= -D :- seq( T1,T2,D ).
14 &diff { 0-( T,M) } <= 0 :- duration (T,M,D ).

16 #show permutation /2.

Listing 40. Encoding of flow shop using difference constraints (fsE.lp)

a < c < b

1
2

machine

a < b < c

1
2

solution

b < a < c

1
2

c < a < b

b < c < a

c < b < a

18

19

16

16

20

20

Fig. 6. Flow shop solutions for all possible permutations with the total execution length
in the top right corner and optimal solutions with a blue background
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one task at a time. An (optimal) solution to the problem is a permutation of tasks so
that all tasks are finished as early as possible.
Figure 5 depicts a possible instance for the flow shop problem. The three tasks a, b,

and c have to be scheduled on two machines. The colored boxes indicate how long a task
has to run on a machine. Lighter shades of the same color are for the first and darker
ones for the second machine. For example, task a needs to be processed for 3 time units
on the first and 4 time units on the second machine.
Next, we encode this problem using ASP with difference constraints. We give in

Listing 39 a straightforward encoding of the instance in Figure 5. Listing 40 provides the
encoding of the flow shop problem. Following the generate, define, and test methodology
of ASP (Lifschitz 2019), we first generate in Lines 1–8 all possible permutations of tasks,
where atoms of the form permutation(T,U) encode that task T has to be executed before
task U . Then, in the following Lines 10–14, we use difference constraints to calculate the
duration of the generated permutation. The difference constraint in Line 13 guarantees
that the tasks are executed in the right order. For example, (a,1) −(a,2) ≤ −d ensures
that task a can only be executed on machine 2 if it has finished on machine 1. Hence,
the variable (a,2) has to be assigned so that it is greater or equal to (a,1) + d where d
is the duration of task a on machine 1. Similarly, (a,1) − (b,1) ≤ −d makes sure that
task b can only be executed on machine 1 if task a has finished on machine 1. While the
first constraint results in a set of facts (see Line 10), the latter is subject to the generated
permutation of tasks (see Line 11). The difference constraint in Line 14 ensures that all
time points at which a task is started are greater than zero. Note that this constraint
is in principle redundant but since sets of difference constraints always have infinitely
many solutions it is good practice to encode relative to a starting point. Furthermore,
note that 0 is actually a variable. In fact, the Graph class takes care of subtracting the
value of variable 0 from all other variables when returning an assignment to get easier
interpretable solutions.
Running encoding and instance with the dl propagator results in the following six

solutions corresponding to the solutions in Figure 6.23 One for each possible permutation
of tasks:

UNIX > python dl -app.py fsE.lp fsI.lp 0
clingo -dl version 1.0
Reading from fsE.lp ...
Solving ...
Answer : 1
permutation (b,a) permutation (a,c) dl ((a ,1) ,1) dl ((a ,2) ,7) \
dl ((b ,1) ,0) dl ((b ,2) ,1) dl ((c ,1) ,4) dl ((c ,2) ,11)
Answer : 2
permutation (b,a) permutation (c,b) dl ((a ,1) ,6) dl ((a ,2) ,16) \
dl ((b ,1) ,5) dl ((b ,2) ,10) dl ((c ,1) ,0) dl ((c ,2) ,5)
Answer : 3
permutation (c,b) permutation (a,c) dl ((a ,1) ,0) dl ((a ,2) ,3) \
dl ((b ,1) ,8) dl ((b ,2) ,13) dl ((c ,1) ,3) dl ((c ,2) ,8)
Answer : 4
permutation (b,c) permutation (c,a) dl ((a ,1) ,6) dl ((a ,2) ,12) \
dl ((b ,1) ,0) dl ((b ,2) ,1) dl ((c ,1) ,1) dl ((c ,2) ,7)
Answer : 5
permutation (b,c) permutation (a,b) dl ((a ,1) ,0) dl ((a ,2) ,3) \

23 Note that in each solution all tasks are executed as early as possible. This is no coincidence and actually
guaranteed by the algorithm implemented in the Graph class.
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1 import sys
2 from clingo . application import Application, clingo _main
3 from clingo .ast import ProgramBuilder, parse_files
4 from dl import DLPropagator, HeadBodyTransformer, THEORY

6 class DLOptApp ( Application ):
7 program _name = "clingo -dl -opt"
8 version = "1.0"

10 def __init__(self ):
11 self._bound = None
12 self._ propagator = DLPropagator ()

14 def _on_model(self, model ):
15 self._ propagator .on_model(model)
16 for symbol in model. symbols ( theory =True ):
17 if symbol .match("dl", 2):
18 n, v = symbol . arguments
19 if n.match("bound", 0):
20 self._bound = v. number
21 break

23 def main(self, ctl, files ):
24 ctl. register _ propagator (self._ propagator )
25 ctl.add("base", [], THEORY )
26 ctl.add("bound", ["b"], "&diff(head) { bound -0 } <= b.")

