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Abstract

Answer Set Planning refers to the use of Answer Set Programming (ASP) to compute plans, i.e., solutions to
planning problems, that transform a given state of the world to another state. The development of efficient
and scalable answer set solvers has provided a significant boost to the development of ASP-based planning
systems. This paper surveys the progress made during the last two and a half decades in the area of answer
set planning, from its foundations to its use in challenging planning domains. The survey explores the
advantages and disadvantages of answer set planning. It also discusses typical applications of answer set
planning and presents a set of challenges for future research.
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1 Introduction

Automated planning represents one of the core components in the design of autonomous intelligent
systems. The term refers to the task of finding a course of actions (i.e., a plan) that changes the
state of the world from a given state to another state. An automated planner takes a planning
problem as input, which consists of a domain description or an action theory, the initial state
description, and the goal state description, and computes a solution of the problem if one exists.
Automated planning has been an active research area of Artificial Intelligence for many years. It
has established itself as a mature research area with its own annually conference, the International
Conference on Automated Planning and Scheduling (ICAPS)1 series starting from 1991, with
several satellite workshops related to planning and scheduling as well as the planning competition
for many tracks. Consequently, the literature on planning is enormous. The textbooks by Ghallab
et al. (2004) and (2016) includes more than 500 and 600 references, respectively. The monograph
on planning with focus on abstraction and decomposition by Yang (1997) has more than 150
references. The survey on classical planning by Hendler et al. (1990) also referred to more than

1 https://www.icaps-conference.org
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100 papers. Similar observation can be made about the survey by Weld (1994), which mainly
discusses partial order planning. There are also special collections or special issues on planning
such as (Allen et al. 1991; Allen et al. 1990). In addition, several planning systems addressing
different aspects of planning have been developed,2 which will be discussed in more details in
Sections 3–5. Our goal in this paper is to provide a survey on answer set planning, a relatively late
addition to the rich body of research in automated planning that has not been comprehensively
surveyed so far.

Answer set planning, a term coined by Lifschitz (1999), refers to the use of Answer Set
Programming (ASP) in planning. In this approach, planning problems are translated to logic
programs whose answer sets correspond to solutions of the original planning problems. This
approach is related to the early approach to planning using automated theorem provers by Green
(1969). Although similar in the emphasis of using a general logical solver for planning, answer
set planning and planning using automated theorem provers differ in that the former computes an
answer set (or a full model) to find a solution whilst the latter identifies a solution with a proof
of a query. Answer set planning is more closely related to the prominent approach of planning
using satisfiability solvers (SAT-planning) proposed by Kautz and Selman (1992) and Kautz et al.
(1996), who showed, experimentally, that SAT-planning can reach the scalability and efficiency of
contemporary heuristic-based planning systems. This success is, likely, one of the driving forces
behind the research on using logic programs under the answer set semantics for planning. The
idea of answer set planning was first discussed by Subrahmanian and Zaniolo (1995) and further
developed by Dimopoulos et al. (1997), who also demonstrated that answer set planning can be
competitive with state-of-the-art domain-independent planner at the time.

Answer set planning offers a number of features which are advantageous for researchers.
First, by virtue of the declarative nature of logic programming, answer set planning is itself
declarative and elaboration tolerant. This enables a modular development of planning systems
with special features. For example, to consider a particular set of solutions satisfying an user’s
preferences, one only needs to develop rules expressing these preferences and adds them to the
set of rules encoding the planning problem (Son and Pontelli 2006); to exploit the various types
of domain-knowledge in planning, one only needs to develop rules expressing them to the set
of rules encoding the planning problem (Son et al. 2006). To the best of our knowledge, there
exists no other planning system that can simultaneously exploit all three well-known types of
domain knowledge—temporal, hierarchical, and procedural knowledge—as demonstrated by (Son
et al. 2006). Other features of logic programming such as the use of variables, constraints, and
choice atoms allow for a compact representation of answer set planners. For example, the basic
code for generating a plan in classical setting requires only 10 basic rules and one constraint
while a traditional implementation of a planning system in an imperative language may require
thousands of lines. Second, the expressiveness of logic programming facilitates the integration of
complex reasoning, such as reasoning with static causal laws, into ASP-based planners. To the
best of our knowledge, only answer set planning systems deal directly with unrestricted static
causal laws (Son et al. 2005a; Tu et al. 2011). Third, as demonstrated in several experimental
evaluations (Gebser et al. 2013; Son et al. 2005a; Tu et al. 2007; Tu et al. 2011), answer set
planning systems perform well against other contemporary planning systems in various categories.
Finally, the large body of theoretical building block results in logic programming supports the

2 Detailed references to these systems are provided in the subsequent sections.
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development of provably correct answer set planners. This is an important feature of answer set
planning that is mostly neglected by the vast majority of work in planning, arguably difficult to
obtain for planners realized using traditional imperative programming techniques and valuable for
foundational research work.

Over the last twenty-five years, a variety of ASP-based planning systems have been developed,
e.g. (Dimopoulos et al. 2019; Eiter et al. 2000; Eiter et al. 2003b; Gebser et al. 2013; Son et al.
2005a; Tu et al. 2007; Tu et al. 2011; Morales et al. 2007; Fandinno et al. 2021; Rizwan et al.
2020; Spies et al. 2019; Yalciner et al. 2017), that address several challenges in planning, such
as planning with incomplete information, non-deterministic actions, and sensing actions. These
systems, in turn, provide the basis for investigation of ASP solutions to problems in areas like
diagnosis (Balduccini and Gelfond 2003), multi-agent path findings (Nguyen et al. 2017; Gómez
et al. 2020), goal recognition design (Son et al. 2016), planning with preferences (Son and Pontelli
2006), planning with action cost (Eiter et al. 2003a), and robot task planning (Jiang et al. 2019).
This progress has been amplified by the development of efficient and scalable answer set solvers,
such as smodels (Niemelä and Simons 1997), dlv (Eiter et al. 1997; Alviano et al. 2017; Alviano
et al. 2013), clasp (Gebser et al. 2007; Gebser et al. 2019), and cmodels (Lierler and Maratea
2004), together with the invention of action languages for reasoning about actions and change,
such as the action languages A, B, and C (Gelfond and Lifschitz 1998), AK with sensing actions
(Lobo et al. 1997; Son and Baral 2001), and actions with nondeterminism (Giunchiglia et al.
1997).

In this survey, we characterize planning problems using the three dimensions:

1. the type of action theories,
2. the degree of uncertainty about the initial state, and
3. the availability of knowledge-producing actions.

In particular, the literature has named the following classes of planning problems. Classical
planning refers to planning problems with deterministic action theories and complete initial states.
Conformant planning deals with the incompleteness of the initial state and nondeterministic action
theories. Conditional planning considers knowledge producing actions and generates plans which
might contain non-sequential constructs, such as if-then or while loop.

This paper presents a survey of research focused on ASP-based planning and its applications. It
begins (Section 2) with a brief introduction of answer set programming and action language B, the
main representation language for planning problems. It describes different encodings of answer set
planning for problems with complete information and no sensing actions (Section 3). The paper
then introduces two different approaches to planning with incomplete information (Section 4) and
the description of a conditional planner, which solves planning problems in domains with sensing
actions and incomplete information (Section 5). The survey explores next the problems of planning
with preferences (Section 6), diagnosis (Section 7), planning in multi-agent environments (Section
8), and planning and scheduling in real-world applications (Section 9). The paper concludes with
a discussion about open challenges for answer set planning (Section 10).

2 Background

2.1 Answer Set Programming

As usual, a logic program consists of rules of the form

a1 ∨ . . . ∨ am ← am+, . . . , an, not an+1, . . . , not ao
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where each ai is an atom of form p(t1, . . . , tk) and all ti are terms, composed of function symbols
and variables. Atoms a1 to am are often called head atom, while am+1 to an and not an+1 to
not ao are also referred to as positive and negative body literals, respectively. An expression is
said to be ground, if it contains no variables. As usual, not denotes (default) negation. A rule is
called a fact if m = o = 1, normal if m = 1, and an integrity constraint if m = 0. Semantically, a
logic program produces a set of stable models, also called answers sets, which are distinguished
models of the program determined by the stable model semantics; see the paper by Gelfond and
Lifschitz (1991) for details.

To ease the use of ASP in practice, several simplifying notations and extensions have been
developed. First of all, rules with variables are viewed as shorthands for the set of their ground
instances. Additional language constructs include conditional literals and cardinality constraints
(Simons et al. 2002). The former are of the form a : b1, . . . , bm, the latter can be written as
s{d1; . . . ; dn}t,3 where a and bi are possibly default-negated (regular) literals and each dj is a
conditional literal; s and t provide optional lower and upper bounds on the number of satisfied
literals in the cardinality constraint. We refer to b1, . . . , bm as a condition. The practical value of
both constructs becomes apparent when used with variables. For instance, a conditional literal like
a(X) : b(X) in a rule’s antecedent expands to the conjunction of all instances of a(X) for which
the corresponding instance of b(X) holds. Similarly, 2 {a(X) : b(X)} 4 is true whenever at least
two and at most four instances of a(X) (subject to b(X)) are true. Finally, objective functions
minimizing the sum of a set of weighted tuples (wi, ti) subject to condition ci are expressed
as #minimize{w1@l1, t1 : c1; . . . ;wn@ln, tn : cn}. Analogously, objective functions can be
optimized using the #maximize statement. Lexicographically ordered objective functions are
(optionally) distinguished via levels indicated by li. An omitted level defaults to 0. Furthermore,
wi is a numeral constant and ti a sequence of arbitrary terms. Alternatively, the above minimize
statement can be expressed by weak constraints of the form←↩ ci[wi@li, ti] for 1 ≤ i ≤ n.

As an example, consider the following rule:

1{move(D,P, T ) : disk(D), peg(P )}1← ngoal(T − 1), T ≤ n.

This rule has a single head atom consisting of a cardinality constraint; it comprises all instances of
move(D,P, T ) where T is fixed by the two body literals and D and P vary over all instantiations
of predicates disk and peg , respectively. Given 3 pegs and 4 disks, this results in 12 instances
of move(D,P, T ) for each valid replacement of T , among which exactly one must be chosen
according to the above rule.

Full details of the input language of clingo, along with various examples and its semantics, can
be found in the papers by Gebser et al. (2015). The interested reader is also referred to the work
by Calimeri et al. (2019) for the description of the ASP Core 2 Language.

A logic program can have zero, one, or multiple answer sets. This distinguishes answer set
semantics from other semantics of logic programs such as the well-founded semantics of Van
Gelder et al. (1991) or perfect models semantics of Przymusinski (1988). Answer set semantics,
together with the introduction of choice rules and constraints, enables the development of answer
set programming as proposed by Lifschitz (1999). Following this approach, a problem can be
solved by a logic program whose answer sets correspond one-to-one to the problem’s solutions.

3 More elaborate forms of aggregates can be obtained by explicitly using function (e.g., #count) and relation symbols
(eg. <=).
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Choice rules are often used to generate potential solutions and constraints are used to eliminate
potential but incorrect solutions.

2.2 Reasoning About Actions: The Action Description Language B

We review the basics of the action description language B (Gelfond and Lifschitz 1998). An action
theory in B is defined over a set of actions A and a set of fluents F. A fluent literal is a fluent
f ∈ F or its negation ¬f . A fluent formula is a Boolean formula constructed from fluent literals.
An action theory is a set of laws of the form

caused(ϕ, f) (1)

causes(a, f, ϕ) (2)

executable(a, ϕ) (3)

initially(f) (4)

where f and ϕ are a fluent literal and a set of fluent literals, respectively, and a is an action. A
law of the form (1) represents a static causal law, i.e., a relationship between fluents. It conveys
that whenever the fluent literals in ϕ hold then so is f . A dynamic causal law is of the form (2)
and represents the (conditional) effect of a while a law of the form (3) encodes an executability
condition of a. Intuitively, an executability condition of the form (3) states that a can only be
executed if ϕ holds. A dynamic law of the form (2) states that f is caused to be true after the
execution of a in any state of the world where ϕ holds. When ϕ = ∅ in (3), we often omit laws of
this type from the theory. Statements of the form (4) describe the initial state. They state that f
holds in the initial state. We also often refer to ϕ as the “precondition” for each particular law.

An action theory is a pair (D,Γ) where Γ, called the initial state, consists of laws of the form
(4) and D, called the domain, consists of laws of the form (1)-(3). For convenience, we sometimes
denote the set of laws of the form (1) by DC .

Example 1
Let us consider a modified version of the suitcase s with two latches from the work by Lin (1995).
We have a suitcase with two latches l1 and l2. l1 is up and l2 is down. To open a latch (l1 or l2),
we need a corresponding key (k1 or k2, respectively). When the two latches are in the up position,
the suitcase is unlocked. When one of the latches is down, the suitcase is locked. In this domain,
we have that

A = {open(li), close(li), get key(ki) | i ∈ {1, 2}}
and

F = {locked} ∪ {up(li), holding(ki) | i ∈ {1, 2}}.
The intuitive meaning of the actions and fluents is clear. The problem can be represented using
the laws

Ds =



causes(open(li), up(li), ∅)
causes(close(li),¬up(li), ∅)
causes(get key(ki), holding(ki), ∅)
executable(open(li), {holding(ki)})
caused({¬up(li)}, locked)

caused({up(l1), up(l2)},¬locked)

where, in all laws, i = 1, 2. The first three laws describe the effects of the action of opening a
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latch, closing a latch, or getting a key. The fourth law encodes that we can open the latch only
when we have the right key. Observe that the omission of executability laws for close(li) or
get key(ki) indicates that these actions can always be executed. The last two laws are static
causal laws encoding that the suitcase is locked when either of the two latches is in the down
position and it is unlocked when the two latches are in the up position.

A possible initial state of this domain is given by

Γs =


initially(up(l1))

initially(¬up(l2))

initially(locked)

initially(¬holding(k1))

initially(holding(k2))

�

A domain given in B defines a transition function from pairs of actions and states to sets of
states whose precise definition is given below. Intuitively, given an action a and a state s, the
transition function Φ defines the set of states Φ(a, s) that may be reached after executing the
action a in state s. The mapping to a set of states captures the fact that an action can potentially
be non-deterministic and produce different results (e.g., an action open might be successful in
opening a lock or not if we account for the possibility of a broken lock). If Φ(a, s) is an empty set
it means that the execution of a in s is undefined. We now formally define Φ.

Let D be a domain in B. A set of fluent literals is said to be consistent if it does not contain
f and ¬f for some fluent f . An interpretation I of the fluents in D is a maximal consistent set
of fluent literals of D. A fluent f is said to be true (resp. false) in I if f ∈ I (resp. ¬f ∈ I). The
truth value of a fluent formula in I is defined recursively over the propositional connectives in the
usual way. For example, f ∧ g is true in I if f is true in I and g is true in I . We say that a formula
ϕ holds in I (or I satisfies ϕ), denoted by I |= ϕ, if ϕ is true in I .

Let u be a consistent set of fluent literals and K a set of static causal laws. We say that u is
closed under K if for every static causal law

caused(ϕ, f)

in K, if u |=
∧
p∈ϕ p then u |= f . By ClK(u) we denote the least consistent set of literals from

D that contains u and is also closed under K. It is worth noting that ClK(u) might be undefined
when it is inconsistent. For instance, if u contains both f and ¬f for some fluent f , then ClK(u)

cannot contain u and be consistent; another example is that if u = {f, g} and K contains

caused({f}, h) and caused({f, g},¬h),

then ClK(u) does not exist because it has to contain both h and ¬h, which means that it is
inconsistent.

Formally, a state of D is an interpretation of the fluents in F that is closed under the set of static
causal laws DC of D.

An action a is executable in a state s if there exists an executability proposition

executable(a, ϕ)

in D such that s |=
∧
p∈ϕ p. Clearly, if ϕ = ∅, then a is executable in every state of D.



Answer Set Planning: A Survey 7

The direct effect of an action a in a state s is the set

e(a, s) =

f | causes(a, f, ϕ) ∈ D, s |=
∧
p ∈ ϕ

p

 .

For a domain D, the set of states Φ(a, s) that may be reached by executing a in s, is defined as
follows.

1. If a is executable in s, then

Φ(a, s) = {s′ | s′ is a state and s′ = ClDC
(e(a, s) ∪ (s ∩ s′))};

2. If a is not executable in s, then Φ(a, s) = ∅.

Intuitively, the states produced by Φ(a, s) are fixpoints of an equation, obtained by closing (with
respect to all static causal laws) the set which includes the direct effects e(a, s) of action a and the
fluents whose value does not change as we transition from s to s′ through action a (i.e., s ∩ s′).

The presence of static causal laws introduces non-determinism to action theories, i.e., Φ(a, s)

can contain more than one element. For instance, consider the theory with the set of laws

{causes(a, f), caused({f,¬g},¬h), caused({f,¬h},¬g)}.

It is easy to check that

Φ(a, {¬f,¬g,¬h}) = {{f, g,¬h}, {f,¬g, h}}.

Every domain D in B has a unique transition function Φ, and we say Φ is the transition function
of D. We illustrate the definition of the transition function in the next example.

Example 2
For the suitcase domain in Example 1, the initial state, given by the set of laws Γs, is defined by

s0 = {up(l1),¬up(l2), locked,¬holding(k1), holding(k2)}.

In state s0, the three actions open(l2), close(l1), and close(l2) are executable. open(l2) is ex-
ecutable since holding(k2) is true in s0 while close(l1) and close(l2) are executable since the
theory (implicitly) contains the laws

executable(close(l1), {}) and executable(close(l2), {})

which indicate that these two actions are always executable. The following transitions are possible
from state s0:

{ up(l1), up(l2),¬locked,¬holding(k1), holding(k2) } ∈ Φ(open(l2), s0).

{ up(l1),¬up(l2), locked,¬holding(k1), holding(k2) } ∈ Φ(close(l2), s0).

{ ¬up(l1),¬up(l2), locked,¬holding(k1), holding(k2) } ∈ Φ(close(l1), s0).

�

The transition function Φ is extended to define Φ̂ for reasoning about effects of action sequences
in the usual way. For a sequence of actions α = 〈a0, . . . , an−1〉 and a state s, Φ̂(α, s) is a
collection of states defined as follows:

• Φ̂(α, s) = {s} if α = 〈 〉;
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• Φ̂(α, s) = Φ(a0, s) if n = 1;
• Φ̂(α, s) =

⋃
s′∈Φ(a0,s)

Φ̂(α′, s′) if n > 1, Φ(a0, s) 6= ∅, and Φ̂(α′, s′) 6= ∅ for every
s′ ∈ Φ(a0, s) where α′ = 〈a1, . . . , an−1〉.

A domainD is consistent if for every action a and state s, if a is executable in s, then Φ(a, s) 6=
∅. An action theory (D,Γ) is consistent if D is consistent and s0 = {f | initially(f) ∈ Γ} is a
state of D. In what follows, we consider only consistent action theories and refer to s0 as the
initial state of D. We call a sequence of alternate states and actions s0a0 . . . ak−1sk a trajectory
if si+1 ∈ Φ(a, si) for every i = 0, . . . , k − 1.

