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Abstract

In temporal extensions of Answer Set Programming (ASP) based on linear-time, the behavior
of dynamic systems is captured by sequences of states. While this representation reflects their
relative order, it abstracts away the specific times associated with each state. However, timing
constraints are important in many applications like, for instance, when planning and scheduling
go hand in hand. We address this by developing a metric extension of linear-time temporal
equilibrium logic, in which temporal operators are constrained by intervals over natural numbers.
The resulting Metric Equilibrium Logic provides the foundation of an ASP-based approach for
specifying qualitative and quantitative dynamic constraints. To this end, we define a translation
of metric formulas into monadic first-order formulas and give a correspondence between their
models in Metric Equilibrium Logic and Monadic Quantified Equilibrium Logic, respectively.
Interestingly, our translation provides a blue print for implementation in terms of ASP modulo
difference constraints.

KEYWORDS: answer set programming, metric temporal logic, equilibrium logic, nonmonotonic
reasoning

1 Introduction

Reasoning about actions and change, or more generally about dynamic systems, is not

only central to knowledge representation and reasoning but at the heart of Computer

Science (Fisher et al. 2005). In practice, this kind of reasoning often requires both qual-

itative as well as quantitative dynamic constraints. For instance, when planning and

scheduling at once, actions may have durations and their effects may need to meet dead-

lines. On the other hand, any flexible formalism for actions and change must incorporate

some form of non-monotonic reasoning to deal with inertia and other types of defaults.

∗ An extended abstract of this paper appeared at LPNMR’22 (Cabalar et al.2022).

http://arxiv.org/abs/2304.14778v1
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Over the last years, we addressed qualitative dynamic constraints by combining tradi-

tional approaches, like Dynamic and Linear Temporal Logic (DL (Harel et al. 2000) and

LTL (Pnueli 1977)), with the base logic of Answer Set Programming (ASP (Lifschitz 1999)),

namely, the logic of Here-and-There (HT (Heyting 1930)) and its non-monotonic ex-

tension, called Equilibrium Logic (Pearce 1997). This resulted in non-monotonic linear

dynamic and temporal equilibrium logics (DEL (Bosser et al. 2018; Cabalar et al. 2019)

and TEL (Aguado et al. 2013; Cabalar et al. 2018; Aguado et al. 2023)) that gave rise

to the temporal ASP system telingo (Cabalar et al. 2019; Cabalar et al. 2020) extending

the ASP system clingo (Gebser et al. 2016).

A commonality of such dynamic and temporal logics is that they abstract from specific

time points when capturing temporal relationships. For instance, in temporal logic, we

can use the formula �(use → ♦clean) to express that a machine has to be eventually

cleaned after being used. Nothing can be said about the delay between using and cleaning

the machine.

A key design decision was to base both aforementioned logics, TEL and DEL, on the

same linear-time semantics. We continued to maintain the same linear-time semantics,

embodied by sequences of states, when elaborating upon a first “light-weight” metric

temporal extension of HT (Cabalar et al. 2020). The “light-weightiness” is due to treating

time as a state counter by identifying the next time with the next state. For instance,

this allows us to refine our example by stating that, if the machine is used, it has to

be cleaned within the next 3 states, viz. �(use → ♦[1..3]clean). Although this permits

the restriction of temporal operators to subsequences of states, no fine-grained timing

constraints are expressible. In other words, it is as if state transitions were identified with

time clicks, and the two things could not be dissociated.

In this paper, we overcome this limitation by dealing with timed traces where each

state has an associated time, as done in Metric Temporal Logic (MTL (Koymans 1990)).

This allows us to measure time differences between events. For instance, in our example,

we may thus express that whenever the machine is used, it has to be cleaned within 60

to 120 time units, by writing:

�(use → ♦[60..120]clean) .

Unlike the non-metric version, this stipulates that once use is true in a state, clean must

be true in some future state whose associated time is at least 60 and at most 120 time

units after the time of use. The choice of time domain is crucial, and might even lead to

undecidability in the continuous case. We rather adapt a discrete approach that offers a

sequence of snapshots of a dynamic system.

The definition of the new variant of Metric (Temporal) Equilibrium Logic (MEL for

short) is done in two steps. We start with the definition of a monotonic logic called Metric

(Temporal) logic of Here-and-There (MHT), a temporal extension of the intermediate

logic of Here-and-There, mentioned above. We then select some models from MHT that

are said to be in equilibrium, obtaining in this way a non-monotonic entailment relation.

The rest of the paper is organized as follows. In the next section, we start describing

the monotonic basis, MHT, that generalizes (Cabalar et al. 2020) by adding timed traces,

and provide some basic properties and useful equivalences in this logic. In Section 3, we

study the non-monotonic formalism, MEL, providing the definition of metric equilibrium

models as a kind of minimal MHT models. We also illustrate this definition with an ex-
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ample and discuss the property of strong equivalence for metric theories, proving that it

coincides with equivalence in the monotonic logic, MHT. Section 4 provides a translation

of MHT into a fragment of first-order HT, called Quantified Here-and-There with Differ-

ence Constraints, following a similar spirit to the well-known translation of Kamp (1968)

from LTL to first-order logic. Finally, Section 5 contains a discussion and concludes the

paper. Appendix A includes all the proofs of the results in the paper.

2 Metric Logic of Here-and-There

In this section, we start describing the metric extension of HT, called MHT, that is used

as monotonic basis for defining Metric Equilibrium Logic later on. We begin introducing

some notation. Given m ∈ N and n ∈ N ∪ {ω}, we let [m..n] stand for the set {i ∈ N |

m ≤ i ≤ n}, [m..n) for {i ∈ N | m ≤ i < n}, and (m..n] stand for {i ∈ N | m < i ≤ n}.

We use letters I, J to denote intervals and, since they stand for sets, we apply standard

set operations on them, like inclusion I ⊆ J or membership n ∈ I.

Given a set A of propositional variables (called alphabet), a metric formula ϕ is defined

by the grammar:

ϕ ::= p | ⊥ | ϕ1 ⊗ ϕ2 | •Iϕ | ϕ1 SI ϕ2 | ϕ1 TI ϕ2 | ◦Iϕ | ϕ1 UI ϕ2 | ϕ1 RI ϕ2

where p ∈ A is an atom and ⊗ is any binary Boolean connective ⊗ ∈ {→,∧,∨}. The last

six cases above correspond to temporal operators, each of them indexed by some interval

I of the form [m..n) with m ∈ N and n ∈ N ∪ {ω}. In words, •I , SI , and TI are past

operators called previous, since, and trigger, respectively; their future counterparts ◦I ,

UI , and RI are called next, until, and release. Strictly speaking, we should differentiate

between the syntactic representation of an interval, and its semantic counterpart, the

associated set of time points it represents. For simplicity, we just use the same represen-

tation for both concepts but, as said above, we restrict the form of intervals that can

be used as modal subindices to the case [m..n) where n is possibly ω. Yet, some syntac-

tic abbreviations are allowed in the temporal subindices. For instance, we let subindex

[m..n] stand for [m..n+1), provided n 6= ω. Also, we sometimes use the subindices ‘≤n’,

‘≥m’ and ‘m’ as abbreviations of intervals [0..n], [m..ω) and [m..m], respectively. Also,

whenever I = [0..ω), we simply omit subindex I.

We also define several common derived operators like the Boolean connectives ⊤
def
= ¬⊥,

¬ϕ
def
= ϕ→ ⊥, ϕ↔ ψ

def
= (ϕ→ ψ) ∧ (ψ → ϕ), and the following temporal operators:

�Iϕ
def
= ⊥ TI ϕ always before

�Iϕ
def
= ⊤ SI ϕ eventually before

I
def
= ¬•⊤ initial

•̂Iϕ
def
= •Iϕ ∨ ¬•I⊤ weak previous

�Iϕ
def
= ⊥ RI ϕ always afterward

♦Iϕ
def
= ⊤UI ϕ eventually afterward

F
def
= ¬◦⊤ final

◦̂Iϕ
def
= ◦Iϕ ∨ ¬◦I⊤ weak next

Note that initial and final are not indexed by any interval; they only depend on the state

of the trace, not on the actual time associated with this state. On the other hand, the weak

version of next can no longer be defined in terms of final, as done in (Cabalar et al. 2018)

with non-metric ◦̂ϕ ≡ ◦ϕ ∨ F. For the metric case ◦̂Iϕ, the disjunction ◦Iϕ ∨ ¬◦I⊤

must be used instead, in order to keep the usual dualities among operators (the same

applies to weak previous).

A metric theory is a (possibly infinite) set of metric formulas. As an example of a
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metric theory, we may consider the following scenario for modeling the behavior of traffic

lights. While the light is red by default, it changes to green within less than 15 time units

(say, seconds) whenever the button is pushed; and it stays green for another 30 seconds

at most. This can be represented as follows.

�(red ∧ green → ⊥) (1)

�(¬green → red) (2)

�
(
push → ♦[1..15)(�≤30 green)

)
(3)

Note that this example combines a default rule (2) with a metric rule (3), describing

the initiation and duration period of events. This nicely illustrates the interest in non-

monotonic metric representation and reasoning methods.

A Here-and-There trace (for short HT-trace) of length λ ∈ N∪{ω} over alphabet A is

a sequence of pairs (〈Hi, Ti〉)i∈[0..λ) with Hi ⊆ Ti ⊆ A for any i ∈ [0..λ). For convenience,

we usually represent an HT-trace as the pair 〈H,T〉 of traces H = (Hi)i∈[0..λ) and

T = (Ti)i∈[0..λ). Notice that, when λ = ω, this covers traces of infinite length. We say

that 〈H,T〉 is total whenever H = T, that is, Hi = Ti for all i ∈ [0..λ).

Definition 1

A timed trace (〈H,T〉, τ) over (N, <) is a pair consisting of

• an HT-trace 〈H,T〉 = (〈Hi, Ti〉)i∈[0..λ) and

• a function τ : [0..λ) → N such that τ(i) ≤ τ(i+1).

A timed trace of length λ > 1 is called strict if τ(i) < τ(i+1) for all i ∈ [0..λ) such that

i+ 1 < λ and non-strict otherwise. We assume w.l.o.g. that τ(0) = 0.

Function τ assigns to each state index i ∈ [0..λ) a time point τ(i) ∈ N representing the

number of time units (seconds, miliseconds, etc, depending on the chosen granularity)

elapsed since time point τ(0) = 0, chosen as the beginning of the trace. The difference

to the variant of MHT presented in (Cabalar et al. 2020) boils down to the choice of

function τ . Essentially, the latter corresponds now to the case where τ is the identity

function on the interval [0..λ).

Given any timed HT-trace, satisfaction of formulas is defined as follows.

Definition 2 (MHT-satisfaction)

A timed HT-trace M = (〈H,T〉, τ) of length λ over alphabet A satisfies a metric formula

ϕ at step k ∈ [0..λ), written M, k |= ϕ, if the following conditions hold:

1. M, k 6|= ⊥

2. M, k |= p if p ∈ Hk for any atom p ∈ A

3. M, k |= ϕ ∧ ψ iff M, k |= ϕ and M, k |= ψ

4. M, k |= ϕ ∨ ψ iff M, k |= ϕ or M, k |= ψ

5. M, k |= ϕ→ ψ iff M′, k 6|= ϕ or M′, k |= ψ, for both M′ = M and M′ = (〈T,T〉, τ)

6. M, k |= •I ϕ iff k > 0 and M, k−1 |= ϕ and τ(k) − τ(k−1) ∈ I

7. M, k |= ϕ SI ψ iff for some j ∈ [0..k] with τ(k) − τ(j) ∈ I, we have M, j |= ψ and

M, i |= ϕ for all i ∈ (j..k]

8. M, k |= ϕ TI ψ iff for all j ∈ [0..k] with τ(k) − τ(j) ∈ I, we have M, j |= ψ or

M, i |= ϕ for some i ∈ (j..k]

9. M, k |= ◦I ϕ iff k + 1 < λ and M, k+1 |= ϕ and τ(k+1) − τ(k) ∈ I
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10. M, k |= ϕUI ψ iff for some j ∈ [k..λ) with τ(j) − τ(k) ∈ I, we have M, j |= ψ and

M, i |= ϕ for all i ∈ [k..j)

11. M, k |= ϕ RI ψ iff for all j ∈ [k..λ) with τ(j) − τ(k) ∈ I, we have M, j |= ψ or

M, i |= ϕ for some i ∈ [k..j)

Satisfaction of derived operators can be easily deduced:

Proposition 1

Let M = (〈H,T〉, τ) be a timed HT-trace of length λ over A. Given the respective

definitions of derived operators, we get the following satisfaction conditions:

12. M, k |= I iff k = 0

13. M, k |= •̂I ϕ iff k = 0 or M, k−1 |= ϕ or τ(k) − τ(k−1) 6∈ I

14. M, k |= �I ϕ iff M, i |= ϕ for some i ∈ [0..k] with τ(k) − τ(i) ∈ I

15. M, k |= �I ϕ iff M, i |= ϕ for all i ∈ [0..k] with τ(k) − τ(i) ∈ I

16. M, k |= F iff k + 1 = λ

17. M, k |= ◦̂I ϕ iff k + 1 = λ or M, k+1 |= ϕ or τ(k+1) − τ(k) 6∈ I

18. M, k |= ♦I ϕ iff M, i |= ϕ for some i ∈ [k..λ) with τ(i) − τ(k) ∈ I

19. M, k |= �I ϕ iff M, i |= ϕ for all i ∈ [k..λ) with τ(i) − τ(k) ∈ I

A formula ϕ is a tautology (or is valid), written |= ϕ, iff M, k |= ϕ for any timed HT-

trace M and any k ∈ [0..λ). MHT is the logic induced by the set of all such tautologies.

For two formulas ϕ, ψ we write ϕ ≡ ψ, iff |= ϕ ↔ ψ, that is, M, k |= ϕ ↔ ψ for any

timed HT-trace M of length λ and any k ∈ [0..λ). A timed HT-trace M is an MHT

model of a metric theory Γ if M, 0 |= ϕ for all ϕ ∈ Γ. The set of MHT models of Γ

having length λ is denoted as MHT(Γ, λ), whereas MHT(Γ)
def
=

⋃ω

λ=0 MHT(Γ, λ) is the

set of all MHT models of Γ of any length. We may obtain fragments of any metric logic

by imposing restrictions on the timed traces used for defining tautologies and models.

That is, MHTf stands for the restriction of MHT to traces of any finite length λ ∈ N and

MHTω corresponds to the restriction to traces of infinite length λ = ω.

We say that a metric theory is temporal if all its modal operators are subindex-free.