28 with ProgramBuilder (ctl) as bld:
29 hbt = HeadBodyTransformer ()
30 parse_files( files, lambda stm: bld.add(hbt.visit(stm )))

32 ctl. ground ([("base", [])])
33 while ctl.solve(on_model=self._on_model ). satisfiable :
34 print("Found new bound: {}". format (self._bound ))
35 ctl. ground ([("bound", [self._bound - 1])])

37 if self._bound is not None: print(" Optimum found")

39 sys.exit(int( clingo _main( DLOptApp (), sys.argv [1:])))

Listing 41. Application class DLOptApp for difference constraints with optimization
(dlO-app.py)

dl ((b ,1) ,3) dl ((b ,2) ,7) dl ((c ,1) ,4) dl ((c ,2) ,13)
Answer : 6
permutation (c,a) permutation (a,b) dl ((a ,1) ,5) dl ((a ,2) ,10) \
dl ((b ,1) ,8) dl ((b ,2) ,14) dl ((c ,1) ,0) dl ((c ,2) ,5)
SATISFIABLE

7.2 Hybrid optimization with difference constraints

Finally, to find optimal solutions, we combine the algorithms in Listings 30 and 37 to
minimize the total execution time of the tasks. The resulting algorithm is given in Listing 41.
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As with the algorithm in Listing 37, a propagator and theory language is registered before
solving and the program is parsed to accommodate a uniform semantic treatment. The
control flow is similar to the branch-and-bound-based optimization algorithm in Listing 30
except that we now minimize the variable bound. More precisely, we minimize the difference
between variable 0 and bound by adding the difference constraint 0− bound ≤ b to the
program in Line 26 where b is the best known execution time of the tasks as obtained
from the assignment in Line 20 minus 1. To bound the maximum execution time of the
tasks, we have to add one more line to the encoding in Listing 40:
18 &diff { (T,M)-bound } <= -D :- duration (T,M,D ).

This makes sure that each task ends within the given bound. Running encoding and
instance with the dl propagator results in the optimum bound 16 where the obtained
solution corresponds to the lower left of the two optimal solutions indicated by a light
blue background in Figure 6:

UNIX > python dlO -app.py fsE.lp fsI.lp
clingo -dl -opt version 1.0
Reading from fsE.lp ...
Solving ...
Answer : 1
permutation (b,a) permutation (a,c) dl(bound ,16) dl ((a ,1) ,1) \
dl ((a ,2) ,7) dl ((b ,1) ,0) dl ((b ,2) ,1) dl ((c ,1) ,4) dl ((c ,2) ,11)
Found new bound : 16
Solving ...
Optimum found
UNSATISFIABLE

8 Guess-and-check programming reloaded

Finally, we present an implementation of guess-and-check programming that relies on
a combination of two clingo solvers. In contrast to the approach taken in Section 3.4,
where the logic programs comprising the guess and check parts are combined in a single
disjunctive program and thus solved by a single solver, the idea is now to deal with
both programs separately by means of two interacting solvers. This last case-study nicely
contrasts the efforts involved in meta-programming and the usage of solver APIs. Also,
it further illustrates features of clingo’s API, namely, the manipulation of a program’s
abstract syntax tree (AST), the interaction of (multi-threaded) clingo instances via
the propagator interface, the usage of assumptions during solving, and the addition of
constraints to a program during runtime.

Unlike Section 3.4, we use #program directives to declare rules belonging to the guess
and check programs. As above, guess atoms must not occur among the head atoms of
the check program. For example, the simple guess and check programs from Listings 11
and 12 can now be rolled into one, as shown in Listing 42.

Passing this to our guess-and-check application app.py yields the same solution as with
meta-programming:

UNIX > python app.py guess - check .lp 0
guess -and - check version 1.0
Reading from guess - check .lp
Solving ...
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1 #program guess.
2 1 { a (1..2) }.

4 #program check.
5 :- not a(1).

Listing 42. Guess-and-check program (guess-check.lp)

98 class GACApp ( Application ):
99 def __init__(self ):

100 self. program _name = "guess -and -check"
101 self. version = "1.0"

103 def main(self, ctl, files ):
104 check = []
105 with ast. ProgramBuilder (ctl) as builder :
106 trans = Transformer ( builder, check)
107 ast.parse_files( files, trans.add)
108 ctl. register _ propagator ( GACPropagator (check ))

110 ctl. ground ([("base", [])])
111 ctl.solve ()

Listing 43. The GACApp class for guess-and-check programming (app.py, Lines 98–111)

Answer : 1
a(2)
SATISFIABLE

In what follows, we detail the inner working of the approach. The idea is to have
one solver guessing solution candidates, and another checking their compliance. Their
interaction is realized through clingo’s propagator interface and restricted to testing total
candidates, rather than partial ones as done in Section 7. In this way, the checking solver
acts as a propagator within the guessing one.

