
P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 324–331, doi:10.4204/EPTCS.416.32

© S. Hahn
This work is licensed under the
Creative Commons Attribution License.

Computational methods for
Dynamic Answer Set Programming

Susana Hahn

University of Potsdam, Germany

hahnmartinlu@uni-potsdam.de

1 Introduction

In our daily lives, we commonly encounter problems that require reasoning with time. For instance,
planning our day, determining our route to work, or scheduling our tasks. We refer to these problems
as ’dynamic’ because they involve movement and change over time, which sometimes includes metric
information to express deadlines and durations. For example, getting to the office within the next
hour while ensuring that you have had breakfast beforehand. In industrial settings, the complexity of
these problems increases significantly. We see this complexity in scenarios such as train scheduling,
production sequencing, and many other operations. Therefore, modeling these large-scale problems
requires addressing both dynamic aspects and complex combinatorial optimizations, which is a significant
challenge.

Semantic formalisms for expressing dynamic knowledge have been around for many years. Dynamic
logics provide the means to describe ordered events, making them powerful tools for domains that need to
capture actions and changes. These formalisms are typically approached from a theoretical perspective,
and the systems built around them tend to be single-purpose, lacking the flexibility to fully model complex
problems. This creates a need for systems that offer comprehensive modeling capabilities for dynamic
domains, efficient solving techniques, and tools for industrial integration. Answer Set Programming (ASP)
is a prime candidate for solving knowledge-intensive search and optimization problems. This declarative
approach offers a rich modeling language and effective solvers. However, ASP is primarily suited for
static knowledge and lacks built-in solutions for managing dynamic knowledge.

The overall goal of this research project is to extend ASP into a general-purpose technology for
dynamic domains. The first step is to develop the logical foundations for enhancing ASP’s base logic with
concepts from dynamic, temporal, and metric logic. Significant progress in this area has already been
made by previous efforts of our research group, providing a solid foundation for further development.
We need to identify fragments of these languages that offer the necessary modeling power for our target
dynamic problems while maintaining properties that allow for formalization and translation using various
approaches. These approaches include using different structures, such as automata and other transition
systems, and compiling durations into other formalisms, such as linear constraints. Implementing these
approaches will leverage existing technology in the ASP system clingo and its surrounding tools. This
project will employ advanced programming techniques in ASP to create effective systems for modeling
complex dynamic problems. Additionally, we aim to add interactive capabilities to these systems to
benefit both modelers and end users. We anticipate that incorporating these features into ASP will enhance
users’ ability to model dynamic problems and perform various reasoning tasks.

http://dx.doi.org/10.4204/EPTCS.416.32
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


S. Hahn 325

2 Background

Dynamic logics

One of the most commonly used temporal logics [21] is Linear-time Temporal Logic (LTL) [35]. LTL
provides modal operators to express temporal properties such as ◦ (next), □ (always), and ♢ (eventually).
LTL can also be defined in terms of Dynamic Logic (DL) [27], which allows for writing regular expressions
over (infinite) traces and mixing declarative with procedural specifications. These types of specifications
are also targeted by action languages such as GOLOG [40], which is based on situation calculus. Another
interesting approach is Metric Temporal Logic (MTL) [38], which allows measuring time differences
between events. This measurement is done by assigning a time value to states. Metric Logic can be used
in different applications such as scheduling [41], routing [37], and more [31]. Originally, these temporal
formalisms were investigated for infinite traces. However, in the past decade, the case of finite traces · f
has gained interest, as it aligns with a large range of AI applications and constitutes a computationally
more feasible variant. The introduction of LTLf and Linear Dynamic Logic over finite traces (LDLf ) [19]
served as a stepping stone to define the syntax and classical semantics under this restriction.

There are several tasks addressed by these formalisms and other action theories. The most commonly
known are satisfiability checking, model checking, and synthesis [47, 48, 20, 49]. Furthermore, other
more elaborate tasks closer to real-world scenarios include reactive control [8], diagnostics [33], planning
[4, 25, 5], and verification.

