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Abstract

We present xclingo, a tool for generating explanations from ASP programs annotated with text
and labels. These annotations allow tracing the application of rules or the atoms derived by them.
The input of xclingo is a markup language written as ASP comment lines, so the programs
annotated in this way can still be accepted by a standard ASP solver. xclingo translates the
annotations into additional predicates and rules and uses the ASP solver clingo to obtain
the extension of those auxiliary predicates. This information is used afterwards to construct
derivation trees containing textual explanations. The language allows selecting which atoms to
explain and, in its turn, which atoms or rules to include in those explanations. We illustrate the
basic features through a diagnosis problem from the literature.

KEYWORDS: Answer Set Programming, Causal justifications, Non-Monotonic Reasoning, ASP
debugging, Diagnosis.

1 Introduction

Answer Set Programming (ASP) (Niemelä 1999; Marek and Truszczyński 1999; Brewka

et al. 2011) is a successful paradigm for Knowledge Representation and problem solving.

Under this paradigm, the programmer represents a problem as a logic program formed

by a set of rules and obtains solutions to that problem in terms of models of the program

called answer sets. Thanks to the availability of efficient solvers, ASP is nowadays applied

in a wide variety of areas including robotics, bioinformatics, music composition (Erdem

et al. 2012; Brooks et al. 2007; Boenn et al. 2010), and many more.

An ASP program does not contain information about the method to obtain the answer

sets, something that is completely delegated to the ASP solver. This, of course, has the

advantage of making ASP a fully declarative language, where the programmer must

concentrate on specification rather than on design of search algorithms. However, when

it comes to explainability of the obtained results, the information provided by answer sets

themselves is usually scarce. There exist several approaches for obtaining justifications

for answer sets: for a recent review, see (Fandinno and Schulz 2019). Some of them are

more oriented to debugging of ASP programs while others are interested in the causal

nature of justifications themselves. What these approaches generally do is to offer some
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kind of enlightening about the derivation process of the rules that led to finally include

(or not) some literal in an answer set.

Justifying the result of an ASP program is not only interesting for the programmer but

has also other implications, especially in the context of explainable Artificial Intelligence.

For instance, since the approval of the General Data Protection Regulation (GDPR) by

the European Union every system that makes automatic decisions that affect to persons

must offer some kind of explanation on the logic involved in the decision making process,

obviously in a human-readable way.

In this paper, we present xclingo, a tool for generating explanations of annotated pro-

grams for the ASP solver clingo (Gebser et al. 2016). The input accepted by xclingo is

a markup language that introduces annotations through program comments, specifying

which rules or atoms must be traced. Using these annotations, xclingo generates deriva-

tion trees following the framework of causal graph justifications introduced in (Cabalar

et al. 2014). Under that framework, answer sets are multi-valued interpretations where

the value for each true atom is an algebraic expression constructed with labels associ-

ated to program rules. Each expression is an alternative of multiple derivation trees that

have been proved to correspond to the set of minimal proofs for the atom built with

the Horn clauses in the program reduct. By now, xclingo just guarantees correctness

of the obtained derivations, but not their minimality, which is planned to become a fu-

ture optional feature. The tool uses the clingo python API to translate the annotations

into additional rules with auxiliary predicates and computes the explanations from the

information obtained from these predicates.

Since causal graphs show possible derivations for the conclusions, it is difficult to

avoid that, as the size of a rule system increases, the readability and comprehension

of the explanations becomes more difficult. A large explanation may be tractable by a

computer but not too useful for a human reader, who is normally more concerned about

relevant pieces of information. Because of that, xclingo puts an extra effort on creating

a flexible way to format these explanations at a detailed level, style and size.

Although its main purpose is the explanation of ASP program conclusions, we also find

xclingo helpful for program debugging, again, because of the flexibility of its explanation

configuration system.

In order to show its features and to demonstrate its usefulness, we use a diagnosis

problem example from the literature as a guide. We choose this example because we find

the nature of xclingo’s explanations very helpful in diagnosis.