A planning problem with respect toB is specified by a triple 〈D,Γ,∆〉where (D,Γ) is an action
theory in B and ∆ is a set of fluent literals (or goal). A sequence of actions α = 〈a0, . . . , an−1〉 is
then called an optimistic plan for ∆ if there exists some s ∈ Φ̂(α, s0) such that s |= ∆ where s0

is the initial state of D. Note that we use the term ‘optimistic plan’ to refer to α, as used by Eiter
et al. (2003b), instead of ‘plan’ because the non-determinicity of D does not guarantee that the
goal is achieved in every state reachable after the execution of α. However, if D is deterministic,
i.e., |Φ(a, s)| ≤ 1 for every pair (a, s) of actions and states, then the two notions of ‘optimistic
plan’ and ‘plan’ coincide.

3 Planning with Complete Information

Given a planning problem P = 〈D,Γ,∆〉, answer set planning solves it by translating it into a
logic program Π(P, n) whose answer sets correspond one-to-one to optimistic plans of length
≤ n of P . Intuitively, each answer set corresponds to a trajectory s0a0 . . . an−1sn such that
sn |= ∆. As such, the choices that need to be made at each step k in program Π(P, n) are either
the action ak or the state sk. This leads to different encodings, referred to as action-based and
state-based, which emphasize the object of the selection process.

Over the years, several types of encodings have been developed. We present below two of the
most popular mappings of planning problems to logic programs. The first encoding, presented
in Subsection 3.1, views the problem P as a set of laws in the language B (Subsection 2.2)
while the second encoding, illustrated in Subsection 3.2, views the problem as a set of facts. In
both encodings, the program Π(P, n) contains the atom4 time(0..n) to represent the set of facts
{time(0), . . . , time(n)}.

3.1 A Direct Encoding

The rules of Π(P, n) in this encoding are described by Son et al. (2006). The main predicates in
the program are:

1. holds(F, T ) – the fluent literal F is true at time step T ;
2. occ(A, T ) – the action A occurs at time step T ; and
3. possible(A, T ) – the action A is executable at time step T .

The program contains two sets of rules. The first set of rules is domain dependent. The rules in the
second set are generic and common to all problems. For a set of literals ϕ, we use holds(ϕ, T ) to
denote the set {holds(L, T ) | L ∈ ϕ}.

4 Throughout the paper, we will use the syntax implemented in the clingo system.
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3.1.1 Domain-Dependent Rules

For each planning problem P = 〈D,Γ,∆〉, program Π(P, n) contains the following rules:

1. For each element initially(f) of form (4) in Γ, the fact

holds(f, 0)← (5)

stating that the fluent literal f holds at time step 0.
2. For each executability condition executable(a, ϕ) of form (3) in D, the rule

possible(a, T )← time(T ), holds(ϕ, T ) (6)

stating that it is possible to execute the action a at time step T if ϕ holds at time step T .
3. For each dynamic causal law causes(a, f, ϕ) of form (2) in D, the rule

holds(f, T + 1) ← time(T ), occ(a, T ), holds(ϕ, T ) (7)

stating that if a occurs at time step T then the fluent literal f becomes true at T + 1 if the
conditions in ϕ hold.

4. For each static causal law caused(ϕ, f) of form (1) in D, the rule5

holds(f, T )← time(T ), holds(ϕ, T ) (8)

which represents a straightforward translation of the static causal law into a logic program-
ming rule.

5. To guarantee that an action is executed only when it is executable, the constraint

← time(T ), occ(A, T ), not possible(A, T ) (9)

We demonstrate the above translation by listing the set of domain dependent rules for the
domain from Example 1.

Example 3
Besides the set of facts encoding actions and fluents and the initial state (for each a ∈ A, f ∈ F

and initially(l) ∈ Γs),

action(a)← fluent(f)← holds(l, 0)←

the encoding of the suitcase domain in Example 1 contains the following rules for i = 1, 2:

holds(up(li), T + 1) ← time(T ), occ(open(li), T )

holds(¬up(li), T + 1) ← time(T ), occ(close(li), T )

holds(holding(ki), T + 1) ← time(T ), occ(get key(ki), T )

possible(open(li), T ) ← time(T ), holds(holding(ki), T )

holds(locked, T ) ← time(T ), holds(¬up(li), T )

holds(¬locked, T ) ← time(T ), holds(up(l1), T ), holds(up(l2), T )

possible(close(li), T ) ← time(T )

possible(get key(ki), T ) ← time(T )

Each of the first six rules corresponds to a law in Ds. The last two rules are added because there
is no restriction on the executability condition of close(li) or get key(ki). 3

5 If f = false then the head of the rule is empty.
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3.1.2 Domain Independent Rules

The set of domain independent rules of Π(P, n) consists of rules for generating action occurrences
and encoding the frame axiom.

1. Action generation rule: To create plans, Π(P, n) must contain rules that generate action
occurrences of the form occ(a, t). This is encoded by the rule

1{occ(A, T ) : action(A)}1← time(T ), T < n (10)

stating that exactly one action must occur at each time step. It makes use of the cardinality
atom 1{occ(A, T ) : action(A)}1 which is true for a time step T iff exactly one atom in
the set {occ(A, T ) : action(A)} is true. The former atom can be replaced by l{occ(A, T ) :

action(A)}u where 0 ≤ l ≤ u to allow for different types of plans, e.g., for parallel plans,
l > 1.

2. Inertia rule: The frame axiom, which states that a property continues to hold unless it is
changed, is encoded as follows:

holds(F, T+1) ← time(T ), f luent(F ), holds(F, T ), not holds(¬F, T+1) (11)

holds(¬F, T+1) ← time(T ), f luent(F ), holds(¬F, T ), not holds(F, T+1) (12)

3. Consistency constraint: To ensure that states encoded by answer sets are consistent, Π(P, n)

contains the following constraint:

← fluent(F ), holds(F, T ), holds(¬F, T ) (13)

Observe that this constraint is needed because holds(f, t) and holds(¬f, t) are “consistent”
for answer set solvers. It would not be needed if holds(¬f, t) is encoded as ¬holds(f, t).

3.1.3 Goal Representation

The goal ∆ is encoded by rules defining the predicate goal, which is true whenever ∆ is true,
and a rule that enforces that ∆ must be true at time step n. For example, if ∆ is a conjunction of
literals p1 ∧ . . . ∧ pk, then the rules

goal ← holds(p1, n), . . . , holds(pk, n) (14)

← not goal (15)

encode ∆ and enforce that ∆ must be true at time step n.

3.1.4 Correctness of the Encoding

Let P = (D,Γ,∆) and Π(P, n) be the logic program consisting of

• the set of facts encoding fluents and literals in D;
• the set of domain-dependent rules encoding D and Γ (rules (5)–(9)) in which the domain of
T is {0, . . . , n};

• the set of domain-independent rules (rules (10)–(12)) in which the domain of T is
{0, . . . , n}; and

• the rules (13)–(15).
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The following result shows the equivalence between optimistic plans achieving ∆ and answer sets
of Π(P, n). To formalize the theorem, we introduce some additional notation. For an answer set
M of Π(P, n), we define

si(M) = {f | f is a fluent literal and holds(f, i) ∈M}.

Theorem 1
For a planning problem 〈D,Γ,∆〉 with a consistent action theory (D,Γ), s0a0 . . . an−1sn is a
trajectory achieving ∆ iff there exists an answer set M of Π(P, n) such that

1. occ(ai, i) ∈M for i ∈ {0, . . . , n− 1} and
2. si = si(M) for i ∈ {0, . . . , n}.

Remark 1
1. The proof of Theorem 1 relies on the following observations:M is an answer set of Π(P, n)

iff

• for every i such that 0 ≤ i < n, there exists some ai ∈ A such that
occ(ai, i) ∈M and ai is executable in si(M);

• s0(M) is the initial state of the action theory (D,Γ) and is consistent. Furthermore,
for every i such that 0 ≤ i < n, si+1(M) ∈ Φ(ai, si(M)); and

• ∆ is true in sn(M).

The theorem is similar to the correspondence between histories and answer sets explored
by Lifschitz and Turner (1999) and by Son et al. (2006).

2. If (D,Γ) is deterministic then Theorem 1 can be simplified to “ a0, a1, . . . , an−1 is a plan
achieving ∆ iff there exists an answer set M of Π(P, n) such that occ(ai, i) ∈ M for
i ∈ {0, . . . , n− 1}.”

3. A different variant of this encoding, which uses f(~x, t) and ¬f(~x, t) instead of
holds(f(~x), t) and holds(¬f(~x), t), respectively, can be found in several papers related to
answer set planning, e.g., in the papers by Lifschitz (1999) and (2002).

4. The action language B could be extended with various features such as default fluents,
effects of action sequences, etc. as discussed by Gelfond and Lifschitz (1998). These
features can be easily included in the encoding of Π(P, n). On the other hand, such features
are rarely considered in action domains used by the planning community. For this reason,
we do not consider such features in this survey.

5. Readers familiar with current answer set solvers such as clingo or dlv could be wondering
why holds(¬f, t) is used instead of a perhaps more intuitive ¬holds(f, t). Indeed, the
former can be replaced by the latter. The use of holds(¬f, t) is influenced by early Prolog
programs written for reasoning about actions and changes by Michael Gelfond. A Prolog
program that translates a planning problem to its ASP encoding can be found at https:
//www.cs.nmsu.edu/˜tson/ASPlan/Knowledge/translate.pl.

6. Different approaches to integrate various types of knowledge to answer set planning can be
found in the work by Dix et al. (2005) and Son et al. (2006).

https://www.cs.nmsu.edu/~tson/ASPlan/Knowledge/translate.pl
https://www.cs.nmsu.edu/~tson/ASPlan/Knowledge/translate.pl
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3.2 Meta Encoding

The meta encoding presented in this section encodes a planning problem P = 〈D,Γ,∆〉 as a set
of facts, in addition to a set of domain-independent rules for reasoning about effects of actions. To
distinguish this encoding from the previous one, we denote this encoding with Πm(P, n). In this
encoding, a set ϕ is represented using the atom set(sϕ), where sϕ is a new atom associated to ϕ,
and a set of atoms of the form {member(sϕ, p) | p ∈ ϕ}. The laws in D are represented by the
set of facts

caused(f, ssf ). set(ssf ). ssf is the identifier for ϕ in caused(f, ϕ) in D (16)

causes(a, f, sdf ). set(sdf ). sdf is the identifier for ϕ in causes(a, f, ϕ) in D (17)

executable(a, sa). set(sa). sa is the identifier for ϕ in executable(a, ϕ) in D (18)

and the set of facts encoding ssf , sdf , and sa.
In addition to the action generation rule (10), the inertial rules (11)–(12), the goal representation

rules (14)-(15), and the constraint stating that actions can occur only when they are executable
(9), the program Πm(P, n) contains the following rules for reasoning about effects of actions:

holds(S, T ) ← time(T ), set(S), (19)

holds(F, T ) : fluent(F ),member(S, F );

holds(¬F, T ) : fluent(F ),member(S,¬F ).

holds(L, T + 1) ← time(T ), causes(A,F, S), occ(A, T ), holds(S, T ) (20)

holds(L, T ) ← time(T ), caused(L, S), holds(S, T ) (21)

possible(A, T ) ← time(T ), executable(A,S), holds(S, T ) (22)

Rule (19) defines the truth of a set of fluents S at time step T , by declaring that S holds at T
if all of its members are true at T . The intuition behind the rules (20)–(22) is clear. Similarly
to Theorem 1, answer sets of Πm(P, n) correspond one-to-one to possible solutions (optimistic
plans) of P .

Remark 2
A similar encoding to Πm(P, n) is used in the system plasp version 3 by Dimopoulos et al.
(2019). A translation of planning problems from PDDL format to ASP facts can be found at
https://github.com/potassco/plasp.

3.3 Adding Heuristics: Going for Performance

By using ASP systems for solving planning problems, we employ general-purpose systems rather
than genuine planning systems. In particular, the distinction between action and fluent variables
or fluent variables of successive states completely eludes the ASP system. Pioneering work in this
direction was done by Rintanen (2012), where the implementation of SAT solvers was modified
in order to boost performance of SAT planning. Inspired by this research direction, Gebser et al.
(2013) developed a language extension for ASP systems that allows users to declare heuristic
modifiers that take effect in the underlying ASP system clingo.

More precisely, a heuristic directive is of form

#heuristic a : b1, . . . , bm. [w,m]

where a is an atom and b1, . . . , bm is a conjunction of literals; w is a numeral term and m

https://github.com/potassco/plasp
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a heuristic modifier, indicating how the solver’s heuristic treatment of a should be changed
whenever b1, . . . , bm holds. Clingo distinguishes four primitive heuristic modifiers:

init for initializing the heuristic value of a with w,
factor for amplifying the heuristic value of a by factor w,
level for ranking all atoms; the rank of a is w,
sign for attributing the sign of w as truth value to a.

For instance, whenever a is chosen by the solver, the heuristic modifier sign enforces that it
becomes either true or false depending on whether w is positive or negative, respectively. The
other three modifiers act on the atoms’ heuristic values assigned by the ASP solver’s heuristic
function.6 Moreover, for convenience, clingo offers the heuristic modifiers true and false that
combine level and sign statement.

With them, we can directly describe the heuristic restriction used in the work by Rintanen
(2011) to simulate planning by iterated deepening A∗ (Korf 1985) through limiting choices to
action variables, assigning those for time T before those for time T+1, and always assigning truth
value true (where n is a constant indicating the planning horizon):

#heuristic occ(A, T ) : action(A), time(T ). [n− T, true]

Inspired by, and yet different from the work by Rintanen (2012), Gebser et al. (2013) devise a
dynamic heuristic that aims at propagating fluents’ truth values backwards in time. Attributing
levels via n-T+1 aims at proceeding depth-first from the goal fluents.

#heuristic holds(F, T − 1) : holds(F, T ). [n− T + 1, true]

#heuristic holds(F, T − 1) : fluent(F ), time(T ), notholds(F, T ). [n− T + 1, false]

In an experimental evaluation conducted by Gebser et al. (2013), this heuristic led to a speed-up
of up to two orders of magnitude on satisfiable planning problems.

3.4 Context: Classical Planning

Classical planning has been an intensive research area for many years. The famous Shakey robot7

used a planner for path planning. This project also led to the introduction of the Stanford Research
Institute Problem Solver (STRIPS) language (Fikes and Nilsson 1971), the first representation
language for planning domain description. This language has since evolved into the Planning
Domain Definition Language (PDDL) (Ghallab et al. 1998), a major planning domain description
language. We noted that PDDL with state constraints is as expressive as B. It is worth noticing
that state constraints are often not considered by the planning community even though the benefit
of dealing directly with state constraints is known (Thiebaux et al. 2003). Furthermore, it is often
assumed that state constraints in PDDL are stratified, e.g., the dependency graph among fluent
literals8 should be cycle free.

Several planning algorithms have been developed and implemented such as forward or back-
ward search over the state space (see, a survey by Hendler et al. (1990)) and search in the plans

6 See the paper by Gebser et al. (2013) and the user guide by Gebser et al. (2015) for a comprehensive introduction to
heuristic modifiers in clingo.

7 http://www.ai.sri.com/shakey/
8 The dependency graph is a directed graph whose nodes are fluent literals and whose set of edges contains (l, l′) if

caused(ϕ, l) is a static causal law and l′ ∈ ϕ.

http://www.ai.sri.com/shakey/
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space (a.k.a. partial order planning, see, e.g. a survey by Weld (1994)). Such research also led
to the development of domain-dependent planners which utilize domain knowledge to improve
their scalability and efficiency (e.g., hierarchical planning systems (Sacerdoti 1974)). Researchers
realized early on that systematic state space search would not yield planning systems that are
sufficiently scalable and efficient for practical applications. A significant milestone in the devel-
opment of domain-independent planners is the invention of GRAPHPLAN by Blum and Furst
(1997). The basic data structure of GRAPHPLAN, the planning graph, is an important resource
for the development of planning heuristics (Kambhampati et al. 1997). It plays a key role in
the success of heuristic planners such as FF (Hoffmann and Nebel 2001) and HSP (Bonet and
Geffner 2001) which dominate several International Planning Competitions (Long et al. 2000;
Bacchus 2001; Gerevini et al. 2004). This success is followed by several other systems (Helmert
2006; Richter and Helmert 2009; Helmert et al. 2011), whose impressive performance can be
attributed to advances in the representation language for planning (e.g., the language SAS+ that
supports a compact representation of states (Bäckström and Nebel 1995)) and their underlying
heuristics constructed via reachability analysis and techniques such as landmarks recognition,
abstraction, operator ordering, and decomposition (Bonet and Helmert 2010; Zhu and Givan
2004; Helmert and Domshlak 2009; Helmert and Geffner 2008; Helmert and Mattmüller 2008;
Hoffmann et al. 2004; Hoffmann 2005; Pommerening et al. 2020; Richter and Helmert 2009;
Röger and Helmert 2010; Vidal and Geffner 2006). All of these planning systems implement a
heuristic search algorithm. Therefore, their scalability and efficiency are heavily dependent on the
implemented heuristic, i.e., how discriminant is the heuristic and how efficient can it be computed.
In most systems, completeness and efficiency have to be traded off. In some planner, an automatic
mechanism for returning to systematic search is established whenever the heuristic deems not
useful (e.g., the system FF).

The idea of using automated theorem solvers in planning can be traced back to the work by
Green (1969) who demonstrated that automated reasoning systems can be used for planning.
A significant step in this direction is proposed by Kautz and Selman (1992) who introduced
satisfiability planning and showed that with an improved satisfiability solver, SAT-based planning
can be competitive with search based planners (Kautz et al. 1996). This approach was later
advanced by several other researchers and results in many SAT-based or logic programming-based
planning systems (Chen et al. 2009; Dimopoulos et al. 1997; Rintanen et al. 2006; Robinson et al.
2009; Rintanen 2012) that are often competitive or more efficient comparing to search-based
planners. Constraint satisfaction techniques have also been employed in planning (Kautz and
Walser 1999; Do and Kambhampati 2003; Sideris and Dimopoulos 2010; Dovier et al. 2009). As
we have mentioned in the introduction, the success of SAT-base planning is likely the source of
inspiration for the use of logic programming with answer sets semantics for planning. Indeed,
there are several similarities between a SAT-based encoding of a planning program proposed
by Kautz and Selman (1992) and its ASP-encoding presented in this section. They share the
following features:

• the use of time steps in representing the planning horizon: SAT-based encoding prefers to
use f(~x, t) and ¬f(~x, t) instead of holds(f(~x), t) and holds(¬f(~x), t);

• the encoding of actions’ executability and the effects of actions;
• the encoding of the frame axioms; and
• the encoding for action generation.

In this sense, one can say that SAT-planning and answer set planning are cousins to each other.
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Both relish the use of knowledge representation techniques and the development of logical solvers
in planning. The key difference between them lies in the underlying representation language and
solver.