Many of these tasks are solved by translating complex constructs into simpler ones, for instance, by
reducing MTL into LTL [31]. Another very common strategy for addressing these problems is mapping
them into automata. This automata-theoretic approach involves constructing an automaton that accepts
exactly the models of a dynamic formula. This relationship has been extensively researched in areas
such as satisfiability checking, model checking, planning [4, 25, 5], and synthesis [47, 48, 20, 49]. Non-
deterministic finite automata (NFA) [30] and Deterministic Finite Automata (DFA) have been used for
finite traces, though they are of exponential size relative to the input formula. To tackle this issue, [19]
proposed a translation from LTLf and LDLf to a more elaborate but succinct automaton: Alternating
Automaton on Finite Words (AFA) [18, 48, 19]. These automata, an adaptation of Alternating Büchi
Automata to finite traces, extend NFAs with universal transitions. This translation, however, led to circular
definitions for some dynamic formulas and did not include past operators. These issues were addressed
in [45], where the authors introduced Automata Linear Dynamic Logic over finite traces (ALDL f ) and
presented a translation into even more sophisticated automata: Two-Way Alternating Finite Automata
(2AFA) [39, 36]. In addition to alternation, this type of automaton allows multiple head movements:
stationary, left, and right. More evolved translations from metric logic into automata have also been
developed, such as translating MTL into Timed Automata [42].

Answer Set Programming

Answer Set Programming (ASP) [10] is a well-established approach to declarative problem-solving where
problems are encoded as logic programs. The combination of its rich modeling language and highly
effective solving engines makes ASP a very attractive choice. ASP semantics can be formalized using
equilibrium models [44] of the logic of here-and-there (HT) [29]. This logic has also been extended to
here-and-there with constraints (HTc) [17], which introduces difference constraints, a simplified form of
linear constraints, into HT.

The ASP system clingo [24] is known for its high-performing engines. The system provides various



326 Computational methods for Dynamic ASP

tools for extending the language and customizing the solving process. clingo’s theory language capabilities
allow for defining custom syntactic expressions. Additionally, clingo offers two methods for capturing
new functionalities [34]: meta-programming, which uses a reification feature enabling the expression
of new functionalities using ASP, and a sophisticated Python API for manipulating and customizing the
system’s internal workflow. This customization includes techniques such as multi-shot solving, which
allows precise control of the solving process by modularizing the problem. These features have led to
the creation of several hybrid ASP systems. In particular, clingcon [7] and clingo[DL] [32] extend the
language of clingo with linear constraints using the semantics for HTc.

Temporal Logic Programming

In the 1980s, Temporal Logic Programming (TLP) emerged [22, 23, 1, 43]. TLP was revised after the
appearance of ASP, resulting in what we know as Temporal ASP. The idea is to extend the equilibrium
models of HT, to deal with dynamic scenarios. Research began with infinite traces, giving rise to (Linear)
Temporal Here-and-There (THT) [3] and (Linear) Dynamic Logic of Here-and-There (DHT) [9], along
with their non-monotonic counterparts for temporal stable models, namely Temporal Equilibrium Logic
(TEL) [3] and Dynamic Equilibrium Logic (DEL) [14]. The strategy behind these temporal formalisms is
to capture time as sequences of HT-interpretations, resulting in an expressive non-monotonic modal logic.
This approach allowed the definition of Temporal Logic Programs found in [2].

The temporal operators and semantics of the finite version TELf were introduced into the ASP system
clingo enriching its modeling power and yielding the first temporal ASP solver telingo [16]. This system
uses the clingo capabilities for theory extensions as well as multi-shot solving in an incremental manner.
Subsequent work incorporated dynamic operators from DELf [14, 13] by unfolding their definitions into
TELf relying on the introduction of auxiliary atoms (in a Tseitin-style [46]). This technique, however,
is dependent on a fixed trace length, and the type of translation makes the final logic program hard to
interpret. In [15], TEL was further extended with metric temporal operators constrained by intervals over
natural numbers, resulting in Metric Equilibrium Logic (MEL).

3 Contributions and future work

Automata techniques

To this moment, I have pursued different translations of dynamic and temporal logic with finite traces into
automata, and implemented them using ASP. In the current status of the project, I have not yet explored
the non-monotonic side of temporal reasoning with automata. Even though the semantics I have used so
far for the temporal formalisms have been monotonic, I was able to incorporate them in ASP by restricting
the dynamic formulas to integrity constraints where their behavior is classical. With this in mind, at the
moment, one can only use these formulas to filter plans via a translation into automata, which is one of
our primary goals.