The rest of the paper is organised as follows. First we introduce our diagnosis running

example. Then, the input language and the features of xclingo are described. Next, we

describe how the translation of the input into a standard ASP program works. After-

wards, we describe how the explanations are computed from the solution of the translated

program. Finally, we comment about related work and we conclude the paper.

2 Motivating Example

We consider an example from (Balduccini and Gelfond 2003) (Fig. 1). In the example, an

analog AC circuit is presented. In it, an agent can close a switch that should ultimately

cause a bulb to turn on. However, there are exogenous actions that can modify the

environment and make the bulb not to turn on by closing the switch. Our goal is to
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develop a diagnostic system that can identify the reasons why the light does not turn on

and present them to the user in the form of readable explanations.

r

s2

b

s1

Fig. 1. A circuit with a bulb b, a relay r and two switches, s1 and s2.

Example 1. (From Balduccini and Gelfond 2003) Consider a system S consisting

of an agent operating an analog circuit AC from Fig. 1. We assume that switches s1
and s2 are mechanical components which cannot become damaged. Relay r is a magnetic

coil. If not damaged, it is activated when s1 is closed, causing s2 to close. Undamaged

bulb b emits light if s2 is closed. For simplicity of presentation we consider the agent

capable of performing only one action, close(s1). The environment can be represented by

two damaging exogenous1 actions: brk, which causes b to become faulty, and srg (power

surge), which damages r and also b assuming that b is not protected. Suppose that the

agent operating this device is given a goal of lighting the bulb. He realizes that this can be

achieved by closing the first switch, performs the operation, and discovers that the bulb

is not lit.

Our ASP implementation of this example (we call program P1 in Listings 1 and 2)

follows the one presented in (Balduccini and Gelfond 2003) with the addition of c/3 and

few other predicates for improving the explanation results. At a first sight, the encoding

may seem too involved for our small example, but this is because the representation is

general enough to cover a whole family of similar diagnosis problems. Listing 1 contains

the basic type definitions. The predicate names are self-explanatory, except perhaps lines

15–24. This is because we allow arbitrary fluent domains that can be specified explicitly

through predicate value(F,V), meaning that fluent F may have value V. When no value

has been specified in that way, fluents are assumed Boolean by default. Finally, predicate

domain(F,V) collects all domain values for V, regardless of whether they are defined

explicitly or by default. In our example, fluents relay, light, s1 and s2 can take

values on and off (to make them more readable) whereas the rest of fluents are Boolean.

Listing 2 contains the description of the problem. Given any action A, fluent F, value

V and time point I we use the following predicates:
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1 plength (1).
2 time (0..L) :- plength(L).
3 step (1..L) :- plength(L).
4

5 switch(s1). switch(s2).
6 component(relay). component(bulb).
7

8 fluent(relay).
9 fluent(light).

10 fluent(b_prot).
11 fluent(S):-switch(S).
12 abfluent(ab(C)) :- component(C).
13 fluent(F) :- abfluent(F).
14

15 value(relay ,on). value(relay ,off).
16 value(light ,on). value(light ,off).
17 value(S,open) :- switch(S).
18 value(S,closed) :- switch(S).
19 hasvalue(F) :- value(F,V).
20 % Fluents are boolean by default
21 domain(F,true) :- fluent(F), not hasvalue(F).
22 domain(F,false) :- fluent(F), not hasvalue(F).
23 % otherwise , they take the specified values
24 domain(F,V) :- value(F,V).
25

26

27 agent(close(s1)).
28 exog(break).
29 exog(surge).
30 action(Y):-exog(Y).
31 action(Y):-agent(Y).

Listing 1. Type predicates for program P1.

h(F,V,I) = F holds value V at I

obs h(F,V,I) = F was observed to hold value V at I

c(F,V,I) = F’s value was caused to be V at I

c(F,I) = F’s value was caused at I

o(A,I) = A occurred at I

obs o(A,I) = A was observed to occur at I

As usual in diagnosis problems, we differentiate between what happens in the real

world, with predicates h/3 and o/2, and the partial observations we have about that

world, with predicates obs h/3 and obs o/2, respectively. If we execute clingo on this

code, we obtain the three answer sets that correspond to the possible diagnosis: one

including an exogenous action o(break,1); a second one with the exogenous action

o(surge,1); and, finally, a third, non-minimal diagnosis where both exogenous actions

occur. Of course, in the original work by Balduccini and Gelfond, diagnoses were ad-

ditionally minimised to avoid unnecessary addition of exogenous actions, but for the

purpose of this paper, we consider the three answer sets of program P1 as equally inter-

esting for generating explanations. At the moment, xclingo cannot properly deal with

minimisation clauses in clingo yet.