Temporal formulas share the same syntax as LTL, although the absence of an interval

in MHT is understood as an abbreviation for the fixed interval [0..ω). The following

result shows that, for temporal theories, MHT satisfaction collapses into THT satisfac-

tion (Aguado et al. 2023). Hence, we can use non-timed traces and ignore function τ in

this case.

Proposition 2

Let Γ be a temporal theory. Then (〈H,T〉, τ) |= Γ in MHT iff 〈H,T〉 |= Γ in THT.

An interesting subset of MHT is the one formed by total timed traces like (〈T,T〉, τ).

In the non-metric version of temporal HT, the restriction to total models corresponds to

Linear Temporal Logic (LTL (Pnueli 1977)). In our case, the restriction to total traces

defines a metric version of LTL, which we call Metric Temporal Logic (or MTL for short).

We present next several properties about total traces and the relation between MHT and

MTL.



6 Becker et al.

Proposition 3 (Persistence)

Let (〈H,T〉, τ) be a timed HT-trace of length λ over A and let ϕ be a metric formula

over A. Then, for any k ∈ [0..λ), if (〈H,T〉, τ), k |= ϕ then (〈T,T〉, τ), k |= ϕ.

Thanks to Proposition 3 and a decidability result in (Ouaknine and Worrell 2007), we

get:

Corollary 1 (Decidability of MHTf )

The logic of MHTf is decidable.

The next result shows that the satisfaction of negated formulas as classical ones also

extends from HT to MHT:

Proposition 4

Let (〈H,T〉, τ) be a timed HT-trace of length λ over A and let ϕ be a metric formula

over A. Then, (〈H,T〉, τ), k |= ¬ϕ iff (〈T,T〉, τ), k 6|= ϕ.

In the non-metric case, LTL models can be obtained from THT by adding a particular

axiom schema, we call the temporal excluded middle axiom.

Definition 3 (Temporal Excluded Middle)

Given a set of propositional variables A, we define the theory EM(A) as

EM(A)
def
= {�(p ∨ ¬p) | p ∈ A}.

This same axiom schema can also be used to reduce MHT to MTL, assuming that, in

our current context, operator � stands for �[0..ω) as detailed above.

Proposition 5

Let A be a set of atoms. For all MHT interpretation (〈H,T〉, τ) over A, we have that

(〈H,T〉, τ), 0 |= EM(A) iff H = T.

Corollary 2

Let Γ be a metric theory over alphabet A. The MTL models of Γ coincide with the MHT

models of Γ ∪ EM(A).

Interestingly, if an equivalence does not involve implication (or negation), we can just

check it by only considering total models:

Proposition 6

Let ϕ and ψ be metric formulas without implication (and so, without negation either).

Then, ϕ ≡ ψ in MTL iff ϕ ≡ ψ in MHT.

Many tautologies in MHT or its fragments have a dual version depending on the nature

of the operators involved. The following pair of duality properties allows us to save space

and proof effort when listing interesting valid equivalences. We define all pairs of dual

connectives as follows: ⊤/⊥, ∧/∨, UI/RI , ◦I/◦̂I , �I/♦I , SI/TI , •I/•̂I , �I/�I . For any

formula ϕ without implications, we define δ(ϕ) as the result of replacing each connective

by its dual operator.

Then, we get the following corollary of Proposition 6.
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Corollary 3 (Boolean Duality)

Let ϕ and ψ be metric formulas without implication. Then, we have in MHT that ϕ ≡ ψ

iff δ(ϕ) ≡ δ(ψ).

Let UI/SI , RI/TI , ◦I/•I , ◦̂I/•̂I , �I/�I , and ♦I/�I be all pairs of swapped-time

connectives and σ(ϕ) be the replacement in ϕ of each connective by its swapped-time

version. Then, we have the following result for finite traces.

Lemma 1

There exists a mapping ̺ on finite timed HT-traces M of the same length λ ≥ 0 such

that for any k ∈ [0..λ), M, k |= ϕ iff ̺(M), λ−1−k |= σ(ϕ).

Theorem 1 (Temporal Duality Theorem)

A metric formula ϕ is a MHTf -tautology iff σ(ϕ) is a MHTf -tautology.

The next properties capture some distributivity laws for temporal operators with re-

spect to conjunction and disjunction.

Proposition 7

For all metric formulas ϕ, ψ, and χ, the following equivalences hold in MHT:

◦I (ϕ ∨ ψ) ≡ ◦Iϕ ∨ ◦Iψ ϕUI (χ ∨ ψ) ≡ (ϕUI χ) ∨ (ϕUI ψ)

◦I (ϕ ∧ ψ) ≡ ◦Iϕ ∧ ◦Iψ (ϕ ∧ χ) UI ψ ≡ (ϕUI ψ) ∧ (χ UI ψ)

◦̂I (ϕ ∨ ψ) ≡ ◦̂Iϕ ∨ ◦̂Iψ ϕ RI (χ ∧ ψ) ≡ (ϕ RI χ) ∧ (ϕ RI ψ)

◦̂I (ϕ ∧ ψ) ≡ ◦̂Iϕ ∧ ◦̂Iψ (ϕ ∨ χ) RI ψ ≡ (ϕ RI ψ) ∨ (χ RI ψ)

♦I (ϕ ∨ ψ) ≡ ♦Iϕ ∨ ♦Iψ (ϕ ∧ χ) SI ψ ≡ (ϕ SI ψ) ∧ (χ SI ψ)

�I (ϕ ∧ ψ) ≡ �Iϕ ∧�Iψ ϕ SI (χ ∨ ψ) ≡ (ϕ SI χ) ∨ (ϕ SI ψ)

•̂I (ϕ ∨ ψ) ≡ •̂Iϕ ∨ •̂Iψ •I (ϕ ∨ ψ) ≡ •Iϕ ∨ •Iψ

•̂I (ϕ ∧ ψ) ≡ •̂Iϕ ∧ •̂Iψ •I (ϕ ∧ ψ) ≡ •Iϕ ∧ •Iψ

�I (ϕ ∨ ψ) ≡ �Iϕ ∨ �Iψ �I (ϕ ∧ ψ) ≡ �Iϕ ∧�Iψ

(ϕ ∨ χ) TI ψ ≡ (ϕ TI ψ) ∨ (χ TI ψ) ϕTI (χ ∧ ψ) ≡ (ϕTI χ) ∧ (ϕTI ψ)

We can also prove a kind of De Morgan duality between until and release, and analo-

gously, between since and trigger:

Proposition 8

For all metric formulas ϕ and ψ, the following equivalences hold in MHT:

¬ (ϕUI ψ) ≡ ¬ϕ RI ¬ψ ¬ (ϕ SI ψ) ≡ ¬ϕ TI ¬ψ

¬ (ϕ RI ψ) ≡ ¬ϕ UI ¬ψ ¬ (ϕ TI ψ) ≡ ¬ϕ SI ¬ψ

Another interesting result has to do with the effect of extending or stretching the

interval in these operators.

Proposition 9

Let I and J be two intervals satisfying I ⊆ J . For all metric formulas ϕ and ψ, the

following expressions are valid in MHT:

(ϕUI ψ) → (ϕUJ ψ) (ϕ RJ ψ) → (ϕ RI ψ)

(ϕ SI ψ) → (ϕ SJ ψ) (ϕ TJ ψ) → (ϕ TI ψ)
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We observe next the effect of the semantics of always and eventually on truth constants.

If m,n ∈ N, then �[m..n)⊥ means that there is no state in interval [m..n) and ♦[m..n)⊤

means that there is at least one state in this interval. The formula �[m..n)⊤ is a tautology,

whereas ♦[m..n)⊥ is unsatisfiable. The same applies to past operators �[m..n) and �[m..n).

Strict traces

In the rest of this section, we consider a group of results that hold under the assumption

of strict traces, namely, that τ(i) < τ(i + 1) for any pair of consecutive time points.

We can enforce metric models to be traces with a strict timing function τ . This can be

achieved with the simple addition of the axiom �¬◦0⊤. In the following, we assume that

this axiom is included and consider, in this way, strict timing. For instance, a consequence

of strict timing is that one-step operators become definable in terms of other connectives.

For non-empty intervals [m..n) with m < n, we get:

•[m..n)ϕ ≡ �[1..m)⊥ ∧ �[h..n)ϕ

◦[m..n)ϕ ≡ �[1..m)⊥ ∧ ♦[h..n)ϕ where h = max(1,m);

whereas for empty intervals with m ≥ n, we obtain •[m..n)ϕ ≡ ◦[m..n)ϕ ≡ ⊥.

The following equivalences state that interval [0..0] makes all binary metric operators

collapse into their right hand argument formula, whereas unary operators collapse to a

truth constant. For metric formulas ψ and ϕ and for strict traces, we have:

ψ U0 ϕ ≡ ψ R0 ϕ ≡ ϕ (4)

◦0 ϕ ≡ •0 ϕ ≡ ⊥ (5)

◦̂0 ϕ ≡ •̂0 ϕ ≡ ⊤ (6)

The last two lines are precisely an effect of dealing with strict traces. For instance, ◦0 ϕ ≡

⊥ tells us that it is always impossible to have a successor state with the same time (the

time difference is 0) as the current one, regardless of the formula ϕ at hand.

The next lemma allows us to unfold metric operators for single-point time intervals

[n..n] with n > 0.

Lemma 2

For metric formulas ψ and ϕ, strict traces and for n > 0, we have:

ψ Un ϕ ≡ ψ ∧
∨n

i=1 ◦i(ψ Un−i ϕ) (7)

ψ Rn ϕ ≡ ψ ∨
∧n

i=1 ◦̂i(ψ Rn−i ϕ) (8)

♦nϕ ≡
∨n

i=1 ◦i♦n−iϕ (9)

�nϕ ≡
∧n

i=1 ◦̂i�n−iϕ (10)

The same applies for the dual past operators.

Going one step further, we can also unfold until and release for intervals of the form

[0..n] with the application of the following result.

Lemma 3

For metric formulas ψ and ϕ, strict traces and for n > 0, we have:

ψ U≤n ϕ ≡ ϕ ∨ (ψ ∧
∨n

i=1 ◦i(ψ U≤(n−i) ϕ)) (11)

ψ R≤n ϕ ≡ ϕ ∧ (ψ ∨
∧n

i=1 ◦̂i(ψ R≤(n−i) ϕ)) (12)
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The same applies for the dual past operators.

Finally, the next theorem contains a pair of equivalences that, when dealing with finite

intervals, can be used to recursively unfold until and release into combinations of next

with Boolean operators (an analogous result applies for since, trigger and previous due

to temporal duality).

Theorem 2 (Next-unfolding)

For metric formulas ψ and ϕ, strict traces and for m,n ∈ N such that 0 < m < n− 1, we

have:

ψ U[m..n) ϕ ≡ ψ ∧
(∨m

i=1 ◦i(ψ U[m−i..n−i) ϕ) ∨
∨n−1

i=m+1 ◦i(ψ U≤(n−1−i) ϕ)
)

(13)

ψ R[m..n) ϕ ≡ ψ ∨
(∧m

i=1 ◦̂i(ψ R[(m−i)..(n−i)) ϕ) ∧
∧n−1

i=m+1 ◦̂i(ψ R≤(n−1−i) ϕ)
)

(14)

The same applies for the dual past operators.

As an example, consider the metric formula pU[2..4) q.

pU[2..4) q ≡ p ∧
(∨2

i=1 ◦i(p U[(2−i)..(4−i)) q) ∨
∨3

i=2+1 ◦i(p U≤(3−i) q)
)

≡ p ∧
(
◦1(pU[1..3) q) ∨ ◦2(p U≤1 q) ∨ ◦3(p U0 q)

)

≡ p ∧
(
◦1(pU[1..3) q) ∨ ◦2(q ∨ (p ∧ ◦1q)) ∨ ◦3q

)

≡ p ∧ (◦1(◦1(q ∨ (p ∧ ◦1q)) ∨ ◦2q) ∨ ◦2(q ∨ (p ∧ ◦1q)) ∨ ◦3q)

Another useful result that can be applied to unfold metric operators is the following

range splitting theorem.

Theorem 3 (Range splitting)

For metric formulas ψ and ϕ and strict traces, we have

ψ U[m..n) ϕ ≡ (ψ U[m..i) ϕ) ∨ (ψ U[i..n) ϕ) for all i ∈ [m..n)

ψ R[m..n) ϕ ≡ (ψ R[m..i) ϕ) ∧ (ψ R[i..n) ϕ) for all i ∈ [m..n)

The same applies for the dual past operators.

A metric formula ϕ is said to be in unary normal form, if intervals only affect unary tem-

poral operators, while binary operators U, R, S, T are only used in their temporal form,

without any attached intervals. The following proposition, inspired by (D’Souza and Tabareau 2004),

allows us to translate any arbitrary metric formula into unary normal form.