The first approach, found in [11], proposes an adaptation of the translation of LDLf to AFA from
[19], which is incorporated into ASP using meta programming in clingo. This implementation is solely
based on ASP, relying on the theory extension to define the language for LDLf formulas, and the reified
output of clingo. This reification corresponds to a linearized representation of the dynamic formula as
facts based on the grammar defined for the theory. Then, using an ASP encoding, these facts are translated
into a declarative representation of the corresponding alternating automaton. In the full version of this
work [12], we explore other existing tools for computing an automaton from a dynamic formula. In order



S. Hahn 327

to employ them, we developed two different translations from LDLf to Monadic Second Order Logic
(MSO). For the implementation, we parsed the formula with clingo’s API and called the state-of-the-art
system MONA [28] to obtain a DFA, which is then transformed into facts. By having a unified declarative
representation to capture the different automata (AFA and DFA), we were able to craft a single encoding
for checking the acceptance of the automata.

Following (soon to be published) work presents a novel translation from LDLf into 2AFA. Leveraging
the transitions without head movement provided by these automata, we were able to remove the recursive
nature of our old translation, thus eliminating the circular issue carried from [19]. Furthermore, the
left head movement allows us to readily refer to time points in the past. These new target automata,
nonetheless, represented a formalization challenge since there is a lack of literature available in contrast to
simpler automata. This translation was implemented as part of the adlingo1 system. Just like the previous
work, the implementation was done using meta programming and theory extensions. Additionally, it
integrates the use of clingraph [26] to visualize the automata and its runs using an ASP encoding.

Linear constraints to encode durations

My latest work has focused on constructing the foundations of Metric Logic Programs (MLP). With
these programs, we plan to abstract the basic modalities and forms needed to model metric problems
in ASP. The semantics of these programs are those of MEL, where, by restricting the syntax, we aim
to simplify the computation. The first approach for this work has been submitted to ICLP24. As in the
automata approach, we are restricting the research to the finite setting for a given (fixed) horizon. This
work defines the basic syntax for a MLP in which all rules are universal, meaning that they must hold in
every step. This contrasts with the approach used for temporal logic programs in [2], where the rules were
separated into initial, dynamic, and final, which facilitates the implementation using incremental solving.
For our approach, the removal of this division simplifies the use of meta-programming techniques to
define the translation, as well as the overall semantics. The use of meta-programming allows us to define
the translations in ASP, making the implementation transparent and modular. A big advantage of this
approach is the clear mapping between the translation and the implementation in ASP. As a consequence,
it simplifies the proves of correctness and completeness of the translation.

In this first exploration, we restricted the rules of metric logic programs to only use the metric next
modality. For instance, with the rule ◦[20..40)school← drive, we express that “If I start driving, I must
be at the school in the next step, which should happen in 20 to 40 minutes”. We suspect that the core of
our target dynamic problems can be modeled with this restricted fragment. In a nutshell, the first part of
this translation represents the state changes and follows the same semantics as in TELf . The second part
accounts for the timed aspect of metric logic. For this part, we explore two approaches: one where the
translation is done to HT, and a second one where the target logic is HTc. As a result, we were able to see
what we expected: a succinct and performant translation of time into linear constraints. We also observed
that our restricted language did allow us to model the transitions and time restrictions, but was not enough
to represent the goal conditions of the problems. These conditions usually require more complex metric
operators to talk about states that are further away in time, for instance, “At some point in the next 2 hours,
I will be back home”.

1https://github.com/potassco/adlingo

https://github.com/potassco/adlingo


328 Computational methods for Dynamic ASP

3.1 Future work

The quest to conceptualize metric logic programming is far from over. In view of the results from the
last project, we have started to craft a translation that handles more metric operators. The translation is
planned to follow a Tseitin-style translation like the one in [2]. We want to further investigate HTc for
encoding time, and examine the integration of non-monotonic reasoning and optimization in the timed
aspect of MLP. Additionally, we plan to investigate how far ASP can address reactive-dynamic tasks
where the user and environment play a role by interacting with the system.

References

[1] M. Abadi & Z. Manna (1989): Temporal Logic Programming. Journal of Symbolic Computation 8, pp.
277–295, doi:10.1016/S0747-7171(89)80070-7.