Green’s idea has also been investigated in event calculus planning. The main reasoning system
behind this approach is the event calculus, which is introduced by Kowalski and Sergot (1986) for
reasoning about narratives and database updates. An action theory (or a planning problem) can be
described by an event calculus program that is similar to the program described in Section 3.1. In
particular, this program consists of rules encoding the initial state, effects of actions, and solution
to the frame axiom. Earlier development of event calculus does not consider static causal laws.
This issue is addressed by Shanahan (1999). Eshghi (1988) introduced a variant of the event
calculus, called EVP (an event calculus for planning), and combined it with abductive reasoning to
create ABPLAN. We believe that this is the first planning system that integrates event calculus and
abduction. Denecker et al. (1992) developed SLDNFA, a procedure for temporal reasoning with
abductive event calculus, and showed how this procedure can be used for planning. The authors
of SLDNFA continued this line of research and developed CHICA (Missiaen et al. 1995). The
underlying algorithm of this system is a specialized version of the abductive reasoning procedure
for event calculus. An interesting feature of this system is that it allows for the user to specify the
search strategy and heuristics at the domain level, allowing for domain dependent information to
be exploited in the search for a solution. Other proof procedures for event calculus planning can
be founded in the work by Endriss et al. (2004), Mueller (2006), and Shanahan (2000) and (1997).
It is worth noting that a major discussion in these work is the condition for the soundness and
completeness of the proof procedures, i.e., the planning systems. To the best of our knowledge,
most of the event calculus based planning systems are implemented on a Prolog system and no
experimental evaluation against other planning systems has been conducted.

4 Conformant Planning

The previous section assumes that the initial state Γ in the planning problem P = 〈D,Γ,∆〉
is complete, i.e., the truth value of each property of the world is known. In practice, this is not
always a realistic assumption.

Example 4 (Bomb-In-The-Toilet Example)
There may be a bomb in a package. The process of dunking the package into a toilet will disarm
the bomb. This action can be executed only if the toilet is not clogged. Flushing the toilet will
unclog it. This domain can be described by the following domain:

• Fluents: armed, clogged
• Actions: dunk, flush
• Domain description:

Db =


causes(dunk,¬armed, {armed})
causes(flush,¬clogged, {})
executable(dunk, {¬clogged})

Suppose that our goal is to disarm the bomb. However, we are not sure whether the toilet is clogged.
In other words, the planning problem that we need to solve is Pbomb = 〈Dbomb, ∅,¬armed〉. 3

The problem Pbomb is an example of a planning problem with incomplete information. It is
easy to see that α = 〈dunk〉 is not a good solution for Pbomb since α is not executable when
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the toilet is clogged. On the other hand, β = 〈flush, dunk〉 is executable and achieves the goal
in every possible initial state of the problem. Eiter et al. (2003b) refer to β as a secure plan—a
solution—for the conformant planning problem Pbomb.

Let D be an action theory and δ a set of fluent literals of D. We say that δ is a partial state of
D if there exists some state s such that δ ⊆ s. comp(δ), called the completion of δ, denotes the
set of all states s such that δ ⊆ s. A literal ` possibly holds in δ if δ 6|= ` where ` denotes the
complement of `. A set of literals λ possibly holds in δ if every element of λ possibly holds in δ.
In the following, we often use superscripts and subscripts to differentiate partial states from states.

A conformant planning problem P is a tuple 〈D, δ0,∆〉 where D is an action theory and δ0 is
a partial state of D.

An action sequence α = 〈a0, . . . , an−1〉 is a solution (or conformant/secure plan) of P if for
every state s0 ∈ comp(δ0), Φ̂(α, s0) 6= ∅ and ∆ is true in every state belonging to Φ̂(α, s0) 6= ∅.

Observe that conformant planning belongs to a higher complexity class than classical planning
(see, e.g., the work by Baral et al. (2000), Eiter et al. (2000), Haslum and Jonsson (2000), or
Turner (2002)). Even for action theories without static causal laws, checking whether a conformant
problem has a polynomially bounded solution is Σ2

P -complete. Therefore, simply modifying the
rules encoding the initial state (5) of Π(P, n) (e.g., by adding rules to complete the initial state) is
insufficient. Different approaches have been proposed for conformant planning, each addressing
the incomplete information in the initial state in a different way. In this section, we discuss two
ASP-based approaches proposed by Eiter et al. (2003b), Son et al. (2005b), and Tu et al. (2011).

4.1 Conformant Planning With A Security Check Using Logic Program

Eiter et al. (2003b) introduced the system dlvK for planning with incomplete information. The
system employs a representation language that is richer than the language B, since it considers
additional features such as defaults and effects after a sequence of actions. For simplicity of the
presentation, we present the approach used in dlvK for conformant planning problems specified in
B. We note that the original dlvK employs the direct encoding of planning problems as described
in Remark 1, Item 3. We adapt it to the encoding used in the previous section.

dlvK generates a conformant plan for a problem P in two steps. The first step consists of
generating an optimistic plan; the second step is the verification that such plan is a secure plan,
since an optimistic plan is not necessarily a secure plan. dlvK implements Algorithm 1.

Algorithm 1: dlvK Algorithm

Input: Conformant planning problem P = 〈D, δ0,∆〉
Output: A secure plan α for P

1 while there exists an optimistic plan α for P do
2 if α is a secure plan then
3 return α

4 return no-plan

The two tasks in Lines 1 and 2 in Algorithm 1 are implemented using different ASP programs.
The generation step (Line 1) can be done using the program Πcdlv (P, n) which consists of the
program Π(P, n) together with the rules that specify the values of unknown fluents in the initial
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state:

holds(f, 0) ∨ holds(¬f, 0)← (f is a fluent and {f,¬f} ∩ δ0 = ∅) (23)

It is easy to see that any answer set of Πcdlv (P, n) contains an optimistic plan (Theorem 1).
Assume that α = 〈a0, . . . , an−1〉 is the sequence of actions generated by program Πcdlv (P, n),
dlvK takes α and the action theory (D, δ0) and creates a program that checks whether or not α is
a secure plan. If it is, then dlvK returns α. Otherwise, it continues computing an optimistic plan
and verifying that the plan is secure, until there are no additional optimistic plans available, which
indicates that the problem has no solution. We next discuss the main idea in the second step of
dlvK (Line 2).

Intuitively, if α is a secure plan, then its execution in every possible initial state results in a final
state in which the goal is satisfied. In other words, α is not a secure plan if there exists an initial
state in which the execution of α is not possible. This can happen in the following situations:

• the goal is not satisfied after the execution of α;
• some action ai in α is not executable, i.e., possible(ai, i) is not true; or
• some constraints are violated.

LetCheck(P, α, n) be the program obtained from Πcdlv (P, n) by introducing a new atom, notex,
which denotes that α is not secure and

• replacing (9) with the rule

notex← time(T ), occ(A, T ), not possible(A, T )

• replacing (10) with the set of action occurrences

{occ(ai, i) | i = 0, . . . , n− 1}

• replacing (13) with

notex ← fluent(F ), T > 0, holds(F, T ), holds(¬F, T )

← fluent(F ), holds(F, 0), holds(¬F, 0)

• replacing (8), for each constraint caused(ϕ, false), with the rule

notex← time(T ), T > 0, holds(ϕ, T )

• replacing (15) with

← goal, not notex

If Check(P, α, n) has an answer set M then either the goal is not satisfied or notex ∈ M .
Observe that the rules replacing (13) and (8) guarantee that {f | holds(f, 0) ∈ M} ∪ {¬f |
holds(¬f, 0) ∈M} is a state of the action domain inP . If the goal is not satisfied and notex 6∈M ,
then we have found an initial state from which the execution of α does not achieve the goal.
Otherwise, notex ∈M implies that

• an action ai is not executable in the state at time step i or
• there is some step j > 0 such that the state at time step j is inconsistent or violates some

static causal laws.

In either case, this means that there exists some initial state in which the execution of α fails, i.e.,
α is not a secure plan. On the other hand, if Check(P, α, n) has no answer sets, then there are no
possible initial states such that the execution of α fails, i.e., α is a secure plan.
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4.2 Approximation-Based Conformant Planning

Approximation-based conformant planning deals with the complexity of conformant planning
by proposing a deterministic approximation of the transition function Φ, denoted by Φa, which
maps pairs of actions and partial states such that for every δ, δ′, and s such that Φa(a, δ) = δ′ and
s ∈ comp(δ), it holds that

• a is executable in s; and
• δ′ ⊆ s′ for every s′ ∈ Φ(a, s).

Intuitively, the above conditions require Φa to be sound with respect to Φ. We say that Φa is sound
approximation of Φ if the above conditions are satisfied.

The function Φa is extended to define Φ̂a in the similar fashion as Φ̂: for an action sequence
α = 〈a0, . . . , an−1〉,

• Φ̂a(α, δ) = δ if α = 〈 〉;
• Φ̂a(α, δ) = Φa(a0, δ) for n = 1; and
• Φ̂a(α, δ) = Φ̂a(α′,Φa(a0, δ)) where α′ = 〈a1, . . . , an−1〉, if Φ̂a(β, δ) is defined for every

prefix β of α.

Given a sound approximation Φa, we have that if Φ̂a(α, δ) = δ′ then for every s ∈ comp(δ),
Φ̂(α, s) 6= ∅ and for every s′ ∈ Φ̂(α, s), δ′ ⊆ s′. This means that a sound approximation can be
used for computing conformant plans. In the rest of this section, we define a sound approximation
of Φ and use if for conformant planning. Because the program Π(P, n) implements Φ, we define
the approximation by describing a program Πa(P, n) approximating Φ.

Let a be an action and δ be a partial state. We say that a is executable in δ if a occurs in an
executability condition (3) and each literal in the precondition of the law holds in δ. A fluent
literal l is a direct effect (resp. a possible direct effect) of a in δ if there exists a dynamic causal
law (2) such that ψ holds (resp. possibly holds) in δ. Observe that if a is executable in δ then it is
executable in every state s ∈ comp(δ). Furthermore, the direct effects of a in δ are also the direct
effects of a in s, which in turn are the possible direct effects of a in δ.

We next present the program Πa(P, n). Atoms of Πa(P, n) are atoms of Π(P, n) and those
formed by the following (sorted) predicate symbols:

• de(l, T ) is true if the fluent literal l is a direct effect of an action that occurs at the previous
time step; and

• ph(l, T ) is true if the fluent literal l possibly holds at time step T .

Similar to holds(ϕ, T ), we write ρ(ϕ, T ) = {ρ(l, T ) | l ∈ ϕ} and not ρ(ϕ, T ) = {not ρ(l, T ) |
l ∈ ϕ} for ρ ∈ {holds, de, ph}. The rules in Πa(P, n) include most of the rules from Π(P, n),
except for the inertial rules, which need to be changed. In addition, it includes rules for reasoning
about the direct and possible effects of actions.

1. For each dynamic causal law (2) in D, Πa(P, n) contains the rule (7) and the next rule

de(f, T + 1) ← time(T ), occ(a, T ), holds(ϕ, T ) (24)

This rule indicates that f is a direct effect of the execution of a. The possible effects of a at
T are encoded using the rule

ph(f, T + 1)← time(T ), occ(a, T ), not holds(ϕ, T ), not de(f, T + 1) (25)
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which says that f might hold at T + 1 if a occurs at T and the precondition ϕ possibly
holds at T .

2. For each static causal law (1) in D, Πa(P, n) contains the rule (8) and the next rule

ph(f, T ) ← time(T ), ph(ϕ, T ) (26)

This rule propagates the possible holds relation between fluent literals.
3. The rule (6) stating that a can occur if its executability condition is satisfied.
4. The inertial law is encoded as follows:

ph(L, T + 1) ← time(T ), f luent(L), not holds(¬L, T ), not de(¬L, T + 1) (27)

ph(¬L, T + 1) ← time(T ), f luent(L), not holds(L, T ), not de(L, T + 1) (28)

holds(L, T ) ← time(T ), f luent(L), not ph(¬L, T ), T 6= 0. (29)

holds(¬L, T ) ← time(T ), f luent(L), not ph(L, T ), T 6= 0. (30)

These rules capture the fact that L holds at time moment T > 0 if its negation cannot
possibly hold at T . Furthermore, L possibly holds at time moment T + 1 if its negation
does not hold at T and is not a direct effect of the action occurring at T . These rules, when
used in conjunction with the rules (24)-(25), compute the effects of the occurrence of action
at time moment T .

5. Πa(P, n) also contains the rules of the form (9), (10), (13), and the rule encoding the initial
state and the goal state as in Π(P, n).

It can be shown that if δ is a partial state and x is an action executable in δ then the program
Πa(P, 1)∪{occ(x, 0)}, where P = 〈D, δ, ∅〉, has a unique answer set M and {f | holds(f, 1) ∈
M} is a partial state of D. For this reason, Πa(P, n) can be used to define a sound approximation
Φa of Φ. The soundness of Φa is discussed in details by Tu et al. (2011). This property indicates
that Πa(P, n) can be used as an ASP implementation of a conformant planner. The planner
CPASP, as described by Tu et al. (2011), employs this implementation.

Remark 3
1. The key difference between CPASP and dlvK is the use of an approximation semantics,

which leads to the elimination of the security check in CPASP and the use of a single call to
the answer set solver to find a solution.

2. Eiter et al. (2003b) defined the notion of sound and complete security check that can be
used in the second step of dlvK algorithm. They also identified classes of planning problems
in which different security checks are sound and complete. The security check described in
Subsection 4.1 is an adaptation of the check SC1 in the paper describing dlvK. It is sound
and complete for domains called false-committed planning domains. For consistent
action theories considered in this paper, SC1 is sound and complete. Observe that this
security check could be used together with the program Π(P, n) in the previous section to
compute secure plans for non-deterministic domains.

3. Alternative representation approaches may facilitate the search of solutions in certain
domains. For example, as discussed by Eiter et al. (2004), the knowledge-state planning
approach enables certain fluents to remain open (i.e., as three-valued fluents), simplifying
the state representation. Actions enable to either gain or forget knowledge of such fluents.
For example, in the bomb-in-the-toilet domain, encoded in dlvK, this approach makes
optimistic and secure plans equivalent.
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4. CPASP, the conformant planner using Πa(P, n), performs well against logic-based confor-
mant planning systems (e.g., dlvK). Tu et al. (2011) shows that CPASP and other logic-based
systems are not as efficient and scalable in common benchmarks used by the planning
community. CPASP also does not consider planning problem with disjunctive information.
However, their performance is superior in domains with static causal laws (Son et al. 2005a).
In addition, logic-based planning systems can generate parallel plans, while the existing
heuristic search-based state-of-the-art conformant planning systems do not.

5. Approximation has its own price. Approximation-based planning systems are incomplete.
CPASP, for example, cannot solve the problem P1

inc = 〈D1
inc, ∅, f〉 where D1

inc consists of
two dynamic laws:

causes(a, f, {g}) and causes(a, f, {¬g}).

More specifically, Πa(P1
inc, 1) has no answer sets, while Pinc has solution 〈a〉.

Similarly, CPASP cannot solve the problem P2
inc = 〈D2

inc, ∅, g〉 where D2
inc consists of the

following laws:

causes(a, f, ∅) caused({f, h}, g) caused({f,¬h}, g)

The main reason for the incompleteness of CPASP is that it fails to reason by cases. Syntactic
conditions that guarantee that the proposed approximation is complete were proposed by
Tu et al. (2011) and Son and Tu (2006). Those authors also showed that the majority of
planning benchmarks in the literature satisfy the conditions. The reason why CPASP cannot
solve some of the benchmarks is related to the presence of a disjunctive formulae in the
initial state.

6. Conformant planning using approximation is a successful approach in dealing with in-
complete information. Tran et al. (2013) have shown that, with additional techniques
to reduce the search space, such as goal splitting and combination of one-of clauses,
approximation-based planners perform exceptionally well compared to heuristic-based
planning systems.

7. As with planning with complete information, ASP-based conformant planners such as
CPASP do not include any heuristics (e.g., as those discussed in Subsection 3.3). This is a
reason for the weak performance of CPASP compared to its search-based counterparts.
The second reason that greatly affects the performance of ASP-based planners is the need for
grounding before solving. In many benchmarks used by the planning community (see, e.g.,
the paper by Tran et al. (2013) for details), the initial belief state of a small instance already
contains 210 states and the minimal plan length can easily reach 50. In most instances,
grounding already fails. We believe that, besides the use of heuristic, adapting techniques
to reduce the search space such as those proposed by Tran et al. (2013) and developing
incremental grounding technique for ASP solver (e.g., the work by (Palù et al. 2009)) could
help to scale up ASP-based conformant planners.

8. Various approximation semantics for action domains with static causal laws have been
defined (Son and Baral 2001; Son et al. 2005b; Tu et al. 2007). A discussion on their
strengths and weaknesses can be found in the paper by Tu et al. (2011). A discussion of the
performance of CPASP against other planning systems is included in the next section.
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4.3 Context: Conformant Planning

As with classical planning, several search-based conformant planners have been developed during
the last three decades. Among them are GPT (Bonet and Geffner 2000), CGP (Smith and Weld
1998), CMBT (Cimatti and Roveri 2000), Conformant-FF (CFF) (Hoffmann and Brafman 2006),
KACMBP (Cimatti et al. 2004), POND (Bryce et al. 2006), �0 (Palacios and Geffner 2007;
Palacios and Geffner 2009), t1 (Albore et al. 2011), CPA9 (Son et al. 2005a; Tran et al. 2009),
CpLs (Nguyen et al. 2011), DNF (To et al. 2009), CNF (To et al. 2010a), PIP (To et al. 2010b),
GC[LAMA] (Nguyen et al. 2012), and CPCES (Grastien and Scala 2020). With the exception of
CMBT, KACMBP, �0, and GC[LAMA], the others planners are forward search-based planners.

Differently from classical planning, a significant hurdle in the development of an efficient and
scalable conformant planner is the size of the initial belief state and the size of the search space,
which is double exponential in the size of the planning problem (see, e.g., the work by (Tran et al.
2013) for a detailed discussion on this issue). Each of the aforementioned planners deals with this
challenge in a different way. Different representations of belief states are used in CFF, DNF, CNF,
and PIP. Specifically, CFF and t1 make use of an implicit representation of a belief state as a
sequence of actions from the initial state to the belief state. KACMBP, CMBP, and POND use a
BDD-based representation (Bryant 1992). CPA approximates a belief state using a set of subsets
of states (partial states). �0 and GC[LAMA] translate a conformant planning problem to a classical
planning problem and use classical planners to compute solutions, avoiding the need to deal with
an explicit belief state representation. Additional improvements have been proposed in terms of
heuristics (Bryce et al. 2006) and techniques to reduce the size of the initial belief state, such
as the oneof-combination technique (Tran et al. 2013). Such a technique is useful for planners
employing an explicit disjunctive representation of belief states, as in CPA (Tran et al. 2013) and
DNF (To et al. 2009); a significant amount of work is required to apply this technique to other
planners, due to the different representations they use. Likewise, the oneof-relaxation technique
proposed by To et al. (2010a) is useful in CNF but is difficult to use in other planners. Additional
techniques proposed to improve performance include extensions of the GRAPHPLAN to deal with
incomplete information, used in CGP, backward search algorithms, as in CMBT, landmarks, used
in CpLs, and sampling technique, used in CPCES.