Proposition 10

For metric formulas ϕ and ψ, strict traces, and for m and n such that m > 0, the following
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equivalences hold in MHT:

ϕU[m..n) ψ ≡ ♦[m..n)ψ ∧�[0..m) (ϕU (ϕ ∧ ◦ψ)) ϕU[0..n) ψ ≡ ♦[0..n)ψ ∧ ϕU ψ

ϕU[m..n] ψ ≡ ♦[m..n]ψ ∧�[0..m) (ϕU (ϕ ∧ ◦ψ)) ϕU[0..n] ψ ≡ ♦[0..n]ψ ∧ ϕU ψ

ϕU(m..n) ψ ≡ ♦(m..n)ψ ∧�[0..m] (ϕU (ϕ ∧ ◦ψ)) ϕU(0..n) ψ ≡ ♦(0..n)ψ ∧ ϕU (ϕ ∧ ◦ψ)

ϕU(m..n] ψ ≡ ♦(m..n]ψ ∧�[0..m] (ϕU (ϕ ∧ ◦ψ)) ϕU(0..n] ψ ≡ ♦(0..n]ψ ∧ ϕU (ϕ ∧ ◦ψ)

ϕ R[m..n) ψ ≡ �[m..n)ψ ∨ ♦[0..m)

(
ϕ R

(
ϕ ∨ ◦̂ψ

))
ϕ R[0..n) ψ ≡ �[0..n)ψ ∨ ϕ R ψ

ϕ R[m..n] ψ ≡ �[m..n]ψ ∨ ♦[0..m)

(
ϕ R

(
ϕ ∨ ◦̂ψ

))
ϕ R[0..n] ψ ≡ �[0..n]ψ ∨ ϕ R ψ

ϕ R(m..n) ψ ≡ �(m..n)ψ ∨ ♦[0..m]

(
ϕ R

(
ϕ ∨ ◦̂ψ

))
ϕ R(0..n) ψ ≡ �(0..n)ψ ∨ ϕ R

(
ϕ ∨ ◦̂ψ

)

ϕ R(m..n] ψ ≡ �(m..n]ψ ∨ ♦[0..m]

(
ϕ R

(
ϕ ∨ ◦̂ψ

))
ϕ R(0..n] ψ ≡ �(0..n]ψ ∨ ϕ R

(
ϕ ∨ ◦̂ψ

)

ϕ S[m..n) ψ ≡ �[m..n)ψ ∧�[0..m) (ϕ S (ϕ ∧ •ψ)) ϕ S[0..n) ψ ≡ �[0..n)ψ ∧ ϕ S ψ

ϕ S[m..n] ψ ≡ �[m..n]ψ ∧�[0..m) (ϕ S (ϕ ∧ •ψ)) ϕ S[0..n] ψ ≡ �[0..n]ψ ∧ ϕ S ψ

ϕ S(m..n) ψ ≡ �(m..n)ψ ∧�[0..m] (ϕ S (ϕ ∧ •ψ)) ϕ S(0..n) ψ ≡ �(0..n)ψ ∧ ϕ S (ϕ ∧ •ψ)

ϕ S(m..n] ψ ≡ �(m..n]ψ ∧�[0..m] (ϕ S (ϕ ∧ •ψ)) ϕ S(0..n] ψ ≡ �(0..n]ψ ∧ ϕ S (ϕ ∧ •ψ)

ϕT[m..n) ψ ≡ �[m..n)ψ ∨ �[0..m)

(
ϕ T

(
ϕ ∨ •̂ψ

))
ϕ T[0..n) ψ ≡ �[0..n)ψ ∨ ϕT ψ

ϕT[m..n] ψ ≡ �[m..n]ψ ∨ �[0..m)

(
ϕ T

(
ϕ ∨ •̂ψ

))
ϕ T[0..n] ψ ≡ �[0..n]ψ ∨ ϕ T ψ

ϕ T(m..n) ψ ≡ �(m..n)ψ ∨ �[0..m]

(
ϕ T

(
ϕ ∨ •̂ψ

))
ϕT(0..n) ψ ≡ �(0..n)ψ ∨ ϕT

(
ϕ ∨ •̂ψ

)

ϕT(m..n] ψ ≡ �(m..n]ψ ∨ �[0..m]

(
ϕ T

(
ϕ ∨ •̂ψ

))
ϕ T(0..n] ψ ≡ �(0..n]ψ ∨ ϕT

(
ϕ ∨ •̂ψ

)

Corollary 4

Any metric formula can be translated into unary normal form (assuming strict traces).

3 Metric Equilibrium Logic

As in traditional Equilibrium Logic (Pearce 1997), non-monotonicity is achieved in MEL

by a selection among the MHT models of a theory. In what follows, we keep assuming

the use of strict traces.

Definition 4 (Metric Equilibrium/Stable Model)

Let S be some set of timed HT-traces. A total timed HT-trace (〈T,T〉, τ) ∈ S is a

metric equilibrium model of S iff there is no other H < T such that (〈H,T〉, τ) ∈ S.

The timed trace (T, τ) is called a metric stable model of S.

We talk about metric equilibrium (or metric stable) models of a theory Γ when S =

MHT(Γ), and we write MEL(Γ, λ) and MEL(Γ) to stand for the metric equilibrium

models of MHT(Γ, λ) and MHT(Γ), respectively. Metric Equilibrium Logic (MEL) is the

non-monotonic logic induced by the metric equilibrium models of metric theories. As

before, variants MELf and MELω refer to MEL when restricted to traces of finite and

infinite length, respectively.

Proposition 11

The set of metric equilibrium models of Γ can be partitioned on the trace lengths, namely,⋃ω

λ=0 MEL(Γ, λ) = MEL(Γ).
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Back to our example, suppose we have the theory Γ consisting of formulas (1)-(3), viz.

�(red ∧ green → ⊥) (1)

�(¬green → red) (2)

�
(
push → ♦[1..15)(�≤30 green)

)
(3)

In the example, we abbreviate subsets of the set of atoms {green, push, red} as strings

formed by their initials: For instance, pr stands for {push, red}. For the sake of readability,

we represent traces (T0, T1, T2) as T0 · T1 · T2. Consider first the total models of Γ: the

first two rules force one of the two atoms green or red to hold at every state. Besides,

we can choose adding push or not, but if we do so, green should hold later on according

to (3). Now, for any total model (〈T,T〉, τ), 0 |= Γ where green or push hold at some

states, we can always form H in which we remove those atoms from all the states and

it is not difficult to see that (〈H,T〉, τ), 0 |= Γ, so (〈T,T〉, τ) is not in equilibrium. As

a consequence, metric equilibrium models of Γ have the form (〈T,T〉, τ) being T =

〈Ti〉i∈[0..λ) with Ti = {red} for all i ∈ [0..λ) and any arbitrary strict timing function τ .

To illustrate non-monotonicity, suppose now that we have Γ′ = Γ ∪ {◦5 push} and, for

simplicity, consider length λ = 3 and traces of the form T0 · T1 · T2. Again, it is not hard

to see that total models with green or push in state T0 are not in equilibrium, being the

only option T0 = {red}. The same happens for green at T1, so we get T1 = {push, red}

as only candidate for equilibrium model. However, since push ∈ T1, the only possibility

to satisfy the consequent of (3) is having green ∈ T2. Again, we can also see that adding

push at that state would not be in equilibrium so that the only trace in equilibrium is

T0 = {red}, T1 = {push, red} and T2 = {green}. As for the timing, τ(0) = 0 is fixed,

and satisfaction of formula (◦5 push) fixes τ(1) = 5. Then, from (3) we conclude that

green must hold at any moment starting at t between 5 + 1 and 5 + 14 and is kept true

in all states between t and t+ 30 time units, but as λ = 2, this means just t. To sum up,

we get 14 metric equilibrium models with τ(0) = 0 and τ(1) = 5 fixed, but varying τ(2)

between 6 and 19.

We close this section by considering strong equivalence. Two metric theories Γ1 and

Γ2 are strongly equivalent when MEL(Γ1 ∪ ∆) = MEL(Γ2 ∪ ∆) for any metric theory

∆. This means that we can safely replace Γ1 by Γ2 in any common context ∆ and still

get the same set of metric equilibrium models. The following result shows that checking

strong equivalence for MEL collapses to regular equivalence in the monotonic logic of

MHT.

Theorem 4

Let Γ1 and Γ2 be two metric temporal theories built over a finite alphavet A. Then, Γ1

and Γ2 are strongly equivalent iff Γ1 and Γ2 are MHT-equivalent.

4 Translation into Monadic Quantified Here-and-There with Difference

Constraints

In a similar spirit as the well-known translation of Kamp (1968) from LTL to first-

order logic, we consider a translation from MHT into a first-order version of HT, more

precisely, a function-free fragment of the logic of Quantified Here-and-There with static
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domains (QHT s in (Pearce and Valverde 2008)). The word static means that the first-

order domain D is fixed for both worlds, here and there. We refer to our fragment of

QHT s as monadic QHT with difference constraints (or QHT [4δ] for short). In this logic,

the static domain is a subset D ⊆ N of the natural numbers containing at least the

element 0 ∈ D. Intuitively, D corresponds to the set of relevant time points (i.e. those

associated with states) considered in each model. Note that the first state is always

associated with time 0 ∈ D.

The syntax of QHT [4δ] is the same as for first-order logic with several restrictions:

First, there are no functions other than the 0-ary function (or constant) ‘0’ always in-

terpreted as the domain element 0 (when there is no ambiguity, we drop quotes around

constant names). Second, all predicates are monadic except for a family of binary pred-

icates of the form 4δ with δ ∈ Z ∪ {ω} where δ is understood as part of the predicate

name. For simplicity, we write x 4δ y instead of 4δ(x, y) and x 4δ y 4δ′ z to stand for

x 4δ y∧y 4δ′ z. Unlike monadic predicates, the interpretation of x 4δ y is static (it does

not vary in worlds here and there) and intuitively means that the difference x−y in time

points is smaller or equal than δ. A first-order formula ϕ satisfying all these restrictions

is called a first-order metric formula or FOM-formula for short. A formula is a sentence

if it contains no free variables. For instance, we will see that the metric formula (3) can

be equivalently translated into the FOM-sentence:

∀x (0 40 x ∧ push(x) → ∃y (x 4−1 y 414 x ∧ ∀z (y 40 z 430 y → green(z)))) (15)

We sometimes handle partially grounded FOM sentences where some variables in pred-

icate arguments have been directly replaced by elements from D. For instance, if we

represent (15) as ∀x ϕ(x), the expression ϕ(4) stands for:

0 40 4 ∧ push(4) → ∃y (4 4−1 y 414 4 ∧ ∀z (y 40 z 430 y → green(z)))

and corresponds to a partially grounded FOM-sentence where the domain element 4 is

used as predicate argument in atoms 0 40 4 and push(4).

A QHT [4δ]-signature is simply a set of monadic predicates P . Given D as above,

Atoms(D,P) denotes the set of all ground atoms p(n) for every monadic predicate p ∈ P

and every n ∈ D. A QHT [4δ]-interpretation for signature P has the form 〈D,H, T 〉

where D ⊆ N, 0 ∈ D and H ⊆ T ⊆ Atoms(D,P).

Definition 5 (QHT [4δ]-satisfaction; (Pearce and Valverde 2008))

A QHT [4δ]-interpretation M = 〈D,H, T 〉 satisfies a (partially grounded) FOM-sentence

ϕ, written M |= ϕ, if the following conditions hold:

1. M |= ⊤ and M 6|= ⊥

2. M |= p(t) iff p(t) ∈ H

3. M |= t1 4δ t2 iff t1 − t2 ≤ δ with t1, t2 ∈ D

4. M |= ϕ ∧ ψ iff M |= ϕ and M |= ψ

5. M |= ϕ ∨ ψ iff M |= ϕ or M |= ψ

6. M |= ϕ→ ψ iff 〈D,X, T 〉 6|= ϕ or 〈D,X, T 〉 |= ψ for X ∈ {H,T }

7. M |= ∀x ϕ(x) iff M |= ϕ(t) for all t ∈ D

8. M |= ∃x ϕ(x) iff M |= ϕ(t) for some t ∈ D

We can read the expression x 4δ y as just another way of writing the difference constraint
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x − y ≤ δ. When δ is an integer, we may see it as a lower bound x − δ ≤ y for y or

as an upper bound x ≤ y + δ for x. For δ = ω, x 4ω y is equivalent to ⊤ since it

amounts to the comparison x− y ≤ ω. An important observation is that this difference

predicate 4δ satisfies the excluded middle axiom, that is, the following formula is a

QHT [4δ]-tautology:

∀x∀y ( x 4δ y ∨ ¬(x 4δ y) )

for every δ ∈ Z ∪ {ω}. We provide next several useful abbreviations:

x ≺δ y
def
= ¬(y 4−δ x)

x ≤ y
def
= x 40 y x 6= y

def
= ¬(x = y)

x = y
def
= (x ≤ y) ∧ (y ≤ x) x < y

def
= (x ≤ y) ∧ (x 6= y)

For any pair ⊙, ⊕ of comparison symbols, we extend the abbreviation x⊙ y⊕ z to stand

for the conjunction x ⊙ y ∧ y ⊕ z. Note that the above derived order relation x ≤ y

captures the one used in Kamp’s original translation (Kamp 1968) for LTL.

Equilibrium models for first-order theories are defined as in (Pearce and Valverde 2008).

Definition 6 (Quantified Equilibrium Model; (Pearce and Valverde 2008))

Let ϕ be a first-order formula. A total QHT [4δ]-interpretation 〈D,T, T 〉 is a first-order

equilibrium model of ϕ if 〈D,T, T 〉 |= ϕ and there is no H ⊂ T satisfying 〈D,H, T 〉 |= ϕ.

Before presenting our translation, we need to remark that we consider non-empty

intervals of the form [m..n) with m < n.

Definition 7 (First-order encoding)

Let ϕ be a metric formula over A. We define the translation [ϕ]x of ϕ for some time point

x ∈ N as follows:

[⊥]x
def
= ⊥

[p]x
def
= p(x) for any p ∈ A

[ϕ⊗ ψ]x
def
= [ϕ]x ⊗ [β]x for any connective ⊗ ∈ {∧,∨,→}

[◦[m..n)ψ]x
def
= ∃y (x < y ∧ (¬∃z x < z < y) ∧ x 4−m y ≺n x ∧ [ψ]y)

[◦̂[m..n)ψ]x
def
= ∀y (x < y ∧ (¬∃z x < z < y) ∧ x 4−m y ≺n x→ [ψ]y)

[ϕU[m..n) ψ]x
def
= ∃y (x ≤ y ∧ x 4−m y ≺n x ∧ [ψ]y ∧ ∀z (x ≤ z < y → [ϕ]z))

[ϕ R[m..n) ψ]x
def
= ∀y ((x ≤ y ∧ x 4−m y ≺n x) → ([ψ]y ∨ ∃z (x ≤ z < y ∧ [ϕ]z)))

[•[m..n)ψ]x
def
= ∃y (y < x ∧ ¬∃z (y < z < x) ∧ x ≺n y 4−m x ∧ [ψ]y)

[•̂[m..n)ψ]x
def
= ∀y ((y < x ∧ ¬∃z (y < z < x) ∧ x ≺n y 4−m x) → [ψ]y)

[ϕ S[m..n) ψ]x
def
= ∃y (y ≤ x ∧ x ≺n y 4−m x ∧ [ψ]y ∧ ∀ (y < z ≤ x→ [ϕ]z))

[ϕ T[m..n) ψ]x
def
= ∀y ((y ≤ x ∧ x ≺n y 4−m x) → ([ψ]y ∨ ∃z (y < z ≤ x ∧ [ϕ]z)))

Each quantification introduces a new variable. For instance, consider the translation

of (3) at point x = 0. Let us denote (3) as �(push → α) where α is the formula
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♦[1..15)(�≤30 green). Then, if we translate the outermost operator �, we get:

[�(push → α)]0

= [⊥ R[0..ω) (push → α)]0

= ∀y ((0 ≤ y ∧ 0 4−0 y ≺ω 0) → ([push → α]y ∨ ∃z (0 ≤ z < y ∧ ⊥)))

≡ ∀y (0 ≤ y ∧ 0 ≤ y ∧⊤ → ([push]y → [α]y) ∨⊥)

≡ ∀y (0 ≤ y ∧ push(y) → [α]y)

≡ ∀x (0 ≤ x ∧ push(x) → [α]x)

where we renamed the quantified variable for convenience. If we proceed further, with α

as ♦[1..15)β and letting β be (�≤30 green), we obtain:

[α]x = [♦[1..15)β]x

= [⊤ U[1..15) β]x

= ∃y (x ≤ y ∧ x 4−1 y ≺15 x ∧ [β]y ∧ ∀z (x ≤ z < y → ⊤))

≡ ∃y (x 4−1 y ≺15 x ∧ [β]y) ≡ ∃y (x 4−1 y 414 x ∧ [β]y)

Finally, the translation of β at y amounts to:

[�≤30 green]y

= [⊥ R[0..30) green]y

= ∀y′ ( y ≤ y′ ∧ y 4−0 y
′ ≺30 y → green(y′) ∨ ∃z (y ≤ z < y′ ∧ ⊥) )

≡ ∀y′ ( y ≤ y′ ∧ y 40 y
′ ∧ y′ ≺30 y → green(y′) )

≡ ∀y′ ( y 40 y
′ ≺30 y → green(y′) )

≡ ∀z ( y 40 z ≺30 y → green(z) )

so that, when joining all steps together, we get the formula (15) given above.