[2] F. Aguado, P. Cabalar, M. Diéguez, G. Pérez, T. Schaub, A. Schuhmann & C. Vidal (2023): Linear-
Time Temporal Answer Set Programming. Theory and Practice of Logic Programming 23(1), pp. 2–56,
doi:10.1017/S1471068421000557.

[3] F. Aguado, P. Cabalar, M. Diéguez, G. Pérez & C. Vidal (2013): Temporal equilibrium logic: a survey. Journal
of Applied Non-Classical Logics 23(1-2), pp. 2–24, doi:10.1080/11663081.2013.798985.

[4] J. Baier, C. Fritz, M. Bienvenu & S. McIlraith (2008): Beyond Classical Planning: Procedural Control
Knowledge and Preferences in State-of-the-Art Planners. In D. Fox & C. Gomes, editors: Proceedings of
the Twenty-third National Conference on Artificial Intelligence (AAAI’08), AAAI Press, pp. 1509–1512.
Available at https://auld.aaai.org/Library/AAAI/2008/aaai08-251.php.

[5] J. Baier & S. McIlraith (2006): Planning with First-Order Temporally Extended Goals using Heuristic
Search. In Y. Gil & R. Mooney, editors: Proceedings of the Twenty-first National Conference on Artificial
Intelligence (AAAI’06), AAAI Press, pp. 788–795. Available at https://www.aaai.org/Library/AAAI/
2006/aaai06-125.php.

[6] M. Balduccini, Y. Lierler & S. Woltran, editors (2019): Proceedings of the Fifteenth International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’19). Lecture Notes in Artificial Intelligence
11481, Springer-Verlag, doi:10.1007/978-3-030-20528-7.

[7] M. Banbara, B. Kaufmann, M. Ostrowski & T. Schaub (2017): Clingcon: The Next Generation. Theory and
Practice of Logic Programming 17(4), pp. 408–461, doi:10.1017/S1471068417000138.

[8] C. Baral, S. Tran Cao & L. Tuan (2002): A transition function based characterization of actions with delayed
and continuous effects. In: KR, Citeseer, pp. 291–302. Available at https://citeseerx.ist.psu.edu/
document?repid=rep1&type=pdf&doi=d4ae7ddfcdc012e519b473d03dd3c7caffaa09e1.

[9] A. Bosser, P. Cabalar, M. Diéguez & T. Schaub (2018): Introducing Temporal Stable Models for Linear
Dynamic Logic. In M. Thielscher, F. Toni & F. Wolter, editors: Proceedings of the Sixteenth International
Conference on Principles of Knowledge Representation and Reasoning (KR’18), AAAI Press, pp. 12–21.
Available at https://aaai.org/ocs/index.php/KR/KR18/paper/view/18047.

[10] G. Brewka, T. Eiter & M. Truszczyński (2011): Answer set programming at a glance. Communications of the
ACM 54(12), pp. 92–103, doi:10.1145/2043174.2043195.

[11] P. Cabalar, M. Diéguez, S. Hahn & T. Schaub (2021): Automata for Dynamic Answer Set Solving: Preliminary
Report. In: Proceedings of the Fourteenth Workshop on Answer Set Programming and Other Computing
Paradigms (ASPOCP’21). Available at https://ceur-ws.org/Vol-2970/aspocpinvited1.pdf.

[12] P. Cabalar, M. Dieguez, S. Hahn & T. Schaub (2021): Automata for dynamic answer set solving: Preliminary
report. CoRR abs/2109.01782, doi:10.48550/arXiv.2109.01782 .

[13] P. Cabalar, M. Diéguez, F. Laferriere & T. Schaub (2020): Implementing Dynamic Answer Set Programming
over finite traces. In G. De Giacomo, A. Catalá, B. Dilkina, M. Milano, S. Barro, A. Bugarı́n & J. Lang,

http://dx.doi.org/10.1016/S0747-7171(89)80070-7
http://dx.doi.org/10.1017/S1471068421000557
http://dx.doi.org/10.1080/11663081.2013.798985
https://auld.aaai.org/Library/AAAI/2008/aaai08-251.php
https://www.aaai.org/Library/AAAI/2006/aaai06-125.php
https://www.aaai.org/Library/AAAI/2006/aaai06-125.php
http://dx.doi.org/10.1007/978-3-030-20528-7
http://dx.doi.org/10.1017/S1471068417000138
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d4ae7ddfcdc012e519b473d03dd3c7caffaa09e1
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d4ae7ddfcdc012e519b473d03dd3c7caffaa09e1
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18047
http://dx.doi.org/10.1145/2043174.2043195
https://ceur-ws.org/Vol-2970/aspocpinvited1.pdf
http://dx.doi.org/10.48550/arXiv.2109.01782 


S. Hahn 329

editors: Proceedings of the Twenty-fourth European Conference on Artificial Intelligence (ECAI’20), IOS
Press, pp. 656–663, doi:10.3233/FAIA200151.