SAT-based conformant planning is studied by several researchers (Castellini et al. 2003; Palacios
and Geffner 2005; Rintanen 1999). The system C-PLAN (Castellini et al. 2003) has similarities to
dlvK, in that it starts with a translation of the planning problem into a SAT-problem, identifies
a potential plan, and then validates the plan. Palacios and Geffner (2005) propose the system
COMPILE-PROJECT-SAT, which uses a single call to the SAT-solver to compute a conformant plan.
They show that the validity check can be done in linear time if the planning problem is encoded
in a logically equivalent theory in deterministic decomposable negation normal form (d-DNNF).
As COMPILE-PROJECT-SAT calls the SAT-solver only once, it is similar to CPASP. However,
COMPILE-PROJECT-SAT is complete, while CPASP is not. The system QBFPLAN by Rintanen
(1999) differs from C-PLAN and COMPILE-PROJECT-SAT in that it translates the problem into a
QBF-formula and uses a QBF-solver to compute the solutions. A detailed comparison between
these planning systems with CPASP, directly or indirectly, can be found in the paper by Tu et al.
(2011).

9 Different versions of CPA have been developed. In this paper, whenever we refer to CPA, we mean CPA(H), the version
used in IPC 2008, http://ippc-2008.loria.fr/wiki/index.php/Main_Page.

http://ippc-2008.loria.fr/wiki/index.php/Main_Page
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5 Planning with Sensing Actions

Conformant planning aims at addressing the completeness assumption of the initial state in
classical planning but there are planning problems that do not admit any conformant plans as
solution. The following example demonstrates this issue.

Example 5 (From the work by Tu et al. (2007))
Consider a security window with a lock that behaves as follows. The window can be in one of
the three states open, closed,10 or locked.11 When the window is closed or open, pushing it up or
down will open or close it, respectively. When the window is not open, flipping the lock will bring
it to either the close or locked status.

Let us consider a security robot that needs to make sure that the window is locked after 9pm. The
robot has been told that the window is not open (but whether it is locked or closed is unknown).

Intuitively, the robot can achieve its goal by performing the following steps:
(1) It checks the window to determine the window’s status.
(2a) If the window is in the closed status, the robot will lock the window;
(2b) otherwise (i.e., the window is already in the locked status) the robot will not need to do

anything.
Observe that no sequence of actions can achieve the goal from every possible initial situation. In
other words, there exists no conformant plan achieving the goal. 3

5.1 Action Language B with Sensing Actions and Conditional Plans

In order to solve the planning problem in Example 5, sensing actions are necessary. Intuitively,
the execution of a sensing action does not change the world; instead, it changes the knowledge of
the action’s performer. We extend the language B with knowledge laws of the following form:

determines(a, θ) (31)

where θ is a set of fluent literals. An action occurring in a knowledge law is referred to as a sensing
action. The knowledge law states that the values of the literals in θ, sometimes referred to as
sensed literals, will be known after a is executed. It is assumed that the literals in θ are mutually
exclusive, i.e.,

1. for every pair of literals g and g′ in θ, g 6= g′, the theory contains the static causal law

caused({g},¬g′)

and
2. for every literal g in θ, the theory contains the static causal law

caused({¬g′ | g′ ∈ θ \ {g}}, g).

We refer to this collection of static causal laws as oneof(θ). We sometimes write determines(a, f)

as a shorthand for determines(a, {f,¬f}).

10 The window is closed and unlocked.
11 The window is closed and locked.
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Example 6
The planning problem instance Pwindow = (Dwindow,Γwindow,∆window) in Example 5 can be
represented as follows.

Dwindow =



executable(push up, {closed})
executable(push down, {open})
executable(flip lock, {¬open})

causes(push down, closed, {})
causes(push up, open, {})
causes(flip lock, locked, {closed})
causes(flip lock, closed, {locked})

oneof({open, locked, closed})

determines(check, {open, closed, locked})

Γwindow =
{

initially(¬open)
}

∆window = {locked}

It has been pointed out by several researchers (Warren 1976; Peot and Smith 1992; Pryor
and Collins 1996; Levesque 1996; Lobo et al. 1997; Son and Baral 2001; Turner 2002) that the
notion of a plan needs to be extended beyond a sequence of actions, in order to allow conditional
statements such as if-then-else, while-do, or case-endcase to deal with incomplete information
and sensing actions. If we are interested in bounded-length plans, then the following notion of
conditional plans is sufficient.

Definition 1 (Conditional Plan)
1. The empty plan, i.e., the plan 〈〉 containing no actions, is a conditional plan.
2. If a is a non-sensing action and p is a conditional plan then 〈a; p〉 is a conditional plan.
3. If a is a sensing action with knowledge law (31), where θ = {g1, . . . , gn}, and pj’s are

conditional plans then 〈a; cases({gj → pj}nj=1)〉 is a conditional plan.
4. Nothing else is a conditional plan.

Clearly, the notion of a conditional plan is more general than the notion of a plan as a sequence of
actions. We refer to the conditional plan in Item 3 of Definition 1 as a case-plan and the gj → pj’s
as its branches. Under the above definition, the following are two possible conditional plans in the
domain Dwindow:

p1 = 〈push down; flip lock〉

p2 =

〈
check; cases

 open → []

closed → [flip lock]

locked → []

〉
The semantics of the language B with knowledge laws also needs to be extended to account for
sensing actions. Observe that, since it is possible that the initial state of the planning problem is
incomplete, we will continue using the approximation Φa proposed in the previous section as well
as other notions, such as partial states, a fluent literal holds or possibly holds in a partial state, etc.
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To reason about the effects of sensing actions in a domain D, we define

Φa(a, δ) = {ClD(δ ∪ {g}) | g ∈ θ and ClD(δ ∪ {g}) is consistent} (32)

where a is a sensing action executable in δ and θ is the set of sensed literals of a. If a is not
executable in δ then Φa(a, δ) = ⊥ (undefined). The definition of Φa(a, δ) for a non-sensing
action is defined as in the previous section. Intuitively, the execution of a can result in several
partial states, in each of which exactly one sensed-literal in θ holds.

As an example, consider Dwindow in Example 5 and a partial state δ1 = {¬open}. We have

ClDwindow
(δ1 ∪ {open}) = {open,¬open, closed,¬closed, locked,¬locked} = δ1,1

ClDwindow
(δ1 ∪ {closed}) = {¬open, closed,¬locked} = δ1,2

ClDwindow
(δ1 ∪ {locked}) = {¬open,¬closed, locked} = δ1,3

Among those, δ1,1 is inconsistent. Therefore, we have Φa(check, δ1) = {δ1,2, δ1,3}.
The extended transition function Φ̂a for computing the result of the execution of a conditional

plan is defined as follows. Let α be a conditional plan and δ a partial state.

1. If α = 〈〉 then Φ̂a(α, δ) = δ.
2. If α = 〈a;β〉 and a is a non-sensing action and β is a conditional plan then Φ̂a(α, δ) =

Φ̂a(β,Φa(a, δ)).
3. if α = 〈a; cases({gj → αj}nj=1)〉 where a is a sensing action with the sensed-literals
θ = {g1, . . . , gn} and αj’s are conditional plans then

(a) Φ̂a(α, δ) = Φ̂a(αk, δk) if there exists δk ∈ Φa(a, δ) such that δk |= gk.
(b) Φ̂a(α, δ) = ⊥ (undefined), otherwise.

4. Φ̂a(α,⊥) = ⊥ for every α.

Intuitively, the execution of a conditional plan progresses similarly to the execution of an action
sequence until it encounters a case-plan. In this case, the sensing action is executed and the
satisfaction of the formula in each branch is evaluated. If one of the formulae holds in the state
resulting after the execution of the sensing action then the execution continues with the plan on
that branch. Otherwise, the execution fails.

5.2 ASP-Based Conditional Planning

Let us now describe an ASP-based conditional planner, called LCP, capable of generating con-
ditional plans. The planner is a simple variation of the one described by Tu et al. (2007). As
in the previous sections, we translate a planning problem P = (D,Γ,∆) into a logic program
Πh,w(P) whose answer sets represent solutions of P . Before we present the rules of Πh,w(P),
let us provide the intuition underlying the encoding.

First, let us observe that each plan α (Definition 1) corresponds to a labeled plan tree Tα defined
as follows.
• If α = 〈 〉 then Tα is a tree with a single node.
• If α = 〈a〉, where a is a non-sensing action, then Tα is a tree with a single node and this

node is labeled with a.
• If α = 〈a;β〉, where a is a non-sensing action and β is a non-empty plan, then Tα is a tree

whose root is labeled with a and has only one subtree which is Tβ . Furthermore, the link
between a and Tβ’s root is labeled with an empty string.
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• If α = 〈a; cases({gj → αj}nj=1)〉, where a is a sensing action, then Tα is a tree whose
root is labeled with a and has n subtrees {Tαj

| j ∈ {1, . . . , n}}. For each j, the link from
a to the root of Tαj

is labeled with gj .
For example, the plan tree for the plan

α =

〈
check; cases

 locked → 〈〉;
open → 〈push down; flip lock〉;
closed → 〈flip lock; flip lock; flip lock〉

〉

is given in Figure 1 (shaded nodes indicate that there exists an action occurring at those nodes,
while white nodes indicate that there is no action occurring at those nodes).

check flip_lock flip_lock flip_lock

flip_lockpush_down

loc
ke
d

ope
n

closed

Fig. 1. A plan tree

For a plan p, let w(p) be the number of leaves of Tp and h(p) be the number of nodes along the
longest path from the root to the leaves of Tp. w(p) and h(p) are called the width and height of
Tp respectively. Suppose w and h are two integers that such that w(p) ≤ w and h(p) ≤ h.

Let us denote the leaves of Tp by x1, . . . , xw(p). We map each node y of Tp to a pair of integers
ny = (ty,py), where ty, called the t-value of y, is the number of nodes along the path from the
root to y minus 1, and py , called the p-value of y, is defined in the following way:

• For each leaf xi of Tp, pxi
is an arbitrary integer between 0 and w. Furthermore, there

exists a leaf x such that px = 0, and there exist no i 6= j such that pxi = pxj .
• For each interior node y of Tp with children y1, . . . , yr, py = min{py1 , . . . , pyr}.

For instance, Figure 2 shows some possible mappings with h = 3 and w = 3 for the tree in Figure
1. It is easy to see that if w(p) ≤ w and h(p) ≤ h then such a mapping always exists. Furthermore,

check flip_lock flip_lock flip_lock

flip_lockpush_down

loc
ke
d

ope
n

closed (3,0)(2,0)(1,0)

(2,1)(1,1)

(1,2)

(0,0)

check flip_lock flip_lock flip_lock

flip_lockpush_down

loc
ke
d

ope
n

closed (3,3)(2,3)(1,3)

(2,1)(1,1)

(1,0)

(0,0)

Fig. 2. Possible mappings for the tree in Figure 1

from the construction of Tα, independently of how the leaves of Tα are numbered, we have the
following properties.
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1. For every node y, ty ≤ h and py ≤ w.
2. For a node y, all of its children have the same t-value. That is, if y has r children y1, . . . , yr

then tyi = tyj for every 1 ≤ i, j ≤ r. Furthermore, the p-value of y is the smallest one
among the p-values of its children.

3. The root of Tα is always mapped to the pair (0, 0).

The numbering schema of a plan tree provides a method for generating a conditional plan on a
two-dimensional coordinated system (or grid) where the x- and y-axis correspond to the height
and width of the plan tree, and where (0, 0) is the initial state. Along a line of the same y-value
is an action sequence and the execution of a sensing action creates branches on different lines,
parallel to the x-axis. For example, the execution of the check action in the initial state of the
plan tree in Figure 2 creates three branches, to lines 0, 1, and 2. In the following, we use path to
indicate the branch number and refer to a coordinate (x, y) as a node.

Let us next describe the rules in program Πh,w(P). Intuitively, the program is similar to the
program Πa(P, n) in that it implements the approximation Φa and extends it to deal with sensing
actions. Since a conditional plan is two-dimensional, all predicates holds, ph, possible, occ, de,
etc. need to extend with a third parameter. That is, holds(L, T, P )—encoding that L holds at node
(T, P ) (the time step T and the line number P on the two-dimensional grid)—is used instead of
holds(L, T ). In addition, Πh,w(P) uses the following additional atoms and predicates.

• path(0..w).
• sense(a, g) if g is a sensed literal which belongs to θ in a knowledge law of the form (31).
• br(G,T, P, P1) is true if there exists a branch from (T, P ) to (T + 1, P1) labeled with G.

For example, in Figure 2 (left), we have br(open, 0, 0, 1), br(closed, 0, 0, 0), and
br(locked, 0, 1, 2).

• used(T, P ) is true if (T, P ) belongs to some extended branch of the plan tree. This allows
us to know which paths are used in the construction of the plan and allows us to check if
the plan satisfies the goal.
In Figure 2 (left), we have used(t, 0) for 0 ≤ t ≤ h, and used(t, 1) and used(t, 2) for
1 ≤ t ≤ h.

The rules of Πh,w(P) are divided into two groups. The first group consists of rules from Πa(P, n)

adapted to the two dimensional array for conditional planning. The second group consists of rules
for dealing with sensing actions. We next describe the first group of rules12 in Πh,w(P):

holds(Γ, 0, 0) ← (33)

possible(a, T, P ) ← holds(ϕ, T, P ) (34)

holds(f, T + 1, P ) ← occ(a, T, P ), holds(ϕ, T, P ) (35)

de(f, T + 1, P ) ← occ(a, T, P ), holds(ϕ, T, P ) (36)

ph(f, T + 1, P ) ← occ(a, T, P ), not h(ϕ, T, P ), not de(f, T + 1, P ) (37)

ph(f, T, P ) ← ph(ϕ, T, P ) (38)

holds(f, T, P ) ← holds(ϕ, T, P ) (39)

ph(L, T + 1, P ) ← fluent(L), not holds(¬L, T ), not de(¬L, T, P ) (40)

ph(¬L, T + 1, P ) ← fluent(L), not holds(L, T ), not de(L, T, P ) (41)

12 We omit time(T ), path(P ) from the rules for brevity.
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holds(L, T + 1, P ) ← fluent(L), not ph(¬L, T, P ) (42)

holds(¬L, T + 1, P ) ← fluent(L), not ph(L, T, P ) (43)

1{occ(X,T, P ) : action(X)}1 ← used(T, P ), not goal(T, P ) (44)

← occ(A, T, P ), not possible(A, T, P ) (45)

In the above rules, L is a fluent literal, T is a time moment in the range [0, h− 1], and P is in the
range [0, w]. Rule (33) encodes the initial state. The rules (34)–(43) are used for computing the
effects of the occurrence of a non-sensing action at the node (T, P ). The rules (44) and (45) are
used for generating action occurrences, similarly to the rules for generating action occurrences
in the previous sections. The difference is that the selection restricts the generation of action
occurrences to nodes marked as ‘used’ (see below).

(t,p) (t+1,p)g2

g1

g3

(t,q) (t+1,q)

(t,r) (t+1,r)

a

(t,p) (t+1,p)g2

g1

g3

(t,q) (t+1,q)

(t,r) (t+1,r)

a

q < p < r p< r < q

Fig. 3. Sensing action a that senses {g1, g2, g3} occurs at (t, p) - disallowed (Left) vs. allowed
(Right)

The key distinction between Πh,w(P) and Πa(P, n) lies in the rules for dealing with sensing
actions. We next describe this set of rules.

• Rules for reasoning about the effect of sensing actions: For each knowledge law (31) in D,
Πh,w(P) contains the following rules:

1{br(g, T, P,X):new br(P,X)}1 ← occ(a, T, P ), sense(a, g). (46)

← occ(a, T, P ), sense(a, g),

not br(g, T, P, P ) (47)

← occ(a, T, P ), sense(a, g),

holds(g, T, P ) (48)

new br(P, P1) ← P ≤ P1 (49)

When a sensing action occurs, it creates one branch for each of its sensed literals. This
is encoded in the rule (46). The constraint (47) makes sure that the current branch P is
continuing if a sensing action occurs at (T, P ). The rule (48) is a constraint that prevents
a sensing action to occur if one of its sensed literals is already known. To simplify the
selection of branches, rule (49) forces a new branch at least at the same level as the current
branch. The intuition behinds these rules can be seen in Figure 3.

• Inertia rules for sensing actions: This group of rules encodes the fact that the execution of
a sensing action does not change the world. However, there is a one-to-one correspondence
between the set of sensed literals and the set of possible partial states.

← P1 < P2, P2 < P, br(G1, T, P1, P ),
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br(G2, T, P2, P ) (50)

← P1 ≤ P,G1 6= G2, br(G1, T, P1, P ),

br(G2, T, P1, P ) (51)

← P1 < P, br(G,T, P1, P ), used(T, P ) (52)

used(T + 1, P ) ← P1 < P, br(G,T, P1, P ) (53)

holds(G,T + 1, P ) ← P1 ≤ P, br(G,T, P1, P ) (54)

holds(L, T + 1, P ) ← P1 < P, br(G,T, P1, P ), holds(L, T, P1) (55)

used(0, 0) ← (56)

used(T + 1, P ) ← used(T, P ) (57)

The first three rules, together with rule (49), make sure that branches are separate from each
other. The next rule is used to mark a node as used if there is a branch in the plan that reaches
that node. This allows us to know which paths on the grid are used in the construction
of the plan and allows us to check if the plan satisfies the goal (see rule (58)). The two
rules (54)–(55), along with rule (53), encode the possible partial state corresponding to the
branch denoted by literal G after a sensing action is performed at (T, P1). They indicate
that the partial state at (T + 1, P ) should contain G (Rule (54)) and literals that hold in
(T, P1) (Rule (55)). The last two rules mark nodes that have been used in the construction
of the conditional plan.

• Goal representation: Checking for goal satisfaction needs to be done on all branches. This
is encoded as follows.

goal(T1, P ) ← holds(∆, T1, P ) (58)

goal(T1, P ) ← holds(L, T1, P ), holds(¬L, T1, P ) (59)

← used(h+ 1, P ), not goal(h+ 1, P ) (60)

The first rule in this group says that the goal is satisfied at a node if all of its subgoals are
satisfied at that node. The last rule guarantees that if a path P is used in the construction
of a plan then the goal must be satisfied at the end of this path, that is, at node (h, P ).
The second rule provides an avenue to stop the generation of actions when an inconsistent
state is encountered—by declaring the goal reached. As discussed by Tu et al. (2007), the
properties of the encoding of consistent action theories prevent this method from generating
plans leading to inconsistent states.

Remark 4

1. Πh,w(P) is slightly different from the program presented in the paper by Tu et al. (2007) in
that Φa is slightly different from the semantics used in that paper. By setting w = 0, this
program is a conformant planner. The experiments conducted by Tu et al. (2007) show that
Πh,w(P) performs reasonably well.