The following model correspondence between MHTf and QHT [4δ] interpretations can

be established. Given a timed trace (〈H,T〉, τ) of length λ > 0 for signature A, we define

the first-order signature P = {p/1 | p ∈ A} and a corresponding QHT [4δ] interpretation

〈D,H, T 〉 where D = {τ(i) | i ∈ [0..λ)}, H = {p(τ(i)) | i ∈ [0..λ) and p ∈ Hi} and

T = {p(τ(i)) | i ∈ [0..λ) and p ∈ Ti}. Under the assumption of strict semantics, the

following model correspondence can be proved by structural induction.

Theorem 5

Let ϕ be a metric temporal formula, (〈H,T〉, τ) a timed trace, 〈D,H, T 〉 its corresponding

QHT [4δ] interpretation and i ∈ [0..λ).

(〈H,T〉, τ), i |= ϕ iff 〈D,H, T 〉 |= [ϕ]τ(i) (16)

(〈T,T〉, τ), i |= ϕ iff 〈D,T, T 〉 |= [ϕ]τ(i) (17)

5 Discussion

Seen from far, we have presented an extension of the logic of Here-and-There with qual-

itative and quantitative temporal constraints. More closely, our logics MHT and MEL

can be seen as metric extensions of the linear-time logics THT and TEL obtained by con-

straining temporal operators by intervals over natural numbers. The current approach



Metric Equilibrium Logic 15

generalizes the previous metric extension of TEL from (Cabalar et al. 2020) by uncou-

pling the ordinal position i of a state in the trace from its location in the time line

τ(i), which indicates now the elapsed time since the beginning of that trace. Thus, while

♦[5..5] p meant in (Cabalar et al. 2020) that p must hold exactly after 5 transitions, it

means here that there must be some future state (after n > 0 transitions) satisfying p

and located 5 time units later. As a first approach, we have considered time points as

natural numbers, τ(i) ∈ N. Our choice of a discrete rather than continuous time domain

is primarily motivated by our practical objective to implement the logic programming

fragment of MEL on top of existing temporal ASP systems, like telingo, and thus to avoid

undecidability.

The need for quantitative time constraints is well recognized and many metric exten-

sions have been proposed. For instance, actions with durations are considered in (Son et al. 2004)

in an action language adapting a state-based approach. Interestingly, quantitative time

constraints also gave rise to combining ASP with Constraint Solving (Baselice et al. 2005);

this connection is now semantically reinforced by our translation advocating the enrich-

ment of ASP with difference constraints. Even earlier, metric extensions of Logic Pro-

gramming were proposed in (Brzoska 1995). As well, metric extensions of Datalog are in-

troduced in (Wa lega et al. 2019) and applied to stream reasoning in (Wa lega et al. 2019).

An ASP-based approach to stream reasoning is elaborated in abundance in (Beck et al. 2018).

Streams can be seen as infinite traces. Hence, apart from certain dedicated concepts, like

time windows, such approaches bear a close relation to metric reasoning. Detailing this

relationship is an interesting topic of future research. More remotely, metric constructs

were used in trace alignment (De Giacomo et al. 2020), scheduling (Luo et al. 2016), and

an extension to Golog (Hofmann and Lakemeyer 2019).
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Appendix A Proofs

Proof of Proposition 1.

M, k |= I

iff M, k |= ¬•⊤ by Definition of I

iff M, k |= ¬•[0..ω)⊤ by Definition of •

iff M, k 6|= •[0..ω)⊤ by Proposition 4 and 3

iff M, k − 1 6|= ⊤ or k = 0 or τ(k) − τ(k − 1) 6∈ [0..ω) by Definition 2(6)

iff k = 0 or τ(k) − τ(k − 1) 6∈ [0..ω) M, k |= ⊤ for all k ∈ [0..λ)

iff k = 0 since τ(k − 1) ≤ τ(k)
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M, k |= •̂Iϕ

iff M, k |= •Iϕ ∨ ¬•I⊤ by Definition of •̂I

iff M, k |= •Iϕ ∨ •̂I¬⊤ ¬•Iφ ≡ •̂I¬φ

iff M, k |= •Iϕ ∨ •̂I⊥ ¬⊤ ≡ ⊥

iff M, k − 1 |= ϕ and τ(k) − τ(k − 1) ∈ I or

k = 0 or M, k − 1 |= ⊥ or τ(k) − τ(k − 1) 6∈ I by Definition 2(6) and •̂I

iff M, k − 1 |= ϕ and τ(k) − τ(k − 1) ∈ I or

k = 0 or τ(k) − τ(k − 1) 6∈ I M, k 6|= ⊥ for all k ∈ [0..λ)

iff k = 0 or M, k − 1 |= ϕ or or τ(k) − τ(k − 1) 6∈ I by some propositional reasoning

M, k |= �Iϕ

iff M, k |= ⊤ SI ϕ by Definition of �I

iff for some i ∈ [0..k] with τ(k) − τ(i) ∈ I

we have M, i |= ϕ and M, j |= ⊤ for all j ∈ (i..k] by Definition 2(7)

iff M, i |= ϕ for some i ∈ [0..k] with τ(k) − τ(i) ∈ I M, k |= ⊤ for all k ∈ [0..λ)

M, k |= �Iϕ

iff M, k |= ⊥ TI ϕ by Definition of �I

iff for all i ∈ [0..k] with τ(k) − τ(i) ∈ I,we have M, i |= ϕ or

M, j |= ⊥ for some j ∈ (i..k] by Definition 2(8)

iff M, i |= ϕ for all 0 ∈ [k..λ) with τ(i) − τ(k) ∈ I M, k 6|= ⊥ for all k ∈ [0..λ)

For the resp. past cases 16-19 the same reasoning applies.

Proof of Proposition 2. For the complete definition of THT satisfaction, we refer

the reader to (Aguado et al. 2023). Here, it suffices to observe that, when we use interval

I = [0..ω) in all operators, all conditions x ∈ I in Definition 2 (MHT satisfaction) become

trivially true, so that the use of τ is irrelevant and the remaining conditions happen to

coincide with THT satisfaction.

Proof of Proposition 3. The proof follows by structural induction on the formula ϕ.

Note that universal quantification of k ∈ [0..λ) is part of the induction hypothesis. In

what follows, we denote M = (〈H,T〉, τ).

• If ϕ = ⊥, the property holds trivially because M, k 6|= ⊥.

• If ϕ is an atom p, M, k |= p implies p ∈ Hk ⊆ Tk and so (〈T,T〉, τ), k |= p
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• For conjunction, disjunction and implication the proof follows the same steps as

with persistence in (non-temporal) HT

• If ϕ = ◦Iα then k + 1 < λ, τ(k+1) − τ(k) ∈ I and M, k+1 |= α. By induc-

tion, the latter implies (〈T,T〉, τ), k+1 |= α so we get the conditions to conclude

(〈T,T〉, τ), k |= ◦Iα.

• If ϕ = α UI β then M, k |= α UI β implies that for some j ∈ [k..λ) with τ(j) −

τ(k) ∈ I, we have M, j |= β and M, i |= α for all i ∈ [k..j). Since the induction

hypothesis applies on any time point, we can apply it to subformulas β and α to

conclude for some j ∈ [k..λ) with τ(j) − τ(k) ∈ I, we have (〈T,T〉, τ), j |= β and

(〈T,T〉, τ), i |= α for all i ∈ [k..j). But the latter amounts to (〈T,T〉, τ), k |= αUI β.

• The proofs for •I and SI are completely analogous to the two previous steps,

respectively.

Proof of Corollary 1. We claim that MHTf is satisfiable iff MTLf is. This together

with the decidability of MTLf (Ouaknine and Worrell 2007) would imply that MHTf is

satisfiable.

The claim is proved as follows: from left to right, let us assume that ϕ is MHTf -

satisfiable. Therefore, there exists a MHTf model (〈H,T〉, τ) such that (〈H,T〉, τ), 0 |= ϕ.

By Proposition 3, (〈T,T〉, τ), 0 |= ϕ. Therefore, ϕ is MTLf -satisfiable.

Conversely, if ϕ is MTLf -satisfiable then there exists a MTLf model (T, τ) such that

(T, τ), 0 |= ϕ. (T, τ) can be turned into the MHTf model (〈T,T〉, τ) satisfying ϕ at 0.

Therefore, ϕ is MHTf -satisfiable.

Proof of Proposition 4. Note that (〈H,T〉, τ), k |= ¬ϕ amounts to (〈H,T〉, τ), k |=

ϕ→ ⊥ and the latter is equivalent to M, k 6|= ϕ or M, k |= ⊥, for both M = (〈H,T〉, τ)

and M = (〈T,T〉, τ). Since M, k |= ⊥ never holds, we get that this condition is equiv-

alent to both (〈H,T〉, τ), k 6|= ϕ and (〈T,T〉, τ), k 6|= ϕ. However, by Proposition 3

(persistence), the latter implies the former, so we get that this is just equivalent to

(〈T,T〉, τ), k 6|= ϕ.

Proof of Proposition 5. From left to right, assume by contradiction that H 6= T,

Since H ≤ T, it follows that there exists 0 ≤ i < λ such that Hi ⊂ Ti. This means

that there exists p ∈ A such that p ∈ Ti \ Hi. Therefore, (〈H,T〉, τ) 6|= p ∨ ¬p. Since

i ≥ 0 and, clearly, τ(i) − τ(0) ∈ [0..ω), we obtain that (〈H,T〉, τ), 0 6|= � (p ∨ ¬p). As

a consequence we get (〈H,T〉, τ), 0 6|= EM(A): a contradiction. Conversely, assume by

contradiction that (〈H,T〉, τ), 0 6|= EM(A). Therefore, there exists 0 ≤ i < λ such that

τ(i) − τ(0) ∈ [0..ω) and (〈H,T〉, τ), i 6|= p ∨ ¬p. This means that p ∈ Ti \Hi so Hi ⊂ Ti.

As a consequence, H 6= T: a contradiction.

Proof of Proposition 6. The proof follows similar steps to Proposition 10 in (Aguado et al. 2023)

for the non-metric case (and LTL instead of MTL). For a proof sketch, note that if no

implication or negation is involved, the evaluation of the formula is exclusively performed

on trace H, while the there-component T is never used, becoming irrelevant (we are free

to choose any trace T ≥ H). Thus, checking the equivalence on total traces (〈H,H〉, τ)

does not lose generality, whereas total traces exactly correspond to MTL satisfaction.
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Proof of Lemma 1. The proof follows similar steps to Lemma 2 in (Aguado et al. 2023)

for the non-metric case. Again, we define ρ(M) has the timed trace (〈H′,T′〉, τ ′) where

H ′
i = Hλ−1−i and T ′

i = Tλ−1−i for all i ∈ [0..λ). The only difference here is that we

must also “reverse” the time function τ defining τ ′(i) = τ(λ − 1) − τ(i) to keep the

same relative distances but in reversed order. Then, the proof follows from the complete

temporal symmetry of satisfaction of operators (when the trace is finite).

Proof of Theorem 1. The proof follows similar steps to Theorem 3 in (Aguado et al. 2023)

for the non-metric case but relying here on Lemma 1 instead.

Proof of Proposition 7.

M, k |= ◦I (ϕ ∨ ψ)

iff M, k + 1 |= ϕ ∨ ψ and τ(k + 1) − τ(k) ∈ I by Definition 2(9)

iff (M, k + 1 |= ϕ or M, k + 1 |= ψ) and τ(k + 1) − τ(k) ∈ I by Definition 2(4)

iff (M, k + 1 |= ϕ and τ(k + 1) − τ(k) ∈ I) by Distributivity

or (M, k + 1 |= ψ and τ(k + 1) − τ(k) ∈ I)

iff M, k |= ◦Iϕ ∨ ◦Iψ by Definition 2(9)

M, k |= ◦I (ϕ ∧ ψ)

iff M, k + 1 |= ϕ ∧ ψ and τ(k + 1) − τ(k) ∈ I by Definition 2(9)

iff (M, k + 1 |= ϕ and M, k + 1 |= ψ) and τ(k + 1) − τ(k) ∈ I by Definition 2(3)

iff (M, k + 1 |= ϕ and τ(k + 1) − τ(k) ∈ I) by Distributivity

and (M, k + 1 |= ψ and τ(k + 1) − τ(k) ∈ I)

iff M, k |= ◦Iϕ ∧ ◦Iψ by Definition 2(9)

M, k |= ◦̂I (ϕ ∨ ψ)

iff k + 1 = λ or M, k + 1 |= ϕ ∨ ψ or τ(k + 1) − τ(k) 6∈ I by Proposition 1(17)

iff k + 1 = λ or (M, k + 1 |= ϕ or M, k + 1 |= ψ) or τ(k + 1) − τ(k) 6∈ I by Definition 2(4)

iff (k + 1 = λ or M, k + 1 |= ϕ or τ(k + 1) − τ(k) 6∈ I) by Distributivity

or (k + 1 = λ or M, k + 1 |= ψ or τ(k + 1) − τ(k) 6∈ I)

iff M, k |= ◦̂Iϕ ∨ ◦̂Iψ by Proposition 1(17)
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M, k |= ◦̂I (ϕ ∧ ψ)

iff k + 1 = λ or M, k + 1 |= ϕ ∧ ψ or τ(k + 1) − τ(k) 6∈ I by Proposition 1(17)

iff k + 1 = λ or (M, k + 1 |= ϕ and M, k + 1 |= ψ) or τ(k + 1) − τ(k) 6∈ I by Definition 2(3)

iff (k + 1 = λ or M, k + 1 |= ϕ or τ(k + 1) − τ(k) 6∈ I) by Distributivity

and (k + 1 = λ or M, k + 1 |= ψ or τ(k + 1) − τ(k) 6∈ I)

iff M, k |= ◦̂Iϕ ∧ ◦̂Iψ by Proposition 1(17)