The overall design is partitioned in four classes. Our description concentrates on these
classes by following the overall workflow, although the line numbers reflect positions in
the source code.

As before, we start from a derivative of clingo’s Application class and implement its
main function as shown in Listing 43. As mentioned, the primary solver object ctl acts
as the guesser, while the checker is encapsulated as its propagator. The main function
starts by parsing the input programs, registers the propagator, grounds, and solves. The
task of the Transformer in Line 106 is to add rules from the guess part to the program
in the primary solver ctl via a ProgramBuilder and to collect rules from the check part
in the list initialized in Line 104. This is done during parsing in Line 107 by means of the
add function defined in the Transformer class.
The add function is given in Lines 14 to 27 of Listing 44 as the salient part of the
Transformer class. It relies on variable _state to distinguish whether a rule is read in
the context of a guess (or base) or check program. This variable is “toggled” in Lines 17
and 19 whenever a #program directive is encountered. Accordingly, the rule’s AST is
either added to the program builder of the guessing solver in Line 25 or appended to the
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8 class Transformer :
9 def __init__(self, builder, check ):
10 self._ builder = builder
11 self._state = "guess"
12 self._check = check

14 def add(self, stm ):
15 if stm.ast_type == ast. ASTType . Program :
16 if stm.name == "check" and not stm. parameters :
17 self._state = "check"
18 elif stm.name in ("base", "guess") and not stm. parameters :
19 self._state = "guess"
20 else:
21 raise RuntimeError (" unexpected program part")

23 else:
24 if self._state == "guess":
25 self._ builder .add(stm)
26 else:
27 self._check. append (stm)

Listing 44. The Transformer class for classifying rules into the guess and check part
(app.py, Lines 8–27)

check list (in Line 27) that is passed down from the main function to gather the check
program.
Once parsing is finished, the filled list is used to initialize the propagator in Line 108.

The corresponding GACPropagator class is given in Listing 45. It administers one or
several solver objects, which are encapsulated by the Checker class in Listing 46. Given
that no partial checks are performed, the propagation class only implements function
init and check of clingo’s Propagator interface from Figure 3.

Let us first detail the initialization of the checkers in Lines 68 to 86. In fact, the init
function may create several instances of the Checker class, depending on the number of
threads of the primary solver. Each such checker (cf. Line 70) is initialized by looping
over the atoms of the primary solver that provide the respective guess. While atoms are
dropped in Line 76 that have been found to be false after grounding (and pre-processing)
the guess program, either a fact or a choice rule is added to the checker in Lines 81 and 83
depending on whether the atom was found to be true or unknown, respectively. Clearly,
unknown atoms of the guesser are most relevant to the checking solver, since their truth
value is still subject to change. To this end, each checker comprises a dictionary mapping
(unknown) guess literals to check literals; it is filled in Line 84.24 Once all facts and choice
rules are added to the checker, the check program gathered during parsing is grounded
in Line 86 and added as well. The corresponding add and ground functions are defined
in the Checker class and implemented in a straightforward way in the lines following
Lines 37 and 40, respectively.
Just the same way as during initialization, both GACPropagator and Checker work

24 In Section 3, this was done via predicate guess/1.
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63 class GACPropagator ( Propagator ):
64 def __init__(self, check ):
65 self._check = check
66 self._ checkers = []

68 def init(self, init ):
69 for _ in range(init. number _of_ threads ):
70 checker = Checker ()
71 self._ checkers . append ( checker )

73 with checker . backend () as backend :
74 for atom in init. symbolic _atoms:
75 guess_lit = init. solver _ literal (atom. literal )
76 if init. assignment .is_false(guess_lit ):
77 continue

79 check_lit = backend .add_atom(atom. symbol )
80 if init. assignment .is_true(guess_lit ):
81 backend .add_rule ([ check_lit], [])
82 else:
83 backend .add_rule ([ check_lit], [], True)
84 checker .add(guess_lit, check_lit)

86 checker . ground (self._check)

88 def check(self, control ):
89 assignment = control . assignment
90 checker = self._ checkers [ control . thread _id]

92 if not checker .check( control ):
93 conflict = []
94 for level in range (1, assignment . decision _level +1):
95 conflict . append (- assignment . decision (level ))
96 control .add_ clause ( conflict )

Listing 45. The GACPropagator class interfacing guessing and checking solver (app.py,
Lines 63–96)

hand in hand in their respective check functions. The propagator’s check function is
called once the guessing solver has found a stable model; it immediately calls the check
function of the associated checker in Line 92. In doing so, it passes along the Control
object providing (limited) access to the underlying solver. This includes access to the
assignment of the solver which of course corresponds to a model. The latter is at once
extracted upon entering the checker’s check function in Line 48 and analyzed afterwards.
To this end, the function loops over the dictionary associating (originally unknown) guess
and check atoms to transfer the guessed literals into a list of checker literals that are
then used as assumptions in the subsequent call of the checker in Line 57. Technically,
assumptions are added to the solver’s assignment and amount semantically to the addition
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29 class Checker :
30 def __init__(self ):
31 self._ctl = Control ()
32 self._map = []