In the rest of the paper, we use this code as a running example. We will complete it

using different xclingo features in order to get the diagnoses in a fully readable and

understandable way.
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1 % Inertia
2 h(F,V,I) :- h(F,V,I-1), not c(F,I), step(I).
3

4 % Axioms for caused
5 h(F,V,J) :- c(F,V,J).
6 c(F,J) :- c(F,V,J).
7

8 % Direct effects
9 c(s1,closed ,I) :- o(close(s1),I), step(I).

10

11 % Indirect effects
12 c(relay ,on,J) :- h(s1,closed ,J), h(ab(relay),false ,J), time(J).
13 c(relay ,off ,J) :- h(s1,open ,J), time(J).
14 c(relay ,off ,J) :- h(ab(relay),true ,J), time(J).
15 c(s2,closed ,J) :- h(relay ,on,J), time(J).
16 c(light ,on,J) :- h(s2 ,closed ,J), h(ab(bulb),false ,J), time(J).
17 c(light ,off ,J) :- h(s2,open ,J), time(J).
18 c(light ,off ,J) :- h(ab(bulb),true ,J), time(J).
19

20 % Malfunctioning
21 c(ab(bulb),true ,I) :- o(break ,I), step(I).
22 c(ab(relay),true ,I) :- o(surge ,I), step(I).
23 c(ab(bulb),true ,I) :- o(surge ,I), not h(b_prot ,true ,I-1), step(I).
24

25

26 % Executability
27 :- o(close(S),I), h(S,closed ,I-1), step(I).
28

29 % Something happening actually occurs
30 o(A,I) :- obs_o(A,I), step(I).
31

32 % Check that observations hold
33 :- obs_h(F,V,J), not h(F,V,J).
34

35 % Completing the initial state
36 h(F,V,0) :- domain(F,V), not -h(F,V,0).
37 -h(F,V,0) :- h(F,W,0), domain(F,V), W!=V.
38

39

40 % A history
41 obs_h(s1,open ,0).
42 obs_h(s2,open ,0).
43 obs_h(b_prot ,true ,0).
44 obs_h(ab(bulb),false ,0).
45 obs_h(ab(relay),false ,0).
46 obs_o(close(s1) ,1).
47

48 % Something went wrong
49 obs_h(light ,off ,1).
50

51 % Diagnostic module: generate exogenous actions
52 o(Z,I) :- step(I), exog(Z), not no(Z,I).
53 no(Z,I) :- step(I), exog(Z), not o(Z,I).

Listing 2. Program P1 describing Example 1.

3 The xclingo system

To understand the purpose of the different types of annotations in xclingo it is perhaps

better to start illustrating the kind of output we expect to achieve. For instance, Fig. 2

shows the result we obtain for program P1 encoding from Example 1 once it is annotated

— we will see how these annotations look like later on. As we can see, the programmer
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has requested explanations for fluents light and relay. Each explanation must be un-

derstood as follows. Below each explained (true) atom (preceded by >>) we get a list of

trees that correspond to alternative (and equally effective) causes for the atom. Then, in

each tree, two explanations at the same level must be understood as a joint cause (the

two effects act together) and each time we jump into a lower level, we can read this as a

“because” relation.

Fig. 2 shows the same three answer sets we obtain with plain clingo. Answer set 1

corresponds to the case in which both a power surge occurred and something broke the

bulb. The explanation for the relay being off (lines 2–6) can be read as follows: “the relay

is not working at 1 because it has been damaged because there has been a power surge.”

We have started all explanations for exogenous actions with the word Hypothesis to

clarify that these are assumptions added to explain the observations. As we can see, in

this first answer set, there are two alternative valid causes for the light being off. The

first one (Fig. 2, lines 9–12) is that the bulb was damaged because something broke it.