2. Extracting a conditional plan from an answer set S of Πh,w(P) is not as simple as it is done
in the previous sections because of the case-plan. For any pair of integers i and k such that
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0 ≤ i ≤ h, 0 ≤ k ≤ w, we define pki (S) as follows:

pki (S) =



〈〉 if i = h or occ(a, i, k) 6∈ S for all a
〈a; pki+1(S)〉 if occ(a, i, k) ∈ S and

a is a non-sensing action
〈a; cases({gj → p

kj
i+1(S)}nj=1)〉 if occ(a, i, k) ∈ S,

a is a sensing action, and
br(gj , i, k, kj) ∈ S for 1 ≤ j ≤ n

Intuitively, pki (S) is the conditional plan whose corresponding tree is rooted at node (i, k)

on the grid h× w. Therefore, p0
0(S) is a solution to P .

3. The semantics of B with knowledge laws does not prevent a sensing action to occur when
some of its sensed literals is known. It is easy to see that in this case, the branching, enforced
by rule (46), is unnecessary. Rule (48) disallows such redundant action occurrences. It is
shown by Tu et al. (2007) that any solution of P = 〈D,Γ,∆〉 can be reduced to an
equivalent plan without redundant occurrences of sensing actions which can be found by
Πh,w(P).

4. Because the execution of a sensing action creates multiple branches and some of them
might be inconsistent (Eq. (32)), rule (59) prevents any action to occur at node (T, P ) when
the partial state at (T, P ) is inconsistent. To mark that the path ends at this node, we say
that the goal is achieved. Tu et al. (2007) showed that for a consistent planning problem,
any solution generated by Πh,w(P) corresponds to a correct solution.

5. The comparison between ASP-based systems, like CPASP and Πh,w(P), and conformant
planning or conditional planning systems, such as CMBP (Cimatti and Roveri 2000), dlvK

(Eiter et al. 2003b), C-PLAN (Castellini et al. 2003), CFF (Brafman and Hoffmann 2004),
KACMBP (Cimatti et al. 2004), t0 (Palacios and Geffner 2007), and POND (Bryce et al.
2006), has been presented in the papers by Tu et al. (2007) and (2011). The comparison
shows that ASP-based planning systems perform much better than other systems in domains
with static causal laws.

6. Πh,w(P), similar to CPASP, makes a single call to the ASP solver to compute a conditional
plan. This is possible because of it uses an approximation semantics that reduces the com-
plexity of conditional planning, for polynomially-bounded plan, to NP-complete. Otherwise,
this would not be possible because conditional planning for polynomially-bounded length
plan is PSPACE-complete (Turner 2002). Naturally, as with CPASP, this also implies that
Πh,w(P) is incomplete.

5.3 Context: Conditional Planning

As we mentioned earlier, the need for plans with conditionals and/or loops has been identified
very earlier on by Warren (1976), who developed Warplan-C, a Prolog program that can generate
conditional plans and programs given the problem specification. Warplan-C has only 66 clauses
and is conjectured to be complete. The system was developed at the same time as other non-linear
planning systems, such as Noah by Sacerdoti (1974). These earlier systems do not deal with
sensing actions. Other systems that generate plans with if-then statements and can prepare for
contingencies are CASSANDRA (Pryor and Collins 1996) and CNLP (Peot and Smith 1992).
These two systems extend partial order planning algorithms for computing conditional plans.
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XII (Golden et al. 1996) and PUCCINI (Golden 1998) are two systems that employ partial
order planning to generate conditional plans for problems with incomplete information and can
deal with sensing actions. SGP (Weld et al. 1998) and POND (Bryce et al. 2006) are conditional
planners that work with sensing actions. These systems extend the planning graph algorithm
(Blum and Furst 1997) to deal with sensing actions. The main difference between SGP and POND
is that the former searches solutions within the planning graph, whereas the latter uses it as a
means of computing the heuristic function.

CoPlaS, developed by Lobo (1998), is a regression Prolog-based planner that uses a high-level
action description language, similar to the language BK described in this section, to represent
and reason about effects of actions, including sensing actions. Van Nieuwenborgh et al. (2007)
introduced Kc, an extension of language K, to deal with sensing actions and compute conditional
plans as defined in this section using dlvK. Thielscher (2000) presented FLUX, a constraint logic
programming based planner, which is capable of generating and verifying conditional plans.
QBFPLAN is another conditional planner, based on a QBF theorem prover, is described in the
paper by Rintanen (1999). This system, however, does not consider sensing actions.

Research in developing conditional planners, however, has not attracted as much attention
compared to other types of planning domains in recent years. Rather, the focus has been on
synthesizing controllers or reactive modules which exhibit specific behaviors in different envi-
ronments (Aminof et al. 2020; Camacho et al. 2019; Camacho et al. 2018; Treszkai and Belle
2020). This is similar to the effort of generating programs satisfying a specification as discussed
earlier (e.g., the work by Warren (1976)) or attempts to compute policies (see, e.g., the book by
Bellman (1957)) for Markov Decision Processes (MDP) or Partially Observable Markov Decision
Processes (POMDP). To the best of our knowledge, little attention has been paid to this research
direction within the ASP community. We present this as a challenge to ASP in the last section of
the paper.

6 Planning with Preferences

The previous sections analyze answer set planning with the focus on solving different classes
of planning problems, such as planning with complete information, incomplete information,
and sensing actions. In this section, we present another extension of the planning problem, by
illustrating the use of answer set planning in planning with preferences.

The problem of planning with preferences arises in situations where the user not only wants
a plan to achieve a goal, but has specific preferences or biases about the plan. This situation is
common when the space of possible plans for a goal is dense, i.e., finding “a” plan is not difficult,
but many of the plans may have features which are undesirable to the user. This type of situations
is very common in practical planning problems.

Example 7
Traveling from one place to another is a frequently considered problem (e.g., a traveler, a trans-
portation vehicle, an autonomous vehicle). A planning problem in the travel domain can be
represented by the following elements:

• a set of fluents of the form at(`), where ` denotes a location, such as home, school, neighbor,
airport, etc.;

• an initial location `i;
• a destination location `f ; and
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• a set of actions of the form method(`1, `2) where `1 and `2 are two distinct locations and
method is one of the available transportation methods, such as drive, walk, ride train, bus,
taxi, fly, bike, etc. The problem may include conditions that restrict the applicability of
actions in certain situations. For example, one can ride a taxi only if the taxi has been called,
which can be done only if one has some money; one can fly from one place to another if
one has a ticket; etc.

Problems in this domain are often rich in solutions because of the large number of actions which
can be used in the construction of a plan. For this reason, a user looking for a solution to a problem
often considers some additional features, or personal preferences, in selecting a plan. For example,
the user might be biased in terms of the distance to travel using a transportation method, the
overall cost, the time to destination, the comfort of a vehicle, etc. However, a user would accept a
plan that does not satisfy her preferences if she has no other choice. 3

Preferences can come in different shapes and forms. The most common types of preferences are:

• Preferences about a state: the user prefers to be in a state s that satisfies a property φ rather
than a state s′ that does not satisfy it, in case both lead to the satisfaction of the goal; for
example, being in a 5-star hotel is preferable to being in a 1-star hotel, if the distance to the
conference site is the same;

• Preferences about an action: the user prefers to perform (or avoid) an action a, whenever it
is feasible and it allows the goal to be achieved; for example, one might prefer to walk to
destination whenever possible;

• Preferences about a trajectory: the user prefers a trajectory that satisfies a certain property
ψ over those that do not satisfy this property; for example, one might prefer plans that do
not involve traveling through Los Angeles during peak traffic hours;

• Multi-dimensional preferences: the user has a set of preferences, with an ordering among
them. A plan satisfying a more favorable preference is given priority over those that satisfy
less favorable preferences; for example, plans that minimize time to destination might be
preferable to plans minimizing cost.

Son and Pontelli (2006) propose a general method for integrating diverse classes of preferences
into answer set planning. Their approach is articulated in two components:

• Development of a preference specification language: this language supports the specification
of different types of preferences; its semantics should enable the definition of a partial order
among possible solutions of the planning problem.

• Implementation: the implementation proposed by Son and Pontelli (2006) maps preference
formulae to mathematical formulae, representing the weight of each formula, and makes
use of the maximize statement in answer set programming to optimize the solution to the
planning problem. The original paper defines rules for computing the weights of preference
formulae in ASP.

We next introduce the preference specification language proposed by Son and Pontelli (2006).

6.1 A Preference Specification Language

The proposed preference specification language addresses the description of three classes of
preferences: basic desires, atomic preferences, and general preferences.
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For a planning problem P = 〈D,Γ,∆〉, a basic desire can be in of the following possible
forms:

(a) a state formula, which is a fluent formula ϕ or a formula of the form occ(a) for some action
a, or

(b) a goal preference, of the form goal(ϕ), where ϕ is a fluent formula.

Basic desire formula. A basic desire formula is a formula built over basic desires, the traditional
propositional operators (∧, ∨, and ¬), and the modalities next, always, eventually, and until.
The BNF for the basic desire formulae is

ψ
def
= ϕ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | ¬ψ1 | next(ψ1) | until(ψ1, ψ2) | always(ψ1) | eventually(ψ),

where ϕ represents a state formula or a goal preference and ψ, ψ1, or ψ2 are basic desire formulae.
Intuitively, a basic desire formula specifies a property that a user would like to see satisfied by

the provided plan. For example, to express the fact that a user would like to take the taxi or the
bus to go to school, we can write:

eventually( occ(bus(home, school)) ∨ occ(taxi(home, school)) ).

If the user’s desire is not to call a taxi, we can write

always( ¬occ(call taxi(home)) ).

If the user’s desire is not to see any taxi around his home, we can use the basic desire formula

always( ¬available taxi(home) ).

Note that these encodings have different consequences—the last formula prevents taxis to be
present, independently from whether the taxi has been called.

The following are several basic desire formulae that are often of interest to users.

• Strong Desire: For two formulae ϕ1 and ϕ2, ϕ1 < ϕ2 denotes ϕ1 ∧ ¬ϕ2.
• Weak Desire: For two formulae ϕ1 and ϕ2, ϕ1 <

w ϕ2 denotes ϕ1 ∨ ¬ϕ2.
• Enabled Desire: For two actions a1 and a2, a1 <

e a2 stands for
(executable(a1) ∧ executable(a2))⇒ (occ(a1) < occ(a2)) where
executable(a) =

∧
l∈ϕ l if executable(a, ϕ) ∈ D.

• Action Class Desire: For actions with the same set of parameters and effects such as drive
or walk, we write drive <e walk to denote the desire∨
l1,l2∈S, l1 6=l2(drive(l1, l2) <e walk(l1, l2)) where S is a set of pre-defined locations.

Intuitively, this preference states that we prefer to drive rather than to walk between
locations belonging to the set S. For example, if S = {home, school} then this preference
says that we prefer to drive from home to school and vice versa.

Atomic preference. Basic desire formulae are expressive enough to describe a significant portion
of preferences that frequently occur in real-world domains. It is also often the case that the
user may provide a variety of desires, and some desires are stronger than others; knowledge of
such biases about desires becomes important when it is not possible to concurrently satisfy all
the provided desires. In this situation, an ordering among the desires is introduced. An atomic
preference formula is a formula of the form

ϕ1 � ϕ2 � · · ·� ϕn
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where ϕ1, . . . , ϕn are basic desire formulae. The atomic preference formula states that trajectories
that satisfy ϕ1 are preferable to those that satisfy ϕ2, etc.

Let us consider again the travel domain. Besides time and cost, users often have their preferences
based on the level of comfort and/or safety of the available transportation methods. These
preferences can be represented by the formulae13

cost = always(walk <e bus <e drive <e flight)

and

time = always(flight <e drive <e bus <e walk)

and

comfort = always(flight <e (drive ∨ bus) <e walk)

and

safety = always(walk <e flight <e (drive ∨ bus)).
These four desires can be combined to produce the following two atomic preferences

Ψt
1 = comfort � safety and Ψt

2 = cost� time.

Intuitively, Ψt
1 is a comparison between level of comfort and safety, while Ψt

2 is a comparison
between affordability and duration.

General preference formulae. Suppose that a user would like to travel as comfortably and as
cheaply as possible. Such a preference can be viewed as a multi-dimensional preference, which
cannot be easily captured using atomic preferences or basic desires. General preference formulae
support the representation of such multi-dimensional preferences.

Formally, a general preference formula is a formula satisfying one of the following conditions:

• An atomic preference Ψ is a general preference;
• If Ψ1,Ψ2 are general preferences, then Ψ1&Ψ2, Ψ1 | Ψ2, and ! Ψ1 are general preferences;
• If Ψ1,Ψ2, . . . ,Ψk is a collection of general preferences, then Ψ1 � Ψ2 � · · · � Ψk is a

general preference.

In the above definition, the operators &, |, ! are used to express different ways to combine prefer-
ences. For example, the preference Ψt

1&Ψt
2 indicates that the user prefers trajectories that are most

preferred according to both Ψt
1 and Ψt

2; Ψt
1 | Ψt

2 states that, among trajectories with the same
cost, the user prefers trajectories that are most comfortable or vice versa. A detailed discussion of
general preferences can be found in the paper by Son and Pontelli (2006).

Semantics. In order to define the semantics of the preference language, we need to start from
describing whether a trajectory α = s0a0 . . . an−1sn satisfies a basic desire formula. We write
α |= ϕ to denote that α satisfies a basic desire ϕ. The definition of |= is straightforward, and we
report here only some of the cases (the complete definition can be found in the paper by Son and
Pontelli (2006)), where α[i] = siai . . . an−1sn.

• α |= occ(a) if a0 = a;
• α |= ` if s0 |= ` and ` is a fluent;

13 The notation α <e β <e γ is a syntactic sugar for α <e β ∧ β <e γ.
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• α |= always(ϕ) if for all 0 ≤ i < n we have α[i] |= ϕ;
• α |= next(ϕ) if α[1] |= ϕ.

The satisfaction of desires is used to define two relations between trajectories, one expressing
preference between trajectories and one capturing the fact that two trajectories are indistinguish-
able, denoted by ≺Ψ and ≈Ψ, respectively, where Ψ is a preference formula. For two trajectories
α and β,

1. if Ψ is a basic desire then α ≺Ψ β (α is more preferred than β with respect to Ψ) if α |= Ψ

and β 6|= Ψ; α ≈Ψ β denotes that α |= Ψ iff β |= Ψ.
2. if Ψ is an atomic preference ϕ1 � ϕ2 � · · ·� ϕn then α ≺Ψ β if ∃(1 ≤ i ≤ n) such that

(a) ∀(1 ≤ j < i) we have that α ≈ϕj
β, and

(b) α ≺ϕi
β.

α ≈Ψ β denotes that α ≈ϕj
Ψ for every j = 1, . . . , n.

3. if Ψ is a general preference and has the form Ψ = Ψ1 � · · ·� Ψk then α ≺Ψ β is defined
similar to the second case. Otherwise, α ≺Ψ β

(a) if Ψ = Ψ1&Ψ2 and α ≺Ψ1
β and α ≺Ψ2

β

(b) if Ψ = Ψ1 | Ψ2 and (i) α ≺Ψ1 β and α ≈Ψ2 β; or (ii) α ≺Ψ2 β and α ≈Ψ1 β; or
(iii) α ≺Ψ1

β and α ≺Ψ2
β.

(c) if Ψ = !Ψ1 and β ≺Ψ1
α.

In all cases, α ≈Ψ β iff α ≈Ψ′ β where Ψ′ is a component of Ψ.

The following proposition holds (Son and Pontelli 2006).

Proposition 1
≺Ψ is a partial order and ≈Ψ is an equivalent relation.

The above proposition shows that maximal elements with respect to ≺Ψ exist, i.e., most preferred
trajectories exist.

6.2 Implementation: Computing Preferred Plans

Given a planning problem P and a preference formula Ψ, a preferred trajectory can be computed
using the following steps:

1. Use one of the programs, denoted by Plan(P, n), introduced in Sections 3–4 to compute a
potential solution α for P ;

2. Associate to α a number, which represents the degree of satisfaction of α with respect to Ψ;
and

3. Use the #maximize statement of clingo to compute a most preferred trajectory.

This process requires an appropriate encoding of Ψ. This is usually achieved by converting Ψ to a
canonical form, which provides a convenient way to translate Ψ into a set of facts with predefined
predicates. For example, a basic desire formula can be encoded using the predicates and, or, ¬,
occ, next, until, eventually, always, and final (stands for goal, to avoid confusion with the goal
predicate defined in the previous sections). This translation can be done using a script (e.g., Son
and Pontelli (2006) presented a Prolog program for such translation).
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An atomic preference can be represented using an ordered set, consisting of a declara-
tion atomic(id), indicating that id is an atomic preference, and a set of atoms of the form
member(id, formula, order), where id, formula, and order represent the atomic preference iden-
tifier, the formula, and the order of the formula in id, respectively. Finally, a general preference
can be encoded using the predicates &, |, and !, and the basic representations of basic desires and
atomic preferences. In the following, we use Π(Ψ) to denote the set of facts encoding Ψ.

Since the first task in computing a most preferred trajectory is checking whether or not a
trajectory satisfies a basic desire, we need to add to Plan(P, n) rules for this purpose. This task can
be achieved by a set of domain-independent rules Πpref defining the predicate holds(sat(ϕ), t),
which states that the basic desire formula ϕ is satisfied by the trajectory stat . . . an−1sn. Πpref

contains the following groups of rules:

• Rules for checking the satisfaction of a propositional formula at a time step: such as

holds(sat(F ), T ) ← fluent(F ), holds(F, T )

holds(sat(and(F,G)), T ) ← holds(sat(F ), T ), holds(sat(G), T )

• Rules for checking the satisfaction of a temporal formula at a time step: such as

holds(sat(next(F )), T )← holds(sat(F ), T + 1)

• Rules for checking the occurrence of an action:

holds(sat(occ(A)), T )← occ(A, T )

• Rules for checking the satisfaction of a goal formula:

holds(sat(final(F )), 0)← holds(sat(F ), n)

The following proposition holds.

Proposition 2
An answer set S of Plan(P, n) ∪ Π(ϕ) ∪ Πpref contains holds(sat(ϕ), 0) if and only if the
trajectory corresponds to S satisfies ϕ.

The above proposition shows that Plan(P, n) ∪ Π(ϕ) ∪ Πpref can be used to compute a most
preferred trajectory with respect to a basic desire formula. To do so, we only need to tell clingo
that an answer set containing holds(sat(ϕ), 0) is preferred.

To compute a most preferred plan with respect to a general preference or an atomic formula,
Son and Pontelli (2006) proposed a set of rules that assigns a number to a formula and then use
the #maximize statement of clingo to select a most preferred trajectory. The proposed rules
were developed at the time the answer set solvers did provide only limited capability to work
with numbers. For this reason, we omit the detail about these rules here. Features provided in
more recent versions of answer set solvers, such as multiple optimization statements and weighted
tuples, are likely to enable a simpler and more efficient implementation. For example, we could
translate an atomic preference

ϕ1 � ϕ2 . . .� ϕn

to a statement

#maximize{1@n : holds(sat(ϕ1), 0); . . . ;n@1 : holds(sat(ϕn), 0)}

as a part of Π(Ψ).
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Remark 5
1. The encoding of Π(Ψ) presented in this paper does not employ any advanced features of

answer set programming, which were introduced to simplify the encoding of preferences
such as the framework for preferences specification asprin, introduced by Brewka et al.
(2015a) and (2015b). Analogously, a more elegant encoding of preference formulae can be
achieved using other extensions of answer set programming focused on rankings of answer
sets, such as logic programming with ordered disjunctions (Brewka 2002). This encoding,
however, cannot be used with clingo or dlv because none of these solvers supports ordered
disjunctions.