[14] P. Cabalar, M. Diéguez & T. Schaub (2019): Towards Dynamic Answer Set Programming over finite traces. In
Balduccini et al. [6], pp. 148–162, doi:10.1007/978-3-030-20528-7 12.

[15] P. Cabalar, M. Diéguez, T. Schaub & A. Schuhmann (2022): Metric Temporal Answer Set Programming over
Timed Traces. In G. Gottlob, D. Inclezan & M. Maratea, editors: Proceedings of the Sixteenth International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’22), Lecture Notes in Artificial
Intelligence 13416, Springer-Verlag, pp. 117–130, doi:10.1007/978-3-031-15707-3 10.

[16] P. Cabalar, R. Kaminski, P. Morkisch & T. Schaub (2019): telingo = ASP + Time. In Balduccini et al. [6], pp.
256–269, doi:10.1007/978-3-030-20528-7 19.

[17] P. Cabalar, R. Kaminski, M. Ostrowski & T. Schaub (2016): An ASP Semantics for Default Reasoning with
Constraints. In R. Kambhampati, editor: Proceedings of the Twenty-fifth International Joint Conference on
Artificial Intelligence (IJCAI’16), IJCAI/AAAI Press, pp. 1015–1021, doi:10.5555/3060621.3060762.

[18] A. Chandra, D. Kozen & L. Stockmeyer (1981): Alternation. Journal of the ACM 28(1), pp. 114–133,
doi:10.1145/322234.322243.

[19] G. De Giacomo & M. Vardi (2013): Linear Temporal Logic and Linear Dynamic Logic on Finite Traces. In
F. Rossi, editor: Proceedings of the Twenty-third International Joint Conference on Artificial Intelligence
(IJCAI’13), IJCAI/AAAI Press, pp. 854–860. Available at https://www.ijcai.org/Abstract/13/132.

[20] G. De Giacomo & M. Vardi (2015): Synthesis for LTL and LDL on Finite Traces. In Q. Yang & M. Wooldridge,
editors: Proceedings of the Twenty-fourth International Joint Conference on Artificial Intelligence (IJCAI’15),
AAAI Press, pp. 1558–1564. Available at https://ijcai.org/Abstract/15/223.

[21] S. Demri, V. Goranko & M. Lange (2016): Temporal Logics in Computer Science: Finite-
State Systems. Cambridge Tracts in Theoretical Computer Science, Cambridge University Press,
doi:10.1017/CBO9781139236119.

[22] M. Fujita, S. Kono, H. Tanaka & T. Moto-Oka (1986): Tokio: Logic Programming Language Based on
Temporal Logic and its Compilation to Prolog. In E. Shapiro, editor: Proceedings of the Third International
Conference on Logic Programming (ICLP’86), Lecture Notes in Computer Science 225, Springer, pp. 695–709,
doi:10.1007/3-540-16492-8 119.

[23] D. Gabbay (1987): Modal and Temporal Logic Programming. In A. Galton, editor: Temporal Logics and their
Applications, chapter 6, Academic Press, pp. 197–237.

[24] M. Gebser, R. Kaminski, B. Kaufmann & T. Schaub (2019): Multi-shot ASP solving with clingo. Theory and
Practice of Logic Programming 19(1), pp. 27–82, doi:10.1017/S1471068418000054.

[25] G. De Giacomo & S. Rubin (2018): Automata-Theoretic Foundations of FOND Planning for LTLf and LDLf
Goals. In J. Lang, editor: Proceedings of the Twenty-seventh International Joint Conference on Artificial
Intelligence (IJCAI’18), ijcai.org, pp. 4729–4735, doi:10.24963/ijcai.2018/657.

[26] S. Hahn, O. Sabuncu, T. Schaub & T. Stolzmann (2024): Clingraph: A System for ASP-based Visualization.
Theory and Practice of Logic Programming, doi:10.1017/S147106842400005X.