The three lines in the explanation respectively come from the annotations (we will see

later) for lines 18, 21 and 52 in Listing 2. The second cause (lines 14–16) is that the

light was already off in the initial state because switch s2 was initially open: in this case,

because of the activation of rules in lines 17 and 5 in Listing 2.

Answer set 2 (lines 19–29) corresponds to the case in which we just had a power surge.

When this happens, the relay is not working (as in the answer set 1) and the light simply

remains off, since s2 was initially open. In this case, we do not get the additional reason

for having the light off, since the bulb is not broken.

Finally, answer set 3 shows the case where something breaks the bulb but there is no

power surge. In this case, we can see that the relay eventually worked because the agent

closed switch 1 and the relay was not initially damaged. As nothing else happens, the

relay is still undamaged in state 1. Notice that these two things (the agent closing the

switch and the relay being initially undamaged) constitute a joint cause altogether: lines

36 and 37 share the same parent at the explanation tree.

Let us proceed now to describe how these explanations are generated, including the

markup language accepted by xclingo. Each explanation is a tree that shows the deriva-

tion proof for an atom. In these trees, each node is a trace label that corresponds to a

string associated to some fired rule or to some derived atom. Trace labels can be cre-

ated manually through annotations or can be automatically generated by xclingo. For

instance, Fig. 3 displays the explanation for h(light,off,1) under the “auto-tracing”

mode, where every rule is automatically traced using the rule head as a label. As we

can see, we obtain a complete derivation tree for h(light,off,1) following the positive

part of the program. Note the difference with respect to Fig. 2, where we used manually

defined (textual) trace labels. In that case, the tool skips any intermediate node in the

derivation tree that has no explicit trace label. In this way, knowledge engineers may

decide the detail to be shown: either automatically tracing all possible rule applications,

which may be helpful for debugging, or selecting the relevant information, something

more interesting for explanation. In the latter, the explanation design, that is, selecting

the right amount of information, may become a non-trivial Knowledge Representation

effort in itself, but would easily become a problem instead if the tool did not offer such

a possibility. For instance, one important decision is to avoid tracing the inertia rule

(line 2 of Listing 2). In that way, if we ask for the explanation of h(light,off,20) in
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1 Answer: 1
2 >> h(relay ,off ,1) [1]
3 *
4 |__"The relay is not working at 1"
5 | |__"The relay has been damaged at 1"
6 | | |__"Hypothesis: there has been a power surge at 1"
7

8 >> h(light ,off ,1) [2]
9 *

10 |__"The light is off at 1"
11 | |__"The bulb has been damaged at 1"
12 | | |__"Hypothesis: something has broken the bulb at 1"
13

14 *
15 |__"The light is off at 1"
16 | |__"s2 was initially open"
17

18

19 Answer: 2
20 >> h(relay ,off ,1) [1]
21 *
22 |__"The relay is not working at 1"
23 | |__"The relay has been damaged at 1"
24 | | |__"Hypothesis: there has been a power surge at 1"
25

26 >> h(light ,off ,1) [1]
27 *
28 |__"The light is off at 1"
29 | |__"s2 was initially open"
30

31

32 Answer: 3
33 >> h(relay ,on ,1) [1]
34 *
35 |__"The relay is working at 1"
36 | |__"The agent has closed switch s1 at 1"
37 | |__"Initially , the relay was not damaged"
38

39 >> h(light ,off ,1) [1]
40 *
41 |__"The light is off at 1"
42 | |__"The bulb has been damaged at 1"
43 | | |__"Hypothesis: something has broken the bulb at 1"

Fig. 2. Explanations obtained for the annotated version of P1.

1 >> h(light ,off ,1) [1]
2 *
3 |__h(light ,off ,1)
4 | |__c(light ,off ,1)
5 | | |__h(ab(bulb),true ,1)
6 | | | |__c(ab(bulb),true ,1)
7 | | | | |__o(break ,1)
8 | | | | | |__step (1)
9 | | | | | | |__plength (1)

10 | | | | | |__exog(break)
11 | | | | |__step (1)
12 | | | | | |__plength (1)
13 | | |__time (1)
14 | | | |__plength (1)

Fig. 3. Explanation using automatically generated trace labels.
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answer set 2 of Fig. 2 we still get the same derivation tree (replacing time stamp 1 by 20)

because the switch was initially off and nothing else changed that in the whole interval.