2. The discussion in this section focuses on expressing preferences over trajectories, i.e.,
sequences of actions and states. It can be extended to conditional plans and used with the
planner in Section 5. This extension can, for example, define preferences over branches in a
conditional plan.

6.3 Context: Planning with Preferences

Planning with preferences has attracted a lot of attention by the planning community. An excellent
survey of several systems developed before 2008 and their strengths and weaknesses can be found
in the paper by Baier and McIlraith (2008). Preferences have also been included in extensions
of PDDL, such as PDDL3 (Gerevini and Long 2005). The majority of systems described in the
survey employ PDDL3 where preferences are, ultimately, described by a numeric value. As such,
most of the planning with preferences systems in the literature can be characterized as cost optimal,
where the cost of actions plays a key role in deciding the preference of a solution. Hierarchical
task planning is also frequently used in these systems. Representative systems in this direction
are HPlan-P (Sohrabi et al. 2009), LPRPG-P (Coles and Coles 2011), and PGPLANNER (Das
et al. 2019). CHOPLAN, developed by Bidoux et al. (2019), is a system which encodes a PDDL3
planning problem as a multi-attribute utility theory and a heuristic based on Choquet integrals to
derive solutions.

SATPLAN(P), developed by Giunchiglia and Maratea (2007), shows that SAT-based planning is
also competitive with other planning paradigms. Giunchiglia and Maratea (2011) present a survey
of SAT-based planning with preferences. In recent years, SMT-based planning has become more
popular than SAT-based planning, thanks to the expressiveness of SMT compared to SAT and
the availability of efficient SMT solvers. SMT-based planning, which can work with numeric
variables, provides an excellent way to deal with preferences (Scala et al. 2016). It is worth
observing that ASP-based planning with action costs has been considered earlier by Eiter et al.
(2003a) and more recently by Khandelwal et al. (2014).

7 Planning and Diagnosis

While planning and diagnosis are often considered two separate and independent tasks, some
researchers have suggested that ties exist between them, to the point that it is possible to reduce
diagnostic reasoning to planning. In this section, we present this view, and specifically focus on
the approach from Baral and Gelfond (2000) and Balduccini and Gelfond (2003), under which
planning tasks and diagnostic tasks share (a) the same domain representation and (b) the same
core reasoning algorithms.

In this section, the term diagnosis describes a type of reasoning task in which an agent



Answer Set Planning: A Survey 37

identifies and interprets discrepancies between the domain’s expected behavior and the domain’s
actual/observed behavior. Consider the following example.

Example 8 (From the paper by Balduccini and Gelfond (2003))
Consider the analog circuit AC from Figure 4.

b

r sw1

sw2

+

-

Fig. 4. Analog circuit AC

We assume that switches sw1 and sw2 are mechanical components that cannot be damaged.
Relay r is a magnetic coil. If not damaged, it is activated when sw1 is closed, causing sw2 to
close. Undamaged bulb b emits light if sw2 is closed. For simplicity of presentation we consider
an agent capable of performing only one action, close(sw1). The environment can be represented
by two damaging exogenous14 actions: brk, which causes b to become faulty, and srg, which
damages r and also b assuming that b is not protected. Suppose that the agent operating this device
is given a goal of lighting the bulb. He realizes that this can be achieved by closing the first switch,
performs the operation, and discovers that the bulb is not lit. The domain’s behavior does not
match the agent’s expectations. The agent needs to determine the reason for this state of affairs
and ways to correct the problem. 3

In the following, we focus on non-intrusive and observable domains, in which the agent’s
environment does not normally interfere with his work and the agent normally observes all of the
domain occurrences of exogenous actions. The agent is, however, aware that these assumptions
can be contradicted by observations. The agent is ready to observe and to take into account
occasional occurrences of exogenous actions that alter the behavior of the environment. More-
over, discrepancies between expectations and observations may force the agent to conclude that
additional exogenous actions have occurred, but remained unobserved.

To model the domain, let us introduce a finite set of components C, disjoint from A and F
previously introduced. Let us also assume the existence of a set F0 ⊆ F of observable fluents (i.e.,
fluents that can be directly observed by the agent), such that ab(c) ∈ F0 for every component
of C. Fluent ab(c) intuitively indicates that the c is “faulty.” Let us point out that the use of the
relation ab in diagnosis dated back to the work by Reiter (1987). The set A is further partitioned
into two disjoint sets: As, corresponding to agent actions, and Ae consisting of exogenous actions.
Additionally, exogenous and agent actions are allowed to occur concurrently. With respect to the
formalization methodology introduced in Section 2.2, this is achieved by (1) introducing the notion

14 By exogenous actions we mean actions performed by the agent’s environment. This includes natural events as well as
actions performed by other agents.
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of compound action, i.e., a set of agent and exogenous actions, (2) redefining Φ(a, s) so that a is
a compound action, and (3) extending the notion of trajectory to be a sequence s0a0 . . . ak−1sk
of states and compound actions.

A core principle of this approach is that the discrepancies between agent’s expectations and
observations are explained in terms of occurrences of unobserved exogenous actions. The observed
behavior of the domain is represented by a particular trajectory, referred to as the actual trajectory.

A diagnostic domain is a pair 〈D,W 〉 where D is a domain and W is the domain’s actual
trajectory.

Information about the behavior of the domain up to a certain step n is captured by the recorded
history Hn, i.e. a set of observations of the form:

1. obs(l, t) – meaning that fluent literal l was observed to be true at step t;
2. hpd(a, t) – stating that action a ∈ A was observed to happen at time t.

The link between diagnostic domain and recorded history is established by the following:
Consider a diagnostic domain 〈D,W 〉 with W = sw0 a

w
0 . . . a

w
n−1s

w
n , and let Hn be a recorded

history up to step n.

1. A trajectory s0a0 . . . an−1sn is a model of Hn if for any 0 ≤ t ≤ n

(a) at = {a : hpd(a, t) ∈ Hn};
(b) if obs(l, t) ∈ Hn then l ∈ st.

2. Hn is consistent if it has a model.
3. Hn is sound if, for any l, a, and t, if obs(l, t), hpd(a, t) ∈ Hn then l ∈ swt and a ∈ awt .
4. A fluent literal l holds in a model M of Hn at time t ≤ n (M |= holds(l, t)) if l ∈ st; Hn

entails h(l, t)(Hn |= holds(l, t)) if, for every model M of Hn, M |= holds(l, t).

Note also that a recorded history may be consistent, but not sound – which is the case if the
recorded history is incompatible with the actual trajectory.

Example 8 can thus be formalized as:

% Fluents:
fluent(active(r))← fluent(on(b))← fluent(prot(b))←
fluent(closed(sw1))← fluent(closed(sw2))←
fluent(ab(r))← fluent(ab(b))←
% Agent Actions:
a act(close(sw1))←
%Exogenous Actions
x act(brk)← x act(srg)←

Note the use of relations a act and x act to distinguish agent actions and exogenous actions. The
laws describing the normal and abnormal/malfunctioning behavior of the domain are:

DAC =



% normal % abnormal
causes(close(sw1), closed(sw1), ∅) causes(brk, ab(b), ∅)
caused({closed(sw1),¬ab(r)}, active(r)) causes(srg, ab(r), ∅)
caused({active(r)}, closed(sw2)) causes(srg, ab(b), {¬prot(b)})
caused({closed(sw2),¬ab(b)}, on(b)) caused({ab(b)},¬on(b))

caused({¬closed(sw2)},¬on(b)) caused({ab(r)},¬active(r))
executable(close(sw1), {¬closed(sw1)})
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Now consider a recorded history:

H1 =



hpd(close(sw1), 0)

obs(¬closed(sw1), 0)

obs(¬closed(sw2), 0)

obs(¬ab(b), 0)

obs(¬ab(r), 0)

obs(prot(b), 0)

One can check that s0 close(sw1) s1 is the only model of H1, where s0 is the state depicted in
Figure 4. Additionally, H1 |= holds(on(b), 1).

Next, we formalize the key notions of diagnosis. Let δ = 〈D,W 〉 be a diagnostic domain. A
configuration is a pair

S = 〈Hn, O
m
n 〉 (61)

where Hn is the recorded history up to step n and Omn is a set of observations between steps n
and m ≥ n. Leveraging this notion, we can now define a symptom as a configuration 〈Hn, O

m
n 〉

such that Hn is consistent and Hn ∪Omn is not.
Once a symptom has been identified, the next step of the diagnostic process aims at finding its

possible reasons. Specifically, a diagnostic explanation E of symptom S = 〈Hn, O
m
n 〉 is defined

as a set

E ⊆ {hpd(ai, t) : 0 ≤ t < n and ai ∈ Ae}, (62)

such that Hn ∪Omn ∪ E is consistent.

7.1 Diagnostic Reasoning as Answer Set Planning

As we said earlier, answer set planning can be used to determine whether a diagnosis is needed
and for computing diagnostic explanations. Next, we introduce an ASP-based program for these
purposes. Consider a domain D whose behavior up to step n is described by recorded history Hn.
Reasoning about D and Hn can be accomplished by a translation to a logic program Π(D,Hn)

that follows the approach outlined in Section 3. Focusing for simplicity on the direct encoding,
Π(D,Hn) consists of:

• the domain dependent rules from Section 3.1.1;
• the rules related to inertia and consistency of states (11)-(13);
• domain independent rule establishing the relationship between observations and the basic

relations of Π:

occ(A, T )← hpd(A, T ) (63)

holds(L, 0)← obs(L, 0) (64)

• the reality check axiom, i.e. a rule ensuring that in any answer set the agent’s expectations
match the available observations (variable L ranges over fluent literals):

← obs(L, T ), not holds(L, T ) (65)

The following theorem establishes an important relationship between models of a recorded history
and answer sets of the corresponding logic program.
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Theorem 2
If the initial situation of Hn is complete, i.e. for any fluent f , Hn contains obs(f, 0) or obs(¬f, 0),
then M is a model of Hn iff M is defined by some answer set of Π(D,Hn).

The proof of the theorem is in two steps. First, one shows that the theorem holds for n = 1, i.e., that
for a history H1 there is a one-to-one correspondence between the transitions of the form s0a0s1

and the answer sets of Π(D,H1). Then, induction is leveraged to extend the correspondence to
histories of arbitrary length. The complete proof can be found in the paper by Balduccini and
Gelfond (2003).

Next, we focus on identifying the need for diagnosis. Given a domain D and S = 〈Hn, O
m
n 〉,

we introduce:

TEST (S) = Π(D,Hn) ∪Omn . (66)

The following corollary forms the basis of this approach to diagnosis.

Corollary 1
Let S = 〈Hn, O

m
n 〉 where Hn is consistent. A configuration S is a symptom iff TEST (S) has

no answer set.

Once a symptom has been identified, diagnostic explanations can be found by means of the answer
sets of the diagnostic program

Πd(S) = TEST (S) ∪ { 1{occ(A, T ) : x act(A)}1← time(T ), T < n. } (67)

Specifically, every answer set X of Πd(S) encodes a diagnostic explanation

E = {hpd(a, t) | occ(a, t) ∈ X ∧ a ∈ Ae}.

Note that the choice rule shown in (67) is simply a restriction of (10) to exogenous actions. As a
result, Πd(S) can be viewed as a variant of the translation Π(P, n) of a planning problem, where
planning occurs over the past 0..n−1 time steps and over exogenous actions only, and the goal
states are described by the observations from S.

Example 9
Consider the domain from Example 8. According to H1 initially switches sw1 and sw2 are open,
all circuit components are ok, sw1 is closed by the agent, and b is protected. The expectation
is that b will be on at 1. Suppose that, instead, the agent observes that at time 1 bulb b is off,
i.e. O1 = {obs(¬on(b), 1)}. TEST (S0), where S0 = 〈H1, O1〉, has no answer sets and thus,
by Corollary 1, S0 is indeed a symptom. The diagnostic explanations of S0 can be found by
computing the answer sets of Πd(S). Specifically, there are three diagnostic explanations:

E1 = {occ(brk, 0)}
E2 = {occ(srg, 0)}
E3 = {occ(brk, 0), occ(srg, 0)}

Remark 6
1. Other interpretations of the relationship between agent and environment are possible,

yielding substantial differences in the overall approach to diagnosis. The interested reader
is referred to the paper by Baral et al. (2000).

2. In contrast to the approach by Baral et al. (2000), the approach presented in this survey
assumes that a recorded history is consistent only if observations about fluents can be
explained without assuming the occurrence of actions not recorded in Hn.



Answer Set Planning: A Survey 41

3. In the paper by Balduccini and Gelfond (2003), the formalization of diagnostic reasoning
presented here is extended to incorporate an account of the agent’s interaction with the
domain in order to collect physical evidence that confirms or refutes the diagnostic explana-
tions computed. This is accomplished by introducing the notions of candidate diagnosis
and of diagnosis.

4. Theorem 2 is similar to the result from the paper by Turner (1997), which deals with a
different language and uses the definitions by McCain and Turner (1995). If the initial
situation of Hn is incomplete, one can adopt techniques discussed elsewhere in this paper
or the awareness axioms by Balduccini and Gelfond (2003).

5. As discussed in the paper by Balduccini and Gelfond (2003), the diagnostic process may
not always lead to a unique solution. In those cases, the agent may need to perform further
actions, such as repairing or replacing components, and observe their outcomes. Balduccini
and Gelfond (2003) provided a specialized algorithm to achieve this. An alternative, and
potentially more general, option consists in leveraging conditional planning techniques
(see Section 5.2), i.e., by creating a conditional plan that determines the true diagnosis as
proposed by Baral et al. (2000).

7.2 Context: Planning and Diagnosis

Classical diagnosis such as the foundational work by Reiter (1987) aimed at providing a formal
answer to the question of “what is wrong with a system given its (current failed) state.” Central
to classical diagnosis is the use of the model of the system to reason about failures. Earlier
formalizations considered a single state of the system and are often referred to as model based
diagnosis, which is summarized by De Kleer and Kurien (2003). Later formalization such as the
proposal by Feldman et al. (2020) considers a finite trace of states, taking into consideration the
transitions at different time points in need of a diagnosis. This is closedly related to dynamic
diagnosis, as described in this paper, which has been considered in the literature (Baral et al. 2000;
Baroni et al. 1999; Cordier and Thiébaux 1994; McIlraith 1997; Thielscher 1997; Thiébaux et al.
1996; Williams and Nayak 1996).

The close relationship between model based diagnosis and satisfiability led to several meth-
ods for computing diagnosis using satisfiability such as the method proposed by Grastien and
Anbulagan (2013), Metodi et al. (2014), or described in several publications on diagnosing se-
quential circuits (e.g., by Feldman et al. (2020)). In a recent work by Wotawa (2020), answer set
programming has been used in the context of model-based diagnosis.

8 Planning in Multi-Agent Environment

The formalizations presented in the previous sections can be also extended to deal with various
problems in multi-agent environments (MAE). In these problems, the planning (or reasoning)
activity can be carried out either by one system (a.k.a. centralized planning) or multiple systems
(a.k.a. distributed planning). In the following subsections, we discuss the use of ASP in these
settings.

8.1 Centralized Multi-Agent Planning

We will start with the Multi-Agent Path Finding (MAPF) problem which appears in a variety
of application domains, such as autonomous aircraft towing vehicles (Morris et al. 2016), au-
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tonomous warehouse systems (Wurman et al. 2008), office robots (Veloso et al. 2015), and video
games (Silver 2005).

A MAPF problem is defined by a tupleM = (R, (V,E), s, d) where

• R is a set of robots,
• (V,E) is an undirected graph, with the set of vertices V and the set of edges E,
• s is an injective function from R to V , s(r) denotes the starting location of robot r, and
• d is an injective function from R to V , d(r) denotes the destination of robot r.

Robots can move from one vertex to one of its neighbors in one step. A collision occurs when two
robots move to the same location (vertex collision) or traveling on the same edge (edge collision).
The goal is to find a collision-free plan for all robots to reach their destinations. Optimal plans,
with the minimal number of steps, are often preferred.

A simple MAPF problem is depicted in Figure 5. In this problem, we have two robots r1 and
r2 on a graph with five vertices p1, . . . , p5. Initially, r1 is at p2 and r2 is at p4. The goal consists
of moving robot r1 to location p5 and robot r2 to location p3.

P3

P2

P4
P1

P5

r1

r2

Fig. 5. A Multi-Agent Path Finding Problem

It is easy to see that a MAPFM = (R, (V,E), s, d) can be represented by

• a set {Pr | r ∈ R} of path-planning problems for the robots in R, where for each r ∈ R,
Pr = 〈Dr, at(r, s(r)), at(r, d(r))〉 is a planning problem with

Dr =

{
causes(move(r, l, l′), at(r, l′), {at(r, l)}) for (l, l′) ∈ E
caused({at(r, l)},¬at(r, l′))} for l 6= l′, l, l′ ∈ V

• the set of constraints representing the collisions.

ASP-based solutions of MAPF problems have been proposed for both action-based as well as
state-based encodings. In the context of this survey, we will focus on an action-based encoding.
Consider a MAPF problemM = (R, (V,E), s, d). The program developed in Section 3 for a
single-agent planning problem can be used to develop a program solvingM, denoted by Π(M, n),
as follows. Π(M, n) contains the following groups of rules:

1. the set of atoms {agent(r) | r ∈ R} encoding the robots;
2. the collection of the rules from Π(Pr, n); and
3. the constraints to avoid collisions:

← agent(R), agent(R′), R 6= R′, (68)

holds(at(R, V ), T ), holds(at(R′, V ), T )

← agent(R), agent(R′), R 6= R′, (69)
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holds(at(R, V ), T ), holds(at(R′, V ′), T ),

holds(at(R, V ′), T + 1), holds(at(R′, V ), T + 1)

Rule (68) prevents two robots to be at the same location at the same time, while rule (69)
guarantees that edge-collisions will not occur. These two constraints and the correctness of
Π(Pr, n) imply that Π(M, n) computes solutions of length n for the MAPF problemM.

The proposed method for solving MAPF problems can be generalized to multi-agent planning
as considered by the multi-agent community in the setting discussed by Durfee (1999). We assume
that a multi-agent planning problemM for a set of agents R is specified by a pair (Pr∈R, C)
where Pr = 〈Dr,∆r,Γr〉 is the planning problem for agent r and C is a set of global constraints.
For simplicity of the presentation, we will assume that

• the agents in R share the same set of fluents and, wherever needed, parameterized with the
names of the agents; for example, if an agent is carrying something then carrying(r, o)

will be used instead of carrying(o) as in a single-agent domain;
• the actions in the domain in Dr are parameterized with the agent’s name r, e.g., we will

use the action move(r, l, l′) instead of the traditional encoding move(l, l′);
• the constraints in C are of the form

executable(sa, ϕ) (70)

where sa is a set of actions in
⋃
r∈RDr and ϕ is a set of literals. This can be used to

represent parallel actions, non-concurrent actions, etc.