M, k |= ♦I (ϕ ∨ ψ)

iff M, i |= ϕ ∨ ψ for some i ∈ [k..λ) with τ(i) − τ(k) ∈ I by Definition 2(18)

iff (M, i |= ϕ or M, i |= ψ) for some i ∈ [k..λ) with τ(i) − τ(k) ∈ I by Definition 2(4)

iff (M, i |= ϕ for some i ∈ [k..λ) with τ(i) − τ(k) ∈ I) by Distributivity

or (M, i |= ψ for some i ∈ [k..λ) with τ(i) − τ(k) ∈ I)

iff M, k |= ♦Iϕ ∨ ♦Iψ by Definition 2(18)

M, k |= �I (ϕ ∧ ψ)

iff M, i |= ϕ ∧ ψ for all i ∈ [k..λ) with τ(i) − τ(k) ∈ I by Definition 2(19)

iff (M, i |= ϕ and M, i |= ψ) for all i ∈ [k..λ) with τ(i) − τ(k) ∈ I by Definition 2(3)

iff (M, i |= ϕ for some i ∈ [k..λ) with τ(i) − τ(k) ∈ I) by Distributivity

and (M, i |= ψ for some i ∈ [k..λ) with τ(i) − τ(k) ∈ I)

iff M, k |= �Iϕ ∧�Iψ by Definition 2(19)

M, k |= ϕUI (χ ∨ ψ)

iff M, i |= χ ∨ ψ for some i ∈ [k..λ) with τ(i) − τ(k) ∈ I

and M, j |= ϕ for all j ∈ [k..i) by Definition 2(10)

iff (M, i |= χ or M, i |= ψ) for some i ∈ [k..λ) with τ(i) − τ(k) ∈ I

and M, j |= ϕ for all j ∈ [k..i) by Definition 2(3)

iff M, i |= χ for some i ∈ [k..λ) with τ(i) − τ(k) ∈ I or by Distributivity

M, i |= ψ for some i ∈ [k..λ) with τ(i) − τ(k) ∈ I

and M, j |= ϕ for all j ∈ [k..i)

iff M, k |= (ϕUI χ) ∨ (ϕUI ψ) by Definition 2(10)
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M, k |= (ϕ ∧ χ) UI ψ

iff M, i |= ψ for some i ∈ [k..λ) with τ(i) − τ(k) ∈ I

and M, j |= ϕ ∧ ψ for all j ∈ [k..i) by Definition 2(10)

iff M, i |= ψ for some i ∈ [k..λ) with τ(i) − τ(k) ∈ I by Definition 2(3)

and M, j |= ϕ and M, j |= ψ for all j ∈ [k..i)

iff M, i |= ψ for some i ∈ [k..λ) with τ(i) − τ(k) ∈ I by Distributivity

and M, j |= ϕ for all j ∈ [k..i) and

M, i |= ψ for some i ∈ [k..λ) with τ(i) − τ(k) ∈ I

and M, j |= χ for all j ∈ [k..i)

iff M, k |= (ϕUI ψ) and M, k |= (χUI ψ) by Definition 2(10)

M, k |= ϕ RI (χ ∧ ψ)

iff for all i with τ(i) − τ(k) ∈ I, we have by Definition 2(11)

M, i |= χ ∧ ψ or M, j |= ϕ for some j ∈ [k..i)

iff for all i with τ(i) − τ(k) ∈ I, we have

M, i |= χ and M, i |= ψ or M, j |= ϕ for some j ∈ [k..i) by Definition 2(3)

iff for all i with τ(i) − τ(k) ∈ I, we have

M, i |= χ or M, j |= ϕ for some j ∈ [k..i)

and iff for all i with τ(i) − τ(k) ∈ I, we have

M, i |= ψ or M, j |= ϕ for some j ∈ [k..i) by Distributivity

iff M, k |= (ϕ RI χ) and (ϕ RI ψ) by Definition 2(11)

iff M, k |= (ϕ RI χ) ∧ (ϕ RI ψ) by Definition 2(3)

M, k |= (ϕ ∨ χ) RI ψ

iff for all i with τ(i) − τ(k) ∈ I, we have by Definition 2(11)

M, i |= ψ or M, j |= ϕ ∨ χ for some j ∈ [k..i)

iff for all i with τ(i) − τ(k) ∈ I, we have by Definition 2(4)

M, i |= ψ or M, j |= ϕ or M, j |= χ for some j ∈ [k..i)

iff for all i with τ(i) − τ(k) ∈ I, we have by Distributivity

M, i |= ψ or M, j |= ϕ for some j ∈ [k..i) or

iff for all i with τ(i) − τ(k) ∈ I, we have

M, i |= ψ or M, j |= χ for some j ∈ [k..i)

iff M, k |= (ϕ RI ψ) or (χ RI ψ) by Definition 2(11)

iff M, k |= (ϕ RI ψ) ∨ (χ RI ψ) by Definition 2(4)

For the resp. past cases 11-20 the same reasoning applies.
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Proof of Proposition 8. We consider the first equivalence. From left to right, assume

towards a contradiction that (〈H,T〉, τ), i 6|= ¬ϕ RI ¬ψ. Therefore, there exists j ∈ [i..λ)

such that τ(j) − τ(i) ∈ I, (〈H,T〉, τ), j 6|= ¬ψ and for all k ∈ [i..j), (〈H,T〉, τ), k 6|= ¬ϕ.

By Proposition 4, (〈T,T〉, τ), j |= ψ and (〈T,T〉, τ), k |= ϕ for all k ∈ [i..j). By the

semantics of the until operator we obtain that (〈T,T〉, τ), i |= ϕUI ψ. By Proposition 4

it follows that 〈H,T〉, i 6|= ¬ (ϕUI ψ): a contradiction.

From right to left, if 〈H,T〉, i 6|= ¬ (ϕUI ψ) then, by Proposition 4, (〈T,T〉, τ), i |=

ϕ UI ψ. Therefore there exists j ∈ [i..λ) such that τ(j) − τ(i) ∈ I, (〈T,T〉, τ), j |= ψ

and for all k ∈ [i..j), (〈T,T〉, τ), k |= ϕ. Since (〈T,T〉, τ) satisfies the law of excluded

middle, it follows that (〈T,T〉, τ), j 6|= ¬ψ and for all k ∈ [i..j), (〈T,T〉, τ), k 6|= ¬ϕ. By

the semantics, (〈T,T〉, τ), i 6|= ¬ϕ RI ¬ψ. By persistency, (〈H,T〉, τ) 6|= ¬ϕ RI ¬ψ.

The remaining equivalences can be verified in a similar way.

Proof of Proposition 9.

M, k |= (ϕUI ψ) iff M, i |= ψ for some i ∈ [k..λ) with τ(i) − τ(k) ∈ I

and M, j |= ϕ for all j ∈ [k..i) by Definition 2(10)

implies M, i |= ψ for some i ∈ [k..λ) with τ(i) − τ(k) ∈ J

and M, j |= ϕ for all j ∈ [k..i) since I ⊆ J

iff M, k |= (ϕUJ ψ) by Definition 2(10)

M, k |= (ϕ RJ ψ) iff for all j ∈ [k..λ) with τ(i) − τ(k) ∈ J

we have M, i |= ψ or M, j |= ϕ for some j ∈ [k..i) by Definition 2(11)

implies for all j ∈ [k..λ) with τ(i) − τ(k) ∈ I

we have M, i |= ψ or M, j |= ϕ for some j ∈ [k..i) since I ⊆ J

iff M, k |= (ϕ RI ψ) by Definition 2(11)

The cases 2 and 4 work analogously

Proof of Proposition 10. We assume that we are dealing with strict traces. We consider

first the equivalence ϕU[m..n) ψ ≡ ♦[m..n)ψ ∧�[0..m) (ϕU (ϕ ∧ ◦ψ)).

From left to right, if (〈H,T〉, τ), i |= ϕ U[m..n) ψ then there exists j ≥ i such that

τ(j) − τ(i) ∈ [m..n), (〈H,T〉, τ), j |= ψ and for all k ∈ [i..j), (〈H,T〉, τ), k |= ϕ. From

τ(j)− τ(i) ∈ [m..n), j ≥ i and (〈H,T〉, τ), j |= ψ it follows that (〈H,T〉, τ), i |= ♦[m..n)ψ.

Moreover, since m 6= 0, τ(j) − τ(i) 6= 0 so j 6= i, which implies that j > i. As a

consequence (〈H,T〉, τ), j − 1 |= ϕ ∧ ◦ψ and (〈H,T〉, τ), t |= ϕ for all i ≤ t < j − 1.

Take any arbitrary y ≥ i. If y ≥ j then τ(y)−τ(i) ≥ m because τ(y) ≥ τ(j) and τ(j)−

τ(i) ≥ m. Therefore, τ(y) − τ(i) 6∈ [0..m). If y < j then (〈H,T〉, τ), y |= ϕ U (ϕ ∧ ◦ψ).

Since y was arbitrary chosen, it follows that (〈H,T〉, τ), i |= �[0..m) (ϕU (ϕ ∧ ◦ψ)).

For the converse direction, from (〈H,T〉, τ), i |= �[0..m) (ϕU (ϕ ∧ ◦ψ)) it follows that

there exists j > i such that τ(j)−τ(i) ≥ m, (〈H,T〉, τ), j |= ψ and (〈H,T〉, τ), k |= ϕ for

all k ∈ [i..j). Since (〈H,T〉, τ), i |= ♦[m..n)ψ there exists j′ > i such that τ(j′)−τ(i) ≥ m,

τ(j′) − τ(i) < n and (〈H,T〉, τ), j′ |= ψ.

If j′ < j we can easily conclude that (〈H,T〉, τ), i |= ϕ U[m..n) ψ. If j′ ≥ j then
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τ(j′) ≥ τ(j). Since τ(j′)−τ(i) < n and τ(j′) > τ(j) τ(j)−τ(i) < n so τ(j)−τ(i) ∈ [m..n),

which leads to (〈H,T〉, τ), i |= ϕU[m..n) ψ.

For the second equivalence ϕU[m..n] ψ ≡ ♦[m..n]ψ ∧�[0..m) (ϕU (ϕ ∧ ◦ψ)),

from left to right, if (〈H,T〉, τ), i |= ϕU[m..n] ψ then there exists j ≥ i such that τ(j) −

τ(i) ∈ [m..n], (〈H,T〉, τ), j |= ψ and for all k ∈ [i..j), (〈H,T〉, τ), k |= ϕ. From τ(j) −

τ(i) ∈ [m..n], j ≥ i and (〈H,T〉, τ), j |= ψ it follows that (〈H,T〉, τ), i |= ♦[m..n]ψ.

Moreover, since m 6= 0, τ(j) − τ(i) 6= 0 so j 6= i, which implies that j > i. As a

consequence (〈H,T〉, τ), j − 1 |= ϕ ∧ ◦ψ and (〈H,T〉, τ), t |= ϕ for all i ≤ t < j − 1.

Take any arbitrary y ≥ i. If y ≥ j then τ(y)−τ(i) ≥ m because τ(y) ≥ τ(j) and τ(j)−

τ(i) ≥ m. Therefore, τ(y) − τ(i) 6∈ [0..m). If y < j then (〈H,T〉, τ), y |= ϕ U (ϕ ∧ ◦ψ).

Since y was arbitrary chosen, it follows that (〈H,T〉, τ), i |= �[0..m) (ϕU (ϕ ∧ ◦ψ)).

For the converse direction, from (〈H,T〉, τ), i |= �[0..m) (ϕU (ϕ ∧ ◦ψ)) it follows that

there exists j > i such that τ(j)−τ(i) ≥ m, (〈H,T〉, τ), j |= ψ and (〈H,T〉, τ), k |= ϕ for

all k ∈ [i..j). Since (〈H,T〉, τ), i |= ♦[m..n]ψ there exists j′ > i such that τ(j′)−τ(i) ≥ m,

τ(j′) − τ(i) ≤ n and (〈H,T〉, τ), j′ |= ψ.

If j′ < j we can easily conclude that (〈H,T〉, τ), i |= ϕ U[m..n] ψ. If j′ ≥ j then

τ(j′) ≥ τ(j). Since τ(j′)−τ(i) ≤ n and τ(j′) > τ(j), τ(j)−τ(i) ≤ n so τ(j)−τ(i) ∈ [m..n],

which leads to (〈H,T〉, τ), i |= ϕU[m..n] ψ.

For the third equivalence ϕU(m..n) ψ ≡ ♦(m..n)ψ ∧�[0..m] (ϕU (ϕ ∧ ◦ψ)),

from left to right, if (〈H,T〉, τ), i |= ϕ U(m..n) ψ then there exists j ≥ i such that

τ(j) − τ(i) ∈ (m..n), (〈H,T〉, τ), j |= ψ and for all k ∈ [i..j), (〈H,T〉, τ), k |= ϕ. From

τ(j)−τ(i) ∈ (m..n), j ≥ i and (〈H,T〉, τ), j |= ψ it follows that (〈H,T〉, τ), i |= ♦(m..n)ψ.

Moreover, since m 6= 0, τ(j) − τ(i) 6= 0 so j 6= i, which implies that j > i. As a

consequence (〈H,T〉, τ), j − 1 |= ϕ ∧ ◦ψ and (〈H,T〉, τ), t |= ϕ for all i ≤ t < j − 1.

Take any arbitrary y ≥ i. If y ≥ j then τ(y) − τ(i) > m because τ(y) ≥ τ(j) and

τ(j)−τ(i) > m. Therefore, τ(y)−τ(i) 6∈ [0..m]. If y < j then (〈H,T〉, τ), y |= ϕU(ϕ ∧ ◦ψ).

Since y was arbitrary chosen, it follows that (〈H,T〉, τ), i |= �[0..m] (ϕU (ϕ ∧ ◦ψ)).

For the converse direction, from (〈H,T〉, τ), i |= �[0..m] (ϕU (ϕ ∧ ◦ψ)) it follows that

there exists j > i such that τ(j)−τ(i) > m, (〈H,T〉, τ), j |= ψ and (〈H,T〉, τ), k |= ϕ for

all k ∈ [i..j). Since (〈H,T〉, τ), i |= ♦(m..n)ψ there exists j′ > i such that τ(j′)−τ(i) > m,

τ(j′) − τ(i) < n and (〈H,T〉, τ), j′ |= ψ.