34 def backend (self ):
35 return self._ctl. backend ()

37 def add(self, guess_lit, check_lit ):
38 self._map. append (( guess_lit, check_lit ))

40 def ground (self, check ):
41 with ast. ProgramBuilder (self._ctl) as builder :
42 for stm in check:
43 builder .add(stm)

45 self._ctl. ground ([("base", [])])

47 def check(self, control ):
48 assignment = control . assignment

50 assumptions = []
51 for guess_lit, check_lit in self._map:
52 if assignment .is_true(guess_lit ):
53 assumptions . append (check_lit)
54 else:
55 assumptions . append (-check_lit)

57 ret = self._ctl.solve( assumptions )
58 if ret. unsatisfiable is not None:
59 return ret. unsatisfiable

61 raise RuntimeError (" search interrupted ")

Listing 46. The Checker class wrapping the checking solver (app.py, Lines 29–61)

of integrity constraints (unlike externals;25 cf. Section 5.1) In this way, the checker is
forced to search for stable models comprising all guessed literals. If this fails, the checker’s
check succeeds, as does the propagator’s check. Otherwise, the propagator extracts from
the guesser’s stable model all underlying decision literals and adds them as an integrity
constraint, thus eliminating the combination of literals from the search space.

9 Discussion

This tutorial aims at enabling ASP users to become ASP engineers.
Our role model has been the landmark paper by Eén and Sörensson (2004) that aimed

at “give[ing] sufficient details about implementation to enable the reader to construct his
or her own solver in a very short time. This will allow users of SAT-solvers to make

25 Also, assumptions only affect the current solve call. Opposed to this, assignments to externals persist
over solve call (as long as the externals are not released, reassigned, or defined).
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domain specific extensions or adaptions of current state-of-the-art SAT-techniques, to meet
the needs of a particular application area.” Their presentation of the C++ source code
of the SAT solver minisat significantly boosted research in SAT by “bridge[ing] the gap
between existing descriptions of SAT-techniques and their actual implementation” (Eén
and Sörensson 2004).

We hope to achieve a similar effect with the tutorial at hand. However, unlike following
suit in easing a white box approach to ASP solving, dealing with system modifications,
we rather advocate the gray and black box approach put forward in the introduction,
and make a case for application interface and meta programming, respectively. This is
motivated by the much more elaborate model-ground-solve workflow of ASP systems that
must often be addressed in its entirety to provide a certain functionality.
To this end, we describe several essential techniques for extending the ASP system

clingo or implementing customized special-purpose systems. We have started with the
lighter approach of meta programming in ASP and continued with application interface
programming in Python (although several alternatives are available). Central to this is the
new Application class of clingo that permits to draw on clingo’s infrastructure by starting
processes similar to the one in clingo. This allows us to build customized ASP-based
systems by overriding clingo’s main function, as illustrated by various examples throughout
the tutorial. In particular, we have seen how derivatives of the Application class can be
used to engage manipulations to programs’ abstract syntax trees, control various forms
of multi-shot solving, and set up theory propagators for foreign inferences. Multi-shot
solving provides us with fine-grained control of ASP reasoning processes, while theory
solving allows us to refine basic ASP solving by incorporating foreign types of constraints.
Because of ASP’s model-ground-solve methodology both techniques pervade its whole
workflow, starting with extensions to the input language, over means for incremental and
theory-enhanced grounding, to stateful and theory-enhanced solving. Multi-shot solving
even adds a fourth dimension to control ASP reasoning processes.

Although meta programming has been around in ASP since its beginning (cf. Section 3
for a brief discussion), we hope that the reification feature of clingo makes it more
attractive as a lightweight alternative to extend ASP systems. The idea of implementing
ASP systems by pipelining was first advocated by Tomi Janhunen and used in his
normalization toolbox (Janhunen and Niemelä 2011; Bomanson et al. 2014; Bomanson
et al. 2016). In both cases, an intermediate ASP format is used to pass data from one
solver to the next. While we used a fact-based representation of aspif, the normalization
tools rely on the machine-oriented smodels format. Interestingly, lc2casp (Cabalar et al.
2016) implements a system for non-monotonic constraint solving by translating one
aspif specification into another. That is, it takes the output of gringo, compiles out non-
monotonicity, and feeds the result into clingcon, an extension of clingo with monotonic
linear constraints over integers.