Another important feature that helps avoiding irrelevant information is that a negative

literal not p is never used in derivations, since it is understood as “there is no cause for

p.” If this was not done in this way, then the explanation for h(light,off,20) in an

answer set where no real action occurred would include the negation of all combinations

of actions that could have changed the light value along the way from 1 to 20 (and

there are too many, even in this simple example). This information may be relevant for

answering why was not the light turned on1, but is irrelevant for explaining why it has

simply remained off, which is the purpose of xclingo.

For adding custom trace labels to a program, the programmer has to make use of

the xclingo’s markup language. It works by adding annotations to the program that

start with %!, so they are just treated as comments by a plain ASP solver like clingo.

There exist two different types of annotations for writing custom trace labels. The first,

trace rule, allows the user to write a custom trace label and to associate it with a

specific rule in the program. Listing 3 shows how we have modified lines 11–23 from

Listing 2 to associate some custom trace labels with those rules.

1 %%%%%% Indirect effects
2 %! trace_rule {"The relay is working at %",J}
3 c(relay ,on,J) :- h(s1,closed ,J), h(ab(relay),false ,J), time(J).
4

5 %! trace_rule {"The relay is not working at %",J}
6 c(relay ,off ,J) :- h(s1,open ,J), time(J).
7

8 %! trace_rule {"The relay is not working at %",J}
9 c(relay ,off ,J) :- h(ab(relay),true ,J), time(J).

10

11 c(s2,closed ,J) :- h(relay ,on,J), time(J).
12

13 %! trace_rule {"The light is on at %",J}
14 c(light ,on,J) :- h(s2 ,closed ,J), h(ab(bulb),false ,J), time(J).
15

16 %! trace_rule {"The light is off at %",J}
17 c(light ,off ,J) :- h(s2,open ,J), time(J).
18

19 %! trace_rule {"The light is off at %",J}
20 c(light ,off ,J) :- h(ab(bulb),true ,J), time(J).
21

22 %%%%%% Malfunctioning
23 %! trace_rule {"The bulb has been damaged at %",I}
24 c(ab(bulb),true ,I) :- o(break ,I), step(I).
25

26 %! trace_rule {"The relay has been damaged at %",I}
27 c(ab(relay),true ,I) :- o(surge ,I), step(I).
28

29 %! trace_rule {"The bulb has been damaged at %",I}
30 c(ab(bulb),true ,I) :- o(surge ,I), not h(b_prot ,true ,I-1), step(I).

Listing 3. Adding trace labels to specific rules with trace rule.

The trace rule annotations are associated to the rule they precede. Inside the braces,

1 Including “why not” queries is an interesting topic for future study.
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the first argument is mandatory and it must be a string enclosed by quotes. The rest of

the arguments are optional and must be variable names used either in the head or in the

body of the rule. The % placeholders are special characters that will be replaced by the

values of the variables after solving, according to the order that variables are listed after

the first argument.

Trying to write trace labels only using trace rule annotations soon makes the code

larger, redundant and harder to maintain. For those cases, trace annotations are more

suitable instead: they allow a permanent association of a label to an atom, regardless

of which rules have triggered it. Thus, their information is less specific but allows other

general interesting features. For instance, trace annotations can be stored separately

from the base code, multiple versions of the same trace labels could be written depending

on the context: different languages, different users or different detail level. Lines 1–8 in

Listing 4 show the trace annotations added for obtaining the output from Fig. 2. For

the part between braces, the syntax works the same as in trace rule annotations, but

instead of being followed by a rule, they are followed by a conditional atom defining the

set of atoms affected by the trace label. Finally, the show trace annotations (Lines 10–11

in Listing 4) work in a similar way to the #show directives in clingo, choosing which

atoms are displayed in each answer set, but in this case, asking for their explanation.