If j′ < j we can easily conclude that (〈H,T〉, τ), i |= ϕU(m..n)ψ. If j′ ≥ j then τ(j′) ≥

τ(j). Since τ(j′) − τ(i) < n and τ(j′) > τ(j), τ(j) − τ(i) < n, so τ(j) − τ(i) ∈ (m..n),

which leads to (〈H,T〉, τ), i |= ϕU(m..n) ψ.

For the fourth equivalence ϕU(m..n] ψ ≡ ♦(m..n]ψ ∧�[0..m] (ϕU (ϕ ∧ ◦ψ)),

from left to right, if (〈H,T〉, τ), i |= ϕU(m..n] ψ then there exists j ≥ i such that τ(j) −

τ(i) ∈ (m..n], (〈H,T〉, τ), j |= ψ and for all k ∈ [i..j), (〈H,T〉, τ), k |= ϕ. From τ(j) −

τ(i) ∈ (m..n], j ≥ i and (〈H,T〉, τ), j |= ψ it follows that (〈H,T〉, τ), i |= ♦(m..n]ψ.

Moreover, since m 6= 0, τ(j) − τ(i) 6= 0 so j 6= i, which implies that j > i. As a

consequence (〈H,T〉, τ), j − 1 |= ϕ ∧ ◦ψ and (〈H,T〉, τ), t |= ϕ for all i ≤ t < j − 1.

Take any arbitrary y ≥ i. If y ≥ j then τ(y) − τ(i) > m because τ(y) ≥ τ(j) and

τ(j)−τ(i) > m. Therefore, τ(y)−τ(i) 6∈ [0..m]. If y < j then (〈H,T〉, τ), y |= ϕU(ϕ ∧ ◦ψ).

Since y was arbitrary chosen, it follows that (〈H,T〉, τ), i |= �[0..m] (ϕU (ϕ ∧ ◦ψ)).
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For the converse direction, from (〈H,T〉, τ), i |= �[0..m] (ϕU (ϕ ∧ ◦ψ)) it follows that

there exists j > i such that τ(j)−τ(i) > m, (〈H,T〉, τ), j |= ψ and (〈H,T〉, τ), k |= ϕ for

all k ∈ [i..j). Since (〈H,T〉, τ), i |= ♦(m..n]ψ there exists j′ > i such that τ(j′)−τ(i) > m,

τ(j′) − τ(i) ≤ n and (〈H,T〉, τ), j′ |= ψ.

If j′ < j we can easily conclude that (〈H,T〉, τ), i |= ϕU(m..n] ψ. If j′ ≥ j then τ(j′) ≥

τ(j). Since τ(j′) − τ(i) ≤ n and τ(j′) > τ(j), τ(j) − τ(i) ≤ n, so τ(j) − τ(i) ∈ (m..n],

which leads to (〈H,T〉, τ), i |= ϕU(m..n] ψ.

For the fifth equivalence ϕU[0..n) ψ ≡ ♦[0..n)ψ ∧ ϕU ψ,

from left to right, if (〈H,T〉, τ), i |= ϕ U[0..n) ψ then there exists j ≥ i such that τ(j) −

τ(i) ∈ [0..n), (〈H,T〉, τ), j |= ψ and for all k ∈ [i..j), (〈H,T〉, τ), k |= ϕ. This already

implies (〈H,T〉, τ), i |= ♦[0..n)ψ. Furthermore, since [0..n) ⊆ [0..ω), we can also derive

(〈H,T〉, τ), i |= ϕUψ from (〈H,T〉, τ), i |= ϕU[0..n)ψ. Putting both implications together

we get (〈H,T〉, τ), i |= ♦[0..n)ψ ∧ ϕU ψ.

For the converse direction, from (〈H,T〉, τ), i |= ♦[0..n)ψ ∧ ϕ U ψ, we can derive

(〈H,T〉, τ), i |= ϕ U ψ and therefore there exists j ≥ i s.t. (〈H,T〉, τ), j |= ψ and

τ(j) − τ(i) ∈ [0..ω) and (〈H,T〉, τ), k |= ϕ for all k ∈ [i..j). (〈H,T〉, τ), i |= ♦[0..n)ψ

implies (〈H,T〉, τ), j′ |= ψ for some j′ ≥ i with τ(j′) − τ(i) ∈ [0..n). Now there are two

cases to consider. If j′ < j we can easily conclude that (〈H,T〉, τ), i |= ϕ U[0..n) ψ. If

j′ ≥ j then τ(j) − τ(i) ∈ [0..n) and therefore (〈H,T〉, τ), i |= ϕU[0..n) ψ.

For the sixth equivalence ϕU[0..n] ψ ≡ ♦[0..n]ψ ∧ ϕU ψ,

from left to right, if (〈H,T〉, τ), i |= ϕ U[0..n] ψ then there exists j ≥ i such that τ(j) −

τ(i) ∈ [0..n], (〈H,T〉, τ), j |= ψ and for all k ∈ [i..j), (〈H,T〉, τ), k |= ϕ. This already

implies (〈H,T〉, τ), i |= ♦[0..n]ψ. Furthermore, since [0..n] ⊆ [0..ω), we can also derive

(〈H,T〉, τ), i |= ϕUψ from (〈H,T〉, τ), i |= ϕU[0..n]ψ. Putting both implications together

we get (〈H,T〉, τ), i |= ♦[0..n)ψ ∧ ϕU ψ.

For the converse direction, from (〈H,T〉, τ), i |= ♦[0..n]ψ ∧ ϕ U ψ, we can derive

(〈H,T〉, τ), i |= ϕ U ψ and therefore there exists j ≥ i s.t. (〈H,T〉, τ), j |= ψ and

τ(j) − τ(i) ∈ [0..ω) and (〈H,T〉, τ), k |= ϕ for all k ∈ [i..j). (〈H,T〉, τ), i |= ♦[0..n]ψ

implies (〈H,T〉, τ), j′ |= ψ for some j′ ≥ i with τ(j′) − τ(i) ∈ [0..n]. Now there are two

cases to consider. If j′ < j we can easily conclude that (〈H,T〉, τ), i |= ϕ U[0..n] ψ. If

j′ ≥ j then τ(j) − τ(i) ∈ [0..n] and therefore (〈H,T〉, τ), i |= ϕU[0..n] ψ.

For the seventh equivalence ϕU(0..n) ψ ≡ ♦(0..n)ψ ∧ ϕU (ϕ ∧ ◦ψ),

from left to right, if (〈H,T〉, τ), i |= ϕU(0..n) ψ then there exists j > i such that τ(j) −

τ(i) ∈ (0..n), (〈H,T〉, τ), j |= ψ and for all k ∈ [i..j), (〈H,T〉, τ), k |= ϕ. This already

implies (〈H,T〉, τ), i |= ♦(0..n)ψ. Furthermore, since j > i, we know

(〈H,T〉, τ), j − 1 |= ϕ ∧ ◦ψ and (〈H,T〉, τ), t |= ϕ for all i ≤ t < i − 1 and therefore

(〈H,T〉, τ), i |= ♦(0..n)ψ ∧ ϕU (ϕ ∧ ◦ψ).

For the converse direction, (〈H,T〉, τ), i |= ϕU (ϕ ∧ ◦ψ) implies that there is j > i s.t.

(〈H,T〉, τ), j |= ψ and (〈H,T〉, τ), k |= ϕ for all k ∈ [i..j) which implies (〈H,T〉, τ), i |=

ϕU>0ψ. Furthermore, since (〈H,T〉, τ), i |= ♦(0..n)ψ there exists j′ > j s.t. τ(j′)−τ(j) ∈

(0..n) and (〈H,T〉, τ), j′ |= ψ. This together with (〈H,T〉, τ), i |= ϕ U>0 ψ implies

(〈H,T〉, τ), i |= ϕU(0..n) ψ by following similar reasoning as in the previous cases.



26 Becker et al.

For the eighth equivalence ϕU(0..n] ψ ≡ ♦(0..n]ψ ∧ ϕU (ϕ ∧ ◦ψ),

from left to right, if (〈H,T〉, τ), i |= ϕ U(0..n] ψ then there exists j > i such that τ(j) −

τ(i) ∈ (0..n], (〈H,T〉, τ), j |= ψ and for all k ∈ [i..j), (〈H,T〉, τ), k |= ϕ. This already

implies (〈H,T〉, τ), i |= ♦(0..n]ψ. Furthermore, since j > i, we know

(〈H,T〉, τ), j − 1 |= ϕ ∧ ◦ψ and (〈H,T〉, τ), t |= ϕ for all i ≤ t < i − 1 and therefore

(〈H,T〉, τ), i |= ♦(0..n)ψ ∧ ϕU (ϕ ∧ ◦ψ).

For the converse direction, (〈H,T〉, τ), i |= ϕU (ϕ ∧ ◦ψ) implies that there is j > i s.t.

(〈H,T〉, τ), j |= ψ and (〈H,T〉, τ), k |= ϕ for all k ∈ [i..j) which implies (〈H,T〉, τ), i |=

ϕU>0ψ. Furthermore, since (〈H,T〉, τ), i |= ♦(0..n]ψ there exists j′ > j s.t. τ(j′)−τ(j) ∈

(0..n] and (〈H,T〉, τ), j′ |= ψ. This together with (〈H,T〉, τ), i |= ϕ U>0 ψ implies

(〈H,T〉, τ), i |= ϕU(0..n] ψ by following similar reasoning as in the previous cases.

The case for Release can be proven by applying Corollary 3 (Boolean Duality) and

uniform substitution to the respective Until cases. The cases for Since and Trigger follow

from applying Theorem 1 (Temporal Duality) to the Until and Release cases respectively.

Proof of equivalences (4)-(6).

• Equivalence (4): Take any i ∈ [0, λ). (〈H,T〉, τ), i |= ϕU0ψ iff there exists j ∈ [i, λ)

such that τ(j)−τ(i) = 0, (〈H,T〉, τ), j |= ψ and for all i ≤ k < j, (〈H,T〉, τ), k |= ϕ.

From τ(j) − τ(i) = 0 it follows that τ(j) = τ(i). Under strict semantics, it follows

j = i. From this we get the iff (〈H,T〉, τ), i |= ψ. Furthermore,

(〈H,T〉, τ), i |= ϕ R0 ψ iff for all j ∈ [i, λ) if τ(j) − τ(i) = 0 and (〈H,T〉, τ), j 6|= ψ

then there exists i ≤ k < j such that (〈H,T〉, τ), k |= ϕ.

From τ(j) − τ(i) = 0 it follows that τ(j) = τ(i). Under strict semantics, it follows

j = i. From this we get the iff (〈H,T〉, τ), i |= ψ.

• Equivalence (5): For the case of ◦0ϕ we have that (〈H,T〉, τ), i |= ◦0ϕ iff i+1 < λ,

τ(i + 1) − τ(i) = 0 and (〈H,T〉, τ), i + 1 |= ϕ. Since we are considering strict

semantics, we get that τ(i + 1) − τ(i) 6= 0 and we can derive ⊥. We can follow a

similar reasoning for the case of •0ϕ.

• Equivalence (6): For the case of ◦̂0ϕ we have that (〈H,T〉, τ), i |= ◦̂0ϕ iff if i+1 < λ

and τ(i + 1) − τ(i) = 0 then (〈H,T〉, τ), i + 1 |= ϕ. Since we are considering strict

semantics, we get that τ(i + 1) − τ(i) 6= 0 and we can derive ⊤. We can follow a

similar reasoning for the case of •̂0ϕ.

Proof of Lemma 2.

• Equivalence (7): from left to right, if (〈H,T〉, τ), i |= ψ Un ϕ then there exists

j ∈ [i, λ) such that τ(j) − τ(i) = n, (〈H,T〉, τ), j |= ϕ and for all i ≤ k < j,

(〈H,T〉, τ), k |= ψ. Since n > 0, τ(j) − τ(i) > 0 implies that j ≥ i + 1 > i and,

under strict semantics, τ(j) ≥ τ(i+ 1) > τ(i). If we denote by m
def
= τ(i+ 1)− τ(i),

we can conclude that 0 ≤ m < n and, moreover, τ(j)− τ(i+ 1) = n−m. Therefore,

(〈H,T〉, τ), i+ 1 |= ψUn−m ϕ. Since τ(i+ 1)− τ(i) = m, it follows (〈H,T〉, τ), i |=

◦m (ψ Un−m ϕ). Since m is bounded we conclude that

(〈H,T〉, τ), i |=
∨

0<m≤n

◦m (ψ Un−m ϕ) .
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Since (〈H,T〉, τ), i |= ψ we get

(〈H,T〉, τ), i |= ψ ∧
∨

0<m≤n

◦m (ψ Un−m ϕ) .

Conversely, if

(〈H,T〉, τ), i |= ψ ∧
∨

0<m≤n

◦m (ψ Un−m ϕ) ,

then (〈H,T〉, τ), i |= ψ and there exists 0 < m ≤ n such that (〈H,T〉, τ), i |=

◦m (ψ Un−m ϕ). Therefore, τ(i+ 1)− τ(i) = m and (〈H,T〉, τ), i+ 1 |= ψUn−m ϕ.

Since (〈H,T〉, τ), i+1 |= ψUn−mϕ, there exists j ≥ i+1 such that τ(j)−τ(i+1) =

n − m, (〈H,T〉, τ), j |= ϕ and (〈H,T〉, τ), k |= ψ for all i + 1 ≤ k < j. From

τ(j) − τ(i+ 1) = n−m and τ(i+ 1) − τ(i) = m we get that τ(j) − τ(i) = n. Also,

since (〈H,T〉, τ), i |= ψ, it follows that (〈H,T〉, τ), k |= ψ for all i ≤ k < j leading

to (〈H,T〉, τ), i |= ψ Un ϕ
• Equivalence (8): from right to left assume towards a contradiction that (〈H,T〉, τ), i 6|=

ψ Rn ϕ then there exists j ∈ [i, λ) such that τ(j) − τ(i) = n, (〈H,T〉, τ), j 6|= ϕ

and for all i ≤ k < j, (〈H,T〉, τ), k 6|= ψ. Since n > 0, n = τ(j) − τ(i) > 0 implies

that j ≥ i+ 1 > i and, under strict semantics, τ(j) ≥ τ(i+ 1) > τ(i). If we denote

by m
def
= τ(i + 1) − τ(i), we can conclude that 0 < m ≤ n. Furthermore, it follows

that τ(j) − τ(i + 1) = n − m. Therefore, (〈H,T〉, τ), i + 1 6|= ψ Rn−m ϕ. Since

τ(i+ 1)− τ(i) = m, it follows (〈H,T〉, τ), i 6|= ◦̂m (ψ Rn−m ϕ). Since m is bounded

we conclude that

(〈H,T〉, τ), i 6|=
∧

0<m≤n

◦̂m (ψ Rn−m ϕ) .