As mentioned in the introduction, dlv and clingo constitute nowadays the only genuine
ASP systems in use. Accordingly, they are the only possible providers of native APIs for
ASP. As detailed by Alviano et al. (2017), the latest versions of dlv combine the idlv
grounder (Calimeri et al. 2017) with the ASP solver wasp (Alviano et al. 2015). As with
gringo, the input language of idlv covers the second ASP language standard (Calimeri
et al. 2019). Furthermore, it offers the integration of computable functions, similar to the
mechanism (using terms preceded by ‘@’) sketched at the beginning of Section 4. Unlike
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this, a full-fledged Python API is offered by the ASP solver wasp (Dodaro and Ricca
2020). This has interesting applications to heuristic control and propagators for integrity
constraints (Dodaro et al. 2016; Cuteri et al. 2020). In fact, former versions of dlv offer
powerful Java integration (Febbraro et al. 2012), compliant with the Object-Relational
Mapping standard (ORM), and implemented by wrapping dlv at its core. A Python
library providing an ORM interface to clingo is also available (Rajaratnam 2021). A
framework for developing applications embedding ASP on mobile devices is proposed
by Fuscà et al. (2016).
Prior to the availability of APIs, various systems extending ASP have been built. For

example, dlvhex (Redl 2016; Eiter et al. 2018) provides higher-order logic programs,
whose higher-order atoms are implemented externally in C++ or Python; it is build
upon clingo’s infrastructure. At the time, such a white box approach was only feasible
thanks to a close collaboration between both groups at Vienna and Potsdam, not to
mention that this fostered the development of clingo’s API quite a bit. Interestingly, also
clingcon (Banbara et al. 2017), an extension of clingo with linear constraints over integers,
started out as a white box approach and has just recently been transformed into a gray
box approach, since otherwise its maintenance had been infeasible. Similarly yet much
earlier, adsolver (Mellarkod et al. 2008) extended smodels (Niemelä and Simons 1997) with
linear constraints over integers. Another category of ASP systems, such as ezsmt (Lierler
and Susman 2016), dingo (Janhunen et al. 2011), and aspmt (Bartholomew and Lee
2014) translate ASP with constraints to SMT and use appropriate backends. Similarly,
mingo (Liu et al. 2012) translates to Mixed Integer Linear Programming. Interestingly,
the semantics of such hybrid ASP systems can be given in a theory-independent way by
using denotational semantics (Cabalar et al. 2016; Cabalar et al. 2020b).
Both meta and application interface programming greatly facilitate the development

of ASP-based systems and therefore ease the transposition of ideas into practice. The
lighter approach of meta programming is well suited for rapid prototyping and moreover
enjoys elaboration tolerance. However, once more control is needed, API programming is
indispensable. Although it lacks full elaboration tolerance, it has nonetheless the great
advantage to offer a high level of abstraction. This makes any project much easier to
handle and to maintain than modifying the source code of an ASP system.
Last but not least, ASP has come a long way to turn into a mature and quite so-

phisticated approach to declarative problem solving. However, this sophistication should
not become an obstacle to further technological advances. We hope that this tutorial
contributes to coping with this challenge. After all, we, the ASP community, have the
hard job of making our users’ lives easy.
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Appendix A Saturation-based meta encoding

The saturation-based meta encoding in Listing 47 relies on a partition of the atoms of the
input program induced by the strongly connect components of its positive dependency
graph. Each atom and each loop of the program is contained in some part. The idea
is to mimic the consecutive application of the immediate consequence operator to each
component of the partition.
In a nutshell, the encoding in Listing 47 combines the following parts (Gebser et al.

2011):

1. guessing an interpretation (in Lines 14 to 33),
2. deriving the unsatisfiability-indicating atom bot if the interpretation is not a

supported model (where each true atom occurs positively in the head of some rule
whose body holds; cf. Lines 35 and 36),

3. deriving bot if the true atoms of some non-trivial strongly connected component
are not acyclicly derivable (checked via determining the complement of a fixpoint
of the immediate consequence operator; cf. Lines 38 to 63), and

4. saturating interpretations that do not correspond to stable models by deriving all
truth assignments (for atoms) from bot (in Lines 65 and 66).

As an example, consider the simple logic program a.lp:
1 { a (1..2) }.

Computing its stable models with the meta encoding in Listing 47 (along with the
auxiliary #show statements from Listing 48) yields the three expected models:

UNIX > clingo --output = reify --reify -sccs a.lp | \
clingo - metaD .lp show.lp 0

clingo version 5.5.0
Reading from - ...
Solving ...
Answer : 1
a(2)
Answer : 2
a(1)
Answer : 3
a(1) a(2)
SATISFIABLE

Now, the addition of an empty integrity constraint, namely “:-.”, makes the program
unsatisfiable. This is reflected by a single answer set containing all atoms of the program.
This should not to be confused with the third model obtained above:

UNIX > clingo --output = reify --reify -sccs a.lp <(echo ": -.") | \
clingo - metaD .lp show.lp 0

clingo version 5.5.0
Reading from - ...
Solving ...
Answer : 1
a(1) a(2)
SATISFIABLE

In fact, additional show statements would reveal that the actual stable model also contains
the artificial atom bot from which all atoms occurring in the original program are derivable
(cf. Lines 65 and 66 in Listing 47). In other words, this special atom expresses the non-
existence of stable models, and by saturating the model with all atoms it can only exist if
no true stable models exist. This is because the semantics of disjunctive logic programs
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1 sum( B,G,T ) :- rule(_,sum(B,G )), T = #sum { W,L: weighted _ literal _ tuple ( B,L,W ) }.