[27] D. Harel, J. Tiuryn & D. Kozen (2000): Dynamic Logic. MIT Press, doi:10.1145/568438.568456.

[28] J. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, R. Paige, T. Rauhe & A. Sandholm (1995): Mona:
Monadic Second-Order Logic in Practice. In E. Brinksma, R. Cleaveland, K. Larsen, T. Margaria & B. Steffen,
editors: Proceedings of the First International Workshop on Tools and Algorithms for Construction and
Analysis of Systems (TACAS’95), Lecture Notes in Computer Science 1019, Springer-Verlag, pp. 89–110,
doi:10.1007/3-540-60630-0 5.

[29] A. Heyting (1930): Die formalen Regeln der intuitionistischen Logik. In: Sitzungsberichte der Preussischen
Akademie der Wissenschaften, Deutsche Akademie der Wissenschaften zu Berlin, pp. 42–56.

[30] J. Hopcroft & J Ullman (1979): Introduction to Automata Theory, Languages, and Computation. Addison-
Wesley.

http://dx.doi.org/10.3233/FAIA200151
http://dx.doi.org/10.1007/978-3-030-20528-7_12
http://dx.doi.org/10.1007/978-3-031-15707-3_10
http://dx.doi.org/10.1007/978-3-030-20528-7_19
http://dx.doi.org/10.5555/3060621.3060762
http://dx.doi.org/10.1145/322234.322243
https://www.ijcai.org/Abstract/13/132
https://ijcai.org/Abstract/15/223
http://dx.doi.org/10.1017/CBO9781139236119
http://dx.doi.org/10.1007/3-540-16492-8_119
http://dx.doi.org/10.1017/S1471068418000054
http://dx.doi.org/10.24963/ijcai.2018/657
http://dx.doi.org/10.1017/S147106842400005X
http://dx.doi.org/10.1145/568438.568456
http://dx.doi.org/10.1007/3-540-60630-0_5


330 Computational methods for Dynamic ASP

[31] U. Hustadt, A. Ozaki & C. Dixon (2020): Theorem Proving for Pointwise Metric Temporal Logic Over the
Naturals via Translations. Journal of Automated Reasoning 64(8), pp. 1553–1610, doi:10.1007/s10817-020-
09541-4.

[32] T. Janhunen, R. Kaminski, M. Ostrowski, T. Schaub, S. Schellhorn & P. Wanko (2017): Clingo goes Linear
Constraints over Reals and Integers. Theory and Practice of Logic Programming 17(5-6), pp. 872–888,
doi:10.1017/S1471068417000242.

[33] S. Jiang & R. Kumar (2004): Failure diagnosis of discrete-event systems with linear-time temporal logic
specifications. IEEE Transactions on Automatic Control 49(6), pp. 934–945, doi:10.1109/TAC.2004.829616.

[34] R. Kaminski, T. Schaub & P. Wanko (2017): A Tutorial on Hybrid Answer Set Solving with clingo. In
G. Ianni, D. Lembo, L. Bertossi, W. Faber, B. Glimm, G. Gottlob & S. Staab, editors: Proceedings of the
Thirteenth International Summer School of the Reasoning Web, Lecture Notes in Computer Science 10370,
Springer-Verlag, pp. 167–203, doi:10.1007/978-3-319-61033-7 6.

[35] J. Kamp (1968): Tense Logic and the Theory of Linear Order. Ph.D. thesis, University of California at Los
Angeles.

[36] C. Kapoutsis & M. Zakzok (2021): Alternation in two-way finite automata. Theoretical Computer Science
870, pp. 75–102, doi:10.1016/j.tcs.2020.12.011.

[37] S. Karaman & E. Frazzoli (2008): Vehicle routing problem with metric temporal logic specifications. In: 2008
47th IEEE conference on decision and control, IEEE, pp. 3953–3958, doi:10.1109/CDC.2008.4739366.

[38] R. Koymans (1990): Specifying Real-Time Properties with Metric Temporal Logic. Real-Time Systems 2(4),
pp. 255–299, doi:10.1007/BF01995674.

[39] R. Ladner, R. Lipton & L Stockmeyer (1984): Alternating pushdown and stack automata. SIAM Journal on
Computing 13(1), pp. 135–155, doi:10.1137/0213010.