Since (〈H,T〉, τ), i 6|= ψ we reach the contradiction

(〈H,T〉, τ), i 6|= ψ ∨
∧

0<m≤n

◦̂m (ψ Rn−m ϕ) .

Conversely, assume towards a contradiction that

(〈H,T〉, τ), i 6|= ψ ∨
∧

0<m≤n

◦̂m (ψ Rn−m ϕ) ,

then (〈H,T〉, τ), i 6|= ψ and there exists 0 < m ≤ n such that (〈H,T〉, τ), i 6|=

◦̂m (ψ Rn−m ϕ). Therefore, τ(i+ 1) − τ(i) = m and (〈H,T〉, τ), i + 1 6|= ψ Rn−m ϕ.

Since (〈H,T〉, τ), i+1 6|= ψUn−mϕ, there exists j ≥ i+1 such that τ(j)−τ(i+1) =

n − m, (〈H,T〉, τ), j 6|= ϕ and (〈H,T〉, τ), k 6|= ψ for all i + 1 ≤ k < j. From

τ(j) − τ(i+ 1) = n−m and τ(i+ 1) − τ(i) = m we get that τ(j) − τ(i) = n. Also,

since (〈H,T〉, τ), i 6|= ψ, it follows that (〈H,T〉, τ), k 6|= ψ for all i ≤ k < j leading

to (〈H,T〉, τ), i 6|= ψ Rn ϕ: a contradiction.
• Equivalences (9)-(10): by definition, ♦nϕ

def
= ⊤Un ϕ and �nϕ

def
= ⊥Rn ϕ. Therefore

the proof follows directly from equivalences (7) and (8).

Proof of Lemma 3.
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• Equivalence (11): from left to right, assume (〈H,T〉, τ), k |= ψ U≤n ϕ, then there

is i ≥ k with τ(i) − τ(k) ≤ n s.t. (〈H,T〉, τ), i |= ϕ and (〈H,T〉, τ), j |= ψ for all

k ≤ j < i. Lets further assume towards a contradiction that (〈H,T〉, τ), k 6|= ϕ ∨

(ψ∧
∨n

i=1 ◦i(ψU≤(n−i)ϕ)) This implies that (〈H,T〉, τ), k 6|= ϕ and (〈H,T〉, τ), k 6|=

ψ ∧
∨n

i=1 ◦i(ψ U≤(n−i) ϕ). For the latter to hold either (〈H,T〉, τ), k 6|= ψ or

(〈H,T〉, τ), k 6|=
∨n

i=1 ◦i(ψ U≤(n−i) ϕ). Lets consider (〈H,T〉, τ), k 6|= ψ first. To

be consistent with the original assumption (〈H,T〉, τ), k |= ϕ is needed. Since

(〈H,T〉, τ), k 6|= ϕ was already derived, this leads to a contradiction. Considering

(〈H,T〉, τ), k 6|=
∨n

i=1 ◦i(ψU≤(n−i)ϕ) leads to (〈H,T〉, τ), k 6|=
∨n

i=1 ◦i(ψU≤(n−i)ϕ).

This implies that there is no i > k with τ(i) − τ(k) ≤ n s.t. (〈H,T〉, τ), i |= ϕ. To-

gether with (〈H,T〉, τ), k 6|= ϕ this implies that there is no occurence of ϕ in the

interval which is contradictory to the original assumption.

From right to left, assume (〈H,T〉, τ), k |= ϕ ∨ (ψ ∧
∨n

i=1 ◦i(ψ U≤(n−i) ϕ)), then

(〈H,T〉, τ), k |= ϕ or (〈H,T〉, τ), k |= ψ∧
∨n

i=1 ◦i(ψU≤(n−i)ϕ). If (〈H,T〉, τ), k |= ϕ

then obviously (〈H,T〉, τ), k |= ψ U≤n ϕ. From the second disjunct we get that

(〈H,T〉, τ), k |= ◦i(ψ U≤(n−i) ϕ) for some 1 ≤ i ≤ n. Then there is a next state

that satisfies ψ U ϕ s.t. ϕ holds somewhere within the next interval and, due to

(〈H,T〉, τ), k |= ψ, ψ holds until then. This implies (〈H,T〉, τ), k |= ψ U≤n ϕ.

• Equivalence (12) follows directly from Equivalence (11), Corollary 3 (Boolean Du-

ality) and uniform substitution.

Proof of Theorem 2.

• Equivalence (13): from left to right, if M, k |= ψ U[m..n) ϕ with the restriction

m > 0 and m < n − 1, then by Definition 2(10) M, i |= ϕ for some i ∈ (k..λ)

with τ(i) − τ(k) ∈ I and M, j |= ϕ for all j ∈ [k..i). Since i > k and ψ has to hold

since k, it follows that M, k |= ψ and therefore we get: M, k |= ψ and M, i |= ϕ for

some i ∈ (k..λ) with τ(i) − τ(k) ∈ I and M, j |= ϕ for all j ∈ (k..i). Notice that

j ∈ (k..i) since k was seperated by M, k |= ψ. Now, considering the two options

for the distance of the next state: τ(k + 1)− τ(k) ≤ m or τ(k + 1)− τ(k) ∈ (m..n),

we get: M, k |= ψ and M, k + 1 |= ψ U[(m−p)..(n−p)) ϕ if p ≤ m or M, k + 1 |=

ψ U<(n−p) ϕ if p ∈ (m..n), where p = τ(k + 1) − τ(k). The case p ≤ m with

M, k + 1 |= ψU[(m−p)..(n−p)) can be expressed by:

∨

1≤i≤m

◦m

(
ψ U[m−i..n−i] ϕ

)

Similarly the case p = τ(k + 1) − τ(k) can be represented by
∨

m+1≤i≤n−1

◦i

(
ψ U≤(n−1−i) ϕ

)

Taking into account those two options and the already performed conclusion

M, k |= ψ, we arrive at:

M, k |= ψ ∧
∨

1≤i≤m

◦i

(
ψ U[m−i..n−i] ϕ

)
∨

∨

m+1≤i≤n−1

◦i

(
ψ U≤(n−1−i) ϕ

)
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Conversely, if

M, k |= ψ ∧
∨

1≤i≤m

◦i

(
ψ U[m−i..n−i] ϕ

)
∨

∨

m+1≤i≤n−1

◦i

(
ψ U≤(n−1−i) ϕ

)
,

then it follows that M, k |= ψ and M, k + 1 |= ψ U[m−i..n−i) ϕ for some i ∈ [1..m]

or M, k |= ψ and M, k + 1 |= ψ U≤(n−1−i) ϕ for some i ∈ (1..m) since each of the

both disjunctions would be satisfied in case of one matching next-formula with the

respective i. From this, together with the assumption m > 0 and m < n− 1 we can

conclude that M, k |= ψ and M, i |= ϕ for some i ∈ (k..λ) with τ(i)− τ(k) ∈ [m..n)

and M, j |= ψ for all j ∈ (k..i). Finally, by applying Definition 2(10) we arrive at:

M, i |= ψ U[m..n) ϕ

• Equivalence (14): from left to right, if M, k |= ψR[m..n)ϕ, then by Definition 2(11)

for all i ∈ [k..λ) with τ(i) − τ(k) ∈ [m..n) we have M, i |= ϕ or M, j |= ψ for some

j ∈ [k..i). Let’s consider the easy case first, where M, k |= ψ. In this case it is obvi-

ous to see that M, k |= ψ∨
(∧m

i=1 ◦̂i(ψ R[(m−i)..(n−i)) ϕ) ∧
∧n−1

i=m+1 ◦̂i(ψ R≤(n−1−i) ϕ)
)

.

If M, k 6|= ψ there has to be a later releasing ψ for all occurrences of ¬ψ ∈ [m..n).

In this case the next state, if there is one before the end of the interval, satisfies

a Release formula that considers the time elapsed since k. If the linked time point

of the next state is ∈ (k..m], this state satisfies
∧m

i=1 ◦̂i(ψ R[(m−i)..(n−i)) ϕ). If

the linked time point of the next state is ∈ (m..n), the next state would satisfy∧n−1
i=m+1 ◦̂i(ψ R≤(n−1−i) ϕ). Considering the possibility of both cases we can con-

clude that M, k |= ψ∨
(∧m

i=1 ◦̂i(ψ R[(m−i)..(n−i)) ϕ) ∧
∧n−1

i=m+1 ◦̂i(ψ R≤(n−1−i) ϕ)
)

.

Conversely, assume M, k |= ψ∨
(∧m

i=1 ◦̂i(ψ R[(m−i)..(n−i)) ϕ) ∧
∧n−1

i=m+1 ◦̂i(ψ R≤(n−1−i) ϕ)
)

.

Again, if M, k |= ψ it follows directly that M, k |= ψ R[m..n) ϕ.

If M, k |=
∧m

i=1 ◦̂i(ψR[(m−i)..(n−i))ϕ)∧
∧n−1

i=m+1 ◦̂i(ψR≤(n−1−i)ϕ), we can also follow

that M, k |= ψ R[m..n) ϕ, since both the satisfaction of
∧m

i=1 ◦̂i(ψ R[(m−i)..(n−i)) ϕ)

in a next state ∈ (k..m] and the satisfaction of
∧n−1

i=m+1 ◦̂i(ψR≤(n−1−i)ϕ) in a next

state ∈ (m..n) would guarantee it. Taking all possible cases together, we finally

arrive at M, k |= ψ R[m..n) ϕ.

Proof of Theorem 3.

• If M, k |= ψ U[m..n) ϕ, it follows by applying Definition 2(10) that M, i |= ϕ for

some i ∈ [k..λ) with τ(i) − τ(k) ∈ [m..n) and M, j |= ψ for all j ∈ [k..i). From

τ(i) − τ(k) ∈ [m..n) we get τ(i) − τ(k) ∈ [m..s) or τ(i) − τ(k) ∈ [s..n) for all

s ∈ [m..n). This implies that M, i |= ϕ for some i ∈ [k..λ) with τ(i)− τ(k) ∈ [m..s)

and M, j |= ψ for all j ∈ [k..i) or M, i |= ϕ for some i ∈ [k..λ) with τ(i) − τ(k) ∈

[s..n) and M, j |= ψ for all j ∈ [k..i), for all s ∈ [m..n). Applying again Definition

2(10) and Definition 2(4) it follows that M, k |=
(
ψ U[m..i) ϕ

)
∨
(
ψ U[i..n) ϕ

)
for all

i ∈ [m..n). As every step of the proof works in the converse direction as well, both

directions are provided.

• For the respective Release-case the same reasoning applies.

Proof of Theorem 5. The proof goes by structural induction.
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Base case let us consider first the case of a propositional variable p. From left to right,

if (〈H,T〉, τ), i |= ϕ then p ∈ Hi. By definition, τ(i) ∈ D and p(τ(i)) ∈ H . Therefore

〈(D, σ), H, T 〉 |= [p]τi .

Inductive case: propositional connectives

• Case ϕ ∧ ψ:

(〈H,T〉, τ), i |= ϕ ∧ ψ iff (〈H,T〉, τ), i |= ϕ and (〈H,T〉, τ), i |= ψ

(16)

iff 〈(D, σ), H, T 〉 |= [ϕ]τi and 〈(D, σ), H, T 〉 |= [ψ]τi

iff 〈(D, σ), H, T 〉 |= [ϕ ∧ ψ]τi .

(〈T,T〉, τ), i |= ϕ ∧ ψ iff (〈T,T〉, τ), i |= ϕ and (〈T,T〉, τ), i |= ψ

(17)

iff 〈(D, σ), T, T 〉 |= [ϕ]τi and 〈(D, σ), T, T 〉 |= [ψ]τi

iff 〈(D, σ), T, T 〉 |= [ϕ ∧ ψ]τi .

• Case ϕ ∨ ψ:

(〈H,T〉, τ), i |= ϕ ∨ ψ iff (〈H,T〉, τ), i |= ϕ or (〈H,T〉, τ), i |= ψ

(16)

iff 〈(D, σ), H, T 〉 |= [ϕ]τi or 〈(D, σ), H, T 〉 |= [ψ]τi

iff 〈(D, σ), H, T 〉 |= [ϕ ∨ ψ]τi .

(〈T,T〉, τ), i |= ϕ ∨ ψ iff (〈T,T〉, τ), i |= ϕ or (〈T,T〉, τ), i |= ψ

(17)

iff 〈(D, σ), T, T 〉 |= [ϕ]τi or 〈(D, σ), T, T 〉 |= [ψ]τi

iff 〈(D, σ), T, T 〉 |= [ϕ ∨ ψ]τi .

• Case ϕ→ ψ: In the first case, (〈H,T〉, τ), i |= ϕ→ ψ iff for all ⊗ ∈ {H,T}, either

〈⊗,T, τ〉, i 6|= ϕ or 〈⊗,T, τ〉, i |= ψ. By the induction hypothesis (16) and (17) we

get iff for all ⊕ ∈ {H,T }, either 〈(D, σ),⊕, T 〉 6|= [ϕ]τi or 〈(D, σ),⊕, T 〉 |= [ψ]τi .

Therefore, 〈(D, σ), H, T 〉 |= [ϕ→ ψ]τi .

In the second case, (〈T,T〉, τ), i |= ϕ→ ψ iff either (〈T,T〉, τ), i 6|= ϕ or (〈T,T〉, τ), i |=

ψ. By the induction hypothesis (17) we get iff either 〈(D, σ), T, T 〉 6|= [ϕ]τi or

〈(D, σ), T, T 〉 |= [ψ]τi . Therefore, 〈(D, σ), T, T 〉 |= [ϕ→ ψ]τi .

Inductive case: metric temporal operators For simplicity we will consider intervals of the

form [m,n) where m 6= ω.

• Case ◦[m..n)ϕ: in the first case, if (〈H,T〉, τ), i |= ◦[m..n) then there exists i+1 < λ

such that m ≤ τ(i + 1) − τ(i) < n and (〈H,T〉, τ), i + 1 |= ϕ. By (16) we get

〈(D, σ), H, T 〉 |= [ϕ]τi+1
From m ≤ τ(i + 1) − τ(i) < n we conclude that τ(i) 4−m

τ(i+1) ≺n τ(i). Since we are dealing with strict traces, τ(i) < τ(i+1) and, moreover,

there is no other τ(j) in between. Therefore, for all d ∈ D, not τ(i) < d < τ(i+ 1),
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so 〈(D, σ), H, T 〉 |= 6 ∃z τ(i) < z < τ(i + 1); Since τ(i + 1) ∈ D, we conclude that

there exists d ∈ D such that

〈(D, σ), H, T 〉 |= τ(i) < d ∧ (¬∃z τ(i) < z < d) ∧ τ(i) 4−m d ≺n τ(i) ∧ [ϕ]d.