3 supp(A,B) :- rule( choice (H),B), atom_ tuple (H,A ).
4 supp(A,B) :- rule( disjunction (H),B), atom_ tuple (H,A ).

6 supp(A) :- supp(A,_).

8 atom (|L|) :- weighted _ literal _ tuple (_,L,_).
9 atom (|L|) :- literal _ tuple (_,L ).

10 atom( A ) :- atom_ tuple (_,A ).

12 fact(A) :- rule( disjunction (H) ,normal (B)), atom_ tuple (H,A), not literal _ tuple (B,_).

14 true(atom(A)) :- fact(A).
15 true(atom(A)); fail(atom(A)) :- supp(A), not fact(A).
16 fail(atom(A)) :- atom(A), not supp(A).

18 true( normal (B)) :- literal _ tuple (B),
19 true(atom(L)): literal _ tuple (B, L), L >0;
20 fail(atom(L)): literal _ tuple (B, -L), L >0.
21 fail( normal (B)) :- literal _ tuple (B, L), fail(atom(L)), L >0.
22 fail( normal (B)) :- literal _ tuple (B, -L), true(atom(L)), L >0.

24 true(sum(B,G )) :- sum( B,G,T ),
25 #sum {
26 W,L: true(atom(L)), weighted _ literal _ tuple (B, L,W), L >0;
27 W,L: fail(atom(L)), weighted _ literal _ tuple (B, -L,W), L >0
28 } >= G.
29 fail(sum(B,G )) :- sum( B,G,T ),
30 #sum {
31 W,L: fail(atom(L)), weighted _ literal _ tuple (B, L,W), L >0;
32 W,L: true(atom(L)), weighted _ literal _ tuple (B, -L,W), L >0
33 } >= T-G+1.

35 bot :- rule( disjunction (H),B), true(B), fail(atom(A)): atom_ tuple (H,A ).
36 bot :- true(atom(A)), fail(B): supp(A,B ).

38 internal ( C,normal (B)) :- scc(C,A), supp( A,normal (B)), scc(C,A ’),
39 literal _ tuple (B,A ’).
40 internal ( C,sum (B,G )) :- scc(C,A), supp( A,sum (B,G )), scc(C,A ’),
41 weighted _ literal _ tuple (B,A ’,W ).

43 external ( C,normal (B)) :- scc(C,A), supp( A,normal (B)), not internal ( C,normal (B)).
44 external ( C,sum (B,G )) :- scc(C,A), supp( A,sum (B,G )), not internal ( C,sum (B,G )).

46 steps (C,Z -1) :- scc(C,_), Z = { scc(C,A ): not fact(A) }.

48 wait( C,atom (A),0) :- scc(C,A), fail(B): external (C,B), supp(A,B ).
49 wait( C,normal (B),I) :- internal ( C,normal (B)), steps (C,Z), I=0..Z -1,
50 fail( normal (B)).
51 wait( C,normal (B),I) :- internal ( C,normal (B)), steps (C,Z), I<Z,
52 literal _ tuple (B,A), wait( C,atom (A),I ).

54 wait( C,sum (B,G),I) :- internal ( C,sum (B,G )), steps (C,Z), I=0..Z -1, sum( B,G,T ),
55 #sum {
56 W,L: fail(atom(L)), weighted _ literal _ tuple (B, L,W), L >0, not scc(C,L );
57 W,L: wait( C,atom (L),I), weighted _ literal _ tuple (B, L,W), L >0, scc(C,L );
58 W,L: true(atom(L)), weighted _ literal _ tuple (B, -L,W), L >0
59 } >= T-G+1.
60 wait( C,atom (A),I) :- wait( C,atom (A),0), steps (C,Z), I=1.. Z,
61 wait(C,B,I -1): supp(A,B), internal (C,B ).

63 bot :- scc(C,A), true(atom(A)), wait( C,atom (A),Z), steps (C,Z ).

65 true(atom(A)) :- supp(A), not fact(A), bot.
66 fail(atom(A)) :- supp(A), not fact(A), bot.

Listing 47. A disjunctive meta encoding implementing saturation (metaD.lp)
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1 #show .
2 #show X: output (X,B), literal _tuple(B,A), true(atom(A)).
3 #show X: output (X,B), not literal _tuple(B,_).