Again, show trace annotations allow conditional atoms, as happened with trace.

1 %!trace {" Hypothesis: there has been a power surge at %",J} o(surge ,J).
2 %!trace {" Hypothesis: something has broken the bulb at %",J} o(break ,J).
3 %!trace {"The agent has closed switch s1 at %",J} o(close(s1),J).
4

5 %!trace {"The % was initially damaged",C} h(ab(C),true ,0).
6 %!trace {"Initially , the % was not damaged",C} h(ab(C),false ,0).
7

8 %!trace {"% was initially %",F,V} h(F,V,0) : not abfluent(F).
9

10 %! show_trace h(light ,V,1).
11 %! show_trace h(relay ,V,1).

Listing 4. Tracing atoms through trace annotations for Program P1.

4 Implementation

The tool xclingo performs two main tasks: (1) a translation of the annotated program

P into a logic program P ′; and (2) a construction of derivation trees by decoding the

answer sets of P ′. Program P ′ built in the translation phase is equivalent to the non-

annotated version of P but includes auxiliary predicates and clingo theory atoms to

keep track of the rules that have been fired. The translation is further divided into two

steps. In a first step, trace rule and trace annotations become clingo theory atoms

without much transformation. These atoms are accepted by the grounder and can be

handled after solving through the clingo Python API. The show trace annotations are

just transformed into traditional rules for an auxiliary head predicate show all p for

each predicate p to be shown.

Listing 5 shows the result of this first step when applied to some of the annotations

presented before.
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1 %% Translation of lines 2,3 in Listing 3
2 c(relay ,on,J) :- h(s1,closed ,J), h(ab(relay),false ,J), time(J),
3 &trace{"The relay is working at %",J}.
4

5 %% Translation of line 1 in Listing 4
6 &trace_all{o(surge ,J) ,"Hypothesis: there has been a power surge at %",J : }

:- o(surge ,J).
7

8 %% Translation of line 10 in Listing 4
9 show_all_h(light ,V,J):-h(light ,V,J).

Listing 5. Transforming annotations into theory atoms and auxiliary predicates.

In a second step, each predicate of the original program P is prefixed with holds

and it is assigned a numeric identifier N. After that, each rule of the form H :- B,

&trace{label} is split into the following rules:

fired N(X1, . . . , Xn) :- B

H :- fired N(X1, . . . , Xn)

&trace{N, H, label} :- fired N(X1, . . . , Xn)

where the X1, . . . , Xn also include the free variables in the body B. If the original rule

body does not contain any trace label, then the last rule is not generated. As an example,

suppose that rule in lines 2–3 from Listing 5 is assigned identifier 33. Then, its translation

is shown in Listing 6.

1 fired_33(relay ,on,J) :-
2 holds_h(s1,closed ,J),holds_h(ab(relay),false ,J),holds_time(J).
3 holds_c(Aux0 ,Aux1 ,Aux2) :-
4 fired_33(Aux0 ,Aux1 ,Aux2).
5 &trace{33,c(relay ,on,J),"The relay is working at %",J } :-
6 fired_33(relay ,on,J).

Listing 6. Translation of lines 2–3 from Listing 5.

During this translation process, some additional rule information is stored: (1) the

original head of the rule; (2) the original body of the rule; and (3) a list with all the

variable names used in the fired rule. This information is used to reconstruct the

derivation proof of the atoms after solving.

Once the translated program P ′ is generated, xclingo makes a call to clingo’s solve

function to retrieve its answer sets and, for each one, proceeds to construct the explana-

tions from the information retrieved in the answer set. To do so, the first step consists in

collecting all the theory atoms &trace and &trace all and replacing the % placehold-

ers in strings by their actual values. Once processed, the trace labels are stored into a

dictionary, where they can be retrieved either by their associated fired id or by their

atom. Then, xclingo identifies which rules have been fired for each model by finding

the fired atoms in it. For each fired rule, we save the different sets of values the rule

was fired with in a dictionary indexed by fired id. With this information, together with

the information about the original rules that was stored during translation (the original

head, the original body, and all the variable names) we build the derivation proofs and