For a multi-agent planning problemM = (Pr∈R, C) where Pr = 〈Dr,∆r,Γr〉, the program
Π(M, n) that computes solution forM consists of

1. the set of agent declarations, agent(r) for r ∈ R;
2. the collection15 of the rules from Π(Pr, n) with the following modifications:

• the action specification of the form action(a) is replaced by action(r, a);
• the action generation rule is replaced by

1{occ(A, T ) : action(R,A)}1← time(T ), agent(R)

where, without the loss of generality, we assume that every Dr contains the action noop
that is always executable and has no effect;

3. for each constraint of form (70), we create a new “collective” action named said, add
action(said) to the set of actions in M (and make the (70) its executability condition,
translated into ASP as for any other action) and, for each a ∈ sa, the following rule is
added to Π(Pr, n):

occ(a, T ) ← occ(said, T ) (71)

8.2 Distributed Planning

A main drawback of centralized planning is that it cannot exploit the structural organization of
agents (e.g., hierarchical organization of agents) in the planning process. Distributed planning has

15 We keep only one instance of the domain-independent rules.
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been proposed as an alternative to centralized planning that aims at exploiting the independence
between agents and/or groups of agents. We discuss distributed planning in two settings: fully
collaborative agents and partially-cooperative or non-cooperative agents.

8.2.1 Fully Collaborative Agents

When agents are fully collaborative, a possible way to exploit structural relationships between
agents is to allow each group of agents to plan for itself (e.g., using the planning system described
in Section 3 and then employ a centralized post-planning process (a.k.a. the controller/scheduler)
to create the joint plan for all agents. The controller takes the output of these planners—individual
plans—and merges them into an overall plan. One of the main tasks of the controller is to resolve
conflicts between individual plans. This issue arises because individual groups plan without
knowledge of other groups (e.g., robot r1 does not know the location of robot r2). When the
controller is unable to resolve all possible conflicts, the controller will identify plans that need to
be changed and request different individual plans from specific individual groups.

Any implementation of distributed planning requires some communication capabilities between
the controller and the individual planning systems. For this reason, a client-server architecture is
often employed in the implementation of distributed planning. A client plans for an individual
group of agents and the server is responsible for merging the individual plans from all groups.
Although specialized parallel ASP solvers exist (e.g., the systems discussed in the papers by Le
and Pontelli (2005) and Schneidenbach et al. (2009)), there has been no attempt to use parallel
ASP solvers in distributed planning. Rather, distributed planning using ASP has been implemented
using a combination of Prolog and ASP, where communication between server and clients is
achieved through Prolog-based message passing, and planning is done using ASP (e.g., the system
described in the paper by Son et al. (2009)).

Observe that the task of resolving conflicts is not straightforward and can require multiple
iterations with individual planner(s) before the controller can create a joint plan. Consider again
the two robots in Figure 5. If they are to generate their own plans, then the first set of individual
solutions can be

occ(move(r1, p2, p4), 0), occ(move(r1, p4, p5), 1) (72)

and

occ(move(r2, p4, p2), 0), occ(move(r2, p2, l3), 1) (73)

A parallel execution of these two plans will result in a violation of the constraint stating that
two robots cannot be at the same location at the same time. One can see that the controller needs
to insert a few actions into both plans (e.g., r1 must move to either l1 or l3 before moving to l4).

LetM be a multi-agent planning problem and P{r∈R} be the plans received by the controller.
The feasibility of merging these plans into a single plan for all agents can be checked using
ASP. Let πn be the program obtained from Π(M, n) (described in Subsection 8.1) by adding to
Π(M, n)

• the set of action occurrences in P{r∈R}, i.e.,⋃
{r∈R}

{occurs(a, t) | occ(a, t) ∈ Pr}
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• for r ∈ R, rules mapping time steps from 0 to n to time steps used in Pr (r ∈ R),

1{map(r, T, J) : time(J)}1← time(T ), T < n, T ≤ maxr
← map(r, T, J),map(p, T ′, J ′), T < T ′, J > J ′

where maxr is the maximal index in Pr. Intuitively, map(r, i, j) indicates that the ith

action in Pr should occur in the jth position in the joint plan. This mapping must conform
to the order of action occurrences in Pr.

• a rule ensuring that an atom occurs(a, j) ∈ Pr must occur at the specified position:

← occ(a, t),map(r, t, j), not occurs(a, j).

It can be checked that π4 would generate an answer set consisting of

occ(move(r1, p2, p1), 0), occ(move(r2, p4, p2), 0),

occ(move(r2, p2, l3), 1), occ(move(r1, p1, p2), 1),

occ(move(r1, p2, p1), 2),

occ(move(r2, p4, p2), 3)

which corresponds to the mapping map(1, 0, 2),map(1, 1, 3),map(2, 0, 0),map(2, 1, 1) and is
a successful merge of the two plans in (72)–(73).

Observe that the program πn might have no answer sets, which indicates that the merging of the
plans P{r∈R} is unsuccessful. For instance, π3 has no answer set, i.e., the two plans in (72)–(73)
cannot be merged with less than four steps.

8.2.2 Non/Partially-Collaborative Agents

Centralized planning or distributed planning with an overall controller is most suitable in applica-
tions with collaborative (or non-competitive) agents such as the robots in the MAPF problems.
In many applications, this assumption does not hold, e.g., agents may need to withhold certain
private information and thus do not want to share their information freely; or agents may be
competitive and have conflicting goals. In these situations, distributed planning as described in
the previous sub-section is not applicable and planning will have to rely on a message passing
architecture, e.g., via peer-to-peer communications. Furthermore, an online planning approach
might be more appropriate. Next, we describe an ASP approach that is implemented centrally by
Son et al. (2009) but could also be implemented distributedly.

In this approach, the planning process is interleaved with a negotiation process among agents.
As an example, consider the robots in Figure 5 and assume that the robots can communicate with
each other, but they cannot reveal their location. The following negotiation between r2 and r1

could take place:

• r2 (to r1): “can you (r1) move out of l2, l3, and l4?” (because r2 needs to make sure that it
can move to location l2 and l3). This can be translated to the formula ϕ1 = ¬at(r1, l2) ∧
¬at(r1, l3) ∧ ¬at(r1, l4) sent from r2 to r1.

• r1 (to r2): “I can do so after two steps but I would also like for you (r2) to move out of l2,
l4, and l5 after I move out of those places.” This means that r1 agrees to satisfy the formula
sent by r2 but also has some conditions of its own. This can be represented by the formula
ϕ1 ⊃ ϕ2 = ¬at(r2, l2) ∧ ¬at(r2, l4) ∧ ¬at(r2, l5).

• r2 (to r1): “that is good; however, do not move through l4 to get out of the area.”
• etc.
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The negotiation will continue until either the agent accepts (or refutes) the latest proposal from
the other agent. A formal ASP based negotiation framework (e.g., the system described by Son
et al. (2014)) could be used for this purpose.

Observe that during a negotiation, none of the robots changes its location or executes any
action. After a successful negotiation, each robot has some additional information to take into
consideration in its planning. In this example, if the two robots agree after the second proposal by
r2, robot r1 agrees to move out of l2, l3, and l4 but should do so without passing by l4; robot r2

knows that he can have l2, l3, and l4 for itself after sometime and also knows that it can stand at l4
until r1 is out of the requested area; etc. Note, however, that this is not yet sufficient for the two
robots to achieve their goals. To do so, they also need to agree on the timing of their moves. For
example, r1 can tell r2 that l2, l3, and l4 will be free after two steps; r2 responds that, if it is the
case, then l2, l4, and l5 will be free after 2 steps; etc. This information will help the robots come
up with plans for their own goals.

To the best of our knowledge, only a prototype implementation of the approach to interleav-
ing negotiation and planning has been presented (Son et al. 2009). It is also not implemented
distributedly.

Remark 7
1. There are two different ways to enforce the collision-free constraint in the MAPF encoding.

One can, for example, replace (69) with the rule

← agent(R), agent(R′), R 6= R′,

holds(at(R, V ), T ), holds(at(R′, V ′), T ),

occ(move(R, V, V ′), T ), occ(move(R′, V ′, V ), T + 1)

2. ASP-based solutions for various extensions of the MAPF problems have been discussed
by Nguyen et al. (2017) and Gómez et al. (2020). The encoding proposed by Gómez et al.
(2020) is special in that its grounded program has a linear size to the number of agents. An
ASP-based solution for this problem has been applied in a real-world application (Gebser
et al. 2018). An environment for experimenting with MAPF has been developed by Gebser
et al. (2018). A preliminary implementation of a MAPF solver on distributed platform can
be found in the paper by Pianpak et al. (2019).

3. We observe that little attention has been paid to answer set programming based distributed
planning. This also holds for the answer set programming based distributed computing
platforms. Perhaps the need to attack problems in multi-agent systems will eventually
lead to a truly distributed platform that could push the investigation of using answer set
programming in this research direction to the next level. We note that the need for such
platform exists and ad-hoc combinations with other programming language have been
developed by Le et al. (2015).

8.3 Context: Planning in Multi-Agent Environments

Planning in multi-agent environments has been extensively investigated by the multi-agent research
community. There exists a broad literature in this direction which addresses several issues, such as
coordination, sharing of resources, use of shared resources, execution of joint actions, centralized
or distributed computation of plans, sharing of tasks, etc. Earlier works in multi-agent planning
(e.g., see the papers (Allen and Zilberstein 2009; Brafman and Domshlak 2008; Bernstein et al.
2002; Brenner 2003; Crosby et al. 2014; Durfee 1999; de Weerdt et al. 2003; de Weerdt and
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Clement 2009; Goldman and Zilberstein 2004; Guestrin et al. 2001; Nair et al. 2003; Nissim and
Brafman 2012; Peshkin and Savova 2002; Shoham and Leyton-Brown 2009; Torreño et al. 2012;
Vlassis 2007)) focus on generating plans for multiple agents, coordinating the execution of plans,
and does not take into consideration knowledge, beliefs, or privacy of agents. Work in planning
for multiple self-interested agents can be found in the papers (Gmytrasiewicz and Doshi 2005;
Rathnasabapathy et al. 2006; Poupart and Boutilier 2003; Sonu and Doshi 2015).

The planning problem in multi-agent environments discussed in this section focuses on the
setting in which each agent has its own goal, similar to the setting discussed in earlier work on
multi-agent planning. It should be noted that MAPF has attracted a lot of attention in recent
years due to its widespread applicability such as in warehouse or airtraffic control, leading to
the organization of the yearly MAPF workshop at IJCAI and/or ICAPS conferences and several
tutorials on the topic. A good description of this problem can be found in the papers (Barták
et al. 2019; Stern et al. 2019). Challenges and opportunities in MAPF and its extensions have
been described by Salzman and Stern (2020). As with planning, search-based approaches to
solving MAPF are frequently used. Early MAPF solvers, such as the ones described in the
papers (Goldenberg et al. 2014; Wagner and Choset 2015; Sharon et al. 2015; Boyarski et al.
2015; Cohen et al. 2016; Wang and Botea 2011; Luna and Bekris 2011; de Wilde et al. 2014),
can compute optimal, boundedly-suboptimal, or suboptimal solutions of MAPF. Erdem et al.
(2013), Yu and LaValle (2016), and Surynek et al. (2016) applied answer set programming, mixed-
integer programming, and satisfiability testing, respectively, to solve the original MAPF problem.
Suboptimal solutions of MAPF using SAT is discussed by Surynek et al. (2018). Surynek (2019b)
presents an SMT-based MAPF solver.

Several extensions of the MAPF problem have been introduced. Ma and Koenig (2016) general-
ize MAPF to combined Target Assignment and Path Finding (TAPF), where agents are partitioned
into teams and each team is given a set of targets that they need to reach. MAPF with deadlines
is introduced by Ma et al. (2018). Extensions of the MAPF problem with delay probabilities
have been described by Ma et al. (2017). The answer set planning implementation by Nguyen
et al. (2017) shows that TAPF can be efficiently solved by answer set planning in multi-agent
environments.

Andreychuk et al. (2019) investigate MAPF with continuous time, which removes the assump-
tion that transitions between nodes are uniform. Barták and Svancara (2019) present a SAT-based
approach to deal with this extension, while Surynek (2019a) describe an SMT-based MAPF solver
for MAPF with continuous time and geometric agents.

Atzmon et al. (2020) focus on the issue of unexpected delays of agents and introduce the notion
of k-robust MAPF plan, which can still be successfully executed when at most k delays happen.
This paper also studies a probabilistic extension of k-robust MAPF plan, called pk-robots MAPF
plan.

A more realistic version of MAPF, which allows agents to exchange packages and transfer
payload, is considered by Ma et al. (2016). Discussion of the problems where robots have
kinematic constraints can be found in the paper (Hönig et al. 2016).

It is worth noting that all of the aforementioned approaches to solving MAPF are centralized.
Pianpak et al. (2019) propose a distributed ASP-based MAPF solver. In a recent paper, Gómez
et al. (2021) present a compact ASP encoding for solving optimal sum-of-cost MAPF that is
competitive with other approaches.
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9 Planning with Scheduling and Extensions of ASP

Research on applications of ASP planning has also given impulse to, and is intertwined with,
work on extensions of ASP. Let us consider the scenario from the following example.

Example 10 (From the paper by Balduccini (2011))
In a typical scenario from the domain of industrial printing, orders for the printing of books or
magazines are more or less continuously received by the print shop. Each order involves the
execution of multiple jobs. First, the pages are printed on (possibly different) press sheets. The
press sheets are often large enough to accommodate several (10 to 100) pages, and thus a suitable
layout of the pages on the sheets must be found. Next, the press sheets are cut in smaller parts
called signatures. The signatures are then folded into booklets whose page size equals the intended
page size of the order. Finally the booklets are bound together to form the book or magazine to
be produced. The decision process is made more complex by the fact that multiple models of
devices may be capable of performing a job. Furthermore, many decisions have ramifications and
inter-dependencies. For example, selecting a large press sheet would prevent the use of a small
press. The underlying decision-making process is often called production planning. Another set
of decisions deals with scheduling. Here one needs to determine when the various jobs will be
executed using the devices available in the print shop. Multiple devices of the same model may be
available, thus even competing jobs may be run in parallel. Conversely, some of the devices can
be offline—or go suddenly offline while production is in progress – and the scheduler must work
around that. Typically, one wants to find a schedule that minimizes the tardiness of the orders
while giving priority to the more important orders. Since orders are received on a continuous
basis, one needs to be able to update the schedule in an incremental fashion, in a way that causes
minimal disruption to the production, and can satisfy rush orders, which need to be executed
quickly and take precedence over the others. Similarly, the scheduler needs to react to sudden
changes in the print shop, such as a device going offline during production. 3

This problem involves a combination of planning, configuration (of the devices involved) and
scheduling. While ASP can certainly be used to represent the problem, computation presents
challenges. In particular, the presence of variables with large domains has a tendency to cause
a substantial increase in the size of the grounding of ASP programs. Under these conditions,
both the grounding process itself and the following solving algorithms may take an unacceptable
amount of time and/or memory. Similar challenges have been encountered in the ASP encoding
of planning problems with large number of actions and steps (see, e.g., the discussion by Son and
Pontelli (2007)).

Various extensions of ASP have been proposed over time to overcome this challenge. Some
approaches, e.g., in response to large planning problems, rely on the avoidance of grounding,
as illustrated in systems with lazy grounding (see, e.g., the papers by Palù et al. (2009), Cat
et al. (2015), and Taupe et al. (2019)) or on the use of top-down execution models (see, e.g.,
the papers by Bonatti et al. (2008) and Marple and Gupta (2013)). At the core of the attempts
focused on combination of planning and scheduling is the integration of ASP with techniques
from constraint solving; this approach enables the effective ability to handle variables with large
domains (especially numerical) efficiently.

Elkabani et al. (2004) provided an initial exploration of the combination of answer set pro-
gramming with constraint logic programming, mostly focused on supporting the introduction of
aggregates in answer set programming. Baselice et al. (2005) were among the first to propose a
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methodology for achieving such an integration as a way to extend the capabilities of the answer
set programming framework. In their approach, the syntax and semantics of ASP is extended
to enable the encoding of numerical constraints within the ASP syntax. Mellarkod et al. (2008)
and Gebser et al. (2009) proposed solvers that support variants of ASP defined along the lines
of the approach by Baselice et al. (2005), and specific ASP and constraint solvers are modified
and integrated. In particular, the approach discussed in the clingcon systems (Ostrowski and
Schaub 2012; Banbara et al. 2017) explores the integration of constraint solving techniques with
techniques like clause learning and back-jumping.

Experimental results show that these approaches lead to increased scalability, enabling the
efficient resolution of planning domains of larger size. Later research extends and generalizes the
language (Bartholomew and Lee 2013), increasing the efficiency of the resolution algorithms;
these extensions have been eventually integrated in the mainstream clingo solver (Gebser et al.
2016). Notably, its extension with difference constraints, viz. clingo[DL], is operationally used by
Swiss Railway for routing and scheduling train networks (Abels et al. 2019).

All of these approaches rely on a clear-box architecture (Balduccini and Lierler 2013), i.e., an
architecture where the ASP components of the algorithm and its constraint solving components
are tightly integrated and modified specifically to interact with each other. A different approach is
proposed by Balduccini (2009) and later extensions. In that line of research, the goal is to enable
the reuse, without modifications, of existing ASP and constraint solving algorithms. The intuition
is that such an arrangement allows one to employ the best solvers available and makes it easy
to analyze the performance of different combinations of solvers on a given task. This enabled
researchers to propose a black-box architecture (and, later, a more advanced gray-box architecture),
where the ASP and the constraint solving components are unaware of each other and are connected
only by a thin “upper layer” of the architecture, which is responsible for exchanging data between
the components and triggering their execution. The architecture proposed by Balduccini and
Lierler (2017) is illustrated in Figure 6. Intuitively, answer sets are computed first by an off-the-
shelf ASP solver. Special atoms are gathered by the “upper layer” and translated into a constraint
satisfaction problem, which is solved by an off-the-shelf constraint solver. Solutions to the overall
problem correspond to pairs formed by an answer set and a solution to the constraint satisfaction
problem extracted from that answer set.