[40] H. Levesque, R. Reiter, Y. Lespérance, F. Lin & R. Scherl (1997): GOLOG: A Logic Programming Language
for Dynamic Domains. Journal of Logic Programming 31(1-3), pp. 59–83, doi:10.1016/S0743-1066(96)00121-
5.

[41] R. Luo, R. Valenzano, Y. Li, C. Beck & S. McIlraith (2016): Using Metric Temporal Logic to Specify
Scheduling Problems. In C. Baral, J. Delgrande & F. Wolter, editors: Proceedings of the Fifteenth International
Conference on Principles of Knowledge Representation and Reasoning (KR’16), AAAI Press, pp. 581–584.
Available at https://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12909.

[42] D. Ničković & N. Piterman (2010): From MTL to Deterministic Timed Automata. In K. Chatterjee &
T. Henzinger, editors: Proceedings of the Eighth International Conference on Formal Modeling and Analysis
of Timed Systems (FORMATS’10), Lecture Notes in Computer Science, Springer-Verlag, pp. 152–167,
doi:10.1007/978-3-642-15297-9 13.

[43] M. Orgun & W. Wadge (1992): Theory and Practice of Temporal Logic Programming. In L. Fariñas del Cerro
& M. Penttonen, editors: Intensional Logics for Programming, chapter 2, Oxford University Press, pp. 21–50,
doi:10.1093/oso/9780198537755.003.0002.

[44] D. Pearce (2006): Equilibrium logic. Annals of Mathematics and Artificial Intelligence 47(1-2), pp. 3–41,
doi:10.1007/s10472-006-9028-z.

[45] K. Smith & M. Vardi (2021): Automata Linear Dynamic Logic on Finite Traces. arXiv preprint
arXiv:2108.12003.

[46] G. Tseitin (1968): On the complexity of derivation in the propositional calculus. Zapiski nauchnykh seminarov
LOMI 8, pp. 234–259.

[47] M. Vardi (1995): An Automata-Theoretic Approach to Linear Temporal Logic. In F. Moller & G. Birtwistle,
editors: Logics for Concurrency: Structure versus Automata, Lecture Notes in Computer Science 1043,
Springer-Verlag, pp. 238–266, doi:10.1007/3-540-60915-6 6.

[48] M. Vardi (1997): Alternating Automata: Unifying Truth and Validity Checking for Temporal Logics. In
W. McCune, editor: Proceedings of the Fourteenth International Conference on Automated Deduction

http://dx.doi.org/10.1007/s10817-020-09541-4
http://dx.doi.org/10.1007/s10817-020-09541-4
http://dx.doi.org/10.1017/S1471068417000242
http://dx.doi.org/10.1109/TAC.2004.829616
http://dx.doi.org/10.1007/978-3-319-61033-7_6
http://dx.doi.org/10.1016/j.tcs.2020.12.011
http://dx.doi.org/10.1109/CDC.2008.4739366
http://dx.doi.org/10.1007/BF01995674
http://dx.doi.org/10.1137/0213010
http://dx.doi.org/10.1016/S0743-1066(96)00121-5
http://dx.doi.org/10.1016/S0743-1066(96)00121-5
https://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12909
http://dx.doi.org/10.1007/978-3-642-15297-9_13
http://dx.doi.org/10.1093/oso/9780198537755.003.0002
http://dx.doi.org/10.1007/s10472-006-9028-z
http://dx.doi.org/10.1007/3-540-60915-6_6


S. Hahn 331

(CADE’97), Lecture Notes in Computer Science 1249, Springer-Verlag, pp. 191–206, doi:10.1007/3-540-
63104-6 19.

[49] S. Zhu, G. Pu & M. Vardi (2019): First-Order vs. Second-Order Encodings for LTLf-to-Automata Translation.
In T. Gopal & J. Watada, editors: Proceedings of the Fifteenth Annual Conference on Theory and Applications
of Models of Computation (TAMC’19), Lecture Notes in Computer Science 11436, Springer-Verlag, pp.
684–705, doi:10.1007/978-3-030-14812-6 43.

http://dx.doi.org/10.1007/3-540-63104-6_19
http://dx.doi.org/10.1007/3-540-63104-6_19
http://dx.doi.org/10.1007/978-3-030-14812-6_43

	Introduction
	Background
	Contributions and future work
	Future work