A System for Explainable Answer Set Programming 11

print the explanations. The construction of the derivation proof is made with a “causes

table” that has a row per each rule and includes, the trace labels and the bodies that

fired those labels. Once the causes table is obtained, the next step is filtering those

atoms affected by show trace annotations. All the atoms in the model that start with

the show all prefix are retrieved and stored in a list after removing the prefix. If that

list is empty, then all the atoms in the model are explained. Finally, the explanation of

each atom in that list has to be built and printed. Listing 7 shows the pseudocode for the

recursive function that builds the explanation graph for a given atom and a given causes

table. According to the tree structure, each explanation is a python dictionary where keys

are trace labels and values are in another dictionary (a subtree). Since an atom can have

multiple explanations, the function returns a list of dictionaries. For a leaf of the tree

graph (a fact), the result is a list with an empty dictionary (Line 12). While exploring

1 def b u i l d e x p l a n a t i o n s (atom , ca u s e s t a b l e , s tack ) :
2 for row in c a u s e s t a b l e . f i n d b y f i r e d h e a d ( atom ) :
3 i f not empty ( row [ ’ f body ’ ] ) :
4 e n t r y e x p l s = [ ] # Exp lanat ions o f the curren t row .
5 for atom a in row [ ’ f body ’ ] :
6 i f atom a not in s tack :
7 s tack . push ( a )
8 atom expls = b u i l d e x p l a n a t i o n s ( a , causes , s tack )
9 s tack . pop ( a )

10 e n t r y e x p l s = combine ( en t ry exp l s , a e x p l s )
11 else :
12 e n t r y e x p l s = [ { } ]
13

14 i f not empty ( row [ ’ t r a c e s ’ ] ) :
15 exp lanat i ons = [ ]
16 for t in row [ ’ t r a c e s ’ ] :
17 for e in e n t r y e x p l s :
18 exp lanat i ons . append ({ t : e })
19 else : # s k i p nodes wi thou t t r a c e l a b e l s
20 exp lanat i ons = e n t r y e x p l s
21

22 return exp lanat i ons

Listing 7. Pseudocode for the build explanations function.

the explanations of an atom A, we can find that one atom a in its fired body has multiple

explanations. In that case, A has a different explanation for each a explanation. Function

combine in line 10, performs this combination. Lines 14 to 21 manage the trace labels,

which are the root of the tree graphs. The atom has one explanation for each different

trace label it is associated with. If an atom has no trace labels, nothing is added as root

of the explanations (lines 20–21). As a consequence, one level is skipped in that subtree.

Given that atoms may have multiple alternative explanations, the size of the set of

explanations, when expressed as a set of trees, can grow exponentially in the worst case.

To see why, just consider the program in Listing 8 for some constant value n. Here, the

explanation for atom p(n) is a chain formed by n labels "a(n)", . . . , "a(1)". If we add a
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second trace for p(X) using "b(%)", then each atom p(X) has now two alternative labels

a(X) and b(X), and so, the number of alternative derivations for p(n) becomes 2n.

1 p(1).
2 p(X+1) :- p(X), X<=n.
3 %!trace {"a(%)",X} p(X).

Listing 8. A sequential chain for predicate p.

We have tested the performance of xclingo on a simple encoding of the well-known

blocks world domain varying the size of the scenario in terms of the number of blocks,

but also the size of the explanations, by adding more trace labels per atom. We asked

xclingo to explain the actions performed, the final location of each block and the final

value of predicate unclear(B) that states whether a block B has anything on top (see

example in Fig. 4). We measured the time spent in five different steps of the process: (1)

the translation; (2) the execution of clingo for solving the planning problem; (3) the

construction of the causes table and the dependencies among labels; (4) the expansion

of all derivation trees; and finally, (5) their printing. Fig. 5 shows how the different times

evolve when we fix the number of atoms requested, but we progressively add new trace

labels per each atom. As we explained before, increasing the number of labels per atom

causes an exponential grow in the number of alternative explanations that is well reflected

in the graphic. As future work, we plan to include an execution mode for generating a

maximum number of explanations per atom instead of expanding all of them. Fig. 6 shows

how, when we fix the number of trace labels per atom, the time spent in the construction

of the causes table and its dependencies has a linear increase as we add more atoms. We

also plan to explore alternatives to the construction of the explanations like performing

a tabled evaluation or even using clingo itself to solve this part of the problem.