Listing 48. Auxiliary #show statements for Listing 47 (show.lp)

is based on subset minimization. Saturation makes sure that bot is derived only if it is
inevitable, that is, if it is impossible to construct any other models.26

Appendix B Intermediate language

To accommodate the rich input language, a general grounder-solver interface is needed.
Although this could be left internal to clingo, it is good practice in ASP and neighboring
fields to explicate such interfaces via an intermediate language. This also allows for using
alternative downstream solvers or transformations.
Unlike the block-oriented smodels format, the aspif format is line-based. Notably, it

abolishes the need of using symbol tables in smodels’ format (Syrjänen 2001) for passing
along meta-expressions and allows gringo to output information as soon as it is grounded.
An aspif file starts with a header, beginning with the keyword asp along with version
information and optional tags, viz.

asp␣vm␣vn␣vr␣t1␣ . . . ␣tk

where vm, vn, vr are non-negative integers representing the version in terms of major,
minor, and revision numbers, and each ti is a tag for k ≥ 0. Currently, the only tag is
incremental, meant to set up the underlying solver for multi-shot solving. An example
header is given in the first lines of Listings 49 and 50 below. The rest of the file comprises
one or more logic programs. Each logic program is a sequence of lines of aspif statements
followed by a 0, one statement or 0 per line, respectively. Positive and negative integers
are used to represent positive or negative literals, respectively. Hence, 0 is not a valid
literal.

Let us now briefly describe the format of aspif statements and illustrate them with the
simple logic program in Listing 1 as well as the result of grounding a subset of Listing 33
only pertaining to difference constraints in Listing 50.
Rule statements have form

1␣H␣B
in which head H has form

h␣m␣a1␣ . . . ␣am

where h ∈ {0, 1} determines whether the head is a disjunction or a choice, m ≥ 0 is the
number of head elements, and each ai is an atom.
Body B has one of two forms:

26 In fact, without the two saturating rules in Lines 65 and 66, Listing 47 would produce a stable model
for each interpretation of the original program. The ones without bot represent stable models, while
the ones with bot are mere interpretations. By saturation, all these interpretations are mapped to the
set of all atoms. Given that the latter is a superset of all conceivable stable models, it can only exist if
no stable models exist.
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1 asp 1 0 0
2 1 1 1 1 0 0
3 1 0 1 2 0 1 1
4 1 0 1 3 0 1 -1
5 4 1 a 1 1
6 4 1 b 1 2
7 4 1 c 1 3
8 0

Listing 49. Representing the logic program from Listing 1 in aspif format

• Normal bodies have form
0␣n␣l1␣ . . . ␣ln

where n ≥ 0 is the length of the rule body, and each li is a literal.
• Weight bodies have form

1␣l␣n␣l1␣w1␣ . . . ␣ln␣wn

where l is a positive integer to denote the lower bound, n ≥ 0 is the number of
literals in the rule body, and each li and wi are a literal and a positive integer.

All types of ASP rules are included in the above rule format. Heads are disjunctions or
choices, including the special case of one-element disjunctions for representing normal
rules. As in the smodels format, aggregate rules are restricted to one-element bodies, just
that in aspif cardinality constraints are taken as special weight constraints. Otherwise, a
body is simply a conjunction of literals.

The three rules in Listing 1 are represented by the statements in Lines 2–4 of Listing 49.
For instance, the four occurrences of 1 in Line 2 capture a rule with a choice in the head,
having one element, identified by 1. The two remaining zeros capture a normal body
with no element. For another example, Lines 2–7 of Listing 50 represent 6 of the facts
in Listing 34, the four regular atoms in Lines 1–4 along two comprising theory atoms in
Lines 11 and 12.
Minimize statements have form

2␣p␣n␣l1␣w1␣ . . . ␣ln␣wn

where p is an integer priority, n ≥ 0 is the number of weighted literals, each li is a literal,
and each wi is an integer weight. Each of the above expressions gathers weighted literals
sharing the same priority p from all #minimize directives and weak constraints in a logic
program. As before, maximize statements are translated into minimize statements.
Projection statements result from #project directives and have form

3␣n␣a1␣ . . . ␣an

where n ≥ 0 is the number of atoms, and each ai is an atom.
Output statements result from #show directives and have form

4␣m␣s␣n␣l1␣ . . . ␣ln

where n ≥ 0 is the length of the condition, each li is a literal, and m ≥ 0 is an integer
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indicating the length in bytes of string s (where s excludes byte ‘\0’ and newline). The
output statements in Lines 5–7 of Listing 49 print the symbolic representation of atom a,
b, or c, whenever the corresponding atom is true. For instance, the string ‘a’ is printed if
atom ‘1’ holds. Unlike this, the statements in Lines 8–11 of Listing 50 unconditionally
print the symbolic representation of the atoms stemming from the four facts in Lines 1–4
of Listing 34.
External statements result from #external directives and have form