This approach features an embedding of constraint solving constructs directly within the ASP
language—that is, without the need to extend the syntax and semantics of ASP—by means of
pre-interpreted relations known to the “upper layer” of the architecture (and some syntactic sugars
for increased ease of formalization). For instance, constraint variables for the start time of jobs
from Example 10 can be declared in the language described in the paper (Balduccini 2011) by
means of the rule

cspvar(st(D,J), 0,MT )← job(J), job device(J,D),max time(MT ) (74)

where cspvar is a special relation that the “upper layer” knows how to translate into a variable
declaration for a numerical constraint solver. Similarly, the effect on start times of precedences
between jobs can be encoded by the ASP rule

required(st(D2, J2) ≥ st(D1, J1) + Len1)←
job(J1), job(J2), job device(J1, D1), job device(J2, D2),

precedes(J1, J2), job len(J1, Len1)

(75)

where “≥” is a syntactic sugar for the predicate at least, written in the infix notation, and it
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Fig. 6. Architecture of the EZCSP solver (Balduccini 2011)

is replaced by a pre-interpreted function symbol during pre-processing. As before, the “upper
layer” is aware of the relation required and translates the corresponding atoms to numerical
constraints. A problem involving a combination of planning and scheduling such as that described
in Example 10 can be elegantly and efficiently solved by extending a planning problem 〈D,Γ,∆〉
with statements such as (74) and (75).

Later research on this topic (Balduccini and Lierler 2013; Balduccini and Lierler 2017) un-
covered an interesting result: contrary to what one might expect, there is no clear winner in the
performance comparison between black-box and white-box architectures (and gray-box as well);
different classes of problems are more efficiently solved by a different architecture. Furthermore,
Balduccini et al. (2017) showed that the EZCSP architecture can be used in planning with PDDL+
domains.

10 Conclusions and Future Directions

This paper surveys the progress made over the last 20+ years in the area of answer set planning. It
focuses on the encoding in answer set programming of different classes of planning problems:
when the initial state is complete, incomplete, and with or without sensing actions. In addition,
the paper shows that answer set planning can reach the level of scalability and efficiency of state-
of-the-art specialized planners, if useful information which can be exploited to guide the search
process in planning, such as heuristics, is provided to the answer set solver. The paper also reviews
some of the main research topics related to planning, such as planning with preferences, diagnosis,
planning in multi-agent environments, and planning integrated with scheduling. We note that
research related to answer set planning has been successfully applied in different application
domains, often in combination with other types of reasoning, such as planning for the shuttle
spacecraft by Nogueira et al. (2001), planning and scheduling (Balduccini 2011), robotics (Aker
et al. 2011), scheduling (Abels et al. 2019; Dodaro et al. 2019; Gebser et al. 2018), and multi-agent
path findings (Gómez et al. 2021; Nguyen et al. 2017). Section 9 also discusses the potential
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impacts that the use of answer set planning in real-world applications can have on the development
of answer set programming.

In spite of this extensive body of research, there are still several challenges for answer set
planning.

Performance of ASP Planning: We note that extensive experimental comparisons with state-of-
the-art compatible planning systems have been conducted. For example, Gebser et al. (2013)
experimented with classical planning, Eiter et al. (2003b) and Tu et al. (2011) worked with
incomplete information and non-deterministic actions, and Tu et al. (2007) with planning with
sensing actions. The detailed comparisons can be found in the aforementioned papers and several
other references that have been discussed throughout the paper. These comparisons demonstrate
that ASP-planning is competitive with other approaches to planning, such as heuristic based
planning or SAT-based planning.

The flexibility and expressiveness of answer set programming provide a simple way for answer
set planning to exploit various forms of domain knowledge. To the best of our knowledge, no
heuristic planning system can take advantages of all well-known types of domain knowledge,
such as hierarchical structure, temporal knowledge, and procedural knowledge, whist they can be
easily integrated into a single answer set planning system, as demonstrated by Son et al. (2006).

It is important to note that the performance of answer set planning systems depends heavily
on the performance of the answer set solvers used in computing the solutions. As such, it is
expected that these answer set planing systems can benefit from the advancements made by
the ASP community. On the other hand, this hand-off approach also gives rise to limitations of
ASP-based planning systems, such as scalability, heuristics, and ability to work with numeric
values. It is worth noting that heuristics can be specified for guiding the answer set solver (e.g., as
done by Gebser et al. (2013) in planning) and there are considerable efforts in integrating answer
set solvers and constraint solvers (see Section 9). However, there exists no answer set planning
system that works with PDDL+, similarly to the system SMTPlan by Cashmore et al. (2020)
which employs SMT planning for hybrid systems described in PDDL+. An ASP-based planning
system for PDDL+ is proposed by Balduccini et al. (2017). Yet, this system cannot deal with
all features of PDDL+ as SMTPlan. The issue of numeric constraints is also related to the next
challenge.

Probabilistic planning: This research topic is the objective of intensive research within the auto-
mated planning community. Similarly to other planning paradigms, competitions among different
probabilistic planning systems are organized within ICAPS (International Conference on Auto-
mated Planning and Scheduling, e.g., https://ipc2018-probabilistic.bitbucket.
io/) and attract several research groups from academia and industry.

Probabilistic planning is concerned with identifying an optimal policy for an agent in a system
specified by a Markov decision problem (MDP) or a Partial observable MDP (POMDP). While
algorithms for computing an optimal policy are readily available (e.g., value iteration algorithm by
Bellman (1957), topological value iteration by Dai et al. (2011), ILAO* by Hansen and Zilberstein
(2001), LRTPD by (Bonet and Geffner 2003), UCB by Kocsis and Szepesvári (2006), as well as
the work of Kaelbling et al. (1998); the interested readers is also referred to the survey by Shani
et al. (2013)), scalability and efficiency remain significant issues in this research area.

Computing MDP and POMPD in logic programming will be a significant challenge for ASP,
due to the fact that answer set solvers are not developed to easily operate with real numbers. In

https://ipc2018-probabilistic.bitbucket.io/
https://ipc2018-probabilistic.bitbucket.io/
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addition, the exponential number of states of a MDP or POMPD require a representation language
suitable for use with ASP. This challenge can be addressed using probabilistic action languages,
such as the ones proposed by Baral et al. (2002) or by Wang and Lee (2019). On the other hand,
working with real numbers means that the grounding-then-solving method to compute answer
sets is no longer adequate. First of all, the presence of real numbers implies that the grounding
process might not terminate. While discretization can be used to alleviate the grounding problem,
it could increase the size of the grounded program significantly, creating problems (e.g., lack of
memory) for the solving process. A potential approach to address these challenges is to integrate
constraint solvers into answer set solvers, creating hybrid systems that can effectively deal with
numeric constraints. Research in this direction has been summarized in Section 9. The recent
implementation by Abels et al. (2019) demonstrates that answer set programming based system
can work effectively with a huge number of numeric constraints.

Epistemic planning: In recent years, epistemic multi-agent planning (EMP) has gained significant
interest within the planning community. Löwe et al. (2011) propose a general epistemic planning
framework. Complexity of EMP has been studied in the papers (Aucher and Bolander 2013;
Bolander et al. 2015; Charrier et al. 2016). Studies of EMP can be found in several papers
(Bolander and Andersen 2011; Engesser et al. 2017; van der Hoek and Wooldridge 2002; Huang
et al. 2017; Löwe et al. 2011; Eijck 2004) and many planners have been developed (Burigana
et al. 2020; Fabiano et al. 2020; Le et al. 2018; Muise et al. 2015; Kominis and Geffner 2015;
Kominis and Geffner 2017; Wan et al. 2015). With the exception of the planner developed by
Burigana et al. (2020), which employs answer set programming, the majority of the proposed
systems are heuristic search based planners. Some EMP planners, such as those proposed by
Muise et al. (2015), Kominis and Geffner (2015) and (2017), translate an EMP problem into a
classical planning problem and use classical planners to find solutions.

A multi-agent planning problem of this type is different from the planning problems discussed in
Section 8, in that it considers the knowledge and beliefs of agents, and explores the use of actions
that manipulate such knowledge and beliefs. This is necessary for planning in non-collaborative
and competitive environments. The difficulty in this task lies in that the result of the execution of
an action (by an agent or a group of agents) will change the state of the world and the state of
knowledge and belief of other agents. Inevitably, some agents may have false beliefs about the
world. Semantically, the transitions from the state of affair, that includes the state of the world and
the state of knowledge and beliefs of the agents, to another state of affair could be modeled by
transitions between Kripke structures (see, e.g., the books (Fagin et al. 1995; Van Ditmarsch et al.
2007)). A Kripke structure consists of a set of worlds and a set of binary accessibility relations
over the worlds. A practical challenge is related to the size of the Kripke structures, in terms of the
number of worlds—as this can double after the execution of each action. Intuitively, this requires
the ability to generate new terms in the answer set solvers during resolution. Multi-shot solvers
(see, e.g., the paper (Gebser et al. 2019)) could provide a good platform for epistemic planning.
Preliminary encouraging results on the use of answer set programming in this context have been
recently presented by Burigana et al. (2020).

Explainable Planning (XAIP): This is yet another problem that has only recently been investigated
but attracted considerable attention from the planning community, leading to the organization of
a a yearly workshop on XAIP associated with ICAPS (e.g., https://icaps20subpages.
icaps-conference.org/workshops/xaip/). Several questions for XAIP are discussed

https://icaps20subpages.icaps-conference.org/workshops/xaip/
https://icaps20subpages.icaps-conference.org/workshops/xaip/
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by Fox et al. (2017). In XAIP, a human questions the planner (a robot’s planning system) about its
proposed solution. The focus is on explaining why a planner makes a certain decision. For example,
why an action is included (or not included) in the plan? Why is the proposed plan optimal? Why
can a goal not be achieved? Why should (or should not) the human consider replanning?

Chakraborti et al. (2017), for example, describe model reconciliation problem (MRP) and
propose methods for solving it. In a MRP, the human and the robot have their own planning
problems. The goal in both problems are the same, but the action specifications and the initial
states might be different. The robot generates an optimal plan and informs the human of its plan.
The human declares that it is not an optimal plan according to their planning problem specification.
The robot, which is aware of the human’s problem specification, needs to present to the human the
reasons why its plan is optimal and what is wrong in the human’s problem specification. Often,
the answer is in the form of a collection of actions, actions’ preconditions and effects, and literals
from the initial states that should be added to, or removed from, the human’s problem specification
so that the robot’s plan will be an optimal plan of the updated specification. While explanations
have been extensively investigated by the logic programming community, explainable planning
using answer set programming has been investigated only recently by Nguyen et al. (2020).
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BARTÁK, R., SVANCARA, J., SKOPKOVÁ, V., NOHEJL, D., AND KRASICENKO, I. 2019. Multi-agent path
finding on real robots. AI Magazine 32, 3, 175–189.

BARTHOLOMEW, M. AND LEE, J. 2013. Functional stable model semantics and answer set program-
ming modulo theories. In Proceedings of the Twenty-third International Joint Conference on Artificial
Intelligence (IJCAI’13), F. Rossi, Ed. IJCAI/AAAI Press, 718–724.

BASELICE, S., BONATTI, P., AND GELFOND, M. 2005. Towards an integration of answer set and constraint
solving. In Proceedings of the Twenty-first International Conference on Logic Programming (ICLP’05),
M. Gabbrielli and G. Gupta, Eds. Lecture Notes in Computer Science, vol. 3668. Springer-Verlag, 52–66.

BELLMAN, R. 1957. A markovian decision process. Journal of Mathematics and Mechanics 6, 5, 679–684.
BERNSTEIN, D., GIVAN, R., IMMERMAN, N., AND ZILBERSTEIN, S. 2002. The complexity of decentralized

control of markov decision processes. Mathematics of Operations Research 27, 4, 819–840.
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ERDEM, E., KISA, D., ÖZTOK, U., AND SCHÜLLER, P. 2013. A general formal framework for pathfinding
problems with multiple agents. In Proceedings of the Twenty-Seventh National Conference on Artificial
Intelligence (AAAI’13), M. desJardins and M. Littman, Eds. AAAI Press, 290–296.

ESHGHI, K. 1988. Abductive planning with event calculus. In Proceedings of the Fifth International
Conference on Logic Programming (ICLP’88), R. Kowalski and K. Bowen, Eds. MIT Press, 562–579.

FABIANO, F., BURIGANA, A., DOVIER, A., AND PONTELLI, E. 2020. EFP 2.0: A multi-agent epistemic
solver with multiple e-state representations. In Proceedings of the Thirtieth International Conference
on Automated Planning and Scheduling (ICAPS’20), J. Beck, O. Buffet, J. Hoffmann, E. Karpas, and
S. Sohrabi, Eds. AAAI Press, 101–109.

FAGIN, R., HALPERN, J., MOSES, Y., AND VARDI, M. 1995. Reasoning About Knowledge. MIT Press.
FANDINNO, J., LAFERRIERE, F., ROMERO, J., SCHAUB, T., AND SON, T. 2021. Planning with incomplete

information in quantified answer set programming. Theory and Practice of Logic Programming 21, 5,
663–679.

FELDMAN, A., PILL, I., WOTAWA, F., MATEI, I., AND DE KLEER, J. 2020. Efficient model-based diagnosis
of sequential circuits. In Proceedings of the Thirty-fourth National Conference on Artificial Intelligence
(AAAI’20). AAAI Press, 2814–2821.

FIKES, R. AND NILSSON, N. 1971. STRIPS: A new approach to the application of theorem proving to
problem solving. Artificial Intelligence 2, 3-4, 189–208.

FOX, M., LONG, D., AND MAGAZZENI, D. 2017. Explainable planning. CoRR abs/1709.10256.
GEBSER, M., KAMINSKI, R., KAUFMANN, B., LINDAUER, M., OSTROWSKI, M., ROMERO, J., SCHAUB,

T., AND THIELE, S. 2015. Potassco User Guide, 2 ed. University of Potsdam.
GEBSER, M., KAMINSKI, R., KAUFMANN, B., OSTROWSKI, M., SCHAUB, T., AND WANKO, P. 2016.

Theory solving made easy with clingo 5. In Technical Communications of the Thirty-second International
Conference on Logic Programming (ICLP’16), M. Carro and A. King, Eds. OpenAccess Series in
Informatics (OASIcs), vol. 52. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2:1–2:15.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., AND SCHAUB, T. 2019. Multi-shot ASP solving with
clingo. Theory and Practice of Logic Programming 19, 1, 27–82.

GEBSER, M., KAUFMANN, B., NEUMANN, A., AND SCHAUB, T. 2007. clasp: A conflict-driven answer set
solver. In Proceedings of the Ninth International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’07), C. Baral, G. Brewka, and J. Schlipf, Eds. Lecture Notes in Artificial Intelligence,
vol. 4483. Springer-Verlag, 260–265.

GEBSER, M., KAUFMANN, B., OTERO, R., ROMERO, J., SCHAUB, T., AND WANKO, P. 2013. Domain-
specific heuristics in answer set programming. In Proceedings of the Twenty-Seventh National Conference
on Artificial Intelligence (AAAI’13), M. desJardins and M. Littman, Eds. AAAI Press, 350–356.

GEBSER, M., OBERMEIER, P., OTTO, T., SCHAUB, T., SABUNCU, O., NGUYEN, V., AND SON, T. 2018.
Experimenting with robotic intra-logistics domains. Theory and Practice of Logic Programming 18, 3-4,
502–519.

GEBSER, M., OBERMEIER, P., SCHAUB, T., RATSCH-HEITMANN, M., AND RUNGE, M. 2018. Routing
driverless transport vehicles in car assembly with answer set programming. Theory and Practice of Logic
Programming 18, 3-4, 520–534.

GEBSER, M., OSTROWSKI, M., AND SCHAUB, T. 2009. Constraint answer set solving. In Proceedings of
the Twenty-fifth International Conference on Logic Programming (ICLP’09), P. Hill and D. Warren, Eds.
Lecture Notes in Computer Science, vol. 5649. Springer-Verlag, 235–249.



Answer Set Planning: A Survey 59

GELFOND, M. AND LIFSCHITZ, V. 1991. Classical negation in logic programs and disjunctive databases.
New Generation Computing 9, 365–385.

GELFOND, M. AND LIFSCHITZ, V. 1998. Action languages. Electronic Transactions on Artificial Intelli-
gence 3, 6, 193–210.

GEREVINI, A., DIMOPOULOS, Y., HASLUM, P., AND SAETTI, A. 2004. Fifth international planning
competition — deterministic part.

GEREVINI, A. AND LONG, D. 2005. Plan constraints and preferences in pddl 3.0. Tech. rep., University of
Brescia, Italy.

GHALLAB, M., HOWE, A., KNOBLOCK, C., MCDERMOTT, D., RAM, A., VELOSO, M., WELD, D., AND

WILKINS, D. 1998. PDDL — the Planning Domain Definition Language. Version 1.2. Tech. Rep. CVC
TR98003/DCS TR1165, Yale Center for Computational Vision and Control.

GHALLAB, M., NAU, D., AND TRAVERSO, P. 2004. Automated planning: theory and practice. Morgan
Kaufmann Publishers.

GHALLAB, M., NAU, D., AND TRAVERSO, P. 2016. Automated planning and acting. Cambridge University
Press.

GIUNCHIGLIA, E., KARTHA, G., AND LIFSCHITZ, V. 1997. Representing action: Indeterminacy and
ramifications. Artificial Intelligence 95, 2, 409–438.

GIUNCHIGLIA, E. AND MARATEA, M. 2007. Planning as satisfiability with preferences. In Proceedings of
the Twenty-second National Conference on Artificial Intelligence (AAAI’07). AAAI Press, 987–992.

GIUNCHIGLIA, E. AND MARATEA, M. 2011. Introducing preferences in planning as satisfiability. Journal
of Logic and Computation 21, 2, 205–229.

GMYTRASIEWICZ, P. AND DOSHI, P. 2005. A framework for sequential planning in multi-agent settings.
Journal of Artificial Intelligence Research 24, 49–79.

GOLDEN, K. 1998. Leap before you look: Information gathering in the PUCCINI planner. In Proceedings of
the Fourth International Conference on Artificial Intelligence Planning Systems (AIPS’98), R. Simmons,
M. Veloso, and S. Smith, Eds. AAAI Press, 70–77.

GOLDEN, K., ETZIONI, O., AND WELD, D. 1996. Planning with execution and incomplete informations.
Tech. Rep. TR96-01-09, Department of Computer Science, University of Washington.

GOLDENBERG, M., FELNER, A., STERN, R., SHARON, G., STURTEVANT, N., HOLTE, R., AND SCHAEF-
FER, J. 2014. Enhanced partial expansion A*. Journal of Artificial Intelligence Research 50, 141–187.

GOLDMAN, C. AND ZILBERSTEIN, S. 2004. Decentralized control of cooperative systems: Categorization
and complexity analysis. Journal of Artificial Intelligence Research 22, 143–174.
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AAAI Press, 161–170.

LE, T., SON, T., PONTELLI, E., AND YEOH, W. 2015. Solving distributed constraint optimization
problems using logic programming. In Proceedings of the Twenty-Ninth National Conference on Artificial
Intelligence (AAAI’15), B. Bonet and S. Koenig, Eds. AAAI Press, 1174–1181.

LEVESQUE, H. 1996. What is planning in the presence of sensing? In Proceedings of the Thirteenth
National Conference on Artificial Intelligence (AAAI’96), W. Clancey and D. Weld, Eds. AAAI/MIT Press,
1139–1146.

LIERLER, Y. AND MARATEA, M. 2004. Cmodels-2: SAT-based answer sets solver enhanced to non-
tight programs. In Proceedings of the Seventh International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’04), V. Lifschitz and I. Niemelä, Eds. Lecture Notes in Artificial
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