5 Related Work

The explanations of xclingo correspond to causal justifications from (Cabalar et al.

2014) except that xclingo does not guarantee that the derivation trees are minimal,

although it performs some minor simplifications. In the survey (Fandinno and Schulz

2019), different approaches to the problem of answering the “why” in ASP are reviewed,

including the two related ones called off-line justifications (Pontelli et al. 2009) and ar-

gumentative explanations (Schulz and Toni 2016). An important difference with respect

to these approaches is that, as we explained, xclingo does not derive information from

negative literals. This is because default negation is understood, under xclingo seman-

tics, as the absence of cause. As a result, explanations only provide information when

1 >> unclear (9,14) [1]
2 *
3 |__"Block 9 is finally unclear"
4 | |__"Block 1 is finally on 9"
5 | | |__"Block 1 was moved on top of block 9 at t=11"

Fig. 4. Explanation answering why block 9 is unclear at final step 14.
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Fig. 5. Execution time vs labels per atom. Fig. 6. Execution time vs num. of atoms.

defaults are broken (like inertia), rather than including all possible events that could

have changed the outcome, although they did not happen. The latter can be interest-

ing for answering “why not” queries, but the size of explanations may simply become

unmanageable. Another difference is that, thanks to the labelling system inherited from

causal justifications, xclingo allows selecting in a fine grained way which information

can be used in the justification trees.

Other systems that provide explanations for logic programs are ErgoAI2, for Datalog

programs, and s(ASP) (Arias et al. 2018) for non-ground ASP programs. An advantage

of these two systems is that their explanations can be generated without resorting to a

full grounding of the program. Besides, ErgoAI shows some similarities to xclingo like

selecting the information in the explanations (although, in this case, we must explic-

itly define which information must be omitted), or allowing text labels and variables in

the justifications. However, both ErgoAI and s(ASP) include information about negated

literals, unlike xclingo.

6 Conclusions and Future Work

We presented xclingo, an ASP extension interpreter that allows obtaining justifica-

tions of the literals in the answer sets of logic programs. At the moment, the tool is a

partial implementation of the Logic Programming extension described by causal justifi-

cations (Cabalar et al. 2014). The python source code of xclingo and instructions for its

usage are available at github3. It requires python 3.* and the following python modules to

be installed: clingo4, pandas5 and more itertools6. We illustrated, on a diagnostic reason-

ing example, how xclingo’s features can be used for obtaining readable explanations,

that can be even expressed in natural language. Even if explanations are not needed,

xclingo can also be used as a complement to clingo for debugging purposes, since the

annotations are included as comments and do not make the code incompatible.

2 http://coherentknowledge.com/product-overview-ergoai-platform/
3 https://github.com/bramucas/xclingo
4 https://potassco.org/clingo/python-api/5.4/
5 https://pandas.pydata.org/
6 https://github.com/more-itertools/more-itertools

http://coherentknowledge.com/product-overview-ergoai-platform/
https://github.com/bramucas/xclingo
https://potassco.org/clingo/python-api/5.4/
https://pandas.pydata.org/
https://github.com/more-itertools/more-itertools
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The current version of xclingo is still in a preliminary stage and will be augmented

with new features. Immediate future work includes the treatment of minimization direc-

tives (something essential, for instance, to obtain minimal solutions for diagnosis prob-

lems), and other usual clingo constructs like choice rules or pooling, which are not

accepted yet. Another extension we plan to include in the future is the addition of trace

labels for constraints, so that those that are labelled become weak constraints. Other ex-

tensions for the long term include the use of causal literals as in (Fandinno 2016) or the

use of verification annotations to be combined with a similar theorem proving technique

as done in (Lifschitz et al. 2019).
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Marek, V. W. and Truszczyński, M. 1999. Stable models and an alternative logic pro-
gramming paradigm. In The Logic Programming Paradigm, K. R. Apt, V. W. Marek,
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