5␣a␣v

where a is an atom, and v ∈ {0, 1, 2, 3} indicates free, true, false, and release.
Assumption statements have form

6␣n␣l1␣ . . . ␣ln

where n ≥ 0 is the number of literals, and each li is a literal. Assumptions instruct a
solver to compute stable models containing l1, . . . , ln. They are only valid for a single
solver call.
Heuristic statements result from #heuristic directives and have form

7␣m␣a␣k␣p␣n␣l1␣ . . . ␣ln

where m ∈ {0, . . . , 5} stands for the (m+1)th heuristic modifier among level, sign,
factor, init, true, and false, a is an atom, k is an integer, p is a non-negative integer
priority, n ≥ 0 is the number of literals in the condition, and the literals li are the
condition under which the heuristic modification should be applied.
Edge statements result from #edge directives and have form

8␣u␣v␣n␣l1␣ . . . ␣ln

where u and v are integers representing an edge from node u to node v, n ≥ 0 is the
length of the condition, and the literals li are the condition for the edge to be present.
Let us now turn to the theory-specific part of aspif. Once a theory expression is

grounded, gringo outputs a serial representation of its syntax tree. To illustrate this,
we give in Listing 50 the (sorted) result of grounding all lines of Listing 33 related to
difference constraints, viz. Lines 1–20 and Line 24.
1 asp 1 0 0
2 1 0 1 1 0 0
3 1 0 1 2 0 0
4 1 0 1 3 0 0
5 1 0 1 4 0 0
6 1 0 1 5 0 0
7 1 0 1 6 0 0
8 4 7 task (1) 0
9 4 7 task (2) 0
10 4 15 duration (1 ,200) 0
11 4 15 duration (2 ,400) 0
12 9 0 1 200
13 9 0 3 400
14 9 0 6 1
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15 9 0 11 2
16 9 1 0 4 diff
17 9 1 2 2 <=
18 9 1 4 1 -
19 9 1 5 3 end
20 9 1 8 5 start
21 9 2 7 5 1 6
22 9 2 9 8 1 6
23 9 2 10 4 2 7 9
24 9 2 12 5 1 11
25 9 2 13 8 1 11
26 9 2 14 4 2 12 13
27 9 4 0 1 10 0
28 9 4 1 1 14 0
29 9 6 5 0 1 0 2 1
30 9 6 6 0 1 1 2 3
31 0

Listing 50. aspif format (excerpt of result)
Theory terms are represented using the following statements:

9␣0␣u␣w (B1)
9␣1␣u␣n␣s (B2)
9␣2␣u␣t␣n␣u1␣ . . . ␣un (B3)

where n ≥ 0 is a length, index u is a non-negative integer, integer w represents a numeric
term, string s of length n represents a symbolic term (including functions) or an operator,
integer t is either -1, -2, or -3 for tuple terms in parentheses, braces, or brackets,
respectively, or an index of a symbolic term or operator, and each ui is an integer for a
theory term. Statements (B1), (B2), and (B3) capture numeric terms, symbolic terms, as
well as compound terms (tuples, sets, lists, and terms over theory operators).

Fifteen theory terms are given in Lines 12–26 of Listing 50. Each of them is identified by
a unique index in the third spot of each statement. While Lines 12–20 stand for primitive
entities of type (B1) or (B2), the ones beginning with ’9␣2’ represent compound terms.
For instance, Lines 21 and 22 represent end(1) or start(1), respectively, and Line 23
corresponds to end(1)-start(1).
Theory atoms are represented using the following statements:

9␣4␣v␣n␣u1␣ . . . ␣un␣m␣l1␣ . . . ␣lm (B4)
9␣5␣a␣p␣n␣v1␣ . . . ␣vn (B5)
9␣6␣a␣p␣n␣v1␣ . . . ␣vn␣g␣u1 (B6)

where n ≥ 0 and m ≥ 0 are lengths, index v is a non-negative integer, a is an atom or 0
for directives, each ui is an integer for a theory term, each li is an integer for a literal,
integer p refers to a symbolic term, each vi is an integer for a theory atom element, and
integer g refers to a theory operator. Statement (B4) captures elements of theory atoms
and directives, and statements (B5) and (B6) refer to the latter.
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For instance, Line 27 captures the (single) theory element in ‘{ end(1)-start(1) }’,
and Line 29 represents the theory atom ‘&diff { end(1)-start(1) } <= 200’.
Comments have form

10␣s
where s is a string not containing a newline.

The aspif format constitutes the default output of gringo 5. With clasp 3.2, ground
logic programs can be read in both smodels and aspif format. The tool lpconvert can be
used to convert between both formats (Potassco Team 2021f).
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