Therefore,

〈(D, σ), H, T 〉 |= ∃y (τ(i) < y ∧ (¬∃z τ(i) < z < y) ∧ τ(i) 4−m y ≺n τ(i) ∧ [ϕ]y) .

From this we conclude 〈(D, σ), H, T 〉 |= [◦[m..n)ϕ]τ(i).

Conversely, if 〈(D, σ), H, T 〉 |= [◦[m..n)ϕ]τ(i) then, by definition,

〈(D, σ), H, T 〉 |= ∃y (τ(i) < y ∧ (¬∃z τ(i) < z < y) ∧ τ(i) 4−m y ≺n τ(i) ∧ [ϕ]y) ,

Therefore, there exists d ∈ D such that

〈(D, σ), H, T 〉 |= τ(i) < d ∧ (¬∃z τ(i) < z < d) ∧ τ(i) 4−m d ≺n τ(i) ∧ [ϕ]d.

From 〈(D, σ), H, T 〉 |= τ(i) < d ∧ (¬∃z τ(i) < z < d) and the construction of

〈(D, σ), H, T 〉 we conclude that d = τ(i). Since 〈(D, σ), H, T 〉 |= τ(i) 4−m τ(i +

1) ≺n τ(i), we conclude that m ≤ τ(i + 1) − τ(i) < n. By the induction hypothe-

sis (16), (〈H,T〉, τ), i + 1 |= ϕ. Therefore, (〈H,T〉, τ), i |= ◦[m..n)ϕ.

The second item of this case follows a similar reasoning.

• Case ◦̂[m..n)ϕ: in the first case, if (〈H,T〉, τ), i 6|= ◦̂[m..n) then i+ 1 < λ such that

m ≤ τ(i+ 1)− τ(i) < n and (〈H,T〉, τ), i+ 1 6|= ϕ. By (16) we get 〈(D, σ), H, T 〉 6|=

[ϕ]τi+1
From m ≤ τ(i + 1) − τ(i) < n we conclude that τ(i) 4−m τ(i + 1) ≺n τ(i).

Since we are dealing with strict traces, τ(i) < τ(i + 1) and, moreover, there is

no other τ(j) in between. Therefore, for all d ∈ D, not τ(i) < d < τ(i + 1), so

〈(D, σ), H, T 〉 |= 6 ∃z τ(i) < z < τ(i+ 1); Since τ(i+ 1) ∈ D, we conclude that there

exists d ∈ D such that

〈(D, σ), H, T 〉 6|= (τ(i) < d ∧ (¬∃z τ(i) < z < d) ∧ τ(i) 4−m d ≺n τ(i)) → [ϕ]d.

Therefore,

〈(D, σ), H, T 〉 6|= ∀y ((τ(i) < y ∧ (¬∃z τ(i) < z < y) ∧ τ(i) 4−m y ≺n τ(i)) → [ϕ]y) .

From this we conclude 〈(D, σ), H, T 〉 6|= [◦̂[m..n)ϕ]τ(i).

Conversely, if 〈(D, σ), H, T 〉 6|= [◦̂[m..n)ϕ]τ(i) then, by definition,

〈(D, σ), H, T 〉 6|= ∀y ((τ(i) < y ∧ (¬∃z τ(i) < z < y) ∧ τ(i) 4−m y ≺n τ(i)) → [ϕ]y) ,

Therefore, there exists d ∈ D such that

〈(D, σ), H, T 〉 6|= (τ(i) < d ∧ (¬∃z τ(i) < z < d) ∧ τ(i) 4−m d ≺n τ(i)) → [ϕ]d.

We consider two cases:
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1. 〈(D, σ), H, T 〉 |= (τ(i) < d ∧ (¬∃z τ(i) < z < d) ∧ τ(i) 4−m d ≺n τ(i)) and 〈(D, σ), H, T 〉 6|=

[ϕ]d;

2. 〈(D, σ), T, T 〉 |= (τ(i) < d ∧ (¬∃z τ(i) < z < d) ∧ τ(i) 4−m d ≺n τ(i)) and 〈(D, σ), T, T 〉 6|=

[ϕ]d;

In any of the previous cases, we conclude that d = τ(i+ 1), m ≤ τ(i+ 1)− τ(i) < n

and 〈(D, σ), H, T 〉 6|= [ϕ]τ(i).

By the induction hypothesis (16), (〈H,T〉, τ), i+1 6|= ϕ. Therefore, (〈H,T〉, τ), i 6|=

◦̂[m..n)ϕ.

The second item of this case follows a similar reasoning.

• Case ϕU[m..n) ψ: for the first item, if (〈H,T〉, τ), i |= ϕU[m..n) ψ then there exists

j ≥ i such that m ≤ τ(j) − τ(i) < n, (〈H,T〉, τ), j |= ψ and for all i ≤ k < j,

(〈H,T〉, τ), k |= ϕ. Since m ≤ τ(j) − τ(i) < n then 〈(D, σ), H, T 〉 |= τ(i) ≤ τ(j) ∧

τ(i) 4−m τ(j) ≺n τ(i). From (〈H,T〉, τ), j |= ψ and the induction hypothesis (16)

we get 〈(D, σ), H, T 〉 |= [ψ]τ(j). From (〈H,T〉, τ), k |= ϕ for all i ≤ k < j and the

induction hypothesis (16) we get 〈(D, σ), H, T 〉 |= [ϕ]d for all d ∈ {τ(k) | τ(i) ≤ k <

τ(j)}. By the semantics, 〈(D, σ), H, T 〉 |= ∀z (τ(i) ≤ z < τ(j) → [ϕ]z). Therefore,

〈(D, σ), H, T 〉 |= [ϕ U[m..n) ψ]τ(i). Conversely, if 〈(D, σ), H, T 〉 |= [ϕ U[m..n) ψ]τ(i)
then

〈(D, σ), H, T 〉 |= ∃y (τ(i) ≤ y ∧ τ(i) 4−m y ≺n τ(i) ∧ [ψ]y ∧ ∀z (τ(i) ≤ z < y → [ϕ]z)) .

This means that there exists τ(j) ∈ D such that 〈(D, σ), H, T 〉 |= (τ(i) ≤ τ(j) ∧ τ(i) 4−m τ(j)),

〈(D, σ), H, T 〉 |= [ψ]τ(j) and 〈(D, σ), H, T 〉 |= ∀z (τ(i) ≤ z < τ(j) → [ϕ]z). From

〈(D, σ), H, T 〉 |= (τ(i) ≤ τ(j) ∧ τ(i) 4−m τ(j)) it follows that i ≤ j and τ(j) −

τ(i) ∈ [m,n). By induction, (〈H,T〉, τ), j |= ψ. From 〈(D, σ), H, T 〉 |= ∀z (τ(i) ≤ z < τ(j) → [ϕ]z)

it follows that for all τ(k) ∈ D, if τ(i) ≤ τ(k) < τ(j) then 〈(D, σ), H, T 〉 |= [ϕ]τ(k).

By induction we get that (〈H,T〉, τ), k |= ϕ, for all i ≤ k < j. From all previous

statements it follows (〈H,T〉, τ), i |= ϕ U[m..n) ψ. The second item is proved in a

similar way.

• Case ϕR[m..n)ψ: from left to right, assume by contraposition that 〈(D, σ), H, T 〉 6|=

[ϕU[m..n) ψ]τ(i) then

〈(D, σ), H, T 〉 6|= ∀y ((τ(i) ≤ y ∧ τ(i) 4−m y ≺n τ(i)) → ([ψ]y ∨ ∃z (τ(i) ≤ z < y ∧ [ϕ]z))) .

Therefore, there exists τ(j) ∈ D such that

〈(D, σ), H, T 〉 6|= (τ(i) ≤ τ(j) ∧ τ(i) 4−m τ(j) ≺n τ(i)) →
(
[ψ]τ(j) ∨ ∃z (τ(i) ≤ z < y ∧ [ϕ]z)

)
.

From this and a some HT reasoning1 we can conclude that 〈(D, σ), H, T 〉 |=

(τ(i) ≤ τ(j) ∧ τ(i) 4−m τ(j) ≺n τ(i)) but 〈(D, σ), H, T 〉 6|= [ψ]τ(j) and 〈(D, σ), H, T 〉 6|=

∃z (τ(i) ≤ z < y ∧ [ϕ]z). From 〈(D, σ), H, T 〉 |= (τ(i) ≤ τ(j) ∧ τ(i) 4−m τ(j)) it fol-

lows that i ≤ j and τ(j) − τ(i) ∈ [m,n). By induction (16), (〈H,T〉, τ), j 6|= ψ.

1 Using persistency and the fact that the satisfaction of the expression τ(i) ≤ τ(j) ∧ τ(i) 4
−m τ(j) ≺n

τ(i) is not HT-dependent.
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From 〈(D, σ), H, T 〉 6|= ∃z (τ(i) ≤ z < τ(j) ∧ [ϕ]z) it follows that for all τ(k) ∈ D,

if 〈(D, σ), H, T 〉 |= τ(i) ≤ τ(k) < τ(j) then 〈(D, σ), H, T 〉 6|= [ϕ]τ(k). By induc-

tion (16) we get that (〈H,T〉, τ), k 6|= ϕ, for all i ≤ k < j. From all previous

statements it follows (〈H,T〉, τ), i 6|= ϕ R[m..n) ψ: a contradiction.

For the converse direction assume by contradiction that (〈H,T〉, τ), i 6|= ϕ R[m..n)

ψ. Then, there exists j ≥ i such that m ≤ τ(j) − τ(i) < n, (〈H,T〉, τ), j 6|=

ψ and for all i ≤ k < j, (〈H,T〉, τ), k 6|= ϕ. Since m ≤ τ(j) − τ(i) < n then

〈(D, σ), H, T 〉 |= τ(i) ≤ τ(j) ∧ τ(i) 4−m τ(j) ≺n τ(i). From (〈H,T〉, τ), j 6|= ψ and

the induction hypothesis (16) we get 〈(D, σ), H, T 〉 6|= [ψ]τ(j). From (〈H,T〉, τ), k 6|=

ϕ, for all i ≤ k < j, and the induction hypothesis (16) we get 〈(D, σ), H, T 〉 6|=

[ϕ]d for all d ∈ {τ(k) | τ(k) ∈ D and τ(i) ≤ τ(k) < τ(j)}. By the semantics,

〈(D, σ), H, T 〉 6|= ∀z (τ(i) ≤ z < τ(j) → [ϕ]z). Therefore, 〈(D, σ), H, T 〉 6|= [ϕR[m..n)

ψ]τ(i): a contradiction. The second item is proved in a similar way.

• The case of •[m..n)ψ is similar to the case of ◦[m..n)ψ.

• The case of •̂[m..n)ψ is similar to the case of ◦̂[m..n)ψ.

• The case of ϕ S[m..n) ψ is similar to the case of ϕU[m..n) ψ.

• The case of ϕ T[m..n) ψ is similar to the case of ϕ R[m..n) ψ.

Proof of Theorem 4. From right to left, if Γ1 and Γ2 are MHT equivalent then Γ1

and Γ2 have the same MHT models. As a consequence, Γ1 ∪Γ and Γ2 ∪Γ have the same

MHT models. Therefore, Γ1 ∪ Γ and Γ2 ∪ Γ have the same MEL models. Since Γ is any

arbitrary temporal theory, Γ1 and Γ2 are strongly equivalent.

For the converse direction let us assume that Γ1 and Γ2 are strongly equivalent but

they are not MHT equivalent. We consider two cases:

1. Γ1 and Γ2 are not MTL equivalent. Assume, without loss of generality, that there ex-

ists a total MHT model (〈T,T〉, τ) such that (〈T,T〉, τ), 0 |= Γ1 but (〈T,T〉, τ), 0 6|=

Γ2. Since (〈T,T〉, τ) is total, it follows that (〈T,T〉, τ), 0 |= Γ1 ∪ EM(A) and

(〈T,T〉, τ), 0 6|= Γ2 ∪ EM(A). Moreover, (〈T,T〉, τ) is an equilibrium model of

Γ1∪EM(A) (since for any H < T , (〈H,T〉, τ), 0 6|= EM(A)) but not of Γ2∪EM(A).

2. Γ1 and Γ2 are MTL equivalent. Therefore, without loss of generality, there exists a

MHT interpretation (〈H,T〉, τ) with H < T such that

(a) (〈T,T〉, τ), 0 |= Γ1 iff (〈T,T〉, τ), 0 |= Γ2 because Γ1 and Γ2 are MTL equiv-

alent.

(b) (〈H,T〉, τ), 0 |= Γ1 and (〈H,T〉, τ), 0 6|= Γ2 because Γ1 and Γ2 are not MHT

equivalent.

Since (〈H,T〉, τ), 0 6|= Γ2, there exists ϕ ∈ Γ2 such that (〈H,T〉, τ), 0 6|= ϕ. More-

over, since (〈H,T〉, τ), 0 |= Γ1 then (〈T,T〉, τ), 0 |= Γ1 so (〈T,T〉, τ), 0 |= Γ2 and so

(〈T,T〉, τ), 0 |= ϕ.

Let us consider the theory Γ
def
= {ϕ → ψ | ψ ∈ EM(A)}. Since (〈H,T〉, τ), 0 6|= ϕ

and (〈T,T〉, τ), 0 |= EM(A) then (〈H,T〉, τ), 0 |= Γ. Therefore, (〈H,T〉, τ), 0 |= Γ1 ∪ Γ

so (〈T,T〉, τ) is not an equilibrium model of Γ1 ∪ Γ. Since Γ1 and Γ2 are strongly

equivalent, (〈T,T〉, τ) cannot be an equilibrium model of Γ2 ∪ Γ. Since (〈T,T〉, τ), 0 |=

Γ2 and (〈T,T〉, τ), 0 |= Γ then the minimality condition must fail. This means that

there must exist H′ < T such that (〈H′,T〉, τ), 0 |= Γ2 ∪ Γ. Since (〈H′,T〉, τ), 0 |=
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Γ2 then (〈H′,T〉, τ), 0 |= ϕ. Since (〈H′,T〉, τ), 0 |= ϕ and (〈H′,T〉, τ), 0 |= Γ then

(〈H′,T〉, τ), 0 |= EM(A), which contradicts Proposition 5.
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